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Zusammenfassung

Die Leichtigkeit, mit derer Athletinnen und Athleten ihre Bewegungen ausführen, ist ein beein-
druckendes Ergebnis der menschlichen Koordination. Um Bewegungen ausführen zu können,
löst das zentrale Nervensystem (ZNS) mehrere Herausforderungen: die Redundanz des men-
schlichen Muskelskelettsystems, die daraus resultierende Vielseitigkeit an Bewegungen und die
Veränderlichkeit von Körper-, Umgebungs- und Objekteigenschaften.

Das menschliche Muskelskelettsystem umfasst mehr als 600 Muskeln, die sich über mehr als
200 Gelenke mit mehreren Freiheitsgraden spannen. Jede Bewegungsaufgabe kann daher auf
mehrere Arten gelöst werden. Diese Redundanz zu kontrollieren wird auch als das „Problem der
Freiheitsgrade“ bezeichnet. Des Weiteren ergibt sich durch die enorme Anzahl an Freiheitsgrade
ein umfangreiches Repertoire an möglichen Bewegungen. Es ist jedoch unwahrscheinlich, dass
das ZNS die Kommandos für jede Bewegung stets neu berechnet. Ebenfalls unwahrscheinlich
ist, dass das ZNS die Kommandos für jede Bewegung abspeichert. Wie das ZNS diese Viel-
seitigkeit an Bewegungen verwaltet, ist demnach ungeklärt. Darüber hinaus ist der Mensch sich
ständig verändernden Gegebenheiten ausgesetzt. Sein eigener Körper, seine Umgebung und die
Objekte, mit denen er interagiert, sind fortwährend Veränderungen unterworfen und verändern
ihre physikalischen Eigenschaften über die Zeit. So weht beispielsweise beim Beachvolleyball
der Wind mal stärker oder schwächer oder der neue Tennisschläger ist andersartig bespannt als
das Vorgängermodell. Das ZNS meistert die Herausforderung der Veränderlichkeit von Körper-,
Umgebungs- und Objekteigenschaften und passt Bewegungen entsprechend an. Der Prozess, der
diese Anpassung erzielt, wird als „motorische Adaptation“ bezeichnet. Er beschreibt die Anpas-
sung einer beherrschten Bewegung auf eine Veränderung des eigenen Körpers, der Umgebung,
und der Objekte, mit denen er agiert.

Wie das ZNS diese drei Herausforderungen meistert, ist bislang nicht vollständig verstanden.
Gemäß einer vorherrschenden Hypothese koordiniert das ZNS mithilfe einer modularen Kon-
trollarchitektur nicht einzelne Elemente, sondern funktionelle Verbindungen. Anstatt einzelner
Muskeln kontrolliert es demnach Gruppen gleichzeitig aktivierter Muskeln. Diese funktionellen
Verbindungen gleichzeitig aktivierter Muskeln werden als Muskelsynergien bezeichnet. Bei der
Ausführung von Bewegungen realisieren Muskelsynergien biomechanische Funktionen, wie zum
Beispiel das Vorwärtsstrecken des Arms.
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Zusammenfassung

Muskelsynergien können als Lösung des ZNS für das Problem der Freiheitsgrade, der im-
mensen Redundanz, betrachtet werden. Da das ZNS anstelle einzelner Muskeln Muskelsynergien
kontrolliert, reduziert sich die Anzahl der notwendigen Kommandos. Außerdem stellen die
Muskelsynergien eine mögliche Lösung dar, wie das ZNS das enorme Bewegungsrepertoire, die
Vielseitigkeit, effizient verwaltet. Da Muskelsynergien beliebig und unterschiedlich gewichtet
miteinander kombiniert werden, sind schon wenige ausreichend, um eine Vielzahl an Bewegungen
zu realisieren. Durch die Nutzung von Muskelsynergien reduziert sich folglich die Anzahl der
zu verwaltenden Elemente. Doch welchen Einfluss die Interaktion mit Objekten auf die Muskel-
synergien hat und insbesondere, wie die Adaptation, wenn sich Objekteigenschaften ändern, von
Muskelsynergien repräsentiert wird, ist nicht vollständig verstanden. Es ist also unklar, wie das
ZNS die Herausforderung der Veränderlichkeit von Objekteigenschaften löst.

Roboter bieten die Möglichkeit, diese noch ungeklärten Sachverhalte kontrolliert experimentell
zu untersuchen. Somit wird die Herausforderung der Veränderlichkeit von Objekteigenschaften
untersucht. Die Roboter werden so programmiert, dass sie ein Objekt mit neuen physikalischen
Eigenschaften simulieren, an die sich der Mensch anpassen muss. Zudem wird der Einfluss von
Mensch-Roboter-Interaktion untersucht. Roboter können Objekte simulieren, die speziell für die
Interaktion mit dem Menschen entworfen sind, wie beispielsweise Rollatoren.

Die vorliegende Arbeit untersuchte die Koordination und Adaptation bei der Mensch-Roboter-
Interaktion in Bezug auf die modulare Kontrollarchitektur. Sie gliedert sich in zwei Themen, A
und B, mit jeweils zwei Studien.

In Thema A wurde die Koordination und Adaptation von Reichbewegungen mit Hilfe eines
Robotermanipulandums und Technologien virtueller Realität untersucht. Wie oben beschrieben,
könnenMenschen ihre Bewegungen adaptieren. Beispielsweise adaptieren Tennisspielerinnen und
Tennisspieler sich an die neuen physikalischen Eigenschaften eines neuen Schlägers. Während
die ersten Bälle mit dem neuen Schläger noch im Netz oder Aus landen, spielen sie die Bälle nach
und nach so gut wie vor dem Wechsel. Bei der motorischen Adaptation wird Wissen erworben,
das sowohl nach vergangener Zeit wieder abgerufen wird, als auch bis zu einem gewissen Grad
auf bis dahin unbekannte Bedingungen generalisiert werden kann. Verschiedene experimentelle
Paradigmen ermöglichen die kontrollierte Untersuchung der motorischen Adaptation, wie zum
Beispiel das Kraftfeldparadigma. Hier umfassen Probandinnen und Probanden den Griff eines
Robotermanipulandums und steuern damit verschiedene Ziele an. Dabei adaptieren sie an
Kräfte, die das Robotermanipulandum ausübt, um die Reichbewegungen zu perturbieren. Diese
perturbierenden Kräfte stellen die neuen physikalischen Eigenschaften des Objektes dar, an die
das ZNS die Bewegung adaptiert. Im oben genannten Beispiel wird der neue Tennisschläger durch
das Robotermanipulandum repräsentiert.
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Zusammenfassung

Die erste Studie untersuchte mithilfe des Kraftfeldparadigmas, welchen Effekt die Organisation der
Übungsvariabilität auf die Retention und räumliche Generalisierung hat. Alle Probandinnen und
Probanden führten Reichbewegungen zu unterschiedlichen Zielen im Arbeitsraum aus. Jedoch
wurden die Probandinnen und Probanden in zwei Gruppen eingeteilt und die Übungsvariabilität
der beiden Gruppen wurde unterschiedlich organisiert: einmal randomisiert, d.h. mit hoher
Interferenz und einmal geblockt, d.h. mit niedriger Interferenz. Es wurde festgestellt, dass ein
randomisiertes einem geblocktem Trainingsprotokoll, in Bezug auf die Retention und räumliche
Generalisierung, überlegen ist. Diese Ergebnisse wurden zuvor beim Fertigkeitslernen im Zusam-
menhang mit dem Kontext-Interferenz-Effekt, jedoch noch nicht bei Kraftfeldadaptation und
räumlicher Generalisierung, beschrieben. Darüber hinaus konnten die Ergebnisse mithilfe eines
erweiterten Zustandsmodells („State-space model“) in Verbindung mit einer der drei vorherrschen-
den Hypothesen zur Erklärung des Kontext-Interferenz-Effekts, der „Rekonstruktionshypothese“,
gebracht werden.

Um tiefere Einblicke in die Kraftfeldadaptation, die Retention und die räumliche Generalisierung
zu gewinnen, standen in der der zweiten Studie die Muskelsynergien im Fokus. Die Probanden
führten zunächst Reichbewegungen zu fünf Zielen (-90◦, -45◦, 0◦, 45◦, 90◦) aus und wurden
dabei nicht perturbiert. Diese Phase wird als „Baseline“ bezeichnet. Anschließend führten sie
Reichbewegungen zum 0◦ Ziel aus und wurden dabei perturbiert. Nach dieser Adaptationsphase
schloss sich eine Auswaschphase an, in der sie die Reichbewegungen ohne Perturbation zum
0◦ Ziel ausführten. Schließlich wurden die Probanden in drei Gruppen aufgeteilt. Je eine
Gruppe führte perturbierte Reichbewegungen zu je einem Ziel aus, d.h. eine Gruppe nur zum
-90◦ Ziel, eine andere zum 0◦ Ziel und eine zum 45◦ Ziel. Muskelsynergien wurden aus
elektromyographischen Daten extrahiert. Die Ergebnisse zeigten, dass die Muskelsynergien,
welche die Aktivierungsmuster der Muskeln der „Baseline“-Bewegungen beschreiben konnten,
die Aktivierungsmuster der Muskeln nach der Adaptation nicht beschreiben konnten und dass die
Kraftfeldadaptation spezifischeMuskelsynergien erfordert. Diese kraftfeldadaptationsspezifischen
Muskelsynergien wurden in einem neuartigen, vierphasigen Muster aktiviert. Des Weiteren
bildeten die spezifischen Muskelsynergien und deren Aktivierungsmuster auch die Grundlage
für die Retention und die räumliche Generalisierung. Zusammenfassend betrachtet, erweitert
Thema A zum einen unser Wissen über die Effekte der Organisation der Übungsvariabilität bei
der Kraftfeldadaptation, zum anderen liefern sie neue Erkenntnisse bezüglich der Koordination
auf muskulärer Ebene, die der Kraftfeldadaptation zugrunde liegt.

Thema B evaluierte, wie sich die Unterstützung durch einen Rollator auf die Koordination
der Bewegungen auswirkt. Durch Rollatoren kann die Last von den unteren auf die oberen
Extremitäten verlagert werden. Des Weiteren sollen sie die Sturzgefahr reduzieren. Studien
zeigten jedoch, dass Rollatoren auch als Risikofaktor für Stürze identifiziert werden können.
Um dieses Paradox zu untersuchen, wurden zwei Studien durchgeführt. Die Probandinnen und
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Zusammenfassung

Probanden standen auf und saßen hin unter drei Unterstützungsbedingungen. In der Bedingung
„ohneUnterstützung“ nutzten Sie dieArme nicht. Bei derBedingung „leichteBerührung“ legten sie
ihre Handflächen leicht auf die Rollatorgriffe. Bei der Bedingung „volle Unterstützung“ umgriffen
sie die Rollatorgriffe. Weiter wurden zwei Bodenbedingungen genutzt. Die Probandinnen und
Probanden hatten entweder den Standardlaborboden unter ihren Füßen oder Balancierkissen aus
Gummi. Ein Roboter-Rollator-Simulator diente als Hilfsmittel, um den Einfluss eines Rollators
auf die Übergänge vom Sitzen zum Stehen und vom Stehen zum Sitzen zu untersuchen. Im
Gegensatz zu Thema A, in dem die Adaptation mit Reichbewegungen eines Arms und im Sitzen
untersucht wurde, untersuchte Thema B eine Ganzkörperbewegung. Die beiden Studien zu
Thema B werden als aufeinanderfolgende Analysen betrachtet. In der ersten Studie wurden
verschiedene Bewegungsstrategien durch nicht-superversierte maschinelle Lernverfahren auf der
Grundlage von Gelenkwinkeln, Körperschwerpunktverläufen und der Interaktionskräfte zwischen
den Probandinnen und Probanden und dem Boden und Stuhl identifiziert. In der zweiten Studie
wurden die Bewegungen vom Sitzen zum Stehen und vom Stehen zum Sitzen mit Muskelsynergien
in Bezug auf die zuvor identifizierten Bewegungsstrategien untersucht. Zusammenfassend zeigten
die beiden Studien drei Ergebnisse. Beim Benutzen des Rollators (1) neigten die Probandinnen
und Probanden beim Aufstehen und Hinsitzen dazu, den Oberkörper weniger stark nach vorne
zu neigen und stattdessen stärker vertikal auszurichten, (2) nahm ihre relative Muskelaktivierung
in den Armmuskeln zu und in den unteren Gliedmaßen ab und (3) kontrollierte das ZNS die
gleichgewichtskritischen Phasen des Auf- und Absitzens höherfrequentiert im Vergleich zu den
Zeitpunkten davor und danach.

Die Ergebnisse der vier Studien verbessern unser Verständnis, wie das ZNS die Herausforderungen
der Redundanz, Vielseitigkeit und Veränderlichkeit von Körper-, Umgebungs- und Objekteigen-
schaften löst. Die Ergebnisse zur Organisation der Übungsvariabilität und zur Koordination auf
muskulärer Ebene bei der Kraftfeldadaptation erlauben die motorische Adaptation bei sportlichen
Bewegungen perspektivisch besser zu verstehen und zu optimieren. Die Identifikation und
Charakterisierung von Bewegungsstrategien und der Einfluss von Rollatoren auf die Koordination
verhelfen zu einer sicheren und effizienten Nutzung von Rollatoren.
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Abstract

The ease with which athletes perform their movements is an impressive result of the control
processes in human motor control and learning. This is because the central nervous system has to
solve several challenges: the redundancy of the musculoskeletal system, the versatility of possible
movements, and the time-varying properties of the human body, the environment, and objects
with which humans interact.

The human musculoskeletal system consists of over 600 muscles spanning over more than 200
joints, with most often several degrees of freedom. Every movement task can thus be solved in
multiple ways. Controlling this inherent redundancy is called the “degrees of freedom problem”.
Furthermore, the immense number of degrees of freedom allows for a huge number of possible
movements. However, it seems implausible that the CNS calculates the commands for the
movement each time anew. Likewise, it seems implausible that the CNS stores the commands for
every movement. Hence, it is unclear how the CNS solves this versatility challenge. Furthermore,
there is the challenge of time-varying properties. Humans’ bodies, their environment, and the
objects they interact with change their physical properties on different timescales. For example,
the wind becomes stronger or weaker in beach volleyball, or the new tennis racket is tensioned
differently than the former one. The CNS solves this challenge of time-varying properties and
adapts movements accordingly. The process of adjusting how an already well-practiced action is
executed to maintain performance in response to a change of the physical properties of the body,
in the environment, or the object the human interacts with, is called “motor adaptation”.

However, how the CNS solves these challenges remains unclear. According to a prevailing
hypothesis, the so-called “modular control architecture”, it is proposed that the CNS controls
functional linkages instead of single components. In particular, muscle synergies are functional
linkages of muscle activations. This means that instead of controlling single muscles, the CNS
controls groups of coactivated muscles. These muscle synergies reflect biomechanical functions,
such as forward reaching with the arm.

Muscle synergies can be seen as a representation of the solution of the CNS to the redundancy
challenge. By controlling groups of coactivated muscles instead of single muscles, the number of
necessary commands is reduced. Furthermore, by combining and weighting individual muscle
synergies, only a few are necessary to generate an extensive behavioral repertoire. This can be
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Abstract

seen as a solution to the CNS for the challenge of versatility. However, the influence of human
interactions with objects on muscle synergies remains unclear. In particular, it remains unclear
howmotor adaptation is represented by muscle synergies. Thus, it is unclear howmuscle synergies
change as the CNS solves the challenge of time-varying properties.

Robotic devices enable us to study these remaining questions experimentally. The challenge of
time-varying properties can thus be investigated. Robotic devices can be programmed to simulate
objects with novel physical properties that humans can adapt to. Furthermore, the influence
of robotic devices on coordination can be studied using human-robot interaction. For example,
robotic devices can also simulate objects, especially designed for human-robot interaction, like
rollators.

This dissertation investigated coordination and adaptation in human-robot interaction with respect
to the modular control architecture. It is divided into two topics, A and B, each comprising two
studies.

In topic A, coordination and adaptation of reaching movements using a robotic manipulandum
and virtual reality technologies were examined. As described before, humans can adapt their
movements. For example, a tennis player adapts to the new physical properties of their new
racket. While the first shots with the new racket land in the net or out, the tennis player
subsequently improves until their performance level returns to the level before the racket change.
The knowledge acquired through motor adaptation can be recalled after some time and partly
generalized to new, inexperienced conditions. Motor adaptation can be investigated with various
experimental paradigms. In the force field adaptation paradigm, participants grasp the handle of a
robotic manipulandum and reach to multiple targets. Therefore, they adapt to the forces exerted on
the handle by the robotic manipulandum, perturbing the reaching movements. These perturbing
forces reflect, for example, the new physical properties of the object that the human adapts to. In
this case, the new tennis racket’s physical properties are simulated by the robotic manipulandum.

In the first study, the force field paradigm was used to investigate the effect of the organization of
practice variability on retention and spatial generalization in force field adaptation. All participants
performed reaching movements to different targets in the workspace, but the participants were
divided into two groups with different organizations of practice variability: one was randomized,
i.e., with high interference, and the other was blocked, i.e., with low interference. The random
practice protocol was superior to the blocked practice protocol regarding retention and spatial
generalization. These results were previously described in skill learning in the context of the
contextual-interference effect, but not yet in force field adaptation and spatial generalization.
Furthermore, using an extended state-space model, the results could be related to one of the
three prevailing hypotheses to explain the contextual-interference effect, the “forgetting-and-
reconstruction hypothesis”.
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To gain deeper insights into force field adaptation, retention, and spatial generalization, muscle
synergies were investigated in the second study. The participants first reached to five targets
(-90◦, -45◦, 0◦, 45◦, 90◦) without any perturbation. This phase was called “Baseline”. Then, they
reached to the 0◦ target and got perturbed. After adapting, they washed out by reaching to the
0◦ target without perturbation. Finally, the participants were split into three groups. Each group
reached to one target and got perturbed. One group reached to the -90◦ target only, another group
to the 0◦ target only, and the last group to the 45◦ target only. Muscle synergies were extracted
from EMG data. The results showed that muscle synergies that facilitated baseline reaching could
not explain the muscle activation patterns employed after adaptation and that force field adaptation
requires specific muscle synergies. These adaptation-specific muscle synergies were furthermore
activated in a novel four-phasic pattern and also underlay retention and spatial generalization. In
summary, the two studies expand our knowledge of the effects of the organization of practice
variability and underlying coordination in force field adaptation at a muscular level.

In topic B, the effects of rollator support on the coordination of sit-to-stand and stand-to-sit
movements were investigated. Rollators can shift the load from the lower to the upper body.
Furthermore, rollators are often prescribed to improve postural stability. However, they have
paradoxically also been associated with a higher fall risk. To unravel this paradox, two studies
were performed. The participants stood up and sat down in three different support conditions. In
the unassisted condition, they did not use the handles. In the light touch condition, they placed
their palms on the handles, but only with a light touch. In the full support condition, they grabbed
the handles with a power grip. Furthermore, two floor conditions were used. They either had the
standard lab floor or rubber balance pads beneath their feet. A robot rollator simulator served
as an assistive device to study the rollator’s influence on transitions between sitting and standing.
While topic A investigated adaptation using seated reaching with one arm, topic B investigated a
whole-body movement. Therefore, the two studies on topic B can be seen as subsequent analysis
steps. In the first study, distinguishable movement strategies were identified by unsupervised
machine learning techniques based on joint kinematics, center of mass movement, and ground
reaction forces as well as seat interaction forces. In the second study, the sit-to-stand and stand-to-
sit movements were investigated using muscle synergies with respect to the previously identified
movement strategies. In summary, the two studies showed that participants (1) tended to stand
up and sit down with less upper body lean but a more vertical upper body orientation when they
used a rollator, (2) relative muscle activation increases in the arm muscles and decreased in the
lower limbs when they used a rollator, and (3) the balance-critical phases of seat-off and seat-on
were more tightly controlled than before and after these time points.

The results of the four studies enhance our understanding of how the CNS solves the challenges
of redundancy, versatility, and time-varying properties. The results regarding the organization
of practice variability and coordination at a muscular level in force field adaptation facilitate
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a better understanding and improvement of motor adaptation in sports. The identification and
characterization of movement strategies and the influence of rollator support on coordination help
establish a safe and efficient use of rollators.
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1 Introduction and motivation

1.1 Motivation

Human movements are astonishing, e.g., Gymnasts perform Saltos backward with four twists
on the floor (FIG, 2024), and tennis players hit balls at each other at speeds of over 180 km/h
(Fleisig et al., 2003). Skilled athletes move efficiently, smoothly, and gracefully (Schmidt and
Lee, 2011). However, the ease with which they move disguises the complexity of the underlying
central nervous system (CNS) processes (Wolpert et al., 2012). Furthermore, the athlete performs
in various environments or with specific objects. Gymnastics is performed on special tumbling
floors with springs (King and Yeadon, 2004), and tennis players can choose from a wide range of
tennis rackets with different physical properties (Allen et al., 2016). Accordingly, the CNS not
only needs to coordinate the athlete’s movements but must also take into account the interaction
with the environment or objects. All these skills require years of practice (Schmidt and Lee, 2011).
Furthermore, the physical properties of the athlete’s body, their environment and their objects
change on different time-scales and require constant adaptation (Karniel, 2011).

Despite years of research, the CNS processes involved in human motor control and learning are
not fully comprehended (Wolpert and Bastian, 2021). Thus, they are essential to understanding
and optimizing the learning and execution of human movements. Therefore, I aspire to improve
our understanding of human motor control and learning with two topics:

Topic A: Coordination and adaptation of reaching movements using a robotic manipulandum
and virtual reality technologies

Topic B: Effects of rollator support on the coordination of sit-to-stand and stand-to-sit move-
ments using a robot rollator simulator

These two topics investigate human motor control and learning using reaching, a simple skill (topic
A), and complex skills, sit-to-stand and stand-to-sit, (topic B). Hereby and in this dissertation,
reaching is called “simple”, because it involves primarily only one arm. This means, the number
of degrees of freedom in movement is lower compared to the whole-body movements sit-to-stand
and stand-to-sit. The latter involve multiple body segments and are therefore called “complex”
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1 Introduction and motivation

in this dissertation and according to Cisek and Green (2024) and Wulf and Shea (2002). The
two topics further address two crucial time points in human motor control and learning. Topic
A concerns the phase when humans adapt their movements to the modified physics of a different
object, like a new tennis racket. Topic B, on the other hand, assumes that adaptation has occurred
and examines how coordination changes persistently by assistive devices.

Therefore, the different object’s physical properties and the assistive device are operationalized
with robotic devices. Hence, I use human-robot interaction, on the one hand, as a tool to understand
coordination and adaptation (topic A), and on the other hand, with assistive devices specially
designed for human-robot interaction (topic B).

1.2 Outline

This dissertation comprises six chapters. This first chapter introduces theoretical and method-
ological fundamentals. The current state of research concerning the topics of interest for this
dissertation is introduced, and the aims and scope of this dissertation finish this first chapter. The
subsequent four chapters present individual studies, each addressing the aims and scopes. Each
study is either already peer-reviewed and published in a journal or currently in review.

Chapter 2 and 3 focus on topic A, the coordination and adaptation of reaching movements using a
robotic manipulandum and virtual reality technologies, and comprise two studies:

Study 1: Random practice enhances retention and spatial transfer in force field adaptation

Study 2: Changes in muscle synergy structure and activation patterns underlie force field
adaptation, retention, and generalization

Chapter 4 and 5 focus on topic B, the effects of rollator support on the coordination of sit-to-stand
and stand-to-sit movements using a robot rollator simulator, and comprise two studies:

Study 1: Rollator usage lets young individuals switch movement strategies in sit-to-stand and
stand-to-sit tasks

Study 2: The central nervous system adjusts muscle synergy structure and tightly controls
rollator-supported transitions between sitting and standing

Chapter 6 summarizes and discusses the main findings. Further, it discusses their implications
for fundamental and applied sports settings as well as motivates and suggests further research.
Figure 1.1 summarizes the structure of this dissertation.
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1.3 Challenges in human motor control and learning

Figure 1.1: Dissertation outline. Overview of the chapters along with the topics and studies of this dissertation. † Share
senior-authorship.

1.3 Challenges in human motor control and learning

Human movements are astonishing, and skilled performers move efficiently, smoothly, and
gracefully (Schmidt and Lee, 2011). However, the ease with which they move disguises how
complex the underlying CNS processes are (Wolpert et al., 2012). In this context, it has been
proposed that the CNS solves multiple challenges for successful movements (Franklin andWolpert,
2011, Leib et al., 2024, Tresch et al., 1999): delays, uncertainty, noise, nonlinearity, redundancy,
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1 Introduction and motivation

versatility, and time-varying properties. This dissertation focuses on redundancy, versatility, and
time-varying properties, which will be introduced in the following sections.

1.3.1 Redundancy and versatility

Returning a tennis serve exemplifies the redundancy and versatility challenges of a typical sports
movement (Wolpert and Bastian, 2021, Bernstein, 1967). To return the serve, the tennis player
must move their racket. However, there is inherent redundancy. The same racket trajectory can be
realized with many different joint rotations and muscle activations (Franklin and Wolpert, 2011).
The hand holding the racket and the joints involved in the movement can be moved at different
speeds and over numerous joint angle trajectories, but still realize the same racket trajectory
(Franklin and Wolpert, 2011). Furthermore, various muscles can be combined and activated
differently for the same joint movement (Franklin and Wolpert, 2011). Muscles act around the
joints and generate the torque to move the limbs. The CNS controls these muscles (Bizzi et al.,
1991). However, approximately 600muscles span over 200 joints with multiple degrees of freedom
(Franklin and Wolpert, 2011). These 600 muscles are either active or inactive simultaneously,
leading to 2600 possibilities at any given time – a number with over 180 digits (Bellman, 1966).
Furthermore, muscles act on a single, two, or more joints (mono-, bi-, and multiarticular muscles;
Van Ingen Schenau 1989), and often, multiple muscles rotate the same joint in similar directions.
Hence, the CNS needs to solve a complex “many-to-one problem” (Rosenbaum, 2009). The same
movement can be achieved in multiple, often infinite, ways, leading to many possible solutions
(Franklin and Wolpert, 2011). How the CNS copes with this vast number of degrees of freedom
is the so-called “degrees of freedom” problem (Bernstein, 1967) and a fundamental question in
human motor control and learning (Flash and Bizzi, 2016). This problem becomes even more
complex, considering the other above-listed challenges. For example, the muscles that activate to
move the limbs are highly nonlinear in their force production (Franklin and Wolpert, 2011). The
muscle forces depend on their activation level nonlinearly concerning the muscle force-length,
force-velocity relationships, and tendon properties (Zajac, 1989). Lastly, not only is the human
body responsible for movement, but it also interacts with the environment and various objects
(Flash and Bizzi, 2016). Identical muscle activation patterns can generate different motor outputs,
for example, because of a different body posture or environmental forces (Ting and Chiel, 2017).

The redundancy of degrees of freedom not only makes the computations complex but is also
the basis of great behavioral versatility, as the vast number of degrees of freedom allows for
countless movement possibilities (Bizzi et al., 1991). Indeed, humans learn an immense number
of movements over their lifespan and can perform them in various environmental conditions
(Bizzi et al., 1991). This raises the question of how the vast versatility and behavioral repertoire
are efficiently represented in the CNS. As introduced before, the equations of motion describing
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rotations around the joints are highly complex as they include multiple terms depending on
several interactions between joints. Even if these equations can be solved analytically, the exact
determination of each parameter is difficult and leads only to an approximation of human motion
(d’Avella, 2016). Despite the possibility that an extensive neural network could implement it, any
explicit analytic model would be impossible to learn efficiently due to the degrees of freedom and
parameters involved (Wolpert and Ghahramani, 2000). Accordingly, it seems implausible that
the CNS uses explicit representations of the limbs’ equations of motions and performs analytical
calculations; it rather uses implicit and approximate knowledge of the limbs’ dynamics resulting
from muscle activation (d’Avella, 2016). On the other side of the spectrum concerning the
generality of the knowledge of the limbs’ dynamic behavior, there is a “one-to-one” mapping.
However, a one-to-one mapping also seems implausible as it would mean that the CNS needed
to store mappings of an infinite number of movements onto an infinite set of muscle activation
patterns (d’Avella, 2016). With respect to the tennis player example, it seems implausible that
the CNS stores the mappings of every possible return shot, including all their variants (fast, slow,
with little or much spin, etc.), onto sets of muscle activation patterns independently. It therefore
seems much more plausible that the CNS uses a compromise of both extremes, the very general
mapping and the very large number of “one-to-one” mappings (d’Avella, 2016).

To sum up, there must be a way to reduce the number of components that need control and storage.
The modular control architecture has been proposed as a solution to these control problems (Bizzi
et al., 2008, Giszter, 2015, d’Avella, 2016) and will be introduced in section 1.4.2.

1.3.2 Time-varying properties

Time-varying properties, also called non-stationarity, describe the fact that physical properties of
the human body, the environment, or the objects we interact with change over time (Franklin and
Wolpert, 2011, Leib et al., 2024, Karniel, 2011). This poses a challenge for the CNS. Examples of
changes in the human body are fatigue and aging. Examples of environmental changes are wind
conditions in beach volleyball. An example of a change in an object’s physical properties is the
change in tennis rackets. Properties change on different time scales, from milliseconds to millions
of years, as described by Karniel (2011):

On a very short scale, there is “feedback”. Here, sensory information is propagated in the
sensorimotor system when a movement is carried out. For example, when an ongoing movement
needs to be corrected. No structural change is happening, and the changes in the motor command
result from the changes in the sensory signals. That is different from motor adaptation, where a
change of parameters occurs based on the received sensory information.
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“Motor adaptation refers to a particular type of behavioral change that involves adjusting how an
already well-practiced action is executed to maintain performance in response to a change in the
environment or the body [...] by modifying how the current action is executed” (Krakauer et al.,
2019, p. 616). Hence, motor adaptation aims to improve the future performance of a well-practiced
movement based on the observation of previous control and sensory signals. One example is the
adjustment of a tennis player’s motor commands when they change rackets. The first shots with
the new racket will likely land in the net or out of bounds. After several shots, they become precise
again, and the tennis player can perform as well as before the change. No new capabilities emerge
in motor adaptation (Karniel, 2011). Performance does not improve beyond baseline; instead, it
returns to its level before the change (Krakauer and Mazzoni, 2011, Shadmehr and Wise, 2005).
Accordingly, with motor adaptation, the tennis player will improve their performance with the new
racket up to the level they had with the old racket, but not beyond. On a wider timescale, but still
being motor adaptation, there is also change within a lifetime through growth and development,
which requires a recalibration of our motor commands (Krakauer et al., 2019). Motor adaptation
is of particular interest in this dissertation and will be elaborated in section 1.4.3.

In contrast to motor adaptation, structural changes happen during (skill) learning (Karniel, 2011).
In particular, “skill learning (e.g., learning to ride a bike or to play tennis) involves acquiring
new patterns of muscle activation and achieving a higher level of performance by reducing errors
without a reduction in movement speed” (Kitago and Krakauer, 2013, p. 93). This means, skill
learning facilitates improvements beyond the original level (Diedrichsen and Kornysheva, 2015,
Krakauer and Mazzoni, 2011), which stays in contrast to motor adaptation. Furthermore, the
induced changes at the level of performance are relatively permanent, another difference to the
transient and reversible character of motor adaptation (Krakauer et al., 2019). Furthermore, skill
learning takes up to months or even years, distinctly longer than motor adaptation, which can
happen within a single experimental session (Krakauer et al., 2019, Kitago and Krakauer, 2013).

Lastly, evolution may take millions of years and includes any possible changes, such as structural,
functional, or changes in connectivity, but will not be further discussed in this dissertation.

Given the example of the tennis player and the described challenges, it becomes evident that
human motor control and learning are complex. Thus, gaining a better understanding of human
motor control and learning will have wide-ranging implications for sports, activity, rehabilitation,
and robotics (Rucci et al., 2007, Gollhofer et al., 2012, Schmidt and Lee, 2011). The following
sections will introduce the means to investigate the challenges of redundancy, versatility, and
time-varying properties.
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1.4 Modeling and analysis of human motor control
and learning

The previous section outlined the challenges of human motor control faced by the CNS. In
addition, the question was raised about how it deals with these challenges. This section introduces
the concepts used in this dissertation to study human motor control and learning, focusing on the
challenges redundancy, versatility, and time-varying properties. One important aspect concerning
the understanding of human motor control and learning is the level of analysis.

1.4.1 Multiple levels in human motor control

The neuroscientist David Marr (1982) suggested a taxonomy for analyzing complex information-
processing systems with three levels: (1) “computational theory” (also called “task” and “theory”;
Giszter and Hart 2013, Berret et al. 2019), (2) the “representation and algorithm”, and (3) the
“hardware implementation”. Marr’s levels provide a useful guide to a better understanding of
the CNS behavior (Kriegeskorte and Douglas, 2018). They complement each other but address
conceptually different questions (Berret et al., 2019). The three levels are described in the
following three paragraphs. Subsequently, it is described how they complement each other.

The “computational theory” addresses questions such as, “What is the goal of the computation,
why is it appropriate, and what is the logic of the strategy by which it can be carried out?” (Marr,
1982, p. 25). This level thus seeks to find the actions’ driving purpose and logic (Shadmehr
and Krakauer, 2008). This level describes the functions that humans are supposed to achieve
(Rosenbaum, 2009). These functions can be expressed mathematically with explicit formulas
(Rosenbaum, 2009). Even though the CNS does not use the formulas explicitly, they are used
implicitly (Rosenbaum, 2009). In Marr’s example of bird flight, this level concerns aerodynamics,
Bernoulli’s equations, which state that birds fly because of lift. In human motor control, this level
aims to explain why human movement trajectories have certain characteristics and what makes
the chosen movement better than another (Berret et al., 2019). In other words, presuming human
behavior is optimal, the aim is to understand the optimality criterion or cost function the CNS uses
(Berret et al., 2019). Internal models as a theory underling force field adaptation can for example
be positioned at this level (Shadmehr and Wise, 2005, Sensinger and Dosen, 2020). “Optimal
feedback control” (Todorov, 2004, Todorov and Jordan, 2002) is another currently prevailing
theory at this level (Haith and Krakauer, 2012, McNamee and Wolpert, 2019). However, how the
bird or human carries out the movement is not answered at the computational level.
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The “representation and algorithm” level addresses the questions, “What is the representation for
the input and output, and what is the algorithm for the transformation?” (Marr, 1982, p. 25). In
Marr’s example, this would be the bird’s flapping of wings. In human motor control, this level
addresses how the sensorimotor system could generate observably optimal trajectories (Berret
et al., 2019). Many human motor control theories have been proposed, with the modular control
architecture, the one discussed in this dissertation, being one of them (Berret et al., 2019). It will
be further introduced in section 1.4.2.

Finally, the “hardware implementation” level addresses the question, “How can the representation
and algorithm be realized physically?” (Marr, 1982, p. 25). It refers to the question which physical
structure is available. In Marr’s example, these are the bird’s wing feathers. In human motor
control, this refers to the physical realization through the nervous and musculoskeletal systems
(Shadmehr and Krakauer, 2008). This level thus addresses, for example, which brain regions
become active or inactive and how muscles contract and relax to facilitate movement, such as the
bird’s flapping of wings and the human’s moving of the arm (Rosenbaum, 2009).

Even though this dissertation primarily focuses on the representational level, one must be aware
that the levels are coupled (Kriegeskorte and Douglas, 2018). For example, the choice of an
algorithm depends on what it has to do and which physical structure is available (Marr, 1982).
Birds, insects, and aircrafts that fly all satisfy the principles of aerodynamics at the computational
level. However, they have feathers, thin layers of cutin and veins, or multiple alloys and composite
materials available as physical structures at the implementation level, respectively (Duffield, 2018,
Bishop, 1997, Mouritz, 2012). Hence, the algorithm differs: Birds and insects flap their wings
differently and aircrafts rotate propellers. Likewise, while a robotic and a human arm obey to
the same laws of physics and mechanical objectives at the computational level, they differ at the
implementation level, for example humans use muscles and robots motors. Consequently, while
robotic developers can use concepts in human motor control for robotic algorithms, the robotic
algorithms still need more specification and adjustments (Atkeson, 1989).

In summary, Marr’s levels provide a framework to help understand the complex processes in human
motor control, from high-level goals and constraints to the physical mechanisms realizing the
movement. It pinpoints that the levels are interwoven, which has implications for analyzing human
motor control and learning: Findings at the implementation level are especially interpretable only
if a certain knowledge of the other two levels is present (Jonas and Kording, 2017, Krakauer
et al., 2017). Hence, when analyzing human motor control and learning, all three levels need
to be considered. In this dissertation, all levels are addressed, while the primary focus is on the
representational level.
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1.4.2 Muscle synergies as a potential solution to the
challenges of redundancy and versatility

The inherent number of components involved in movements (muscles, joints, etc.) and their
nonlinear interactions make the separate control of each component impossible. Thus, the
components need to be coordinated. It was Bernstein’s intuition that the coordination of movement
is the process of mastering redundant degrees of freedom by organizing them into “functional
linkages” (Bernstein, 1967). These functional linkages are also known as synergies, modules, or
motor primitives. They reduce dimensionality because the number of components to control is
reduced. This is because just the functional linkages require control rather than every component.
This modular control architecture simplifies human motor control (Savelsbergh et al., 1999, Bizzi
et al., 2008, Giszter, 2015, d’Avella, 2016). These functional linkages may exist in different forms
in human motor control (Bruton and O’Dwyer, 2018, Flash and Hochner, 2005), for example,
as reflexes (Sherrington, 1910), elements of central pattern generators (CPGs; Grillner 1981),
convergent force fields (Bizzi et al., 1991), kinematic synergies (Daffertshofer et al., 2004, Santello
et al., 1998), or muscle synergies (Saltiel et al., 2001). The following sections first describe the
research origins of convergent force fields and muscle synergies with a particular focus on the
redundancy challenge. Then, the currently prevailing muscle synergy models are presented.
Hereby, the modular control architecture is emphasized by describing the models’ hierarchical
structures. Afterwards, it is described how muscle synergies can be characterized in terms of
their biomechanical properties. Furthermore, it is emphasized how the CNS might utilize muscle
synergies as a solution to the versatility challenge. Finally, the calculation of muscle synergies
from electromyography (EMG) data is explained.

1.4.2.1 Research origins of the modular control architecture
and convergent force fields

Experiments with spinalized frogs (Bizzi et al., 1991, Giszter et al., 1993) and rats (Tresch
and Bizzi, 1999) have provided evidence that there may be in fact functional linkages acting as
building blocks for movement (Bizzi et al., 2002). For example, a series of pioneering studies
used microstimulation of interneuronal regions of frogs’ lumbar spinal cords. The frog’s ankle
was fixed at different positions in the workspace, and the force at the ankle, exerted through
microstimulation of the same part of the spinal cord, was measured (Figure 1.2A). Measuring
the force at different workspace positions led to observing position-dependent forces, termed
“convergent force fields” (Figure 1.2B). These convergent force fields have interesting properties.
Firstly, systematic stimulation of different spinal cord regions led to only a few convergent force
fields. Secondly, a seminal study by Mussa-Ivaldi et al. (1994) found that when two sides of the
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spinal cord were stimulated simultaneously, the resulting convergent force field resembled the
summation of the convergent force fields obtained by separate microstimulations (Figure 1.2C-F).
This means that convergent force fields induced by focal stimulation of the spinal cord follow the
principle of vector summations (Bizzi et al., 1991, Mussa-Ivaldi et al., 1994, Lemay et al., 2001).
This linear observation is interesting because convergent force field vector summation eliminates
the complex nonlinearities among neurons and between neurons and muscles. Thus, the principle
of vector summation of a small number of convergent force fields hints that the motor system may
employ a computationally simple mechanism to produce a wide range of movements (Bizzi et al.,
2000). The organizational mapping of the spinal cord and the distinctiveness of the convergent
force field orientations supported the concept of a modular organization in the spinal cord motor
circuitry (Bizzi et al., 2002). Similar results with electrical stimulation in the rat spinal cord
suggested that these results might generalize across vertebrates (Bizzi et al., 2000, Tresch and
Bizzi, 1999). The studies by Mussa-Ivaldi and Giszter (1992) and Mussa-Ivaldi (1997) verified
this view with computational analyses. In particular, the simulation study by Mussa-Ivaldi and
Bizzi (2000) demonstrated that the combination of convergent force fields could reproduce a wide
range of movement trajectories with the basic characteristics of experimentally observed reaching
movements.

1.4.2.2 The different models of muscle synergies and the
modular control architecture

The vector summation principle described in the previous section was subsequently found in
muscle activations (Tresch et al., 1999, Giszter et al., 2010). This supports the idea that the CNS
might use so-called muscle synergies to produce behavior (Tresch et al., 1999, Giszter et al., 2010).
The microstimulation-activated contractions of sets of muscle were repeatable and well-organized.
Cutaneous stimulation of frogs’ hindlimbs could describe the evoked muscle activation patterns
with linear combinations of a small set of co-activated muscles. Furthermore, while single spinal
interneurons are synaptically connected with a set of motor neurons controlling different muscles,
Saltiel et al. (2016) and Levine et al. (2014) showed that spinal interneurons are organized in
functional linkages. Each of these functional linkages activates a particular set of co-activated
muscles. Hereby, the muscles are co-activated in distinctive proportions. Such a set of co-activated
muscles is called a spatial muscle synergy (Flash and Bizzi, 2016). Spatial muscle synergies are
also called “time-invariant” or “synchronous” muscle synergies.

Another perspective on muscle synergies comes from the observation that an invariant temporal
structure of muscle activation is consistently found in human adult locomotion (Ivanenko et al.,
2004, 2005, Lacquaniti et al., 2012). Here, only the distinctive proportions of the sets of co-
activated muscles vary (Ting and Chvatal, 2010). In other words, the timing at which sets of
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Figure 1.2: Force fields are evoked by microstimulation of the frog’s spinal cord. A: The frog’s ankle was fixed at different
locations as indicated by filled circles. Electrical stimulation of the spinal cord or noxious stimulation of
the skin led to muscle activation patterns and their resulting forces were measured at the ankle. B: Force
measurements at different ankle locations. The set of forces is called “convergent force field”. C and D:
Convergent force fields, by stimulation of different sides of the frog’s spinal cord. E: Prediction of the
convergent force field by summation of the force vectors from C and D. F: Convergent force field produced
from co-stimulation of the sides of C and D, with remarkable similarity to E (adapted from Bizzi et al. 1991,
Mussa-Ivaldi et al. 1994, and Bizzi et al. 2000; reproduced with permission from Springer Nature).

co-activated muscles are active is invariant. The timing is stereotypical across gait cycles and gait
modes. These stereotyped, invariant temporal structures of muscle activation are called temporal
muscle synergies. This means that the sets of co-activated muscles are active once and at distinct
phases of the gait cycle. The timings are hardly affected by walking speed (Ivanenko et al., 2004),
walking mode (walking or running; Cappellini et al. 2006), direction (forward and backward
walking; Ivanenko et al. 2008). Temporal muscle synergies are also called “temporal components”
or “basic patterns”.

To sum up, two different models of muscle synergies were introduced: spatial muscle synergies
and temporal muscle synergies. In addition to these two, further models of muscle synergies exist,
such as spatiotemporal muscle synergies – also called time-varying muscle synergies – (d’Avella
and Tresch, 2002, d’Avella et al., 2006) and space-by-time muscle synergies (Delis et al., 2014),
but the latter two are not further discussed in this dissertation.

The different models of muscle synergies differ with respect to which part is trial-dependent and
which is trial-independent (Berger et al., 2020, Delis et al., 2014, Russo et al., 2014). This is
an important distinction between the models of muscle synergies as this links to the idea that

11



1 Introduction and motivation

muscle synergies are hierarchically organized in the modular control architecture. According to a
hierarchical organization, movement is generated through a combination of a trial-independent and
a trial-dependent part (Ting and McKay, 2007). The trial-independent part is presumably stored
in subcortical areas of the CNS and reused across movements. In contrast, the trial-dependent
part is presumably under cortical control and accounts for variations across trials (d’Avella et al.,
2003, Ting and Chvatal, 2010). As the trial-dependent part is presumably under cortical control,
it is also called a “descending command”. In spatial muscle synergies, the trial-independent part
comprises the sets of muscles which are co-activated in distinctive proportions. These sets of
the trial-independent part are called “muscle weightings”. The muscle weightings are combined
with trial-dependent activation functions (also called time-varying coefficients). The activation
functions represent how much and when the muscle weightings are activated (Figure 1.3). The
activation functions are the descending commands. In contrast, temporal muscle synergies consist
of stereotyped, invariant temporal structures of muscle activation and trial-dependent muscle
weightings. Here, the activation functions are invariant and the muscle weightings vary across
trials. In other words, it is assumed that the CNS uses fixed temporal structures ofmuscle activation.
Here, the muscle weightings vary as their distinctive proportions is given by descending commands
(Safavynia and Ting, 2012).

1.4.2.3 Muscle synergies and their biomechanical characterization

Many study results suggest that muscle synergies can be correlated to functional outputs and task
performance, or in other words, support the idea that they represent biomechanical functions
(Ting et al., 2015). In reaching movements, muscle synergies usually represent arm flexion and
extension or elevation of the scapula (d’Avella et al. 2006; Figure 1.3); in sit-to-stand movements,
for example, the forward-bending movement of the trunk or the hip and knee extensions to rise
(Yang et al., 2017). In addition, Neptune et al.’s (2009) forward dynamics simulation showed
that combining five muscle synergies could reconstruct the basic parts of walking, such as body
support in early stance or propulsion in late stance phases.

Furthermore, muscle synergies are often tuned. In reaching movements, this means that the
descending commands show higher activation of muscle synergies for specific reaching directions,
often resembling a cosine function. Hence, one muscle synergy might be most active in medial
reaching movements and gradually less for reaching movement away from the medial direction.
Another might be most active for lateral reaching movements and less for more medial reaching
movements, respectively (d’Avella et al. 2006; Figure 1.3). Similar findings were revealed in
reactive postural responses following perturbations in different directions (Ting and Macpherson,
2005, Torres-Oviedo et al., 2006, Torres-Oviedo and Ting, 2007).
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1.4.2.4 Muscle synergies underlie behavioral versatility

The previous section described how the CNS might use muscle synergies with regard to the
challenge of redundancy. The redundancy is reduced by coordinating muscle synergies instead
of single muscles. With respect to the challenge of versatility, the findings that the same muscle
synergies contribute to different movements and different behaviors are of particular interest
(d’Avella et al., 2003). This means, muscle synergies are shared across movements. Different
movements are constructed by combining the same muscle synergies with different timings and
amplitudes, i.e., tunings (Bizzi and Ajemian, 2015). In other words, flexibly recruiting and
combining muscle synergies generates an extensive behavioral repertoire and versatility (d’Avella
et al., 2003, Bizzi et al., 2008, Mussa-Ivaldi et al., 1994, Mussa-Ivaldi and Bizzi, 2000, Ting and
Macpherson, 2005). For example, muscle activation patterns for reaching to different directions
can be reconstructed by a number of muscle synergies lower than the number of reaching directions
and muscles (Figure 1.3). This is even true for via-point or change-in-target reaching movements
(d’Avella et al., 2006, 2008, 2011,Muceli et al., 2010, Coscia et al., 2014). Likewise, shared muscle
synergies underlie the responses to perturbations in different directions in postural tasks (Torres-
Oviedo et al., 2006, Torres-Oviedo and Ting, 2007). However, similar yet distinctive movements
typically require specific muscle synergies in addition to the shared muscle synergies. For example,
shared muscle synergies underlie a series of locomotion movements, like walking, turning, or
sit-to-walk transitions (Carey et al., 2021). In particular, the three locomotion movements share
around 80% of the muscle synergies. However, all three locomotion movements still require their
few specific muscle synergies, for example, one specific to the turning movement.

1.4.2.5 Muscle synergy analyses in human motor control and learning

Muscle synergy analysis has played a major role for research in human motor control and learning
(see reviews from Bizzi et al. 2008, Tresch and Jarc 2009, Lacquaniti et al. 2012, Giszter 2015,
Ting et al. 2015, Mileti et al. 2020, Cheung and Seki 2021, Zhao et al. 2023, Borzelli et al. 2024,
Singh et al. 2018, Ivanenko et al. 2006). Nevertheless, it needs to be acknowledged that the extent
to which muscle synergies extracted from EMG are neurally encoded has remained controversial,
despite these numerous findings (Cheung and Seki, 2021, Tresch and Jarc, 2009). However,
much evidence supporting the modular control architecture stems from the observation of low
dimensionality in the muscle activation patterns recorded during a variety of movements, from
different species or patients (Berger et al., 2020, Torres-Oviedo et al., 2006, Cheung et al., 2012,
d’Avella et al., 2003, Overduin et al., 2008). Further supporting evidence stems from experimental
studies that are designed to distinguish a modular controller from a non-modular one and directly
allow testing causality (Berger et al., 2013).
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1.4.2.6 Extraction of muscle synergies from EMG data

The following sections provide experimental and mathematical introductions to the extraction of
muscle synergies from EMG data.

Recording and processing of EMG data

The first step in calculating muscle synergies is the capturing and processing of EMG data. EMG
datamust be obtained from asmanymuscles as possible but at least from those playing an important
role in the movement under investigation (Torricelli et al., 2016). In particular, the number of
measured muscles and experimental conditions or variations must be high enough to capture
different muscle activation patterns (Cheung et al., 2005, Ting and Chvatal, 2010), following the
hypothesis that few muscle synergies underlie an extensive behavioral repertoire. Usually, the
EMG recordings are contaminated with noise from electronic equipment or the electromagnetic
radiation resulting from the electrical power lines (Torricelli et al., 2016). Additionally, motion
artifacts such as those resulting from movements of the electrode on the skin or the cables
connecting the electrode and amplifier may appear in the signal (Torricelli et al., 2016). Further
artifacts may result from the heartbeat or the quasi-random firing of motor units (Boyer et al.,
2023, Torricelli et al., 2016). A series of steps is usually employed to remove all the raw EMG data
artifacts that do not relate to muscle activation patterns in the best possible way. These steps include
but are not limited to low- and high-pass filtering, application of a “notch” filter, rectification,
and envelope extraction of the EMG data. Afterward, the EMG data are often segmented to the
relevant time of the movement under investigation, time-normalized, and amplitude-normalized
(Kieliba et al., 2018, Turpin et al., 2021, Steele et al., 2013). It must be noted that the processing
of the EMG data is a critical part for the extraction of muscle synergies. Differently processed
EMG data lead to different inputs for the algorithm, which extracts muscle synergies, and thus
possibly result in somewhat dissimilar muscle synergies and interpretations (Kieliba et al., 2018,
Turpin et al., 2021, Steele et al., 2013). The next step is to choose the algorithm that extracts
muscle synergies.

The choice of the algorithm to extract muscle synergies

Matrix factorization algorithms like principal component analysis (PCA; Hotelling 1933, Pearson
1901), independent component analysis (ICA; Jutten and Herault 1991) and non-negative matrix
factorization (NMF; Lee and Seung 1999, 2001) make it possible to obtain functional linkages
in muscle activation patterns, i.e., to identify muscle synergies from multidimensional EMG
data (Tresch et al., 2006). The algorithms are unsupervised source decomposition machine
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learning methods (Cichocki et al., 2009). Applied to EMG data, they aim to reconstruct the
original EMG data with a relatively small number of muscle synergies, i.e., to obtain a low-
dimensional representation of muscle activation patterns (Flash and Bizzi 2016, Ting and Chvatal
2010; Figure 1.3). NMF is particularly suitable for the extraction of muscle synergies because it
constrains the outcome matrices to be non-negative, unlike PCA and ICA. This non-negativity
relates well to muscles which can either pull or be idle (Ting and Chvatal, 2010).

Another interesting property of NMF is that NMF yields parts-based decompositions, as demon-
strated by Lee and Seung (1999). Their original paper showed that faces are decomposed into
specific parts, such as the nose, eyes, and mouth. Combining each part with a scaling factor
specific to it (e.g., large eyes) enables the creation of many faces. With respect to muscle synergies,
this means all muscle synergies are added up – they cannot be subtracted from each other –
resulting in the fact that the single muscle synergies resemble identifiable parts of the complete
muscle activation patterns (Ting and Chvatal 2010; Figure 1.3). In other words, a multiplication
of a muscle synergy with its activation function yields a specific muscle activation pattern. This
specific muscle activation pattern is also found as a part in the EMG data. This is an advantage
of NMF over PCA. PCA starts with the mean face and adds or deletes other faces. The resulting
face may therefore bear no resemblance to any of the parts resulting from a decomposition with
PCA (Ting and Chvatal, 2010). With respect to muscle activity, this means, the resulting pattern
from a single principal component and its scores is not necessarily found in the EMG data, it
could vanish through a subtraction as another resulting pattern could be negative. Hence, the
non-negativity constraint and the parts-based decomposition property ease the interpretability
of the muscle synergies (Devarajan and Cheung, 2014). The following section describes the
calculation of muscle synergies with NMF.

Extraction of muscle synergies with non-negative matrix factorization

After the processing of the EMG data, the next step is the arrangement of the processed EMG
data into a matrix. Envelopes are either averaged over repetitions of the same movement or
concatenated (Brambilla et al., 2023a). The arrangement depends on the underlying research
question and corresponding muscle synergy model (spatial, temporal, etc.; Torricelli et al. 2016).
In the following, the steps of the muscle synergy extraction are explained for the spatial muscle
synergy model. In terms of the calculation, these steps also apply to temporal muscle synergies,
with the difference being a different arrangement of the data in the EMG matrix.

To extract spatial muscle synergies, the EMG data are arranged in a matrixV such that the single
muscles are arranged in rows, and one column represents one point in time. Usually, V contains
multiple time points and multiple trials. Therefore, the columns comprise the different trials
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that hold the time points of the single trials chronologically. NMF decomposes the EMG data
in V into a low-dimensional approximation WC, with W and C being matrices that contain
only non-negative values. W contains the sample-independent muscle weightings, and C the
sample-dependent activation functions (Delis et al., 2014, Russo et al., 2014).

To extract temporal muscle synergies, the matrix V is altered. Specifically, the multiple time-
points are arranged in rows, with the first time-point in the first row. The columns comprise
the single muscles and multiple trials are concatenated horizontally (Russo et al., 2014). NMF
decomposes V into CW. C contains the sample-independent activation functions and W the
sample-dependent muscle weightings (Delis et al., 2014, Russo et al., 2014).

In detail, to obtain spatial muscle synergies, NMF factorizes the matrix V into two matrices,
W and C. Thereby, all matrices V, W, and C contain only non-negative values. Again, this
non-negativity constraint makes physiological sense, as motor neurons are either firing (positive
value) or in a resting state (zeros; Ting and Chvatal 2010). Mathematically formulated, NMF tries
to solve the problem

V ≈ WC

w.r.t.V ∈ Rn×m
≥0 ,

W ∈ Rn×r
≥0 ,

C ∈ Rr×m
≥0

Here, n denotes the number of recorded muscles, m the number of envelopes multiplied by the
number of time samples, and r the number of muscle synergies. The number of muscle synergies
r is an input to NMF and therefore needs to be chosen by the researcher. Usually, r is chosen to
be smaller than n or m so that WC is a low-dimensional representation of V (Lee and Seung,
2001). The matrixV is therefore approximated by a multiplication of W and C.

The critical choice of the number of muscle synergies to be extracted

NMF aims to find W and C that best approximate V. To quantify the approximation and
determine how well the EMG data is approximated, a measure of the reconstruction quality is
necessary. The muscle activation patterns in V and their reconstruction WC are multivariate
time series (d’Avella et al., 2006). Thus, the reconstruction quality should be assessed with a
multivariate-based measure of data variability. Accordingly, d’Avella et al. (2006) defined the
multivariateR2 using the total variation method proposed by Mardia et al. (1979): the trace of the
muscle activation patterns’ covariance. ThisR2 relates the ratio of the sum of the squared residuals
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(SSE) to the sum of the squared residuals from the mean activation (SST) according to d’Avella
et al. (2006) and Russo et al. (2024). In other words, it shows how much the reconstructionWC

can account for the total variation in V.

R2 = 1− SSE
SST

= 1− tr[(V −WC)(V −WC)T ]

tr[(V − V̄)(V − V̄)T ]

Here, tr denotes the trace, the T superscript the matrix transpose. V̄ contains the mean muscle
activations.

The choice of r, the number of muscle synergies to extract, is critical. To obtain a low-dimensional
but still good representation of V, r needs to be chosen carefully (Banks et al. 2017, Zhao et al.
2023, Turpin et al. 2021; Figure 1.3). The problem of selecting r has been addressed extensively
in the literature, and multiple criteria have been proposed (Zhao et al., 2023, Turpin et al., 2021).
Generally, the aim is to choose r such that the structural variation in the EMG data is captured and
that any additional muscle synergy would add only unstructured noise to the reconstruction (Tresch
et al., 2006). Usually, a measure of the reconstruction quality (e.g., R2) is used to determine r
and assessed with a plot showing R2 against the number of extracted synergies (Figure 1.3). The
most widely used criterion is to select r when R2 exceeds an a priori-defined threshold value,
most often a number between 0.8 and 0.9 (Zhao et al., 2023, Turpin et al., 2021). Furthermore, a
second criterion is often used to ensure no structural data variation is neglected. This criterion
can for example be that the increase of R2 with additional bases is lower than an a priori-defined
threshold, such as 0.05 (Zhao et al., 2023, Turpin et al., 2021). Another method with the same
aim of capturing structural data variation and neglecting noise is based on the shape of the R2

curve and selects r where the R2 curve shows a knee point. After this knee point, the R2 curve
usually plateaus (d’Avella et al., 2006). Many more methods exist (Zhao et al., 2023) and are still
being developed (Ranaldi et al., 2023). In any case, the correct number r is unknown because the
ground truth is unknown. Hence, it is always necessary to question the choice of r critically and
in terms of the content (Torricelli et al., 2020).

Muscle synergies are extracted using multiple starts and iterations of the
non-negative matrix factorization

The NMF problem min ∥V −WC∥ with respect to W and C, subject to V, W, C ≥ 0, is not
convex, meaning that finding an algorithm that finds global minima is unrealistic (Lee and Seung,
2001). Therefore, the algorithm is usually ran 10 to 100 times with initial random starting points
for W and C (Turpin et al., 2021). Then, after every start, the update rules are iteratively applied
so thatmin ∥V −WC∥ converges to a local minimum or the algorithm is terminated by reaching
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the user-defined maximum number of iterations (Ting and Chvatal, 2010). There are several
update rules (Scano et al., 2022), but often the “multiplicative update rule” according to Lee and
Seung (2001) is used:

Ci+1 = Ci
WT

i V

WT
i WiCi

Wi+1 = Wi

VCT
i+1

WiCi+1CT
i+1

In every iteration i, the distance ∥V −WC∥ is reduced and the R2 is increased. Finally, the
result from the last iteration of the best run in terms of the least distance ∥V −WC∥ is chosen
(Turpin et al., 2021).

Figure 1.3: Schematic of the modular control architecture and overview of the extraction of muscle synergies (next
page). Top: Spatial muscle synergies are extracted from EMG data of medial, forward, and lateral reaching
movements. Activation functions or descending commands modulate subcortical muscle synergies. A muscle
synergy is a group of co-activated muscles with characteristic relative activation levels (muscle weightings).
Each modulated muscle synergy activates multiple muscles to realize a mechanical output (biomechanical
characterization). The whole muscle activation is realized through the sum of the modulated muscle synergies.
This can be seen, for example, in the biceps muscle (Bic, enlarged plot). Bottom: The reconstruction WC
of the original EMG data improves with the number of muscle synergies. This can be seen (1) by the R2

plot on the left and (2) the reconstruction of the forward reaching EMG data on the right. The higher the
number of muscle synergies, the better EMG data (gray area) and reconstruction (red solid line) align. If not
enough muscle synergies are extracted, the reconstruction does not capture the EMG data satisfactorily, as can
be seen by the mismatches between the original and reconstructed EMG data. However, the extraction with
seven muscle synergies, which equals the number of measured muscles, does not result in a low-dimensional
representation, as most “muscle synergies” consist primarily of one active muscle. Abbreviations: DelA
Musculus deltoideus anterior part, DelMMusculus deltoideus middle part, DelPMusculus deltoideus posterior
part, Trap Musculus trapezius, Pect Musculus pectoralis, Tric Musculus triceps, Bic Musculus biceps. The
depicted human model was created using OpenSim and the DAS3 model (Delp et al., 2007, Chadwick et al.,
2014).
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1.4.3 The force field adaptation paradigm to study the
challenge of time-varying properties

A remarkable feature of the human is their ability to adapt movements to new physical and
environmental conditions. Tennis players change their rackets time and again for various reasons.
The new racket has different physical characteristics; for example, it might weigh more, or the
strings are tensioned differently. An experienced tennis player can change the racket and effortlessly
adapt to the new racket’s different physical properties. After a few shots with the new racket,
the player performs as well as with his old racket. This phenomenon is called motor adaptation
(Krakauer et al. 2019; see section 1.3.2).
Motor adaptation has been extensively studied under laboratory conditions, such as using prism
glasses while throwing balls (Martin et al., 1996) or displacing targets while executing saccadic
eye movements (McLaughlin, 1967). A large body of research has also come from studying
reaching movements, such as the visuomotor rotation paradigm, by which the cursor on a virtual
reality display systematically moves in a rotated direction depending on where the participant’s
hand moves (Krakauer et al., 1999, 2000). Furthermore, motor adaptation has been studied in gait
(Dietz et al., 1994) and with exoskeletons (Poggensee and Collins, 2021).
In force field adaptation, participants grasp the handle of a robotic manipulandum and perform
target-directed point-to-point movements in the horizontal plane. The robot produces perturbing
forces that act on the participant’s hand via the handle (Shadmehr and Mussa-Ivaldi 1994;
Figure 1.4). Typically, the forces are viscous, i.e., dependent on the current handle’s velocity, and
directed orthogonally to the handle’s current movement direction (Figure 1.4B). This means the
robot creates a specific kind of perturbation. It simulates a physical object with novel dynamic
properties. These novel dynamic properties change in real time and are unusual. This means,
it is highly unlikely that participants have experienced such a perturbation before. That these
properties are unusual is especially suited for studying motor adaptation, because they allow to
gain an understanding of how dynamics are represented and changed in a trial-by-trial manner
(Wolpert and Flanagan, 2010b), without the potentially mediating effect of prior experiences.
Typically, participants produce roughly straight trajectories before the perturbation forces are
applied (Figure 1.4C). With the onset of the perturbation forces, the participants produce curved
trajectories (Figure 1.4D). The perturbing forces have led to an unforeseen change of the object’s
physical properties, which now requires an adjustment of the motor commands (motor adaptation).
The deviations predominantly stem from a prediction error, a mismatch between the predicted
and the experienced movement (Krakauer and Mazzoni, 2011, Shadmehr, 2017). This prediction
error seems to foster trial-by-trial adjustments of an internal model, leading to motor commands
that enable the participants to iteratively counter-act the perturbing forces better and re-gain
baseline performance (Shadmehr, 2017, Shadmehr et al., 2010). With increasing repetitions,
the participants compensate for the perturbing forces and produce baseline-similar movement
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trajectories again (Figure 1.4E). Motor adaptation occurs on a short timescale compared to skill
learning. The participants usually adapt within 300-600 trials when different reaching directions
are practiced (Gandolfo et al., 1996, Shadmehr and Brashers-Krug, 1997).
When the force field is suddenly disabled after the participants have adapted, the participants
produce errors again. They produce trajectories mirror-inverted to the ones from the force field’s
onset. These errors are called “after-effects” (Figure 1.4F). Their presence suggests the acquisition
of model knowledge (Shadmehr and Mussa-Ivaldi, 1994). In particular, after-effects show that
participants do not only co-contract antagonist muscle groups to counteract the forces, as in this
case, trajectories would be baseline-like and without visible after-effects. The internal model has
interesting properties (Shadmehr, 2017), some of which are examined in this dissertation and
elaborated in the following.

1.4.3.1 Savings and generalization in motor adaptation

When the participants continue reaching after the force field was turned off, called “washout”, one
observes that the after-effects vanish fast, within far less trials than the initial adaptation. When
re-exposed to the force field, participants adapt faster than the first time. This phenomenon is
called “savings” (Brashers-Krug et al., 1996, Mathew et al., 2021, Shadmehr and Brashers-Krug,
1997). The acquired knowledge during adaptation frees the participant from having to learn the
new physical properties the next time they use the object (Shadmehr, 2017). Accordingly, the
motor memory, the acquired internal model, does not seem to be erased entirely. Savings hint that
despite the transient and reversible nature of motor adaptation, a long-term memory is associated
during the initial adaptation (Huberdeau et al., 2015a).
Furthermore, the acquired knowledge not only serves the movement that was explicitly practiced
but also similar movements in other contexts. A successful transfer from practice to a new
situation is commonly called generalization (Krakauer et al., 2019, 2006). Yet, generalization and
transfer will be used interchangeably in chapters 2 and 3 (study A1 and study A2) and denote
successful transfer. Generalization suggests that the CNS uses a shared neural representation
of the internal model (Shadmehr, 2004). Studying generalization can thus provide insights into
the neural representations underlying motor adaptation (Krakauer et al., 2019). Generalization
has been found across arms (Criscimagna-Hemminger et al., 2003, Stockinger et al., 2015) or to
unpracticed reaching directions (Gandolfo et al., 1996, Ghez et al., 1999, Rezazadeh and Berniker,
2019). However, generalization is not unlimited. For example, spatial generalization seems to
be local or narrow, i.e., the amount of spatial generalization decreases with distance from the
practiced direction, following a Gaussian-like function with almost no spatial generalization to
targets in a direction 90◦ rotated from the practiced one (Donchin et al. 2003, Howard and Franklin
2015, Rezazadeh and Berniker 2019; Figure 1.5A-B).
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Figure 1.4: Force field adaptation paradigm. A: A participant holds the handle of a robotic manipulandum. B: A
velocity-dependent force field based on the hand velocity. The force acts orthogonally to the current direction
of motion and increases with velocity. C: When the handle is freely movable (null field (NF) condition), the
participant reaches from the middle to the eight targets with an almost straight trajectory. D: Once the force
field is turned on (force field (FF) condition), the first trajectories are perturbed and show large deviations. E:
After several hundred repetitions, the participant has adapted and performs baseline-like trajectories again.
F: When the force field is turned off, the trajectories resemble those of the initial force field perturbation
but are mirror-inverted. This observation is called “after-effect” (Wolpert and Bastian 2021 and Shadmehr
and Brashers-Krug 1997, adapted from Shadmehr and Brashers-Krug 1997; Copyright (1997) Society for
Neuroscience).

1.4.3.2 Multiple processes in motor adaptation and retention

The adaptation progress resembles an exponential function (Figure 1.5C). An initial fast increase is
followed by a slower, more gradual increase. Linear, time-invariant multi-rate state-space models
can model this progress well, offering a mathematical approach to the trial-by-trial error reduction
in motor adaptation (Donchin et al., 2003, Smith et al., 2006, Thoroughman and Shadmehr, 2000).
In principle, the state-space model (SSM) takes the error in terms of lack of adaptation as input, the
update of the internal model as a hidden variable, and outputs the adjusted, subsequent movement
performance (Krakauer and Mazzoni, 2011). Mathematically, in a simple form as described by
Smith et al. (2006), the SSM is given by the formula:

22



1.4 Modeling and analysis of human motor control and learning

x(k + 1) = xs(k + 1) + xf (k + 1)

xs(k + 1) = asxs(k)− bse(k)

xf (k + 1) = afxf (k)− bfe(k)

e(k) = f(k)− x(k)

with as, af , bs, bf ∈ [0, 1], and as < af , bs < bf

with e denoting the error in trial k, calculated as the difference between the motor output x and
the perturbation f . as and af are the retention factors for the slow and fast process, respectively.
The retention factor quantifies the tendency of the motor output to decay to baseline levels with
each movement, with 1 indicating no decay or perfect retention and 0 total decay. bs and bf
quantify the error sensitivity or learning rate, i.e., the proportion of the error being compensated
for in the subsequent trial (Kim et al., 2021). The sum of xs and xf , the internal slow and fast
states, results in the motor output x (Krakauer et al., 2019, Smith et al., 2006). Accordingly, the
adaptation progress can be decomposed into fast and slow processes. The fast process learns
quickly from error but has weak retention, whereas the slow process learns more slowly but has
better retention. Regarding the overall adaptation progression, the fast initial increase is attributed
to the fast process and the subsequent phase to the slow process (Smith et al., 2006).
In the context of sports, the two processes allow adequate motor adaptation to changes that persist
on different time scales. For example, short-lasting perturbations, such as a change in wind
conditions in beach volleyball or fatigue, can be covered by the fast process. In contrast, more
lasting changes, such as a change of tennis racket or bodily changes, can be covered by the slow
process (Wolpert and Flanagan, 2010a).
Although the model suggests it, it is unlikely that the processes underlying motor adaptation differ
only in their speed of forgetting and learning. Instead, the different learning components correspond
to different learning processes employed simultaneously on the same problem (Krakauer et al.,
2019). For example, literature suggests that the fast process reflects an explicit learning and is
sensitive to reward, while the slow process reflects implicit learning and is error-driven (Huberdeau
et al., 2015b).
SSMs have characterized and predicted a host of motor adaptation phenomena, such as savings,
spontaneous recovery, and anterograde interference (Krakauer et al., 2019, Shadmehr et al., 2010,
Smith et al., 2006). SSMs are being further developed to account, for example, for inter-trial
breaks (Albert and Shadmehr, 2018), multiple targets (Schweighofer et al., 2011, Tanaka et al.,
2012), or variable error sensitivities (McDougle et al., 2015). Accordingly, SSMs offer a window
into the study of processes underlying motor adaptation.
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Figure 1.5: Spatial generalization and multiple components in motor adaptation. A and B: Spatial generalization. In A,
trajectories are shown for a participant who reaches from the start to seven targets 10 cm away and arranged in
a circular shape around the start. The reaches are not perturbed and thus almost straight. Then, an adaptation
period follows during which the participant adapts to the two targets illustrated with thick solid lines only
(trajectories not shown here). In B, trajectories are shown in the null field after adaptation. The participant
only reaches to the targets not used during adaptation. Remarkably, after-effects are stronger the closer their
targets are to the two to which the participant adapted (adapted from Gandolfo et al. 1996; Copyright (1996)
National Academy of Sciences, U.S.A.). C: Schematic of the multiple components in motor adaptation. The
overall adaptation (red) consists of the sum of a slow (orange) and a fast (blue) process. The fast process
increases faster than the slow process but decays faster than the slow process. After the perturbation’s onset,
the overall adaptation’s main part consists of the fast process value, but this changes over trials. Ultimately
most of the overall adaptation consists of the slow process’ value (adapted from Krakauer et al. 2019; used
with permission of John Wiley and Sons, Copyright (2019) American Physiological Society, from Krakauer
et al. (2019); permission conveyed through Copyright Clearance Center, Inc.).

1.4.4 Human-robot interaction as a tool to understand human
motor control and learning

Robotic devices have tremendously helped to understand human motor control and learning
(Wolpert and Flanagan, 2010b, Floreano et al., 2014). One example is the robotic manipulandum
used in the force field adaptation paradigm, which perturbs reaching movements to allow the study
of motor adaptation (see section 1.4.3). This manipulandum consists of several links converging
to a handle which can be moved by a participant in the horizontal plane (see Figure 1.4A).
Sensors track the robot configuration at a high frequency, allowing, for example, the precise
measurement of the handle’s velocity. A computer controls the robot configuration, allowing the
robotic manipulandum to exert forces on the handle. This sets up a controlled environment to
study motor adaptation. In particular, this set-up allows the creation of objects with novel dynamic
properties, which can also be changed in real time. A wide range of novel dynamic properties
can be generated, especially unusual ones, like the viscous force field in force field adaptation
(Wolpert and Flanagan, 2010b). This enables us to study motor adaptation in novel, unusual
situations, which is important in motor adaptation experiments. For example, studies on force
field adaptation have led to an understanding of representations of dynamics, trial-by-trial learning,
and much more. In this case, human-robot interaction is used to study human motor control and
learning. This is done in topic A in this dissertation.
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However, robotic devices can not only be used to perturb movements. Robotic devices can assist
humans in their movements and extend their physical capabilities (Burdet et al., 2013). This is of
particular interest when movement can no longer be carried out the same way, for example, as a
result of aging, injuries, or pathologies (Seidler et al., 2010). By studying the neural mechanisms
underlying human-robot interaction, robots can be designed to work safely alongside humans
(Sheridan, 2016). This is particularly important in settings where close collaboration is required,
e.g., with surgical robotics or assistive devices. The emerging field of human-robot interaction
has provided promising results as the first paraplegic patients can walk with exoskeletons, and
advanced prosthetic arms can be controlled through targeted muscle reinnervation (Cheesborough
et al., 2015, Coser et al., 2024). However, many robotic devices are limitedly effective because
of technical limitations but also due to insufficient knowledge about humans (Beckerle et al.,
2017, Dollar and Herr, 2008, Windrich et al., 2016, Yan et al., 2015). Furthermore, human-
robot interaction is highly complex, as two nonlinear-dynamic systems are coupled, which can
generally lead to unpredictability (Schaal, 2007). Accordingly, to be used effectively, robotic
device developers require a good understanding of how humans control their limbs and interact
with the robotic devices (Burdet et al., 2013). To facilitate the study of human-robot interactions,
one approach is to keep the robot invariant and focus on the human side of the interaction. This is
done in both topics A and B in this dissertation.
In sum, this dissertation uses human-robot interaction as a tool to understand human motor control
and learning in two ways: in topic A as a tool to study coordination and adaptation of reaching
movements and in topic B to study the effects of support by a robot rollator simulator on the
coordination of sit-to-stand and stand-to-sit movements.

1.5 Aims and scope of this dissertation

This dissertation aims to increase our current knowledge of human motor control and learning
using human-robot interaction. It will primarily address the challenges of redundancy, versa-
tility, and time-varying properties using experimental studies. Thereby, topic A addresses the
coordination and adaptation of reaching movements using a robotic manipulandum and virtual
reality technologies, and topic B effects of rollator support on the coordination of sit-to-stand and
stand-to-sit movements using a robot rollator simulator.
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1.5.1 Topic A: Coordination and adaptation of reaching
movements using a robotic manipulandum and virtual
reality technologies

A major goal in motor learning is to optimize practice to maximize the amount of learning,
retention, and generalization (Schmidt and Lee, 2011). Therefore, it is interesting to know (1)
what influence different practice protocols have on adaptation, retention, and spatial generalization,
as well as (2) how processes underlying practice are represented at the muscular level. However,
multiple facets influence the practice of sports movements, not only the design and amount of
practice but also motivation or how instructions are delivered (Schmidt and Lee, 2011). Thus,
to examine single facets in a targeted and isolated manner, controlled experimental setups are
necessary. In other words, to understand underlying mechanisms, specific hypotheses along with
targeted experiments are needed (Cisek and Green, 2024). This way, foundational insights into
components of learning can be gained and help us approach perspectively an understanding of
complex skills (Krakauer et al., 2019). Therefore, I used two force field adaptation studies, which
will be briefly introduced below.
Study A1 in chapter 2: The contextual-interference effect (CIE) describes a frequently examined
skill learning phenomenon related to the organization of practice variability (Battig, 1972, Shea
and Morgan, 1979). Accordingly, when participants practice a movement in different contexts
in an interleaved (high contextual interference) rather than a blocked order (low contextual
interference), they show better retention and generalization despite potentially worse performance
during practice (Wright and Kim, 2019, Magill and Hall, 1990). The CIE is therefore particularly
relevant for learning and improving sports skills, as practice protocols should be organized in such
a way that the participant builds up the ability to successfully perform the practiced movement
sustainably and in similar situations (Schmidt and Lee, 2011). However, the CIE has hardly found
attention in force field adaptation. Study A1 addresses how practice variability is best organized
to facilitate these aspects in force field adaptation, particularly retention and spatial generalization.
Furthermore, despite the vast number of studies, mainly in skill learning, (Czyż et al., 2024a,b,
Ammar et al., 2023, Wright and Kim, 2019, Magill and Hall, 1990), not one but three major
hypotheses exist that try to explain the CIE (Wright and Kim, 2019). Hence, it is unclear, if the
CIE is found in force field adaptation, retention, and spatial generalization, and if it is found, which
hypothesis may explain the findings. One of the hypotheses is the forgetting-and-reconstruction
hypothesis (Lee and Magill, 1983, Lee et al., 1985). It assumes that “action planning” is necessary
to perform a movement and that the action plan is forgotten over time. When the same movement
is practiced repetitively until other movements are practiced (blocked practice), the action plan
can be retrieved from short-term memory. In contrast, when the movements are practiced in
a random order, their action plan gets forgotten every time the other movements are practiced.
Hence, the action plans must be reconstructed every time. This repeated reconstruction slows
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down acquisition, but fosters retention and generalization. Force field adaptation offers a way to
study the CIE with respect to the forgetting-and-reconstruction hypothesis (Lee and Magill, 1983,
Lee et al., 1985, Schweighofer et al., 2011). In particular, it allows us to relate the forgetting
and reconstructing to a well-established computational model in motor adaptation, the state-space
model (Schweighofer et al., 2011, Smith et al., 2006). Accordingly, the first study assessed how
the organization of practice variability affect retention and spatial generalization in force field
adaptation with task-related variables using end-point kinematics and kinetics. The adaptation
process was modeled mathematically with a state-space model, which was extended to relate the
findings to the forgetting-and-reconstruction hypothesis.
Study A2 in chapter 3: Study A2 investigates how the acquired knowledge in force field adaptation,
retention, and spatial generalization may be represented. It is, in particular, unclear how the CNS
coordinates force field adaptation at the level of muscle activations. Despite the fact that the
concept of muscle synergies is well-accepted, it has not yet been related to force field adaptation,
retention, and spatial generalization. While it has been shown that in isometric visuomotor
rotation, a related motor adaptation paradigm, unperturbed reaching muscle synergies account for
adaptation (DeMarchis et al., 2018, Gentner et al., 2013, Severini and Zych, 2020), studies in force
field adaptation with single muscles’ activation may suggest otherwise. For example, muscles
that act in the force field’s opposite direction are activated early in the reaching movement, and
co-contraction is also observed (Thoroughman and Shadmehr, 2000, Milner and Franklin, 2005,
Huang et al., 2012). Thus, we first tested whether combinations of unperturbed reaching muscle
synergies can account for force field adaptation. Then we continued to test if specific muscle
synergies are required. Finally, assuming muscle synergies can represent force field adaptation,
we expect them to also represent retention and the narrow spatial generalization (Rezazadeh and
Berniker, 2019, Gandolfo et al., 1996, Ghez et al., 1999).
Even though reaching with a robotic manipulandum restricts the end-effector movement to
a 2D space, the reaching movement itself involves at least the seven mechanical degrees of
freedom (excluding the hand) of wrist, elbow, and shoulder joints, and all the muscles acting
on these joints (Rosenbaum, 2009). For example, 24 muscles cross the elbow joint (Hamill and
Knutzen, 2009), leading to theoretically 224 combinations of them being active or inactive. This
means that although the movement in topic A is more constrained than the whole-body movement
of topic B, the redundancy and versatility challenges can be addressed. In other words, the reaching
movement is constrained just to the degree where confounding factors irrelevant to the research
question and potentially causing artifacts and hindering an interpretation are excluded (Cisek and
Green, 2024). Nevertheless, it needs to be acknowledged that reaching in the horizontal plane is
still a constrained movement when compared to whole-body movements.
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1.5.2 Topic B: Effects of rollator support on the coordination
of sit-to-stand and stand-to-sit movements using a
robot rollator simulator

Human motor control, learning, and human-robot interactions are of particular importance in
rehabilitation. Assistive devices aim to support humans in need to perform activities of daily living
(Mohebbi, 2020). For example, rollators, also called four-wheeled walkers, are often prescribed
to improve postural stability (Mundt et al., 2019). However, rollators have also been associated
with a higher fall risk (Bateni and Maki, 2005). Therefore, in topic B, two studies investigated
how rollator support affects coordination in sit-to-stand and stand-to-sit movements, two typical
activities of daily living.
As already elaborated, the CNS has to cope with multiple degrees of freedom, i.e., redundancy.
This redundancy provides many options to perform a certain movement. Furthermore, there are
individual differences across humans, like different segment lengths and muscle fiber distributions
(James and Bates, 1997). It comes as no surprise that humans perform movements with different
movement strategies. “A movement strategy is a selected neuromuscular solution for the perfor-
mance of a motor task” (James and Bates, 1997, p. 58). The existence of multiple movement
strategies has also been termed “strategic variability” (Cowin et al., 2022) or “behavioral flexibility”
(Ranganathan et al., 2020) and is one of the multiple forms of variability (Cowin et al., 2022).
The movement strategy selection can be voluntary or involuntary. Furthermore, the movement
strategy selection may differ between or even within the participant. This variability or flexibility
is advantageous on the one hand as it allows humans to adapt to varying environmental or body
conditions (aging, fatigue) and execute various tasks. However, it makes an analysis difficult
on the other hand (Choudry et al., 2013). Different movement strategies lead to a substantial
amount of variability (James and Bates, 1997). If analyses do not account for movement strategies,
important information and effects may be masked, leading to missing, misleading, or incorrect
interpretations (James and Bates, 1997).
Accordingly, two subsequent studies for topic B were set up. First, movement strategies were
identified based on the kinematic-kinetic levelwith regard to joint kinematics, center ofmass (CoM)
movement, and ground reaction forces (GRFs), as well as seat interaction forces (study B1 in
chapter 4). Then it was investigated if and how rollator support affects them. The subsequent
study B2 in chapter 5 applied muscle synergy analysis to understand how the strategies are
represented by muscle synergies and what effects rollator support has on them. Topic B can be
seen as a step toward studying human motor control in more natural conditions, i.e., conditions
with relaxed restrictions (Cisek and Green, 2024). In other words, it can be seen as a step toward
studyingmovement with its richness, or “behavioral flexibility” and still complying with the crucial
trade-off between seeking naturalistic behavior and guaranteeing experimental control (Maselli
et al., 2023) as the same instructions were given to and the general setup was the same for all

28



1.5 Aims and scope of this dissertation

participants. With this two-step approach, the two complex whole-body movements, sit-to-stand
and stand-to-sit, in interaction with a robot rollator simulator, could be assessed on the kinematic,
kinetic, and muscular levels.

1.5.3 Overview

Taken together, the aims of this dissertation were to

1. analyze the influence of the organization of practice variability on force field adaptation,
retention, and spatial generalization. Based on the CIE, the hypothesis was that a random
practice protocol is superior to a blocked protocol in retention and spatial generalization,
while practice performance is inferior. Further, it was hypothesized that a state-space model
could reflect these findings based on the forgetting-and-reconstruction CIE hypothesis. The
challenge of time-varying properties was addressed. A simple reaching movement and a
robotic manipulandumwere used. The focus was on the computational level using end-point
kinematic and kinetic variables.

2. analyze the underlying coordination of force field adaptation, retention, and spatial general-
ization at the muscular level. Based on the modular control architecture, the hypothesis was
that muscle synergies can represent the underlying coordination of force field adaptation,
retention, and spatial generalization at the muscular level. The challenges of time-varying
properties, redundancy, and versatility were addressed. A simple reaching movement and a
robotic manipulandum were used. The focus was on the representational level using muscle
synergies extracted from EMG data.

3. analyze the influence of rollator support on movement strategies for transitions between
sitting and standing. The hypothesis was that rollator support influences the movement
strategies and their choice when standing up and sitting down. The challenges of redundancy
and versatility were addressed. Complex movements and a robot rollator simulator were
used. The focus was on the representational level using joint kinematics, CoM movement,
and ground reaction forces as well as seat interaction forces.

4. analyze the underlying coordination for transitions between sitting and standing at the
muscular level with respect to movement strategies. The hypotheses were that muscle
synergy activation differs across movement strategies and that rollator support influences
the weightings between upper body and lower limb muscles for standing up and sitting
down. The challenges of redundancy and versatility were addressed. Complex movements
and a robot rollator simulator were used. The focus was on the representational level using
muscle synergies extracted from EMG data.
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2 Topic A, Study A1: Random practice enhances retention and spatial transfer in force field adaptation

2.1 Abstract

The contextual-interference effect is a frequently examined phenomenon in motor skill learning
but has not been extensively investigated in motor adaptation. Here, we first tested experimentally
if the contextual-interference effect is detectable in force field adaptation regarding retention
and spatial transfer, and then fitted state-space models to the data to relate the findings to the
“forgetting-and-reconstruction hypothesis”. Thirty-two participants were divided into two groups
with either a random or a blocked practice schedule. They practiced reaching to four targets and
were tested 10 min and 24 h afterward for motor retention and spatial transfer on an interpolation
and an extrapolation target, and on targets which were shifted 10 cm away. The adaptation
progress was participant-specifically fitted with 4-slow-1-fast state-space models accounting for
generalization and set breaks. The blocked group adapted faster (p = 0.007) but did not reach
a better adaptation at practice end. We found better retention (10 min), interpolation transfer
(10 min), and transfer to shifted targets (10 min and 24 h) for the random group (each p < 0.05).
However, no differences were found for retention or for the interpolation target after 24 h. Neither
group showed transfer to the extrapolation target. The extended state-space model could replicate
the behavioral results with some exceptions. The study shows that the contextual-interference effect
is partially detectable in practice, short-term retention, and spatial transfer in force field adaptation;
and that state-space models provide explanatory descriptions for the contextual-interference effect
in force field adaptation.

2.2 Introduction

Motor skills enable people to interact with the environment in many different ways. Motor skills
are not innate but learned throughout life, which indicates the importance of understanding motor
learning processes. In the literature, two types of motor learning are usually distinguished: (1) skill
learning, which “is a set of processes associated with practice or experience leading to relatively
permanent changes in the capability for skilled movement” (Schmidt et al., 2019); and (2) motor
adaptation, where the motor system responds to changes in the body and/or the environment to
return to a previous level of performance under these new environmental conditions (Krakauer
and Mazzoni, 2011). For both types of learning, practice is the most important factor and a
central question of research in motor learning is to understand how different practice protocols
(e.g., amount of practice, distribution of practice or variability of practice) affect motor learning
processes on different time scales.
In this regard, the contextual-interference effect (CIE) is a well-studied phenomenon in motor skill
learning. The CIE states that interleaved (high contextual interference) as opposed to repetitive (low
contextual interference) practice results in lower performance gains during practice but superior
retention and transfer (Shea and Morgan, 1979). Originally formulated by Battig (1972) for verbal
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learning, a large body of research has supported the CIE in motor skill learning, especially for
simple laboratory tasks but also in more complex sport tasks (for an overview; see Schmidt et al.
2019). However, compared to skill learning, the CIE has not been widely studied in the context of
motor adaptation (Thürer et al., 2019). Accordingly, this study focuses on the analysis of the CIE
in a motor adaptation task.
There are different experimental paradigms to analyze motor adaptation (Krakauer et al., 2019).
In this study, we use the force field paradigm (Shadmehr, 2017, Shadmehr and Mussa-Ivaldi,
1994) to study the CIE in motor adaptation. Here, participants perform reaching movements and
experience forces on their hand, leading them to laterally deviate from straight trajectories. The
deviations predominantly result from a sensory prediction error, i.e., a mismatch between the
predicted and the experienced movement (Krakauer and Mazzoni, 2011). This error is assumed
to drive trial-by-trial adjustments of an internal model (Albert and Shadmehr, 2016, Donchin
et al., 2003, Kawato, 1999, Shadmehr et al., 2010). Thereby, the motor commands are updated.
This enables the participants to counteract successively better the perturbances and to ultimately
perform a straight trajectory. This means that the participants returned to a previous level of
performance (Shadmehr et al., 2010). The acquired internal model can be interpreted as a motor
memory that is partially transferrable to new situations (Shadmehr, 2017). For example, there
is evidence for transfer to different movement speeds and amplitudes (Goodbody and Wolpert,
1998, Joiner et al., 2010, Mattar and Ostry, 2010). Also, contralateral transfers could be shown
(Criscimagna-Hemminger et al., 2003, Joiner et al., 2013, Stockinger et al., 2015). A host of
literature found spatial transfer capabilities in force field adaptation, such as to different reaching
directions or to arm configurations that are shifted by several centimeters (Gandolfo et al., 1996,
Ghez et al., 1999, Rezazadeh and Berniker, 2019, Shadmehr and Moussavi, 2000, Shadmehr and
Mussa-Ivaldi, 1994).
The adaptation progress itself resembles an exponential function with a fast initial increase
followed by a slower, more gradual increase (Krakauer et al., 2019). This progress can be modeled
well with linear, time-invariant (multi-) state-space models (SSMs) (Smith et al., 2006). Thereby,
the error serves as input, the update of the internal model as a hidden variable, and the adjusted,
subsequent movement as output (Krakauer and Mazzoni, 2011). In particular, the fast initial
increase is attributed to a fast process with a high learning rate and rapid decay, and the subsequent
phase to a process with a slower learning rate but greater retention (Smith et al., 2006). SSMs
have successfully characterized and predicted numerous phenomena in force field adaptation
(Kim et al., 2021). Thus, they offer the possibility of investigating potential processes underlying
practice related to behavioral changes (Smith et al., 2006).
As described above, adaptation progress, retention, and spatial transfer characteristics in force field
adaptation have been thoroughly examined. However, no study so far has explicitly investigated
CIE, i.e., the different effects of interleaved and repetitive practice schedules on retention and
spatial transfer in force field adaptation. Further, despite the large host of studies in motor skill
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learning, there is no sole hypothesis to fully explain the CIE (Wright and Kim, 2019). The three
prevailing hypotheses are “elaboration-and-distinctiveness” (Shea and Morgan, 1979), “retroactive
inhibition” (Shea and Titzer, 1993), and “forgetting-and-reconstruction” (Lee and Magill, 1983,
Lee et al., 1985). According to the first, interleaved practice requires performing comparative
and distinctive analyses on a trial-by-trial basis, which increases the cognitive effort compared to
repetitive practice. This increased effort slows down the acquisition, but fosters better retention
performance by a more distinct or better representation of the task in the memory. The retroactive
inhibition hypothesis explains the CIE such that learning a similar task in a repetitive manner
inhibits recalling a memory of a preceding, different task. However, this hypothesis is probably
not valid for the CIE in motor adaptation tasks (Thürer et al., 2019, 2018). The forgetting-and-
reconstruction hypothesis proposes that the action plan for a task is forgotten over time and
vanishes from short-term memory. If it is repeatedly needed during random practice, it must
always be reconstructed. This, in turn, slows down acquisition, but fosters retention and transfer.
Due to the interplay of learning and decay, SSMs in particular enable the study of the CIE in
terms of the forgetting-and-reconstruction hypothesis (Schweighofer et al., 2011).
Accordingly, this study follows a combined approach to investigate the CIE in force field adaptation.
The first objective is to experimentally investigate if there is a CIE regarding retention and spatial
transfer in a force field adaptation task. The second objective is to fit an extended SSM to the
experimental data to infer possible latent mechanisms. We hypothesize that: (1) participants with
an interleaved practice schedule achieve a lower adaptation level at practice end than participants
with a repetitive schedule and adapt slower; (2) participants of the interleaved group demonstrate
better retention and (3) spatial transfer; and (4) the superior effect of the interleaved practice
schedule can be explained by the two-rate characteristic of the learning process.

2.3 Materials and methods

2.3.1 Participants

Thirty-two right-handed (Oldfield, 1971), healthy female and male volunteers (age 24 ± 3 years)
participated in the study. All participants were naïve to force field adaptation experiments,
informed about the experimental protocol and gave their written informed consent. The study
protocol was submitted to and approved by the Ethics Committee of the Karlsruhe Institute of
Technology.

2.3.2 Apparatus and task

The participants sat at a KINARM End-Point Lab (BKIN Technologies, Kingston, Canada), and
performed 10 cm point-to-point movements with their right hand in the transverse plane. The
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manipulandum was equipped with a virtual reality display showing the handle’s position and the
start and target points, but occluding vision of the handle itself, their arms, and hands (Figure 2.1A).
Participants were instructed to reach from the start to the target within 500 ± 50 ms. When the
target was reached, its color changed, providing the participants with feedback on whether the
specified time was met. Shortly after the target was reached and the cursor had resided in it for
800 ms, the manipulandum moved the handle back to the start for the next trial.
To comprehensively investigate the effects of different practice schedules on spatial transfer, we
considered three different spatial transfer tasks, for which literature has shown different amounts
of transfer. Following the dial of a clock for orientation, the points were located as follows
(Figure 2.1B-D): the first start point was at (0,0). The “practice targets” were positioned at 1.30,
12, 9, and 7.30 h (Figure 2.1B). Figure 2.1C shows the “interpolation” (10.30 h) and “extrapolation”
(4.30 h) targets. The second starting point was shifted 10 cm to 1.30 h (Figure 2.1D). The remaining
four targets had the same directions as the practice targets but were shifted like the second starting
point (Figure 2.1D). We expected a good transfer for the interpolation target, as its direction is
similar to the one practiced (Castro et al., 2011, Gandolfo et al., 1996, Rezazadeh and Berniker,
2019). In contrast, we expected no transfer for the extrapolation target as its direction deviates at
least 90 degrees from the practice targets (Castro et al., 2011, Ghez et al., 1999). Based on studies
by Ghez et al. (1999) and Shadmehr and Moussavi (2000), we expected fractional transfer for the
shifted origin targets.

2.3.3 Experimental design

2.3.3.1 Trial conditions

Three different trial types were used: null field (NF), force field (FF), and error clamp (EC).
During NF trials, the handle was freely movable without perturbing forces. FF trials were carried
out in a viscous (velocity-dependent), counter-clockwise force field. Hereby, the force field was
specified by the formula

F = k · [cosθ,−sinθ; sinθ, cosθ] · [ẋ; ẏ];

where k denotes the force field magnitude and was fixed at 20 Ns/m. The angle θ was set to 90◦.
The velocity components of the handle are given by the vector [ẋ; ẏ]. Accordingly, the force field
always deviated the handle’s movement orthogonally to its movement direction. For EC trials, the
manipulandum restricted the movement to a small channel connecting the start and end points
(Joiner and Smith, 2008, Scheidt et al., 2000). Therefore, the manipulandum created virtual walls,
with a wall viscosity of 10 kNs/m and a wall stiffness of 1 kN/m.
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Figure 2.1: (A) Participant sits at a KINARM End-Point Lab (BKIN Technologies Ltd., dba Kinarm, Kingston, Canada).
(B) Start point (0,0) in gray and target points (practice targets) in black. (C) Start (0,0) in gray, interpolation
target (10.30 h), and extrapolation target (4.30 h) in black. (D) Targets with shifted origin. The dotted gray
arrow illustrates the translational shift. In (C,D) the gray semicircle illustrates the area spanned by the practice
targets, but this was not visible during the experiments.

2.3.3.2 Group assignment and schedule

Thirty-two participants were randomly assigned to two groups called “blocked” and “random”
(each N = 16, with 8 females and 8 males). The experiment consisted of five different phases:
familiarization, baseline, practice, short-term test, and long-term test. The first three phases were
separated by 5 min breaks, and there was a 10 min break between practice and the short-term test.
The long-term test followed 24 h later. During the practice phase, there were 30 s breaks after
every 80 trials, during which participants could let go of the handle but remained seated. The
various phases differed in the types of trials and targets used (Table 2.1).
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To enable the participants to become accustomed to the manipulandum and the desired movement
speed, the familiarization consisted of 120 NF trials. Targets appeared in block-randomized order
(4 targets × 30 blocks). The baseline phase consisted of three reaches to each of the practice
targets, and one reach to each of the interpolation, extrapolation, and shifted origin targets in the
NF condition. Then, all targets were approached once in the EC condition.
Practice consisted of 800 trials. The practice targets of the random group appeared in a random
order, although each target was reached once within a block of four trials (interleaved practice). In
contrast, each participant in the blocked group practiced one of the four practice targets 200 times
before proceeding to the next (repetitive practice). Eighty EC trials were randomly interspersed.
Both groups were divided into four sub-groups (N = 4 each), each of which began with a different
practice target.
The short-term test consisted only of EC trials. Thereby, we assessed short-term retention and
short-term spatial transfer. First, two blocks of practice targets appeared (retention test), followed
by transfer tests. Two blocks with the inter- and extrapolation target appeared, then two blocks
with the shifted-origin targets. The targets’ ordering varied within the test blocks for each
participant, with one of each group (blocked and random) with the same ordering. To exclude a
potentially occurring retroactive inhibition effect, the four subgroups were further divided into two
sub-subgroups. The order of the targets in the retention test was equal to the order of the subgroup
for the first sub-subgroup and in reverse order for the second sub-subgroup (e.g., blocked subgroup
B1: 200 × 1.30 h, 200 × 12 h, 200 × 9 h, and 200 × 7.30 h; sub-subgroup 1: 1.30 h, 12 h, 9 h,
7.30 h; sub-subgroup 2: 7.30 h, 9 h, 12 h, 1.30 h). The exact ordering for all participants is shown
in Supplemental Table A.1. The long-term tests followed a similar protocol as the short-term tests,
but every second reach to a target was a FF trial, viz., not an EC trial. The exact ordering is shown
in Supplemental Table A.1.
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2.3 Materials and methods

2.3.4 Data analysis

Kinematic data, including hand position and velocity, and forces measured at the manipulandum’s
handle were recorded at 1,000 Hz with KINARM Dexterit-E software (BKIN Technologies Ltd.,
Kingston, ON, Canada).

2.3.4.1 Pre-processing

Following our previous studies (Stockinger et al., 2015), raw kinematic and force data were filtered
with a fourth-order Butterworth low-pass filter and a cut-off frequency of 6 Hz (kinematic) and
10 Hz (force). Movement start and end were defined as the time points where the hand velocity
exceeded or fell below 10% of the trial’s peak velocity. Segmented data were time-normalized to
101 time points using cubic spline interpolation.

2.3.4.2 Dependent variables

The dependent variables were calculated with ManipAnalysis (Stockinger et al., 2012) and self-
written Matlab scripts (R2020a; The MathWorks, Inc., Natick, Massachusetts, United States).
Following studies by Sing et al. (2009) and Heald et al. (2018), we assessed adaptation with a
kinematic and a dynamic parameter. The maximum perpendicular distance (PDmax ) between
the participant’s trajectory and a virtual straight line connecting the start and target points served
as kinematic measure on FF trials. It quantifies the net motor output as it includes all control
processes involved (Stockinger et al., 2015).
While PDmax quantifies the kinematic output, the force field compensation factor (FFCF ) is
a dynamic measure, quantifying the participant’s force field prediction (Joiner and Smith, 2008,
Scheidt et al., 2000). The FFCF was calculated on EC trials, i.e., when the kinematic error was
kept to zero. The force the participant applied orthogonally toward the virtual wall was computed
(Factual). The ideal force field profile Fideal was calculated as a product of the velocity profile of
the trial and the force field matrix. The FFCF was then obtained using linear regression of Fideal

and Factual according to the formula

Factual(t) = a1 · Fideal(t) + a0 + e(t).

Thereby, e denotes the error that is to be minimized in least-squares sense, and a0 and a1 are the
regression coefficients of the fit. The coefficient a0 denotes the axis intercept. The slope a1 serves
as the FFCF . If Fideal coincides with Factual, the FFCF is 1. If they are unrelated, the FFCF

is 0. All FFCF values after the baseline are participant- and target-specific baseline-subtracted
values, to ensure only the learning-induced changes in the force profile are considered (Wagner
and Smith, 2008).
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2 Topic A, Study A1: Random practice enhances retention and spatial transfer in force field adaptation

The PDmax progress was investigated by fitting (Matlab lsqcurvefit) the following exponential
model to the PDmax curve (Davidson and Wolpert, 2004, Stockinger et al., 2015):

PDmax(tr) = a0 + a1 · e(−tr/τ),

where tr is the number of the trial, and τ serves as the time constant of adaptation used to
compare the adaptation progress. The scalar a0 represents the participant’s performance learning
plateau and a1 the gain. Considering that the blocked group successively reached to the same and
the random group to varying targets, we used the following approaches to compare the progress
between the two groups. Firstly, we fit the model to the participant-specific PDmax curves of the
whole practice. The fitting procedure was repeated 1,000 times with random initial values for ai
and τ . The fits with the highest R2 were taken for further analyses. Secondly, we fit the model
to participant- and target-specific PDmax curves (Krakauer et al., 2000). For the target-specific
fits, we used a bootstrapping procedure as individual data were noisy, sampling 1,000 times per
group with 64 (4 targets × 16 participants) randomly sampled PDmax curves with replacement
and random initial values. Thirdly, we fit the exponential model to the target-specific mean PDmax

curves.

2.3.4.3 Fitting of the extended SSM to behavioral data

We fitted the following extended SSM to each participant’s data:

e(t) = f(t)− y(t)

y(t) = xf (t)c(t) + xs(t)c(t)

xf (t+ 1) = Afxf (t) + c(t)bfe(t)

xs(t+ 1) = Asxs(t) + c(t)bse(t)

Our extended SSM entails a fast process xf and a slow process xs running in parallel (Lee and
Schweighofer, 2009, Smith et al., 2006). Their sum produces the model output y for each trial t.
Model output y and perturbation f correspond to the FFCF and their difference constitutes the
error e. As it is corresponding to the FFCF , the perturbation f is always equal to one (Trewartha
et al., 2014). However, because no error is experienced during a block of EC trials, the error e
is set to zero during short-term retention (Albert and Shadmehr, 2018). Each process’s progress
depends on the preceding error, a process-specific error-sensitive learning (bf , bs), and decay (Af ,
As) rate. In the formula above, Af (As) is a 4 × 4 matrix with Af (As) value on the diagonal
and zeros otherwise, bf is a vector [bfbfbfbf ], and bs analogous.
The two-rate SSM as proposed by Smith et al. (2006) cannot account for multiple targets
(Schweighofer et al., 2011, Tanaka et al., 2012), as long as they cannot be averaged out over a few
trials (Albert and Shadmehr, 2018, Tanaka et al., 2012). Therefore, we extended the SSMs to have
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2.3 Materials and methods

them account for multiple targets (Schweighofer et al., 2011, Tanaka et al., 2012). The vector
c(t) defines the currently active context (target direction), according to (Lee and Schweighofer,
2009). It contains four elements, each representing one of the practice targets if four contexts are
assumed or a single one if a single context is assumed (see below).
Literature (Donchin et al., 2003, Howard and Franklin, 2015, Rezazadeh and Berniker, 2019)
suggests a Gaussian-tuned trial-by-trial generalization with the mean at about the target direction,
a standard deviation of about 45◦ and almost no transfer to ± 90◦. Accordingly, the value c(t, a)
for the currently active context a is 1. The values for the others c(t, b) (b ∈ {practice targets \ a })
correspond to the value of the tuning function (Ingram et al., 2011).

c(t, b) =
∆(N (180), N (b))

∆(N (0), N (180))
, with N (b) =

1√
2πσ2

e(−
(θ(b))2

2σ2 )

Hereby, θ(b) is the absolute angular difference between the direction of target a and the direction
of target b. As only the four practice targets are learned during practice, the transfer targets’
performances are constituted at the time they appear as follows. The value c for the interpolation
target is set as the sum of the average states of the fast and slow processes. The value c for the
extrapolation target is set to zero as we do not expect transfer to it (Castro et al., 2011, Ghez
et al., 1999). The value c for a shifted origin trial is set as if it were the practice target with the
same direction. This is a simplification as transfer to shifted workspaces is evident, however,
setting a specific transfer coefficient was avoided due to controversial results (Berniker et al., 2014,
Criscimagna-Hemminger et al., 2003, Malfait et al., 2002, Mattar and Ostry, 2007, Shadmehr and
Moussavi, 2000, Shadmehr and Mussa-Ivaldi, 1994). Based on previous findings that prolonged
intervals between trials led to considerable decrease of previously achieved adaptation levels
(Ethier et al., 2008, Huang and Shadmehr, 2007, Kim et al., 2015b), we extended our SSM so
it accounted for the forgetting between extended inter-trial pauses and set-breaks (Albert and
Shadmehr, 2018, Kim et al., 2015b). Thus, when a set-break occurred, a factor d was used, which
accounted for additional decay during breaks (Albert and Shadmehr, 2018).

A =

{
A

Ad+1
; b =

{
b no set break
Adb set break

The factor d was set at 2, 20, and 2580 for the 30 s, 10 min and 24 h breaks respectively, being
multiples of the average inter-trial interval (Albert and Shadmehr, 2018, Coltman et al., 2019).
Fitting was performed to minimize the root mean squared error (RMSE) between the model
output and the experimental data (Matlab fmincon). The stability of the model fits and sensi-
tivity of the constraints and initial values were evaluated with a grid search and bootstrapping
procedure (McDougle et al., 2015, Sadeghi et al., 2018, Tanaka et al., 2012). Bootstrapping
was performed 1,000 times per group with 16 randomly sampled participants with replacement
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and random initial values. We varied the number of processes (4-slow-1-fast, 1-slow-4-fast,
and 4-slow-4-fast). We excluded 1-fast-1-slow as such a model would only be able to account
for performance decreases after target changes by altering the decay parameter d or an overall
worse fit. In case of the 4-slow-1-fast model, Af and bf were scalar values. Analogously,
for the 1-slow-4-fast model, As and bs were scalar values. We varied the search space for
Af ∈ {]0, 1[, ]0.5, 1[, ]0.5, 0.9[}, As ∈ {]0, 1[, ]0.9, 1[}, bf ∈ {]0, 1[, ]0, 0.5[}, and bs ∈
{]0, 1[, ]0, 0.5[} (Albert and Shadmehr, 2018, Forano and Franklin, 2020). Fitting was robust
with respect to the constraints (Supplemental Table A.2), so we chose a 4-slow-1-fast model as it
can reproduce a larger amount of force field adaptation phenomena (Lee and Schweighofer, 2009).
Parameters were constrained to 0.5 < Af < 0.9 < As < 1 and 0 < bs < bf ≤ 0.5, ensuring each
process met the appropriate scale (Forano and Franklin, 2020, McDougle et al., 2015). Initial
values of xf and xs were constrained to be within [0, 0.5], as no participant showed an initial
FFCF value > 0.5.

2.3.5 Statistics

2.3.5.1 Adaptation progress

Adaptation to the force field during the practice phase was assessed with ANOVAs (Group:
Blocked vs. Random, Time: Start, End) on the two dependent variables PDmax and FFCF .
For PDmax, the first eight and last eight trials of the practice phase were used for both groups.
This number of trials was selected so that each target direction was included twice in each sample.
For FFCF , each participant’s first and last EC trial was selected to constitute the start and end
sample. The PDmax progresses were compared between the groups with a Mann-Whitney U-test
on the time constant of adaptation τ .

2.3.5.2 Retention

To test for differences between groups, short-term retention was tested with one ANOVA on
FFCF values (Group: Blocked vs. Random, Time: Practice end, Short-term) and long-term
retention with two separate ANOVAs on PDmax and FFCF values (Group: Blocked vs. Random,
Time: Practice end, Long-term). The sample for “practice end” constituted the last four trials
of the practice (blocked), or the last trials per target (random). The first four EC trials of the
short-term retention and the four EC trials (FF for PDmax) of the long-term retention were selected,
respectively, for the short-term and long-term sample. For each time point, values were averaged
per participant, so that each sample contained 16 values per group.
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2.3.5.3 Spatial transfer

Spatial transfer was tested in two steps. First, we determined whether transfers had taken place
with one-sample t-tests vs. 0 separately for each group and spatial transfer task. Second, if there
was transfer, we tested for differences between the groups with t-tests as we expected differences
in the amount of transfer between the groups. These tests were repeated for short-term (FFCF

values) and long-term (PDmax and FFCF values) tests. All short-term samples consisted of
participant-specific mean values. All long-term samples consisted of single-trial values.

2.3.5.4 Modeling results and robustness

To assess whether the SSM reflects behavioral findings, all tests for adaptation, retention, and
spatial transfer were carried out on the predicted model data. Additionally, we tested whether
the slow and fast process at the practice end, as well as the error-sensitive learning rates, differ
between the groups.
The ranges of the 95% confidence intervals (CIs) were determined by the 2.5th and 97.5th percentile
values over every 1,000 fits. For all statistics conducted, the significance level was set a priori at
two-sided p = 0.05. The normal distribution of the data was tested with the Kolmogorov-Smirnov
test, and homoscedasticity with Levene’s test. If several analyses were performed regarding the
same construct, the Holm-Bonferroni method was used to adjust the significance level of the
post-hoc t-tests. The effect sizes were determined with partial eta squared (η2p), Cohen’s |d| or
Cohen’s |r| (Mann-Whitney U-test). Mean and standard deviation of R2 were calculated with
forth-and-back Fishers z-transformations. All statistical tests were carried out in SPSS (IBM
Corp., v26.0. Armonk, NY).

2.4 Results

2.4.1 Practice performance

Participants’ hand trajectories in both groups during baseline, start, and end of practice resembled
those typically observed in force field adaptation (Figure 2.2; Shadmehr and Mussa-Ivaldi 1994).
During baseline, trajectories were almost straight. At practice start, they showed high deviations
along the force field direction. At the end of practice, the trajectories resembled those of the
baseline phase.
We analyzed adaptation with the two variables PDmax and FFCF . Their progression during
the practice is shown in Figure 2.3 and Figure 2.4. Remarkably, FFCF (PDmax) values of the
blocked group showed negative (positive) peaks around trial numbers 200, 400, and 600, i.e.,
every time the target changed for the blocked group.
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BaselineA B
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Figure 2.2:Mean trajectories of the NF baseline (A, D), the first (B, E) and last FF practice trials (C, F) separated for
the two groups. At practice start, trajectories deviated from the straight trajectories seen during baseline, but
became similar to baseline again at practice end.

Figure 2.3: Adaptation progress and retention by PDmax. The blue and red solid curves show the mean values of the
respective groups, and the shaded area the corresponding standard error. The gray shaded rectangles pinpoint
the trials used for statistics. Symbols indicate statistically significant differences (p < 0.05) in adaptation level
for the blocked group (∗) and the random group (†) obtained by post-hoc t-tests.
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Figure 2.4: Adaptation progress and retention by FFCF . The blue solid curve shows the FFCF values of the blocked
group, and red of the random group. The gray shaded rectangles pinpoint the trials used for statistics. Symbols
indicate statistically significant differences (p < 0.05) in adaptation level for the blocked group (∗), the random
group (†), and between the groups (‡) obtained by post-hoc t-tests.

To test the first part of our first hypothesis that participants with an interleaved practice schedule
achieve a lower adaptation level at practice end than participants with a repetitive schedule, we
used one ANOVA for the PDmax and one for the FFCF values. We expected a significant
time and interaction effect. The ANOVA with respect to the PDmax values showed a time effect
[F(1, 30) = 65.431, p < 0.001, η2p = 0.686], confirming that the participants adapted. The ANOVA
showed no group [F(1, 30) = 1.118, p = 0.299, η2p = 0.036] or interaction effect [F(1,30) = 0.168,
p = 0.685, η2p = 0.006]. Using post-hoc tests, we compared the time effect separately for the two
groups and found differences in both cases [blocked: t(15) = 4.197, p < 0.001, |d| = 1.049; random:
t(15) = 10.525, p < 0.001, |d| = 2.631; Figure 2.3], which indicates that both groups adapted.
However, there was no group difference regarding the adaptation level at practice end.
In addition, we tested the force field prediction with the FFCF . Again, we found a time effect
[F(1,30) = 104.641, p < 0.001, η2p = 0.777], but neither a group [F(1,30) = 0.775, p = 0.386,
η2p = 0.025] nor an interaction effect [F(1,30) = 1.176, p = 0.287, η2p = 0.038]. Post-hoc tests also
showed a time effect for both groups [blocked: t(15) = -7.846, p < 0.001, |d| = 1.962; random:
t(15) = -6.961, p < 0.001, |d| = 1.740; Figure 2.4]. Consequently, the FFCF yielded the same
results as the PDmax.
To test the second part of our first hypothesis that the random group adapts slower, we compared
the PDmax progress. Regarding the whole curve of practice, the time constant of adaptation τ
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was higher for the random group, indicating slower adaptation compared to the blocked group
[U = 57.000, p = 0.007; random: τ = 77 trials (SEM 10), R2 = 0.133 (SEM 0.044); blocked:
τ = 22 trials (SEM 19),R2 = 0.175 (SEM 0.023), Figure 2.5A]. Regarding the target-specific curve
of the practice, i.e., without intervening trials for the random group, the median time constant
of adaptation τ was 23.6 for the random and 19.1 trials for the blocked group. However, fits
were poor, as 21.4% of the whole pool of bootstrap samples yielded an R2 below 0.1, and the
confidence intervals were (0.83, 327.12) for the random and (0.35, 941.9) trials for the blocked
group. As a third step, we compared the two groups based on the fit to their target-specific mean
progressions. Here, the time constant of adaptation τ was 37.9 for the random group and 23.9
trials for the blocked group (Figure 2.5B). The quality of the fit R2 was 0.75 (random group) and
0.85 (blocked group).
In summary, the statistical results of the practice phase show that both groups adapted to the force
field. Compared to the blocked group, the random group did not reach a different adaptation
level at practice end but adapted slower. Therefore, we cannot confirm the first part of our first
hypothesis that participants with an interleaved practice schedule achieve a lower adaptation level
at practice end, but can confirm that adaptation is slower in the random group.

2.4.2 Retention

Our second hypothesis was that random practice improves retention. We tested for retention at
two time points: 10 min (short-term retention) and 24 h (long-term retention) after practice. For
each comparison, we used ANOVA to compare the adaptation levels at the end of practice to those
of the retention test.
The ANOVA for the short-term retention revealed time [F(1,30) = 11.992, p = 0.002, η2p = 0.286],
group [F(1, 30) = 6.317, p = 0.018, η2p = 0.174] and interaction effects [F(1, 30) = 5.494, p = 0.026,
η2p = 0.155] for the FFCF . With post-hoc tests, we only found a time effect for the blocked
group [t(15) = 7.513, p < 0.001, |d| = 0.879], which revealed that the adaptation level decreased
from practice end to short-term retention test. In addition, we found that the random group
showed a superior performance in the short-term retention test compared to the blocked group
[t(30) = -5.854, p < 0.001, |d| = 2.138; Figure 2.4].
We used two ANOVAs to test for long-term retention, one for the PDmax values and one for
FFCF values. For PDmax, we found a time effect [F(1, 30) = 89.390, p < 0.001, η2p = 0.749],
indicating a decrease of the adaptation level. We found neither a group [F(1, 30) = 0.002, p = 0.962,
η2p < 0.001], nor an interaction effect [F(1, 30) = 4.182, p = 0.050, η2p = 0.122]. Hence, the
performance did not differ between the groups. Post-hoc tests revealed a time effect for both
groups [blocked: t(15) = -8.081, p < 0.001, |d| = 2.020; random: t(15) = -5.273, p < 0.001,
|d| = 1.318; Figure 2.3], indicating that both groups’ adaptation levels were lower 24 h after
practice end. We also conducted an ANOVA on the FFCF values. It also revealed a time
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effect [F(1, 30) = 123.535, p < 0.001, η2p = 0.805], but likewise no group [F(1, 30) = 0.154,
p = 0.697, η2p = 0.005] or interaction effect [F(1, 30) = 0.076, p = 0.784, η2p = 0.003]. As with
PDmax, post-hoc tests revealed a time effect for both groups [blocked: t(15) = 11.299, p < 0.001,
|d| = 2.825; random: t(15) = 6.275, p < 0.001, |d| = 1.569, Figure 2.4].
In summary, the random group’s retention was better 10 min after practice but did not differ from
the blocked group 24 h after practice. Hence, we can accept our second hypothesis regarding
short-term retention, but must reject it regarding long-term retention.
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Figure 2.5: PDmax progression fits. The blue and red solid curves show the mean values of the respective groups, and
the shaded area the corresponding standard error. The black curves illustrate the PDmax progression fits, the
fit over the groups’ means. In (A) the fits were calculated over all trials and in (B) by target.
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2.4.3 Spatial transfer

Our third hypothesis was that random practice improves spatial transfer. We tested for transfer at
two time points: 10 min (short-term transfer) and 24 h (long-term transfer) after practice, with
three different kinds of targets: interpolation, extrapolation, and shifted origin (Figure 2.6).
For the short-term transfer, we first tested for every transfer task whether there was transfer
for either group. If there was transfer, we tested which group performed better. Both groups
showed transfer for the interpolation [blocked: t(15) = 7.490, p < 0.001, |d| = 1.934; random:
t(15) = 11.821, p < 0.001, |d| = 3.052] and shifted origin targets [blocked: t(15) = 12.179, p < 0.001,
|d| = 3.145; random: t(15) = 15.122, p < 0.001, |d| = 3.904]. No group showed transfer for the
extrapolation target [blocked: t(15) = 0.279, p = 0.784, |d| = 0.072; random: t(15) = 0.036,
p = 0.972, |d| = 0.009]. Then, we tested for differences between the blocked and the random group
on the interpolation and shifted origin target. The random group showed a better interpolation and
shifted origin transfer than the blocked group [interpolation: t(30) = -4.453, p < 0.001, |d| = 1.626;
shifted origin: t(30) = -4.627, p < 0.001, |d| = 1.689].
Analogously to the short-term transfer tests, we first tested whether the groups showed long-term
transfer to the different targets. Like with the short-term tests, both groups showed transfer for the
interpolation [blocked: t(15) = 7.900, p < 0.001, |d| = 2.050; random: t(15) = 11.871, p < 0.001,
|d| = 3.065] and shifted origin targets [blocked: t(15) = 15.875, p < 0.001, |d| = 4.099; random:
t(15) = 15.685, p < 0.001, |d| = 4.043]. No group showed transfer for the extrapolation target
[blocked: t(15) = -0.913, p = 0.376, |d| = 0.236; random: t(15) = -0.634, p = 0.535, |d| = 0.164].
We then examined if there was a group difference for the interpolation and shifted origin targets.
The groups did not differ for the interpolation target [PDmax : t(30) = 0.727, p = 0.473, |d| = 0.266;
FFCF : t(30) = -1.642, p = 0.111, |d| = 0.600]. Regarding the long-term tests for the shifted
origin targets, we found that PDmax values did not differ between the groups [t(29.726) = 0.342,
p = 0.734, |d| = 0.125]. However, we found better transfer for the random group regarding the
FFCF [t(30) = -2.582, p = 0.015, |d| = 0.943].
In summary, the random group revealed a better interpolation test performance than the blocked
group 10 min after practice. We found no group difference 24 h after practice for the interpolation
test. No group showed transfer to the extrapolation target, neither 10 min, nor 24 h after practice.
In the shifted origin transfer task, the random group outperformed the blocked group 10 min as
well as 24 h after practice (FFCF ).
We hypothesized that interleaved practice fosters transfer, but found mixed results. We can
therefore only partially accept the hypothesis.
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Figure 2.6: Spatial transfer 10 min (left column) and 24 h (right column) after practice. Top: interpolation target, middle:
extrapolation target, bottom: targets with shifted origin. All values are mean and standard error over the
blocked (blue) and random (red) groups. The gray shaded semicircle illustrates the area spanned by the
practice trials for orientation. Trajectories are means over the groups. Group differences (p < 0.05) are
indicated by the ‡ symbol.
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2.4.4 State-space model to model the
contextual-interference effect

2.4.4.1 General characteristics of the model data

The SSM captured the overall adaptation progress, retention and transfer for both groups
[RMSEblocked = 0.27 (CI 0.03), [RMSErandom = 0.31 (CI 0.02), R2

blocked = 0.78 (CI 0.04),
R2

random = 0.70 (CI 0.04); Figure 2.7]. The error-sensitive learning rates were bf, blocked = 0.31 (CI
0.07), and bf, random = 0.23 (CI 0.05), as well as bs, blocked = 0.04 (CI 0.03), and bs, random = 0.04 (CI
0.01). The decay rates were Af, blocked = 0.79 (CI 0.10), and Af, random = 0.86 (CI 0.05), as well as
As, blocked = 0.99 (CI 0.01), and As, random = 0.99 (CI 0.01). The decay factors during breaks were
dblocked = 1.05 (CI 0.56), and drandom = 0.23 (CI 0.21). Differences in the learning rates of the
fast process between the groups were not significant but revealed a large effect size, indicating a
slower rate and thus a slower adaptation for the random group (bf, blocked vs. bf, random: t(26.33) =
-2.052, p = 0.050, |d| = 0.800).
We tested for differences in the processes’ values at the end of practice as they can possibly
explain differences in the retention performances. For the slow process, the difference was
not significant with a medium effect size [blocked: mean 0.51 (SE 0.05); random: mean 0.66
(SE 0.06), t(30) = 1.802, p = 0.082, |d| = 0.658]. The difference of the fast process’ activity was
not significant either, with a weak correlation [blocked: mean 0.30 (SE 0.04); random: mean 0.24
(SE 0.04); U = 96.000, Z = -1.206, p = 0.239, |r| = 0.22].

2.4.4.2 Additional analysis of the model data

To examine in more detail whether the model can replicate the performance trends over time
induced by the random and blocked practice protocols, the same statistics as for the FFCF values
(sections 2.4.1-2.4.3) were calculated from the model data and can be found in the supplementary
material A.1.2. The statistical results of the model data were consistent with the behavioral results
except for the practice start, the extrapolation target, and the long-term retention test. Thus, with
regard to our fourth hypothesis, our SSM allows to provide and discuss explanatory mechanisms
underlying some, but not all behavioral results.
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2.5 Discussion

2.5 Discussion

The CIE is a well-studied phenomenon in motor skill learning. It states that interleaved (high
contextual interference) as opposed to repetitive (low contextual interference) practice results in
lower performance gains during practice, but superior retention and transfer (Schmidt et al., 2019,
Shea and Morgan, 1979). The aims of the study were to investigate whether a CIE can be observed
with respect to retention and spatial transfer in a force field adaptation task, and whether a SSM
can reproduce the CIE and thus partly explain the underlying mechanisms of the CIE. The main
findings of our study are: (1) a random practice schedule does not lead to different performance
levels at practice end but to a slower adaptation than a blocked schedule. A random schedule is
superior to a blocked schedule in (2) short-term retention and (3) spatial transfer. (4) SSMs reflect
the experimental findings with some exceptions and provide possible explanatory mechanisms.

2.5.1 Random practice does not lead to different performance
levels at practice end but to a slower adaptation

Participants of both groups adapted to the force field perturbation. Based on the typical results
of the CIE in skill learning (Wright and Kim, 2019), we expected and hypothesized that the
adaptation at practice end would be worse for the random group than for the blocked group.
However, we found no difference between the groups. Former studies on the CIE in our lab are
inconsistent in this regard. The finding in this study concurs well with Thürer et al. (2019, 2017),
but differs to Thürer et al. (2018). In the latter, a difference was only found for the enclosed area
parameter (kinematic error) but not for the FFCF . However, these studies cannot be directly
compared to ours, since they varied the force field magnitude rather than the reaching direction.
A possible explanation for the same adaptation level at practice end is the long duration of the
practice phase of our study. Usually, adaptation progression plateaus after 300-600 trials when
different reaching directions are practiced (Gandolfo et al., 1996, Shadmehr and Brashers-Krug,
1997). Other CIE studies have also shown that adverse effects of random practice can be overcome
during long acquisition phases (Maslovat et al., 2004, Pauwels et al., 2014).
Participants with a random schedule adapted slower than those with a blocked schedule, as
indicated by the blocked group’s lower time constant of adaptation and the higher error-sensitive
learning rate of the fast process (large effect size). The difference in the higher error-sensitive
learning rate of the fast process indicates that the blocked group shows faster adaptation, especially
in themovements at the beginning. The finding that participants in the blocked group adapted faster
is in good agreement with CIE findings in the skill learning literature (Magill and Hall, 1990, Shea
and Morgan, 1979) as well as with motor adaptation tasks (Thürer et al., 2018). However, not all
studies explicitly compared adaptation speed (Thürer et al., 2019, 2017). Although not explicitly
measured, but apparent, the blocked group seemed to adapt faster in the study of Schweighofer
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et al. (2011). In motor adaptation studies, there is support that increased environmental variability
slows down adaptation or, in other words, a consistent environment speeds up the adaptation rate
(Gonzalez Castro et al., 2014, Wei and Körding, 2009). Nonetheless, to the best of our knowledge,
no study so far has compared a blocked with a random schedule regarding different movement
directions in terms of adaptation speed. With the help of the SSMs, this could be described as
follows. The faster adaptation can be explained by the fact that in blocked practice, the learning
gain toward the next trial is maximal, since the same movement direction is practiced. In contrast,
the learning gain after a trial in random practice only partially serves the next trial, as it has a
different movement direction (section 2.5.4.1).
During practice, the blocked group showed a decrease in the FFCF and an increase in PDmax

every time the target changed. Yet, the values did not fully revert to the baseline level. A possible
explanation could be the breaks that took place after 200 trials. A closer look at behavioral
results of force field adaptation studies (Heald et al., 2018, Taubert et al., 2016) also showed that
performance decreases after short breaks, although the performance decreases are much smaller
in these studies than in our study. Also, the random group took the same breaks, but no distinct
steps are visible in their performances. Therefore, we suggest, with the help of our SSM, that the
performance decrease can be explained by the contextual switches when a new target appeared.
Due to the constant target change, the random group learned each target equally, either as it
was practiced itself or by the Gaussian trial-by-trial generalization. This resulted in constant
fluctuations rather than distinct steps in the adaptation progress. In contrast, the blocked group
always learned the recurrent target the most and the others only by the Gaussian trial-by-trial
generalization. The target after the target change was therefore less learned by the blocked group
which resulted in the visible steps (section 2.5.4.1).

2.5.2 Random practice yields better short-term retention
but not necessarily long-term retention

We hypothesized that random practice results in better retention performance. Therefore, we
assessed the performance 10 min (short-term) and 24 h (long-term) after practice. While short-
term retention benefitted from random practice, long-term retention did not. Furthermore, for
both groups, long-term retention showed a lower adaptation level than short-term retention. These
results match with those of Schweighofer et al. (2011) for both short- and long-term retention.
However, based on our SSM, we cannot fully support in our study that the better retention
performance is merely due to a higher level of the slow process (section 2.5.4.2). Our results on
long-term retention are partially consistent with our previous studies. Thürer et al. (2017) found
a difference only in FFCF , but not in PDmax. While Thürer et al. (2018) did not find a group
difference, Thürer et al. (2019) did find an advantage in the random group (only kinematic metric
assessed). However, these comparisons are difficult as in these studies force field magnitudes were
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varied rather than movement directions. A better retention performance is often seen for randomly
practicing groups in motor skill learning (Shea and Morgan, 1979). It must be noted, however,
that motor adaptation is just a temporary transient adjustment of an existing internal model and
that, generally, adaptation rapidly returns to baseline performance, which is in stark contrast with
skill learning (Krakauer et al., 2019).
Factoring out differences in the practice schedule, there is much support in the literature stating
that retention worsens with time in motor adaptation (Huberdeau et al., 2015b, Krakauer et al.,
2019). Thereby, the passage of time plays a crucial role as the adapted state passively decays over
time without any interfering trials in-between (Criscimagna-Hemminger and Shadmehr, 2008,
Kitago et al., 2013). Furthermore, the adapted state also reverts toward baseline if EC trials are
inserted (Kitago et al., 2013, Scheidt et al., 2000). These two findings concur well with the results
of our retention tests: long-term retention is worse than short-term retention. In between the two
tests, there was a 24 h pause and the short-term retention trials were only EC trials. However, the
decrease in performance after 24 h without practice can be caused by a warm-up decrement being
a temporary loss of an internal state that had been acquired (Kantak and Winstein, 2012, Schmidt
et al., 2019). Therefore, if we had inserted a few FF trials before the long-term retention tests,
maybe a group difference would have been visible.

2.5.3 Random practice yields better short-term transfer
but not necessarily long-term transfer

To the best of our knowledge, studies so far have only examined the influence of the CIE on
intermanual but not spatial transfer in force field adaptation (Thürer et al., 2019, 2018). According
to skill learning studies (Goode and Magill, 1986, Wright and Kim, 2019), we expected a
superior transfer performance from the random group. In light of this, and for the purpose of a
comprehensive examination of spatial transfer, we investigated three different spatial transfer tasks:
interpolation, extrapolation, and shifted origin. Since the time passing between practice and test
trials plays a major role in force field adaptation (Criscimagna-Hemminger and Shadmehr, 2008,
Krakauer et al., 2019), first short- and then long-term transfer test results are discussed separately.

2.5.3.1 Short-term

Both groups showed transfer for the interpolation and shifted origin targets. Remarkably, perfor-
mance decreased to no transfer for the extrapolation target. We then found benefits for the random
group compared to the blocked group in short-term transfer for the interpolation target as well as
for the shifted origin targets. Our SSMs provide a possible explanation, relating the better transfer
in the random group to the higher and more balanced activity of the slow process (2.5.4.3).
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Factoring out the group differences, the superior transfer performance in the short-term inter-
polation task compared to the extrapolation task finds support in the literature. Many studies
have shown that transfer is local to the practiced movement directions in the work space and
decreases with increasing angular difference between the targets (Castro et al., 2011, Gandolfo
et al., 1996, Rezazadeh and Berniker, 2019). The performance results of both groups in the inter-
and extrapolation tasks correspond to these findings. In addition, we found that practicing in
one workspace transfers to a shifted one. These results correspond to previous studies (Berniker
et al., 2014, Criscimagna-Hemminger et al., 2003, Malfait et al., 2002, Mattar and Ostry, 2007,
Shadmehr and Moussavi, 2000, Shadmehr and Mussa-Ivaldi, 1994). The shifted origin targets
had the same direction as the practice targets in view of extrinsic coordinates. Yet, we did not
explicitly control for the coordinate system in which the targets are moved. Furthermore, there is
controversy over which coordinate systems are responsible for successful transfer (Franklin et al.,
2016).

2.5.3.2 Long-term

Analogously to the short-term transfer, we first separately tested both groups for transfer and
then tested for differences between the groups. Both groups showed transfer for the interpolation
and shifted origin trials but not for the extrapolation target. This is alike our findings for the
short-term transfer. However, in the long-term transfer tests, the random group did not outperform
the blocked group, except for the transfer test for the shifted origin trials. For the latter, we only
saw benefits when we assessed performance with the FFCF but not with PDmax. Potentially,
this is due to the different control mechanism the two parameters quantify (Stockinger et al., 2015):
the FFCF serves as a measure of the force field prediction and thus the internal model, whereas
the PDmax reflects the net motor output. The theoretical framework of optimal feedback control
(OFC) (Scott, 2004, Todorov, 2004, Todorov and Jordan, 2002) and its extension robust optimal
feedback control (Crevecoeur et al., 2019) may help understand why differences in FFCF values
but not in PDmax values are visible. OFC assumes a tradeoff between the reliance on internal
models and sensory feedback. Furthermore, the reliance on sensory feedback is upregulated when
accurate internal models cannot be formed (e.g., due to uncertainty) (Franklin et al., 2012, 2017).
We speculate that the shift in start and end points increased the uncertainty about the environment.
This uncertainty especially increased for the blocked group but not for the random group since the
latter group already experienced higher uncertainty inherent in their practice schedule. Therefore,
the blocked group could have increased their feedback gains following the target shift allowing for
more vigorous corrective responses when encountering the force field (Crevecoeur et al., 2019).
Collectively, the increased feedback gains and thus the more vigorous corrections during the
ongoing movement in the blocked group would essentially cancel out the difference in the force
field prediction (FFCF ) yielding in a similar motor net output (PDmax).
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We saw a group difference for the shifted-origin trials in both short- and long-term tests but no
group difference in the long-term tests for the interpolation target. Possibly, a retrieval effect may
have played a role. This refers to the phenomenon that relearning of a force field occurs at a
more rapid rate than initial learning and of overcoming a warmup-decrement (Haith and Krakauer,
2014, Huberdeau et al., 2015a,b, Krakauer, 2005, Krakauer and Shadmehr, 2006, Schmidt et al.,
2019). Maybe the warm-up decrement was overcome through the FF trials during the long-term
tests until the long-term shifted origin tests started. Then, the better transfer performance of the
random group, which was found during the short-term tests, could emerge again.

2.5.4 State-space models provide further explanations
for the contextual-interference effect

In addition to the experimental testing of the CIE, we developed SSMs to explain potential superior
performance effects of the random practice schedule by the two-rate characteristic of the learning
process. Except for the practice start, the extrapolation test, and partially long-term retention, the
SSM could reproduce the performance trends in the behavioral data. Therefore, its underlying
processes provide explanations to some but not all behavioral findings.

2.5.4.1 Practice

In the blocked group (Figure 2.7A, B), both processes were active throughout practice. When the
target changed, activity in the fast process always increased, and decreased in the slow process.
During the periods when the blocked group approached the same target 200 times, the context
did not change and the Gaussian trial-by-trial learning had the strongest effect on the recurrent
context. Whenever the target changed, the responsible context for the new target became active.
Since the new context has been solely learned by trial-by-trial generalization and became active
for the first time then, this resulted in a lower adaptation for the new context than for the preceding
at the time the new context became active. When the new context became active, fast process
activity increased and contributed more to the overall adaptation than at the end of the preceding
context. Every time a new context became active, the preceding one was increasingly forgotten.
The observation that first the fast process and then the slow process lead to adaptation when the
target changed can be related to the respective process characteristics (Huberdeau et al., 2015b).
The fast process is sensitive to reward and its activity level rises fast, whereas the slow process
seems to be more error-driven and rises more slowly. Regarding the underlying physiological
cause, the literature suggests that adaptation, in the beginning, is achieved by stiffening the arm
either as a result of an impedance control strategy (Heald et al., 2018, Milner and Franklin, 2005)
or to upregulate feedback gains (Crevecoeur and Scott, 2014, Crevecoeur et al., 2019) as the
internal model was inaccurate for the new target (Franklin et al., 2012). When targets changed

57



2 Topic A, Study A1: Random practice enhances retention and spatial transfer in force field adaptation

after every 200 trials, participants probably analogously first used these reactive responses as a
result of a reward-based mechanism and then – on a slower timescale – adapted an internal model
which was able to predict the force field (Franklin et al., 2012). Another possibility could be that
the visible change of the target addressed the explicit component of the learning process, which
has been shown to resemble the fast process (McDougle et al., 2015). Though, we did not control
for explicit and implicit processes and thus this remains speculative.
In the random group (Figure 2.77C, D), overall performance was determined by activity of the
fast process until approximately halfway through practice. Toward the end of practice, the slow
process became very active, and the activity of the fast process decreased. Both slow and fast
processes revealed fluctuations which resulted from the continuous context switches. Whenever
the target changed, the responsible context became active. The time that passed until the target
was reached again caused a decrease in activity of the corresponding context. However, since the
time was short, the decrease was only small, which resulted in the fluctuations.

2.5.4.2 Retention

Participants with a random practice schedule showed better short-term retention than participants
with a blocked practice schedule. There were no differences between the long-term retention
performances. Schweighofer et al. (2011) explained, without a statistical test, the increased
immediate retention performance of the random group with a more pronounced activation of the
slow process during practice. This ultimately led to a higher level of the slow process at practice
end when compared to the slow process level of the blocked group. They explained that the slow
process, which started from a higher level at practice end and then decayed slowly in the random
group, led to better retention. In our study, we also observed a higher level of the random group’s
slow process, yet the difference was not significant with a medium effect. It must be noted that we
did not test retention for each target individually. With respect to the forgetting-and-reconstruction
hypothesis, it could be that in the blocked group the earlier a target was practiced the more it got
forgotten. So, the earliest practiced targets got considerably forgotten. In contrast to the random
group in which all targets were practiced in a block-randomized manner and no target got forgotten
more than another. Possibly, this difference between the slow processes of the two groups yields
different average retention values and thus is reflected in the worse retention for the blocked group.
Joiner and Smith (2008) showed the slow process to be the main contributor for the adaptation level
during long-term retention (24 h), whereas the fast process does not contribute. This holds true for
our modeling results as the adaptation level during long-term retention is only influenced by the
slow process level. Also, our SSM is able to reflect the decrease of adaptation for both groups after
24 h. However, it fails to reproduce the experimental finding that the groups’ performances do
not differ significantly. Possibly, it is not only the decay of the slow process that is responsible for
the long-term retention performance. Other mechanisms may happen, like a fractional transition
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of the fast process into the slow process as suggested by Criscimagna-Hemminger and Shadmehr
(2008) or model-free learning mechanisms occurring along with error-based learning (Huang
et al., 2011). With regard to this, our experimental procedure and state-space modeling did not
allow us to verify if the described phenomenon happened. Additionally, maybe the decrease in
retention results from the interference of daily task reaching movements, like grabbing a cup of
coffee in front of you, and thereby promoting a wash-out, which we did not consider with the SSM
approach. Thus, this question cannot be addressed here and remains speculative.

2.5.4.3 Transfer

To be applicable to adaptation to multiple targets, SSMmust also include multiple contexts (Albert
and Shadmehr, 2018, Schweighofer et al., 2011, Tanaka et al., 2012). However, new targets did not
appear after adaptation in any of these studies. This contrasts with our study, as the interpolation,
extrapolation, and shifted origin targets were not practiced. Hence, we used a simplified approach
to let the SSMs account for the new targets (section 2.3). Our SSMs reproduced the statistical
results we found in our behavioral analyses results with little exceptions (Supplemental Data A.1.2).
Therefore, it seems that the Gaussian trial-by-trial generalization can account for transfer to new
targets. The SSMs provide a possible explanation for the better short-term interpolation transfer
performance of the random group in light of the forgetting-and-reconstruction hypothesis. Since
the activity of the slow process for the four contexts increased much more uniformly in random
than in blocked practice and resulted in a higher value for the interpolation target, this possibly
explains the higher transfer for the interpolation target of the random group. The SSM fits showed
minor transfer for the extrapolation target for both groups stemming from the fast process. The fast
process does not consist of context-specific states, and so cannot revert from a high value to zero
within a single trial. For the shifted origin targets, the context of the practice target with the same
direction served as the context of the respective shifted-origin target. This is a simplification in
the sense that we do not consider whether the context of the direction is embedded in an intrinsic,
extrinsic, or a mixed coordinate system (Berniker et al., 2014). However, for the purposes of our
study, this simplification seems valid as the SSM reproduced the behavioral data.
The SSM can also account for the fact that no significant differences were found for the long-term
interpolation test. In the absence of error, i.e., during EC trials or breaks, the adaptation level
decays exponentially (Orozco et al., 2021). Due to the exponential decay, the difference of the slow
process between the two groups which was possibly responsible for the group difference in the
short-term interpolation test also quickly became smaller. As a result, significant differences no
longer occurred after 24 h. The model data are in line with the experimental findings of the long-
term transfer test for the shifted origin targets, i.e., a superior performance of the random group.
The SSM supports the explanation based on a possible retrieval effect and warmup-decrement
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(section 2.5.2). Every second block during long-term retention and tests, we used FF trials. With
them, the SSMs accounted again for learning and the values of the processes increased.
Despite support in the literature (Smith et al., 2006), there is criticism that SSMs cannot validly
account for the underlying mechanisms of all savings or retrieval phenomena in force field
adaptation (Herzfeld et al., 2014, Krakauer et al., 2019). Based on SSMs, savings are explained
with the higher onset value of the slow process after being re-exposed to the force field (Smith
et al., 2006). However, savings are also found after a prolonged washout period during which the
slow process diminishes almost to zero (Zarahn et al., 2008). A possible extension to SSMs is the
use of variable error sensitivities (Coltman et al., 2019, Herzfeld et al., 2014, Zarahn et al., 2008)
or different parallel states as supposed by Lee and Schweighofer (2009).

2.5.5 Operationalization of the contextual interference
in force field adaptation

The size of the CIE seems to be dependent on the type of variation practiced (Magill and Hall,
1990). In this regard, a certain amount of challenge seems to be critical (Guadagnoli and Lee,
2004). This means that, up to a certain degree, the more difficult or dissimilar the tasks are,
the better participants would benefit from an interleaved practice schedule. In this adaptation
study, participants practiced reaching to different targets in a force field. Even though, there is
fractional transfer of learning between neighboring targets (Donchin et al., 2003, Howard and
Franklin, 2015, Rezazadeh and Berniker, 2019), we propose that reaching to different directions
can be considered dissimilar in the context of an CIE as it requires different joint movements
(Morasso, 1981) and muscle activations (Flanders, 1991, Karst and Hasan, 1991, Thoroughman
and Shadmehr, 1999). Furthermore, transfer of learning to neighboring targets seems to decrease
with increasing direction difference (Gandolfo et al., 1996). Taken together, reaching to different
directions in the force field may constitute a sufficient interference and thus a challenge in the
context of the CIE to provoke better retention and transfer for the interleaved group. Studies in
a similar laboratory setting, where practicing one task variation can presumably transfer to the
others, also showed a CIE: Schweighofer et al. (2011) found a CIE in grip force pattern, Chalavi
et al. (2018) in a visuomotor task, Lelis-Torres et al. (2018) in a manual aiming task, and Thürer
et al. (2019), where force field magnitudes varied. We therefore considered the different reaching
directions to be dissimilar enough to see a CIE.
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2.5.6 Neuronal mechanisms related to the
contextual-interference effect and
state-space model

Recent studies have started to address the question of the underlying neuronal mechanisms related
to the decomposition of adaptation into two distinct processes (Farrens and Sergi, 2019, Kim et al.,
2015a, Sarwary et al., 2018). Kim et al. (2015a) demonstrated in a visuomotor adaptation that
slow formation of memory relates to activity in the inferior parietal cortex and anterior-medial
part of the cerebellum; and fast formation to areas in the prefrontal and parietal lobes and the
posterior part of the cerebellum. Studies of the CIE associated the improved retention and transfer
performance of a random schedule to increased activity in the parietal lobe (Thürer et al., 2018)
or the dorsolateral prefrontal cortex (Kantak et al., 2010), and showed increased activity with
blocked practice in the motor cortex (Kantak et al., 2010). SSMs as applied in our study are
descriptive models of behavior and so do not allow us to infer the underlying neural mechanisms
(Krakauer et al., 2019). Especially, it is yet unresolved whether the processes can be associated
with short- and long-term memory to fully support the forgetting-and-reconstruction hypothesis
(Schweighofer et al., 2011). As the CIE is detectable in both motor adaptation and skill learning
studies, and these two types of motor learning are likely to have overlapping neural circuitry
(Krakauer et al., 2019), future studies may further investigate the CIE and the neural differences
between blocked and random practice which lead to the different behavioral results.

2.5.7 Limitations

There are a few limitations that need to be considered. Firstly, we used two approaches (fit over
all trials vs. by target) to compare adaptation speed by comparing the PDmax progression, which
both come with limitations. Comparing τ over all trials obscures the difference between practicing
targets block-wise versus in a row, yielding a τ for the random group around four times larger
than τ for the blocked group. However, if τ is compared by target, the occurring transfer of
learning between the different targets and the decay of learning of a target until it is reached again
is obscured for the random group. Furthermore, let t be the nth trial for target i. For the blocked
group, t would be trial number (n+200+n+400+n+600+n)/4 = 300+n on average. For
the random group, t would be between trial numbers 4n− 3 and 4n. Thus, on average, t appears
earlier in the random schedule than in the blocked for the first half of the trials, where adaptation
progresses most (4n < 300+n;n = 1 ≤ n ≤ 99). The blocked group would therefore have more
practice trials before t. Secondly, the interspersed FF trials during the long-term tests may blur
the results of the CIE. The savings or retrieval effect likely plays a more dominant role than the
CIE for our long-term tests. Future research may assess the CIE after a 24 h break without an FF
trials effect to gain more insights into the CIE in motor adaptation because, in motor skill learning,
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an increased retention is also observed after 48-72 h (Wright and Kim, 2019). Thirdly, our SSMs
did not account for biomechanical differences of the different reaching directions (Molier et al.,
2011, Rand and Rentsch, 2017). Another limitation of our SSM is that it did not account for
possible non-linear error sensitivity (Fine and Thoroughman, 2007, Wei and Körding, 2009) or
context-dependent decay (Ingram et al., 2013).

2.6 Conclusion

The study shows that the CIE, which has been primarily investigated in motor skill learning studies,
can partially lead to better retention and spatial transfer in motor adaptation tasks. Studying the
influence of different practice schedules on retention and transfer is of theoretical as well as
of practical interest. The study of the CIE in motor adaptation helps to better understand the
underlying processes, as skill learning and motor adaptation are likely to make use of some shared
neural circuitry and the causes of the CIE are still inconclusive. The study of the effects of different
practice schedules also aims at providing practitioners with the most efficient practice schedules
which ultimately may help foster the learning and execution of motor skills.
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3 Topic A, Study A2: Muscle synergies in force field adaptation, retention, and generalization

3.1 Abstract

Humans can adapt their motor commands in response to errors when they perform reaching
movements in new dynamic conditions, a process calledmotor adaptation. They acquire knowledge
about the new dynamics, which they can use when they are re-exposed and, limitedly, generalize
to untrained reaching directions. While force field adaptation, retention, and generalization have
been thoroughly investigated at a kinematic and kinetic task level, the underlying coordination at
a muscular level remains unclear. Many studies propose that the central nervous system uses low-
dimensional control, i.e., coordinates muscles in functional groups: so-called muscle synergies.
Accordingly, we hypothesized that changes in muscle synergy structure and activation patterns
represent the acquired knowledge underlying force field adaptation, retention, and generalization.
To test this, 36 male humans practiced reaching to a single target in a viscous force field and
were tested for retention and generalization to new directions, while we simultaneously measured
muscle activity from 13 upper-body muscles. We found that muscle synergies used for unperturbed
reaching cannot explain the muscle patterns when adapted. Instead, muscle synergies specific
to this adapted state were necessary, alongside a novel four-phasic pattern of muscle synergy
activation. Furthermore, these structural changes and patterns were also evident during retention
and generalization. Our results suggest that reaching in an environment with altered dynamics
requires structural changes to muscle synergies compared to unperturbed reaching, and that these
changes facilitate retention and generalization.

3.2 Introduction

Humans can adapt their motor commands in response to errors when their reaching movements are
perturbed, a process called motor adaptation (Shadmehr and Mussa-Ivaldi, 1994). Furthermore,
they can re-use the acquired knowledge when they are perturbed again and can partly generalize it
to unpracticed reaching directions (Brashers-Krug et al., 1996, Gandolfo et al., 1996, Ghez et al.,
1999, Rezazadeh and Berniker, 2019, Shadmehr, 2004, 2017). Many studies have thoroughly
analyzed force field adaptation, retention, and generalization at the level of task-related variables;
describing and modeling the mapping of end-point kinematics and kinetics (Diedrichsen et al.,
2010, Krakauer and Mazzoni, 2011, Thoroughman and Shadmehr, 2000, Wolpert and Kawato,
1998). However, how the CNS coordinates motor adaptation at the level of muscle activations has
not been fully investigated. The CNS may implicitly represent acquired knowledge and generate
motor commands by organizing muscle synergies (d’Avella, 2016, Bernstein, 1967, Bizzi et al.,
2008, Giszter, 2015, Mussa-Ivaldi, 1999). Through muscle synergies – coordinated recruitment
of groups of muscles acting together as functional units – the CNS may control a small number
of units rather than every muscle, thereby reducing the dimensionality of the control problem
(Bernstein, 1967, Bizzi et al., 1991, Tresch et al., 1999). Furthermore, by flexibly combining and
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sharing synergies, a large behavioral repertoire can be generated (d’Avella et al., 2003, Bizzi et al.,
2008, Mussa-Ivaldi et al., 1994, Mussa-Ivaldi and Bizzi, 2000, Ting and Macpherson, 2005).
To date, it remains unexplored how muscle synergies are related to force field adaptation, retention,
and generalization; and what changes in their structure and activation patterns lead to the observed
task-level kinematics and kinetics. While isometric visuomotor rotation studies (De Marchis
et al., 2018, Gentner et al., 2013, Severini and Zych, 2020) showed that adaptation and spatial
generalization do not require additional muscle synergies, a study by Oscari et al. (2016) hints that
force field adaptation does require additional synergies. Furthermore, studies with a few muscles’
EMGs in force field adaptation show two principal mechanisms. First, there is co-contraction of
muscles acting around the elbow and shoulder joints, which decreases during adaptation but does
not vanish completely (Franklin and Franklin, 2021, Milner and Franklin, 2005, Thoroughman and
Shadmehr, 1999). Secondly, activity of specific muscles counteracting the force field increases,
and their activation timing shifts toward the movement start (Albert and Shadmehr, 2016, Huang
et al., 2012, Thoroughman and Shadmehr, 1999). Furthermore, even after a plateau in kinematic-
and kinetic-dependent variables, muscle activity continues to decrease, presumably to reduce
effort (Franklin et al., 2003, Huang et al., 2012). Accordingly, adaptation may be represented
either by a combination of baseline reaching muscle synergies or by specific, effort-optimized
muscle synergies. Either way, if muscle synergies viably represent the coordination of force field
adaptation at a muscular level, we expect them to also represent retention and spatial generalization.
In particular, if muscle synergies change to accommodate specific requirements for adaptation to
reaching in some directions, they are a poor choice for capturing muscle patterns in unpracticed
reaching directions, in line with previous narrow spatial generalization findings (Gandolfo et al.,
1996, Ghez et al., 1999, Rezazadeh and Berniker, 2019).
To investigate howmuscle synergies underlie force field adaptation, retention, and generalization at
amuscular level, we first examined task-level variables. Accordingly, we hypothesized that (HTask 1)
people adapt, de-adapt, and re-adapt to the force field and that (HTask 2) spatial generalization
decreases with distance from the practiced movement direction. Building on this, we then
analyzed muscle activation patterns and hypothesized that (HSynergies 1) the muscle patterns of
force field adaptation can be reconstructed by a combination of baseline reaching synergies. As
this hypothesis did not hold, we hypothesized that (HSynergies 2) specific muscle synergies are
required. Lastly, we hypothesized that (HSynergies 3) muscle synergies acquired through adaptation
are only locally applicable, reflecting the narrow spatial generalization force field adaptation
findings.
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3.3 Materials and methods

3.3.1 Participants

Thirty-six right-handed (Oldfield, 1971) male volunteers (25.9 ± 2.8 years, 1.80 ± 0.05m height,
77.2 ± 9.5 kg mass) naïve to force field adaptation experiments gave written informed consent
before participating. The Karlsruhe Institute of Technology (KIT) Ethics Committee approved
the study.

3.3.2 Apparatus and task

The participants sat at a KINARM End-Point Lab with a virtual reality (VR) display (KINARM,
Kingston, Canada, Figure 3.1). The chair’s height was individually adjusted so the participant sat
upright, leaning his forehead against the VR frame, and had a 90◦ angle between the upper and
forearm. In the starting position, the handle was located on the mid-sagittal plane in front of the
torso. The participants performed 15 cm center-out point-to-point movements in the horizontal
plane with their right hand. The VR display showed the handle’s position as well as the starting and
target points but obscured the view of the handle, hands, and arms. Participants were instructed
to move the handle from the start to the target within 550 ± 50ms after the handle had resided
at the start point for at least 800ms. The target color changed when reached, giving participants
feedback on whether the specified movement time was met (green: within the time frame, blue:

Figure 3.1: Experimental setup. A participant with EMG electrodes attached sits at the KINARM End-Point Lab
(KINARM, Kingston, Canada).
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too fast, red: too slow). After the handle remained within the target for 800ms, the manipulandum
moved it back to the start for the subsequent trial. The five targets were located at -90◦, -45◦, 0◦,
45◦, and 90◦ (Figure 3.2).

3.3.3 Experimental design

3.3.3.1 Trial conditions

Three trial types were used: null field (NF), force field (FF), and error clamp (EC). In NF
trials, the handle was freely movable without perturbing forces. In FF trials, a counterclockwise,
velocity-dependent force field acted according to the formula:

F⃗ = k ·

(
cos θ −sin θ

sin θ cos θ

)
·

(
ẋ

ẏ

)
,

with k being the force field magnitude fixed at 20Ns/m. The angle θ was fixed at 90◦. Therefore,
the force field always steered the handle’s movement orthogonally to its direction of motion. The

handle’s velocity components are given by

(
ẋ

ẏ

)
. In EC trials, the End-Point Lab restricted the

motion to a small channel connecting the start and end points (Joiner and Smith, 2008, Scheidt
et al., 2000). Therefore, the manipulandum created virtual walls with a viscosity of 10 kNs/m and
a stiffness of 1 kN/m.

3.3.3.2 Groups assignment and schedule

The schedule consisted of six successive phases: familiarization, baseline, practice, short-term
retention and generalization, washout, and long-term retention and generalization (Figure 3.2).
Participants accustomed themselves to the task during the familiarization phase, which consisted
only of NF trials with the directions in a random order (same order for all participants). During
baseline, they reached for each target 20 times without perturbing forces (NF trials) and three
times in the EC condition in a random order. The last three were FF trials in the -90◦, 0◦, and
45◦ directions. During practice, they performed 250 reaches in the FF condition to the 0◦ target.
Therein, 26 EC trials were randomly interspersed. After a 30-second break, participants were
tested for short-term retention (0◦ target) and generalization (-90◦ and 45◦ targets). Therefore, the
three targets were reached first once in the EC and then twice in the FF condition. The short-term
retention and generalization started with the 0◦ target. Half of the participants continued with the
-90◦ target, the other with the 45◦ target. This was followed by the washout, consisting of 125
trials (114 NF and 11 EC). After a 10-minute break, the long-term retention and generalization
phase followed. Every participant was randomly assigned to one of three groups (-90◦, 0◦, or
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45◦; each N = 12). The participants reached 250 times to one of the three targets only (target
depending on groups assignment) with perturbing forces. Twenty-six EC trials were interspersed
at the same trial number as during the practice phase. Participants could let go of the handle
during the breaks.
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3.3.4 Data analysis

Kinematic (hand position and velocity) and kinetic (interaction forces) data measured at the
manipulandum’s handle were recorded at 1,000Hzwith KINARMDexterit-E software (KINARM,
Kingston, ON, Canada).
Thirteen surface EMG electrodes (4,000Hz; Noraxon USA, Scottsdale, AZ, USA) captured
upper-body muscle activity of the following muscles (Figure 3.1): trapezius (descending “TrapD”,
transverse “TrapT”, ascending “TrapA”), deltoid (anterior “DeltA”, middle “DeltM”, posterior
“DeltP”), latissimus dorsi (“LatDorsi”), pectoralis major (“PectMaj”), serratus anterior (“SerrA”),
triceps brachii (lateralis “TriLat” and medialis “TriMed”), biceps brachii (long head, “Bic”), and
brachioradialis (“Bra”). Participants’ skin was prepared by shaving, abrasion, and cleansing with
alcohol to ensure good electrode-skin contact. Then, Ag/AgCl electrodes were attached according
to SENIAM guidelines (Hermens et al., 2000) and Perotto (2011).

3.3.4.1 Pre-processing

Raw kinematic and kinetic data were filtered with a 4th-order Butterworth low-pass filter and
a cut-off frequency of 6Hz (kinematic) and 10Hz (kinetic) following previous studies (Herzog
et al., 2022, Stockinger et al., 2015). Movement start was defined as the instant the participant left
the start point, and movement end when he reached the target point for the first time. Raw EMG
data were bandpass filtered with a 20-450Hz, 4th-order zero-lag Butterworth filter (Albert and
Shadmehr, 2016). ECG artifacts apparent in the recordings of the trunk muscles were removed
with a template-matching procedure (Peri et al., 2021). Subsequently, 50Hz noise was removed
with a 2nd-order zero-lag Butterworth notch filter (50Hz and harmonics up to 500Hz; Ahmad
et al. 2013, Anwar et al. 2011). The filtered EMG data were full-wave rectified and envelopes
were calculated using a 4th-order Butterworth low-pass filter with a cut-off frequency of 10Hz.
EMG data were segmented from 200ms before the participant left the start point until 200ms
after they reached the target for the first time, e.g., including potential overshooting corrections.
The segmented data were time-normalized to 101 time points. Then, the data were amplitude-
normalized per muscle and participant to the maximum activity across all trials. Finally, the tonic
EMG component was removed from all trials (d’Avella et al., 2006). To do so, a linear ramp was
modeled using the average EMG envelope of each muscle in the 200ms before the movement
start and the 200ms after target reach. Each calculation of averages included all baseline trials
to the same direction. This direction-, muscle-, and participant-specific estimation of the tonic
component was then subtracted from all respective trials. The remaining phasic parts of the EMG
could contain negative values, which were clipped to zero. After careful observation, TrapD was
excluded as it contributed only noise. All processing and analysis steps were performed in Matlab
(R2023b, Natick, MA, USA).
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3.3.4.2 Kinematic and kinetic dependent variables

Following previous studies, adaptation was assessed with a kinematic and a kinetic measure
(Heald et al., 2018, Sing et al., 2009). The kinematic variable PDmax quantifies the maximum
perpendicular distance between a trial’s trajectory and a virtual straight line connecting the start
and target. While it quantifies the net motor output with all control processes involved (Stockinger
et al., 2015), the kinetic force field compensation factor (FFCF ) quantifies the participant’s force
field prediction (Joiner and Smith, 2008, Scheidt et al., 2000). FFCF was calculated by linear
regression according to the formula:

Factual(t) = a1 · Fideal(t) + a0 + e(t),

where the error e(t) was minimized (least-squares). The regression coefficient a0 was the axis
intercept, and a1 was the slope. The slope serves as FFCF . Factual was the force with which the
participant pressed the handle against the virtual wall. Fideal was the product of the force field
matrix and the trial’s velocity profile, resulting in the force profile with which the participant would
have produced a straight trajectory in the force field. IfFideal andFactual are identical, theFFCF is
1; if unrelated, the FFCF is 0. To consider only changes based on adaptation and generalization,
all PDmax and FFCF values were participant- and target-specific baseline-subtracted (Wagner
and Smith, 2008).

3.3.4.3 Extraction and fitting of muscle synergies

We set up three hypotheses to investigate how force field adaptation, retention, and spatial
generalization are represented in amodular structure, using the following “extract-and-fit” approach
(Figure 3.3). To test HSynergies 1, that the muscle patterns of force field adaptation can be
reconstructed by a combination of baseline reaching synergies, we extracted muscle synergies
from the baseline trials (section 3.3.4.3) and tested their ability to explain the muscle patterns
of the adapted state by fitting them on adapted state trials (see 3.3.4.3). To test HSynergies 2,
that specific muscle synergies are required, we extracted shared-and-specific muscle synergies
of the baseline and adapted state (see 3.3.4.3). A shared-and-specific muscle synergy extraction
approach stems from the observation that synergy combinations span specific subspaces in muscle
activation space, and that different sets of synergies may span the same subspace, as they can result
from a rotation within the subspace. Thus, the approach aims to best identify the intersecting (i.e.
shared) and the disjunct (i.e. specific) parts of the two subspaces spanned by two sets of muscle
synergies (d’Avella and Bizzi, 2005, Cheung et al., 2005).
Alternatives to the shared-and-specific extraction have the following limitations. First, extracting
from the pooled EMG would yield a muscle synergy representation underlying the two datasets,
assuming that dimensions are shared, though this assumption is what is to be tested. Second,

71



3 Topic A, Study A2: Muscle synergies in force field adaptation, retention, and generalization

separate extractions with a subsequent similarity analysis may be misleading as the similarity
value is not unambiguous but depends on the single sets muscle synergy extraction (Cheung
et al., 2009). Finally, to test HSynergies 3, that muscle synergies acquired through adaptation are
only locally applicable, reflecting the narrow spatial generalization force field adaptation findings,
we fitted the shared-and-specific muscle synergies to the first 20 retention/generalization trials
(see 3.3.4.3). Subsequently, we extracted shared-and-specific synergies from the baseline and
adapted state together and the first retention/generalization trials (see 3.3.4.3), with the aim of
identifying a muscle synergy representation of what facilitates retention and generalization.

Extraction of baseline muscle synergies

For every participant, a matrix EMG ∈ R12×101·5
≥0 was composed, with the EMG data of the 12

muscles in rows and the five averaged trials with 101 time points each in columns. Each averaged
trial consists of the averaged EMG data of the 23 baseline trials to the same target. We extracted
spatial muscle synergies with non-negative matrix factorization (NMF; Lee and Seung 1999, 2001,
Russo et al. 2024). NMF reduces the dimensionality of the EMG dataset by approximating it
with N trial-invariant spatial muscle synergiesWn ∈ R12×1

≥0 , vectors specifying relative muscle
activation levels, as well as N synergy activation profiles Cn ∈ R1×101

≥0 :

EMG(t) ≈
∑
n∈N

Wn ·Cn(t)

The decomposition was repeated 50 times with random initial conditions to avoid convergence
to local minima and was limited to 3,000 iterations (Bach et al., 2021, Carey et al., 2021). The
reconstruction quality was assessed using the multivariate R2 = 1 − SSE/SST . SSE was
calculated as the sum of the squared residuals and SST as the sum of the squared residuals from
the mean vector (d’Avella et al., 2006). The number of extracted synergies N was chosen at the
R2-knee point, after which theR2 curve remained approximately straight. TheR2 knee point was
calculated using a series of linear regressions fitted to the R2 versus N curve (Matlab polyfit),
beginning with a regression across the interval [1, 12]. We then iteratively excluded the smallest
value from the regression interval. We identified the optimal number of synergies N as the first
N with a regression line from N to 12 with a mean square error smaller than 10-4 (d’Avella et al.,
2006).

Quality of reconstruction of adapted state data with baseline muscle synergies

To investigate if baseline reaching muscle synergies can reconstruct the muscle patterns of force
field adaptation, they were tested for their ability to explain the muscle patterns (R2) in the adapted
state. In particular, NMF was applied to the averaged EMG data from the last four force field trials
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of the adaptation phase, keeping the baseline synergies (WN ∈ R12×1
≥0 ) fixed and updating only

the activation profiles (CN ∈ R1×101
≥0 ). Then, we compared the R2 values of the reconstruction

with a cross-validated R2
CV of the baseline extraction. Therefore, we repeated the following

process 100 times. Four randomly selected baseline trials to the same direction were averaged
and constituted the test part of the cross-validation. The remaining 19 trials were averaged and
horizontally concatenated with the remaining four average baseline trials, constituting the training
part of the cross-validation (see 3.3.4.3). Muscle synergies were extracted from the training part
and fitted to the test part. Cross-validation was used to prevent a misleading overestimation of the
synergies’ reconstruction ability on the baseline phase (Stone, 1974).

Extraction of shared-and-specific muscle synergies of baseline
and the adapted state

To investigate if specific muscle synergies are required for force field adaptation, we extracted
three sets of synergies from the combined baseline and adapted state data: one set shared between
baseline and adapted state data, a second set specific to the baseline data, and a third set specific to
the adapted state data (d’Avella and Bizzi, 2005, Cheung et al., 2005). We determined the number
of shared synergies as the dimension of the shared subspace spanned by the synergies extracted
separately from baseline and adapted state. To estimate such a dimension, we used a bootstrapping
procedure that differentiated noise and structural differences (Brambilla et al., 2023b, Sylos-Labini
et al., 2020). This procedure assumes that differences in the synergies extracted from different
subsets of trials in the same conditions are due to noise rather than structural differences.
The procedure consisted of four steps. First, muscle synergies were extracted from the baseline
and adapted state separately following the description in section 3.3.4.3. Thereby, the EMG data
matrix of the baseline state consisted of the 12 muscles in rows and the five averaged trials in
columns. Each trial was the average of the 20 NF baseline trials to the same direction. The
adapted state matrix consisted of 12 muscles in rows and one averaged trial over the last 20 FF.
The principal angles between the subspaces spanned by the two sets of muscle synergies were
calculated (θBaseline vs. adapted state; Golub and Van Loan 1989). Secondly, both baseline and adapted
state datasets were split into two disjunct, equal-sized sub-datasets. The two baseline sub-datasets
comprised five averaged trials, each from 10 randomly selected trials to the same direction. The
two adapted state sub-datasets constituted one averaged trial, calculated on 10 randomly selected
trials of the last 20 FF trials during adaptation. Muscle synergies were extracted from each
subset, and the principal angles between the subspaces spanned by the muscle synergies of the
same phase were calculated. The second step was repeated 500 times, each time with a random
drawing with replacement of trials included in the sub-sets. This resulted in two principal angle
distributions, one for the baseline and one for the adapted state. These distributions quantify the
noise inherent in the baseline and the adapted state data. Thirdly, the principal angles from each
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subset were used to obtain a new distribution of principal angles between baseline and adapted
state synergies due only to noise. To do so, two new subspaces representing the “noise subspaces”
for the baseline and adapted state were calculated starting from a common base and rotating
each subspace according to the respective principal angle distribution. Then, the principal angles
between the two newly constructed “noise subspaces” of the baseline and adapted state were
calculated. The third step was repeated 500 times, providing a distribution of the principal angles
from the “noise subspaces”. Fourthly, the latter distribution’s 95th percentile (θ95) was calculated
and compared to the principal angles between the original baseline and original adapted state
synergies (step one, θBaseline vs. adapted state). The number of shared synergies was defined as the
number of principal angles between the baseline and the adapted state, which were smaller than
the corresponding θ95. This is based on the assumption that structural differences between muscle
synergies are represented by much larger principal angles than those due to noise.
After these steps, which resulted in the number of muscle synergies shared between the baseline
and adapted state, shared-and-specific muscle synergies were simultaneously extracted with an
iterative process. The horizontal concatenation of the baseline and adapted state datasets, as
described in the first step, constituted the input matrix for the NMF algorithm. Starting with
the number of shared synergies, muscle synergies were extracted. The reconstruction qualities
R2

baseline and R2
adapted state were calculated and compared to the original R2 values obtained during

the first step of the shared extraction. If the original R2 values were not reached, a new NMF
decomposition was performed with the number of shared synergies plus one or two, depending on
theR2 comparisons. Additionally, the matrixC with the synergy activation profiles was provided.
C was initialized with random values in the cells for the shared synergies, baseline- and adapted
state-specific synergies to extract. The remaining cells were filled with zeros. Therefore, using the
properties of the NMF multiplicative update rule, activation profiles specific to one phase were
not considered for the other phase.

Fitting shared-and-specific muscle synergies of baseline and the adapted state to
the first trials of the long-term retention and generalization phase

To test HSynergies 3, that muscle synergies acquired through adaptation are only locally applicable,
reflecting the narrow spatial generalization force field adaptation findings, we fitted (1) the baseline
synergies and (2) the shared-and-specific muscle synergies extracted from baseline and the adapted
state (see 3.3.4.3) to the average of the first 20 FF trials of the long-term retention and generalization
phase and tested their ability to reconstruct the respective muscle pattern (R2). If the hypothesis
holds, then the reconstruction using the shared-and-specific synergies compared to using baseline
synergies would be best for the 0◦ group (retention), higher than zero for the 45◦ group (limited
generalization) and zero for the -90◦ group (no generalization).
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Extraction of shared-and-specific muscle synergies of the baseline
and the adapted state together and the start of the long-term retention
and generalization phase

With a similar approach to the four steps described in the section 3.3.4.3 we extracted shared-
and-specific synergies from the baseline and adapted state together and the first 20 FF retention/-
generalization trials. The aim was to identify a muscle synergy representation of what facilitates
retention and generalization. For the EMG data matrix of the baseline and adapted state, the
same baseline matrix as described in the section 3.3.4.3 was concatenated horizontally with one
averaged trial over the last 20 FF trials during adaptation. For the EMG data matrix of the
retention/generalization trials, the first 20 FF trials during this phase were averaged. We then
calculated the noise distributions in a similar way as described in section 3.3.4.3, with subsets of
10 averaged trials. We ensured that the muscle synergies extracted from the baseline and adapted
state kept their structure as extracted in the section 3.3.4.3, i.e., their number of shared and specific
synergies. Therefore, we initialized the C matrix with random numbers in cells according to
the shared and specific synergies and zeros otherwise. Hence, in these calculations, the synergy
vectors’ values and the activation functions’ values could vary, but the general structure of the
synergy extraction remained. The combined shared-and-specific extraction in the last step also
used a specific initialization of the C matrix. C was initialized with random values in the cells
for the shared and specific synergies between the baseline and adapted state together and the first
retention/generalization trials and zeros otherwise.
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Figure 3.3: Summary of muscle synergy analyses. We followed an iterative “extract-and-fit” approach. First, baseline
synergies were extracted and fitted to the adapted state. Next, shared-and-specific synergies of the baseline and
adapted state were extracted and fitted to the first generalization trials. Finally, shared-and-specific synergies
were extracted from the baseline and adapted state together and the first generalization trials. The ∡ sign
illustrates the calculated principal angle.
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Clustering of similar muscle synergies

To compare synergies extracted from different participants, we grouped them using clus-
ter analysis. Each synergy was normalized to the maximum of its elements. First, hierarchical
clustering (Matlab pdist (Minkowski distance; p = 3), linkage (Ward option), and cluster; Allen
et al. 2019) was used to determine the optimal number of clusters. The number was chosen
by assessing (1) the scree plot, which plots the within-cluster sum of squares of the linkage
distance against the number of clusters, and (2) the silhouette method (Matlab silhouette),
which quantifies the similarity of a given synergy to the other synergies in its cluster with respect
to synergies from other clusters. The silhouette value ssyn for the synergy syn is calculated as
follows:

ssyn =
bsyn − asyn

max(asyn, bsyn)

Here, asyn is the average distance (cosine similarity) from syn to the other synergies of the same
cluster, and bsyn is the minimum average distance (cosine similarity) from syn to the synergies in
a different cluster, minimized over the clusters. Silhouette values range from -1 to 1, with higher
values indicating a better similarity. The number of clusters was chosen at the knee point of the
scree plot and increased when a cluster contained low negative values (< -0.3).
Secondly, the synergies were clustered with k-means++ based on their cosine similarity. The
centroids are the synergies with the least distance (1 - cosine) to all synergies within one cluster
(Sylos-Labini et al., 2020).

3.3.4.4 Cosine tuning of the baseline synergy clusters

Synergy tuning curves were calculated for each baseline synergy cluster by a cosine fit using the
integral under the mean activation of each synergy cluster and the target position (-90◦, -45◦,
0◦, 45◦, 90◦; d’Avella et al. 2006). Therefore, the integrals were fitted with a linear regression
according to the following formula (Matlab regress):

act(θ) = β0 + βxcos(θ) + βysin(θ),

where act(θ) is the integral under the mean activation of each synergy cluster toward the target in
the direction of θ. Synergies can be used to decelerate a movement going in the direction opposite
to its “acting direction”. Therefore, synergy tuning curves were calculated for the first 25% of the
movement duration, ensuring tuning only to the “acting direction”. The quality of the fits was
assessed using R2, and significance of the cosine tuning was assumed when the p-value of the
regression between the data and the optimal cosine tuning was smaller than 0.05.
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3.3.5 Statistical analysis

3.3.5.1 Kinematic and kinetic dependent variables

Differences in the kinematic and kinetic dependent variables, PDmax and FFCF , were tested as
follows. Normality was assessed with Shapiro-Wilk tests and the homogeneity of variances with
Levene’s tests.
Whether the participants adapted and washed out (HTask 1) was tested separately with dependent
t-tests comparing the means of the first and last two FF trials and the first and last EC trials,
respectively.
The short-term retention and generalization (HTask 2) were assessed as follows: first, a one-way
repeated-measurements ANOVA with subsequent post-hoc t-tests identified differences between
the three groups (-90◦, 0◦, 45◦) on the PDmax -mean of the two FF trials. Second, the FFCF

values were tested for differences against zero (zero = no retention/generalization) with one-sample
t-tests separately for each direction. Third, FFCF differences between the groups were tested
with a one-way repeated-measurements ANOVA with subsequent post-hoc t-tests.
To determine if people (re-)adapt in the long-term retention and generalization phase, the three
groups were tested separately with dependent t-tests on (1) the first and last two FF trials (PDmax)
and (2) the first and last EC trials (FFCF ). Furthermore, the first FFCF values were tested
for differences against zero (zero = no retention/generalization) with one-sample t-tests to assess
retention and generalization.
To investigate HTask 2, that generalization decreases with distance from the practiced movement
direction, a linear mixedmodel (LMM)was used (Matlab fitlme). LMMallows the consideration
of repeated measures (level 1) of a single participant (level 2), instead of the required aggregation
of data as in t-tests or ANOVAs, which suits an adaptation experiment featuring inter-trial changes.
The group assignment was included as a dummy variable using reference coding (either DIR90 or
DIR45 set to 1, or both to 0 for the DIR0 group). The first LMM was calculated with DIR0 as the
reference group and the second LMM with DIR90 as the reference group, allowing investigation
of all pairwise comparisons. LMM further allows the inclusion of both FF and EC trials into
the model and also the interaction of trial type with trial duration; this improved the model fit
based on the change in the -2 log-likelihood and the Akaike’s information criterion (Matlab’s
linearmixedmodel.compare function; Ippersiel et al. 2021, Russell and Haworth 2014). The
residual plots were inspected to assess linearity and homoscedasticity as prerequisites for LMM,
and no gross violations were found (Hox et al., 2017).
The LMM regression formula was:

Adaptationtp = (γ0 + u0p) + γ1DIR90tp + γ2DIR45tp
+ γ3TrialTypetp + γ4TrialDurationtp
+ γ5TrialTypetp × TrialDurationtp + ϵtp
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Adaptationtp represents the PDmax or FFCF value of the tth trial for the pth participant. The
variable u0p is a participant-specific random component and the γs are fixed effect parameters for
the group assignment (dummy coding), trial type, trial duration, and the interaction of trial type
and duration. Accordingly, the following formula was used for the function specification of the
fitlme function: Adaptation ∼ DIR90 + DIR45 + TrialType ∗ TrialDuration + (1 | Participant).
The LMM was implemented using the maximum likelihood method. Twenty trials were included.

3.3.5.2 Muscle synergy analyses

A dependent t-test was used to determine differences in the reconstruction quality of the baseline
muscle synergies (R2

CV ) and their fit to the adapted state (HSynergies 1; section 3.3.4.3). The
Kruskal-Wallis and Wilcoxon tests were used to test for improvements in the reconstruction
quality between fitting the baseline synergies and fitting the shared-specific synergies on the
retention/generalization trials, as the distribution was not normal (HSynergies 3).

3.3.5.3 General procedure

For all statistics, the significance level (two-tailed) was set a priori at 0.05. It was adjusted for
multiple comparisons post-hoc with the Holm-Bonferroni correction (Holm, 1979), and to 0.025
for the LMM statistics as the test was carried out with two reference groups. The effect sizes
were determined with η2p and Cohen’s |d|; and classified as small (η2p ≥ 0.01, |d| ≥ 0.2), medium
(η2p ≥ 0.06, |d| ≥ 0.5), and large (η2p ≥ 0.14, |d| ≥ 0.8; Cohen 1988).

3.4 Results

We were interested in how muscle synergies reflect force field adaptation, retention, and general-
ization at a muscular level. Therefore, we first examined whether all participants adapted, washed
out, and showed retention/generalization (HTask 1 and HTask 2, Figure 3.4) based on the kinematic
and kinetic dependent variables (PDmax and FFCF ). Then, we examined the underlying muscle
synergies of adaptation, retention, and generalization (HSynergies 1-3).

3.4.1 Participants adapted to the force field
and washed out successfully

When first exposed to the force field, participants’ trajectories became typically curved and then,
with practice, became almost straight again ([PDmax: t(35) = 14.03, p < 0.001, d = 2.86; FFCF :
t(35) = -9.15, p < 0.001, d = -2.28], Figure 3.4). Therefore, we can state that participants adapted
to the force field. At the beginning of the washout, participants’ trajectories became curved again,
mirroring the initial trajectories of the adaptation phase, and then became almost straight again
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Figure 3.4: Kinematic and kinetic results. In columns: the different phases are arranged chronologically from left to right.
Top row: Mean trajectories. Solid lines in baseline and short-term retention and generalization are mean values
across all NF and FF trials and all participants. Dashed lines in practice, washout, and retention/generalization
show mean values across all participants’ first two trials in the respective phases. Solid lines, likewise, for the
last two trials. Middle and bottom rows: PDmax and FFCF mean and standard deviation values. The signs
∗, §, and ¶ indicate statistically significant differences over time for the 0◦, -90◦, and 45◦ targets, respectively.
The # indicates a statistically significant difference between performance for the -90◦ and 0◦ target, the
†between the -90◦ and the 45◦ and the ‡ between the 0◦ and 45◦ target. The ⋄ indicates a statistically
significant different value from zero.

[PDmax: t(35) = 22.60, p < 0.001, d = 5.15; FFCF : t(35) = -9.15, p < 0.001, d = -2.30]. Hence,
participants washed out. We therefore accept HTask 1, that the participants adapt to the force field
and de-adapt after its removal.

3.4.2 Participants generalized better to the 45◦ than to the -90◦

target at the short-term retention and generalization test

After the adaptation period, all participants were tested for retention and generalization to the
-90◦ and 45◦ targets. The ANOVA [F(2, 58.01) = 216.45, p < 0.001, η2p = 0.86] and post-hoc
t-tests on the PDmax values revealed no difference between the 0◦ and the 45◦ target [t(35) = -1.59,
p = 0.120, d = -0.28] but indicated that there were differences between 0◦ and -90◦ [t(35) = 8.79,
p < 0.001, d = 1.58] as well as between the -90◦ and 45◦ targets [t(35) = 8.22, p < 0.001, d = 1.56].
Hence, the generalization to the 45◦ was not worse than the 0◦ retention, and better than the
generalization to the -90◦ target.
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The FFCF values were significantly different from zero for the 0◦ [t(35) = 10.77, p < 0.001,
d = 1.76] and 45◦ target [t(35) = 12.91, p < 0.001, d = 2.11] but not the -90◦ target [t(35) = 1.84,
p = 0.075, d = 0.30], indicating retention (0◦ target) and generalization to the 45◦ target only. The
ANOVA [F(2, 50.32) = 53.37, p < 0.001, η2p = 0.60] and post-hoc t-tests on the FFCF values
showed the best performance for retention, and better performance (i.e., better generalization) for
the 45◦ than for the -90◦ target [-90◦ vs. 0◦: t(35) = -8.86, p < 0.001, d = -2.15; -90◦ vs. 45◦:
t(35) = -9.43, p < 0.001, d = -2.06; 0◦ vs. 45◦: t(35) = 4.01, p < 0.001, d = 0.91].
In summary, in the short term, participants showed retention, and also generalized better to the
45◦ than the -90◦ target.

3.4.3 Participants re-adapted to the practiced direction and
showed better generalization to the 45◦ than to the -90◦

target at the long-term retention and generalization test

After the successful washout and a 10-minute break, the participants were randomly assigned to
one of the three groups (-90◦, 0◦, 45◦) and tested if they adapted (again) and presented differences
across the directions.
All groups showed retention or generalization on the first trial as assessed with t-tests vs. 0 on the
FFCF values [-90◦: t(11) = 5.47, p < 0.001, d = 1.47; 0◦: t(11) = 13.61, p < 0.001, d = 3.66;
45◦: t(11) = 13.83, p < 0.001, d = 3.71].
All groups showed a lower PDmax value at the end of the long-term retention and generalization
phase than at the beginning [0◦ group: t(22) = 6.95, p < 0.001, d = 2.64; -90◦ group: t(22) = 4.73,
p < 0.001, d = 1.80; 45◦ group: t(22) = 7.91, p < 0.001, d = 3.00]. The 0◦ group did not show a
higher FFCF value at the end than at the beginning but the -90◦ and 45◦ groups did [0◦ group:
t(11) = -0.25, p = 0.807, d = -0.07; -90◦ group: t(11) = -4.66, p = 0.001, d = -1.63; 45◦ group:
t(11) = -4.56, p = 0.001, d = -1.41]. To sum up, all participants showed retention or generalization
at the beginning. Then, the -90◦ and 45◦ groups improved their performances further during the
generalization phase, while improvement of the 0◦ group was only apparent in PDmax.
We used LMM analysis to assess differences between the groups during the initial phase of
retention and generalization (20 trials · 36 participants = 720 observations, ICC = 0.09; Table 3.1),
which revealed statistically significant differences between the groups. The retention performance
was better than generalization (p < 0.001 and p = 0.021). Generalization was better for the 45◦

than the -90◦ target (p = 0.017).
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Table 3.1: Statistical results of the LMM on the first 20 FF trials of the long-term retention and generalization phases.
The asterisks indicate statistical significance after Bonferroni correction for multiple testing.

Reference group: 0◦

Fixed effects ß estimate (lower, upper 95% CI) t p
(Intercept) 0.03 (-0.01, 0.07) 1.54 0.249
DIR90 -0.06 (-0.08, -0.04) -5.19 <0.001*
DIR45 -0.03 (-0.05, -0.01) -2.56 0.021*
TrialType is EC 0.64 (0.53, 0.75) 11.33 <0.001*
TrialDuration 0.01 (-0.05, 0.07) 0.40 1.000
TrialType is EC × TrialDuration -0.07 (-0.30, 0.15) -0.62 1.000
Random effects
(Intercept) 0.01 (0.00, 1.78
Error 0.12 (0.12, 0.13)

Reference group: -90◦

Fixed effects
(Intercept) -0.03 (-0.07, 0.01) -1.43 0.305
DIR0 0.06 (0.04, 0.08) 5.19 <0.001*
DIR45 0.03 (0.01, 0.05) 2.63 0.017*
TrialType is EC 0.64 (0.53, 0.75) 11.32 <0.001*
TrialDuration 0.01 (-0.05, 0.07) 0.40 1.000
TrialType is EC × TrialDuration -0.07 (-0.30, 0.15) -0.62 1.000
Random effects
(Intercept) 0.01 (0.00, 1.78)
Error 0.12 (0.12, 0.13)

3.4.4 Two to five muscle synergies are
employed during baseline

We used muscle synergy analysis to assess the changes in muscle patterns underlying force field
adaptation. First, we extracted muscle synergies from the baseline phase. Over all participants,
3.6 ± 0.6 synergies led to a reconstruction quality (R2) of 0.82 ± 0.04 (Table 3.2). Figure 3.5
displays the R2 and EMG for every participant, as well as synergies and their reconstruction
for one exemplary participant. Across all participants, baseline muscle synergies comprised
simultaneous activations of multiple muscles, including mono-articular and bi-articular muscles.
Five of the eight baseline muscle synergy clusters were directionally tuned according to a cosine
tuning function (Figure 3.6).
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3.4 Results

Table 3.2: Individual results from the muscle synergy analysis. The last three rows present the results aggregated for the
three groups (-90◦, 0◦, 45◦).
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1 0◦ 4 0.88 0.75 ± 0.14 -0.90 2 3 2 -5.07 0.71 2 1
2 0◦ 3 0.75 0.72 ± 0.17 0.31 0 3 2 -0.10 0.84 2 1
3 45◦ 4 0.72 0.71 ± 0.16 -0.40 3 2 1 -0.20 -0.11 3 2
4 -90◦ 4 0.85 0.73 ± 0.15 0.33 2 3 3 -1.45 -1.31 3 2
5 45◦ 4 0.81 0.73 ± 0.16 -1.54 1 4 2 0.39 0.46 3 2
6 45◦ 3 0.81 0.74 ± 0.15 0.51 2 2 2 -0.47 -0.07 3 1
7 45◦ 3 0.84 0.74 ± 0.13 -1.24 1 3 2 -3.79 0.26 3 2
8 0◦ 3 0.79 0.70 ± 0.24 -0.60 1 2 2 0.01 0.78 3 1
9 0◦ 3 0.81 0.72 ± 0.15 -0.03 2 2 1 -0.73 -0.10 3 1
10 -90◦ 4 0.82 0.73 ± 0.16 -0.52 2 3 1 0.20 0.41 2 2
11 45◦ 2 0.83 0.75 ± 0.13 -0.92 1 2 2 -2.55 -1.76 2 3
12 0◦ 4 0.81 0.73 ± 0.17 0.43 2 3 1 -0.21 -0.49 2 2
13 45◦ 4 0.87 0.70 ± 0.20 -0.14 1 4 2 -1.95 -0.14 2 2
14 -90◦ 3 0.81 0.75 ± 0.14 0.20 2 2 2 -0.45 -0.06 3 2
15 -90◦ 3 0.79 0.74 ± 0.13 -2.45 0 3 2 -3.89 -1.08 3 2
16 0◦ 4 0.81 0.71 ± 0.21 -1.39 1 4 3 -1.85 0.39 2 1
17 -90◦ 3 0.84 0.72 ± 0.19 -0.37 1 3 2 -0.77 -0.27 2 1
18 45◦ 4 0.79 0.72 ± 0.26 0.09 2 3 1 -1.35 -0.73 3 1
19 -90◦ 4 0.84 0.69 ± 0.23 0.16 2 3 2 -0.24 0.02 3 1
20 -90◦ 4 0.84 0.73 ± 0.15 -0.09 1 4 3 -5.68 -2.02 3 2
21 0◦ 4 0.81 0.70 ± 0.23 0.52 3 2 2 -0.19 0.06 2 1
22 0◦ 3 0.82 0.69 ± 0.23 -1.03 0 3 2 -1.68 0.52 3 2
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23 -90◦ 5 0.92 0.73 ± 0.15 0.46 1 5 1 -0.29 -0.23 2 2
24 0◦ 4 0.82 0.72 ± 0.14 -0.15 2 3 2 -1.00 0.03 2 2
25 45◦ 3 0.76 0.75 ± 0.11 -0.40 1 3 2 -1.24 -0.40 2 3
26 -90◦ 3 0.82 0.74 ± 0.15 -1.93 1 3 2 -1.65 0.65 2 2
27 45◦ 4 0.77 0.73 ± 0.13 -0.30 1 4 3 -3.65 0.07 3 1
28 0◦ 3 0.79 0.73 ± 0.16 -1.25 1 3 2 -0.49 0.82 2 1
29 0◦ 3 0.87 0.73 ± 0.17 0.24 1 3 2 -0.47 0.55 2 2
30 45◦ 3 0.79 0.75 ± 0.11 0.35 2 2 1 -2.81 -0.34 3 2
31 45◦ 3 0.80 0.73 ± 0.16 0.14 2 2 1 -1.28 -0.75 0 4
32 0◦ 4 0.85 0.73 ± 0.22 -0.35 2 3 2 -5.10 -0.22 3 2
33 -90◦ 4 0.83 0.75 ± 0.13 -0.97 2 3 2 -0.59 0.52 2 2
34 -90◦ 4 0.84 0.72 ± 0.18 -0.33 2 3 2 0.19 0.66 3 2
35 -90◦ 4 0.85 0.72 ± 0.16 -0.38 2 3 2 -0.78 -0.45 3 2
36 45◦ 4 0.83 0.73 ± 0.18 -0.33 1 4 3 -1.49 -1.14 2 1

Mean
±
SD

0◦
3.5
±
0.5

0.82
±
0.04

0.72
±
0.04

-0.35
±
0.67

1.42
±
0.09

2.83
±
0.58

1.92
±
0.51

-1.41
±
1.82

0.32
±
0.45

2.33
±
0.49

1.42
±
0.51

Mean
±
SD

-90◦
3.8
±
0.6

0.84
±
0.03

0.73
±
0.03

-0.49
±
0.89

1.50
±
0.67

3.17
±
0.72

2.00
±
0.60

-1.28
±
1.74

-0.26
±
0.84

2.58
±
0.51

1.83
±
0.39

Mean
±
SD

45◦
3.4
±
0.7

0.80
±
0.04

0.72
±
0.04

-0.35
±
0.62

1.50
±
0.67

2.92
±
0.90

1.83
±
0.72

-1.70
±
1.31

-0.39
±
0.62

2.42
±
0.90

2.00
±
0.95

3.4.5 The muscle patterns after adaptation cannot be
reconstructed by baseline reaching synergies only, and
require additional adaptation-specific muscle synergies

We tested if the muscle patterns of force field adaptation can be reconstructed by a combination
of baseline reaching synergies (HSynergies 1). The reconstruction quality R2 was significantly
worse for the adapted state than the cross-validated R2

CV of the baseline [t(35) = 7.61, p < 0.001,
d = 1.76], withR2 values on average 0.98± 0.69 lower for every participant (Table 3.2). This low
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reconstruction quality, i.e., the mismatch between the reconstructed EMG and the original EMG,
is illustrated in the example of Figure 3.5D. Hence, muscle synergies of unperturbed reaching
cannot explain muscle patterns for reaching in a force field, and we reject HSynergies 1.
Subsequently, we tested if specific muscle synergies are required using the bootstrap approach
(HSynergies 2). The higher the number of shared synergies, the more subspace dimensions are
shared. Across all participants, we found 1.47 ± 0.74 shared synergies but 2.97 ± 0.74 baseline-
specific and 1.92 ± 0.60 adapted state-specific synergies. All synergies were clustered across all
participants into four shared, seven baseline-specific, and three adapted state-specific synergies
clusters (Figure 3.7, Figure 3.8).
Three of the four shared synergies are directionally tuned, two toward the left and one to the right.
Two synergies (clusters 1 and 4) show high activation in the middle and end of the adapted state
trial and may, therefore, represent a deceleration of the reach. One synergy tuned to the right
side is active at the beginning of the adapted state trial, probably to counteract the perturbation.
However, the shared synergies do not contribute much to representing adapted state reaching, as
an additional 1.92 ± 0.60 adapted state-specific synergies were necessary to describe the muscle
pattern in the adapted state.
The baseline-specific synergies and their activation function overall resemble those of the synergies
extracted solely from the baseline. The baseline clusters 1, 2, 3, 4, 5, 6, and 7 from the shared-
and-specific extraction resemble baseline clusters 3 and 4, 2, 1, 5, 8, 7, and 6 from the baseline
extraction only (Figure 3.6 and Figure 3.7). Accordingly, the synergies employed during the
baseline are specific to this phase and are not used in the adapted state.
The adapted state-specific synergy cluster 1 (Figure 3.8) shows high activations of muscles that
extend the elbow and the shoulder horizontally, i.e., rotate the arm outward while extending it. This
synergy is activated early in the movement, with its peak activity shortly after the start. Cluster 2
shows high activations of TriLat and TriMed, the two main contributors for elbow extension; it
is active over the whole trial, with the peak in the middle of the movement. Cluster 3 shows the
co-activation of many muscles that act in opposing directions (e.g., DeltA and DeltM, PectMaj and
LatDorsi), probably reflecting co-contraction, and especially high activations of Bic, DeltA and
DeltM, and PectMaj. These muscles can be seen as antagonists of the aforementioned muscles
during the reaching movement toward the 0◦ target. This synergy shows two peak activations, the
first before the beginning of the movement and the second before reaching the target. The three
synergies are activated in four phases. After an initial co-contraction (cluster 3), clusters 1 and 2
are activated, leading to forces toward the target (Forcey) and against the counter-clockwise force
field (Forcex). Interestingly, the two synergies’ activations overlap but have their peaks one after
the other; yet Forcex has a Gaussian shape without any jitter. Afterward, the arm is decelerated
by cluster 3, which is reflected in the negative values of Forcey.
Figure 3.9 shows the detailed reconstruction of the adapted state for the exemplary participant
with the shared-and-specific synergy extraction. One synergy is shared between the baseline and
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the adapted state (Figure 3.9B, W1), as obtained by evaluating the principal angle distributions
(Figure 3.9C). There are four baseline-specific synergies (W2-W5), resembling those of the
baseline-only extraction (Figure 3.5), except that the high PectMaj activity is now present in
the shared synergy W1. Most interestingly, the adapted state-specific synergies W6 and W7

show the subsequent but overlapping activation of two synergies which reflect arm extension and
outward rotation, probably leading to forces necessary for adapted reaching. This stays in contrast
with unperturbed reaching. While one synergy (W5) showed agonistic muscle activations for
unperturbed 0◦ reaching, two muscle synergies showed it in adapted state reaching (W6 and W7).
One specialty of this participant is the high activation of the Bic throughout the movement.
In summary, the adapted state EMG patterns are represented predominantly by adapted state-
specific muscle synergies with a four-phasic activation pattern.
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Figure 3.7: Results of the clustering of the shared-specific muscle synergy extraction of baseline and adapted state. A:
Clusters of the shared muscle synergies. B: Clusters of the adapted state-specific muscle synergies. The left
column shows the centroids (filled bars) and the individual synergies in gray solid lines. The middle column
shows the mean (black, solid lines) and the individual (gray, solid lines) activation functions. The dotted lines
show the average time points when the participants left the start point and reached the end point. The right
column shows the cosine tuning based on the baseline activation functions.
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Figure 3.8: Shared-and-specific synergy extraction and clustering of the adapted state-specific synergies. The left column
shows the centroid (filled bars) and the individual synergies in gray solid lines. The right column shows the
mean (black, solid lines) and the individual (gray, solid lines) activation functions. Below, the position of
the handle in the y-direction is shown as mean (solid black line) and standard deviation (gray shaded) across
all participants and the last 20 FF trials. Similarly, the participant’s mean forces in the x- and y-direction
are shown as mean (blue solid lines) and standard deviations (blue shaded line). The dotted lines show the
average time points when the participants left the start point and reached the end point. The dashed line shows
0N.
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Figure 3.9: Reconstruction of the baseline and adapted state EMG with the shared-and-specific muscle synergies. A:
EMG (solid black lines) and reconstruction (solid red lines) of shared-and-specific synergy extraction of
one exemplary participant. The reconstruction is calculated as the sum of the products of the synergies
with their respective activation functions. Here, the reconstruction of each product is plotted transparently
to illustrate their contributions to the overall reconstruction. The activation functions of the synergies are
plotted below. The enlargement shows the reconstruction of the 0◦ baseline and adapted state in greater detail;
arrows guide the reader to substantial differences in synergy activations. B: Muscle synergies. The shared
synergy is gray, the baseline-specific synergies in blue shades, and the adapted state-specific synergies in
green shades. C: Combined principal angle distributions obtained with the bootstrapping procedure for the
exemplary participant. The vertical black line signifies each distribution’s 95th percentile (θ95), and the red
line is the principal angle between the baseline and adapted state synergies.

3.4.6 Muscle synergies acquired during adaptation facilitate
long-term retention and generalization

Kinematics and kinetics indicated that the 0◦ group showed retention and that the 45◦ and 90◦

groups showed generalization, with slightly better values for the 45◦ group (see 3.4.3). Therefore,
we tested whether muscle synergies can reflect these findings using the shared-and-specific
synergies extracted from the baseline and adapted state to reconstruct the muscle patterns of the
long-term generalization phase (HSynergies 3).
We found that the shared-and-specific synergies explained the muscle patterns at the beginning of
the long-term retention and generalization phase better than the baseline synergies, as all groups
showed a significant improvement in the reconstruction quality R2 (-90◦: W = 78, p < 0.001,
d = 1.02; 0◦: W = 78, p < 0.001, d = 0.93; 45◦: W = 78, p < 0.001, d = 1.16; Table 3.2,
Figure 3.10A). This means that the muscle patterns during the first trials of the long-term retention
and generalization phase can be better explained by the synergies that capture the changes
occurring during adaptation (shared-and-specific synergies) than those that do not (baseline
synergies). However, there was no difference between the groups regarding the improvement
in reconstruction achieved with shared-and-specific synergies with respect to baseline synergies
[H(2, 35) = 1.76, p = 0.415, η2p = 0.05].
Next, we investigated the dimensionality and the structure of the muscle synergies that facilitate
retention and generalization. This was done by comparing the shared-and-specific synergies
extracted from the baseline and adapted state together and the synergies extracted from retention/-
generalization trials. We found 2.50 ± 0.50 shared dimensions between the subspaces spanned
by the baseline and adapted state synergies and retention/generalization synergies. Hence, more
synergies are shared in this case than between baseline and adapted state synergies (Figure 3.10B).
Accordingly, the higher number of shared dimensions indicates that the muscle synergies reflect
the findings of retention and generalization in the kinematic and kinetic variables. The acquired
structural changes in the synergies that occurred during adaptation may facilitate retention and
generalization. Figure 3.10C shows the clusters of the shared synergies between the baseline and
adapted state synergies and the retention/generalization synergies. The first three resemble the
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adapted state-specific synergies reported in the section 3.4.5 (clusters 1, 2, and 3 in Figure 3.10C
resemble clusters 2, 3, and 1 in Figure 3.8). Furthermore, for the retention, we observe the
described four-phasic pattern again. Also, the 45◦ group shows a similar four-phasic pattern,
with the same synergies activated one after another, as the 0◦ retention group. The -90◦ group
differs from the 0◦ and 45◦ groups. Cluster 1 is activated later in the movement and cluster 2
is activated earlier, probably accelerating the arm toward the target instead of decelerating, and
only two participants show synergies for cluster 3. Still, we observe that two muscle synergies are
activated in an overlapping matter with subsequent activity peaks when the handle moves between
the start and stop targets, just like the 0◦ and 45◦ groups.
However, the differences between the groups observed with PDmax and FFCF are not well
reflected in the modular structure, as we found no differences regarding the reconstruction quality
of the baseline and adapted state shared-and-specific synergies on the first retention/generalization
trials or the number of specific synergies between the -90◦ and the 45◦ groups. Hence, we reject
HSynergies 3.

Figure 3.10: Difference in reconstruction quality (R2) between fitting of shared-and-specific and baseline synergies on
first retention/generalization trials (next page). Bars represent the mean and dots individual values. The
values are presented according to their group. A value larger than zero indicates that shared-specific synergies
better reconstructed the EMG of the first retention/generalization trials than baseline synergies. The ⋄ sign
indicates a significant difference from zero B: Comparison of how many synergies are shared between (1)
the baseline and the adapted state and (2) the shared-and-specific synergies of the baseline and adapted
state together and the first retention/generalization trial. The box chart shows the median and the lower and
upper quartiles, and lines show individual values. C: Clustering results of the shared synergies from the
shared-and-specific synergy extraction of baseline and adapted state together and the retention/generalization
trials. The left column shows the centroid (filled bars) and the individual synergies in gray solid lines. The
right columns show the mean (solid lines) and the individual (gray, solid lines) activation functions, separated
for the three groups. The dotted lines show the average time points when the participants left the start point
and reached the target point.
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3.5 Discussion

This study investigated the relationship between muscle synergies and force field adaptation,
retention, and generalization. Our findings show that adaptation involves structural changes in
muscle synergies compared to reaching in unperturbed conditions, alongside a novel four-phasic
synergy activation pattern. Moreover, these structural changes and activation patterns likely
facilitate retention and generalization, as the same synergies and their activation patterns are also
reflected there.

3.5.1 Participants adapted to the force field, showed
retention to the 0◦ target, and generalization to the
45◦ and -90◦ targets

Participants adapted to the force field during their first exposure, washed out after its removal,
and re-adapted and generalized when re-exposed (HTask 1). Also, we found that generalization
decreased with distance from the practiced movement direction (HTask 2). These results align with
related force field studies (Brashers-Krug et al., 1996, Gandolfo et al., 1996, Mathew et al., 2021,
Rezazadeh and Berniker, 2019, Shadmehr and Mussa-Ivaldi, 1994). The fast re-adaptation for
the 0◦, i.e., the same direction as during the first exposure, has been previously described as the
“savings” effect (Brashers-Krug et al., 1996, Mathew et al., 2021, Shadmehr and Brashers-Krug,
1997). However, based on the aforementioned studies, we expected no generalization to the -90◦

target at the beginning of the long-term retention and generalization phase. This disagreement
may stem from participants already being exposed to the -90◦ FF condition during the short-term
retention and generalization test, as adaptation starts from the very first trial (Joiner et al., 2017).
The adaptation, washout, savings, and generalization we identified allowed us to examine the
underlying modular structure of the muscle patterns.

3.5.2 Reaching in an environment with altered dynamics
requires structural changes to the muscle synergies
for unperturbed reaching

We first extracted muscle synergies from the planar, center-out reaching movements in the null
field during the baseline. The number, composition, and tuning of the extracted baseline synergies
are in accordance with the literature (d’Avella et al., 2006, Muceli et al., 2010).
Since a possible mechanism for reaching in a force field could be to combine the synergies
employed in the baseline, we hypothesized that the muscle patterns of force field adaptation can
be reconstructed by a combination of baseline reaching synergies (HSynergies 1). However, our
results indicate this is not the case, and force field adaptation requires structural changes in muscle
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synergies (HSynergies 2). We found adapted state-specific synergies activated in a four-phasic
pattern. First, a synergy reflecting co-contraction is active. Then, there is an early onset of a
synergy reflecting arm extension and outward rotation, which is active until halfway through the
trial until a second synergy overtakes, mainly reflecting triceps activity and, thus, elbow extension.
At the trial end, the movement is decelerated and stabilized through a synergy of antagonistic
muscles.
Reaching movements have been found to follow a triphasic pattern of muscle activation, leading
to acceleration, deceleration, and damping of the movement (Flanders et al., 1994, Happee, 1992,
Wadman et al., 1979). This pattern is generally also reflected in the activation of muscle synergies,
showing an interplay between agonistic and antagonistic muscle synergies (d’Avella et al., 2006,
Chiovetto et al., 2013). These observations regarding EMG and muscle synergies hold for baseline
reaching in our study. Also, when adapted, participants employed a triphasic pattern of muscle
activity as previously described (Darainy and Ostry, 2008, Thoroughman and Shadmehr, 1999).
However, the novelty of our findings is that the muscle activity used to move the hand to the target
is realized through two synergies with overlapping activations, peaking sequentially. Interestingly,
the transition between the two synergies is seamless, as the force curves are bell-shaped and
smooth. We provide a novel characterization of changes in the synergistic organization of many
muscles after adaptation to a perturbing force field. Nevertheless, our findings align with literature
examining activities in a few muscles, when looking at the muscle activity in our study without
looking at the muscle synergies. We also observed early activity in these muscles, probably
reflecting co-contraction (Darainy and Ostry, 2008, Milner and Franklin, 2005), and the muscles
for reaching forward and counteracting the force field are already active early in the movement
(Albert and Shadmehr, 2016, Thoroughman and Shadmehr, 1999).
Huang et al. (2012) showed that muscle activity is reduced to minimal levels even after a plateau
in kinematic- and kinetic-dependent variables. Accordingly, the CNS might optimize effort while
adapting, which leads to specific muscle synergies. The synergy that reflects arm extension with
high triceps activation is sparse, and may reflect this tendency to realize movements with less
effort. However, there is a lack of clarity over the process of how the structural changes happen,
i.e., if adaptation expands the subspaces spanned by baseline synergies by learning new synergies
or if adapted state-specific subspaces are the results of other control processes not requiring new
synergies. This unmet need motivates future studies.
Force field adaptation with a muscle synergy perspective has received little research attention.
Oscari et al. (2016) found that moving a joystick in a force field involves two additional muscle
synergies during adaptation. This supports the notion of structural changes during force field
adaptation, even though their results may be limited. Sampling a single direction may limit
the validity of extracted synergies (Steele et al., 2015), characterizing only acceleration and
deacceleration patterns (Chiovetto et al., 2013) and neglecting the versatile use of baseline
reaching synergies to different directions. In contrast to our findings, a structural change in
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muscle synergies has not previously been reported during visuomotor rotations (De Marchis
et al., 2018, Gentner et al., 2013, Severini and Zych, 2020). Here, muscle synergies extracted
from the baseline could reconstruct the muscle patterns during adaptation and generalization,
indicating structural robustness. Although force field and visuomotor adaptation are related
motor adaptation paradigms, there are some differences, especially when the latter is done under
isometric conditions. In contrast to isometric reaching, in dynamic reaching the joint angles and
muscle length change throughout the movement; and the force exerted by the participant on the
handle depends on the joint angle, muscle length, and their derivatives (Bizzi et al., 1991, Giszter
et al., 1993, Mussa-Ivaldi et al., 1994, Shadmehr and Wise, 2005). It is, therefore, plausible
that force field adaptation requires muscle synergies to be appropriate and effort-optimized at all
joint angle configurations used during the reach, and that a re-aiming strategy by tuning baseline
synergies does not suffice.

3.5.3 Retention and generalization are represented in the
modular structure after adaptation

We found that retention and generalization muscle patterns can be better explained with synergies
extracted from both baseline and adaptation than from baseline synergies alone. Therefore, the
structural changes acquired during adaptation are re-used during retention and generalization.
The retention (0◦ target) muscle pattern is well described by the shared synergies. Hence, our
results show that muscle synergies and their activation timing are re-used when re-exposed to the
same force field, presumably allowing a fast re-adaptation. This suggests that the shared muscle
synergies represent a mechanism capturing the savings effect at a modular level (Brashers-Krug
et al., 1996, Mathew et al., 2021, Shadmehr and Brashers-Krug, 1997).
However, contrary to our hypothesis HSynergies 3, the different amount of generalization between the
-90◦ and 45◦ directions is not evident in the reconstruction quality, the number of shared synergies,
or the number of direction-specific synergies. Accordingly, the structural changes in muscle
synergies through adaptation reflect retention and generalization but not the differences between
the 0◦, -90◦, and 45◦ groups. The observed structural changes through adaptation probably
represent a general, i.e., direction-invariant, coordinative solution to the force field perturbation.
This supports the notion that muscle synergies represent low-dimensional, modular control and
are re-used in reaching to multiple directions (d’Avella et al., 2006), yet motivates future studies
to further investigate the relationship between muscle coordination and task-level generalization
performances. For example, future studies may investigate the trial-by-trial changes separately for
the -90◦ and 45◦ directions to investigate possible mechanisms related to different generalization
speeds.
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3.5.4 Limitations

Baseline reaching directions comprised a semi-circle, and only center-out movements were
analyzed. This restricts the possible subspaces and, thus, potentially shared subspace dimensions
with the adapted state. Also, all participants adapted to the 0◦ target first, so future studies may
generalize our findings with different directions. Due to the limited number of movements, we
cannot conclusively state whether the CNS acquired new synergies during adaptation, or if these
synergies are stored in the CNS but were not recruited in the baseline. Furthermore, future studies
may investigate how the structural changes in muscle synergies evolve with practice.

3.5.5 Conclusions

This study found that reaching in an environment with altered dynamics requires structural changes
and novel activation patterns in muscle synergies. These structural changes facilitate retention
when re-adapting to the same direction, and generalization when adapting to new directions.
Thus, our results provide new insights into how force field adaptation, retention, and spatial
generalization are represented at the level of muscular coordination.
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4 Topic B, Study B1: Movement strategies in rollator-supported sit-to-stand and stand-to-sit tasks

4.1 Abstract

The transitions between sitting and standing have a high physical and coordination demand,
frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often
prescribed to reduce lower-limb load and to improve balance but have been found a fall risk. This
study investigated how rollator support affects sit-to-stand and stand-to-sit movements. Twenty
young participants stood up and sat down under three handle support conditions (unassisted, light
touch, and full support). As increasing task demands may affect coordination, a challenging floor
condition (balance pads) was included. Full-body kinematics and ground reaction forces were
recorded, reduced in dimensionality by principal component analyses, and clustered by k-means
into movement strategies. Rollator support caused the participants to switch strategies, especially
when their balance was challenged, but did not lead to support-specific strategies, i.e., clusters
that only comprise light touch or full support trials. Three strategies for sit-to-stand were found:
forward leaning, hybrid, and vertical rise; two in the challenging condition (exaggerated forward
and forward leaning). For stand-to-sit, three strategies were found: backward lowering, hybrid,
and vertical lowering; two in the challenging condition (exaggerated forward and forward leaning).
Hence, young individuals adjust their strategy selection to different conditions. Future studies may
apply this methodology to older individuals to recommend safe strategies and ultimately reduce
falls.

4.2 Introduction

Falls are the leading cause of unintentional injuries in older individuals, often causing hospitaliza-
tion and death (Gelbard et al., 2014, Kenny et al., 2017, Stevens, 2005). Approximately 30% of
individuals over 65 years old fall at least once a year (O’Loughlin et al., 1993, Tinetti et al., 1988).
Risk factors include lower-body weakness and impaired balance (Ambrose et al., 2013, Rubenstein,
2006, Stevens, 2005). Rollators, or four-wheeled walkers, are often prescribed for patients needing
gait assistance (Bateni and Maki, 2005) to reduce lower-limb loading, compensate for weakness
and injury, and improve balance (Bateni and Maki, 2005, Bradley and Hernandez, 2011, Ko et al.,
2014). They aim to empower the residual motor capacities and facilitate natural locomotion
(Cifuentes and Frizera, 2016). Rollator users can shift the load from the lower body to the upper
body (Youdas et al., 2005) and increase their base of support (BoS) by using the handles as
additional contact points (Bateni and Maki, 2005). However, rollators paradoxically have also
been found to be a risk factor for falls (Ambrose et al., 2013, Bateni and Maki, 2005). It is not yet
clear what underlies the increased fall risk and how rollator usage affects movement coordination
during different tasks (Mundt et al., 2019), as evaluations of rollator usage have been mostly
limited to spatiotemporal parameters during walking (Mundt et al., 2019). Furthermore, a recent
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review points to a lack of data on gait aid prescription relative to fall risk or balance performance
in older individuals (Lee et al., 2022).
To start walking, we often need to stand up from a sitting position and sit down afterward. Hence,
standing up and sitting down are fundamental tasks in daily life essential for mobility. Indeed,
non-disabled adults stand up 60 to 100 times a day (Dall and Kerr, 2010, McLeod et al., 1975).
Devices like sit-to-stand lifts, rails, and exoskeletons are available to provide specific assistance
with standing up (Afsar et al., 2023). But these devices have disadvantages, such as being expensive
and needing installation, space, batteries, and power outlets (Afsar et al., 2023). Thus, in many
situations, individuals may want or need to use a rollator to stand up and sit down. However,
the transitions between standing and sitting are complex. Difficulties standing up correlate with
the risk of falling (Yamada and Demura, 2009) and increase the need for assistance (Perry et al.,
2006), leading to reduced independence and earlier institutionalization (Branch andMeyers, 1987).
Studies in residential aged care facilities report that 21%-41% of falls happen during transfers
(Rapp et al., 2012, Robinovitch et al., 2013, van Schooten et al., 2018). Lehtola et al. (2006)
reported the second-highest fall risk for sit-to-stand and stand-to-sit transfers in home-dwelling
adults over 85 years.
Transitioning between sitting and standing becomes more demanding with increasing age, mostly
due to changes in muscle composition and a decline in motor control (Jeon et al., 2021, Seidler
et al., 2010). Knee and hip extension muscles provide less force to stand up (Hughes et al., 1996),
and knee extensor activity correlates with stability in sitting down (Jeon et al., 2021). Transitions
between sitting and standing require the simultaneous, coordinated motion of the lower extremities
and the upper body (Jeon et al., 2019, Schenkman et al., 1990). Standing up means shifting
the CoM from above the buttocks to above the feet by hip flexion and anterior movement of the
head-arms-trunk segment, followed by rising through the extension of the hips, knees, and ankles
(Bohannon, 2012, Roebroeck et al., 1994, Schenkman et al., 1990, Vander Linden et al., 1994).
This poses a challenge to balancing as the body transfers from a stable seated position with three
contact points (feet and buttocks) through an unstable, dynamic movement with the CoM outside
the base of support (BoS) to standing, where the base of support is smaller, the CoM is higher,
and only two contact points are used (Dall and Kerr, 2010, Hughes et al., 1994, Pai et al., 1994).
Sitting down requires a balanced and smooth transition of the CoM from above the feet onto the
chair seat. However, sitting down cannot be assumed to be simply the opposite of standing up
(Dubost et al., 2005). Sitting down is performed with – rather than against – gravity, and the
transition phase begins with a trunk flexion while standing, which is a less stable position than
sitting (Dubost et al., 2005). Thus, three questions arise on how these complex movements are
executed and if rollator use can improve the transition between sitting and standing.
First, for standing up, individuals have been observed to use different strategies: (1) leaning or
sliding forward, (2) upper body flexion, (3) moving the feet backward, and (4) pushing through the
arms on armrests (Dolecka et al., 2015, Frykberg and Häger, 2015, Hughes et al., 1994, Komaris
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et al., 2018). When the feet remain parallel and unchanged throughout standing up, two main
strategies were observed: (1) the forward leaning, or momentum transfer strategy, and (2) the
(dominant) vertical rise strategy, which has also been called the force control strategy (Anan et al.,
2012, Frykberg and Häger, 2015, Hughes et al., 1994, van der Kruk et al., 2021b). With the
forward leaning strategy, individuals use the upper body to generate forward momentum, which
is smoothly transferred to mostly vertical momentum after seat-off by extending the knees and
hips (Anan et al., 2012, Riley et al., 1991). Thereby, as the thorax, abdomen, and pelvis rotate
in the same direction during the forward lean, energy is transferred from the thorax to the thigh
(mechanical energy flow; Aleshinsky 1986, Anan et al. 2012). As a result, knee torque is reduced
Scarborough et al. (2007) compared to a rise solely by lower-body muscles (vertical rise strategy).
In the latter, the trunk stays relatively vertical throughout the movement (Coghlin and McFadyen,
1994, Hughes et al., 1994), and the CoM shows only anterior and upward movement (Anan et al.,
2012) but no downward movement before it rises. The forward leaning strategy has generally been
said to be the most efficient strategy for healthy individuals, as demonstrated in various studies
(Scarborough et al., 2007). It is especially efficient, such that it reduces the knee torque compared
to rising without the help of upper body momentum (Anan et al., 2012, Scarborough et al., 2007).
Enough muscle strength in the knee extensors is one of the most dominant factors for a successful
transfer (Alexander et al., 1997). A rollator may help individuals use the advantageous forward
leaning strategy, with less force required, and still perform the movement safely.
Secondly, as described earlier, sitting down is also a complex movement and cannot be assumed to
be simply the opposite of standing up (Dubost et al., 2005). It is, therefore, even more surprising
that sitting down has been little described in the biomechanical literature (Dubost et al., 2005,
Frykberg and Häger, 2015), let alone when using a rollator. Possibly, there are different strategies
for sitting down, which may also be influenced by rollator use.
Thirdly, observational studies have often described arm use in transitioning between sitting
and standing (Bohannon and Corrigan, 2003). However, arm movement is rarely described in
biomechanical analyses since these are mostly restricted for standardization purposes (Frykberg
and Häger, 2015, van der Kruk et al., 2021b). Yet, arm swing or push might play a vital role in
easing the generation of horizontal and vertical momentum (Carr and Gentile, 1994). Indeed,
Wretenberg et al. (1993) found a 44% and 34% reduction in hip and knee load, respectively,
when their participants could push on armrests. Aging muscles often weaken (Candow and
Chilibeck, 2005, Lynch et al., 1999), meaning that 50% of healthy older individuals cannot stand
up without using their arms if the seat is at knee height (Mazzà et al., 2004). This makes armrests
a necessity. Hence, arms play a major role in generating propulsive forces during standing up,
which can compensate for deficits in lower body strength (Bahrami et al., 2000, Munro and Steele,
1998, Wretenberg et al., 1993). Also, the additional contact point of the hands helps maintain
balance (Bahrami et al., 2000, Schultz et al., 1992) through somatosensory input by a tactile
or proprioceptive haptic cue (Bateni and Maki, 2005, Jeka, 1997, Jeka and Lackner, 1994). In
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walking and standing, it has been shown that touching a plate or railing with the fingertip improves
balance rather than offering mechanical support when allowing strong interaction forces (Kouzaki
and Masani, 2008, Oates et al., 2017). In support, van der Kruk et al. (2022) recently observed
that the preference of arm use is likely related to the perception of stability and the fear of falling.
Thus, rollator handles could greatly simplify standing up and sitting down via mechanical and/or
proprioceptive support. However, the few studies that include arms in a biomechanical analysis
used armrests rather than rollator handles. Armrests are low and directly lateral to the trunk when
sitting, in contrast to anterior-lateral and high as with a rollator (Arborelius et al., 1992, Schultz
et al., 1992, Wretenberg et al., 1993). Our previous study (Krafft et al., 2022) found that movement
stability (i.e., CoPfeet-length, duration) was enhanced by full rollator support in standing up and
sitting down. However, the strategies individuals use when arm support is given are not yet known.
Potentially, there exist strategies which make transitions manageable and safe.
This study’s purpose was to investigate how rollator support affects strategies for sit-to-stand
and stand-to-sit movements. We aimed to identify the strategies used when the rollator usage
level changes from no assistance to light touching (supposed proprioceptive cue) and full support
(supposed load reduction). Due to the lack of biomechanical studies onmovement strategies during
standing up and sitting down and the heterogeneity in the physical status of older individuals,
this first study investigated non-disabled young adults. As older individuals often struggle with
balance, we added a balancing aspect to make the transitions challenging. To mimic age-related
balance problems, icy water or convex lenses have been used (Yoshida et al., 2019), and for aging
suits, a foam material is glued to the bottom of shoes to create imbalance (Lavallière et al., 2017).
There is agreement that proprioception signals from leg muscles provide an essential source of
information for postural control (Henry and Baudry, 2019, Wiesmeier et al., 2015). Hence, we
aimed to trigger the proprioceptive component, focusing more generally on postural instability,
which can result in falls and injuries (Henry and Baudry, 2019). Therefore, we used balance pads
in addition to the normal floor condition.
We hypothesized that (1) individuals switch their strategy depending on the level of rollator
assistance, (2) we would find specific strategies for (2a) the different degrees of rollator assistance,
and (2b) floor condition.

4.3 Materials and methods

We used the same raw and pre-processed data described in our previously-published article (Krafft
et al., 2022). All steps after pre-processing (section 4.3.4) are novel in this article.
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4.3.1 Participants

Ten females and ten males (25.5 ± 3.8 years, 1.71 ± 0.08 m height, 67.6 ± 10.9 kg mass)
participated in the study and gave written informed consent before participation. The number of
participants was selected based on comparable, recent biomechanical studies (Jeon et al., 2021,
Norman-Gerum and McPhee, 2020, Wang et al., 2021). Informed consent was obtained by the
participant shown in Figure 4.1 to publish the image. The study was approved by the Ethics
Committee of the Medical Department of Heidelberg University (S-105/2021) and has been
performed in accordance with relevant guidelines/regulations and the Declaration of Helsinki.

4.3.2 Experimental protocol

The participants stood up and sat down at their preferred speed, separated by at least two seconds
of rest as instructed with the commands “stand up, stand still, sit down.” They used a custom-made
robot rollator simulator under three different support conditions (Figure 4.1). The participants
were instructed not to use the rollator in the (1) unassisted condition and to let their arms hang
loosely at their sides as long as they sat. In the (2) light touch condition, they were instructed to
place their hands with a palm grip onto the handles to induce a proprioceptive cue, and in the (3)
full support condition, they were instructed to use a power grip on the handles. Handle height
was individually set at the participant’s wrist height in a standing position as recommended by
health care literature (Boelen, 2009, Lockette, 2011, Wilkins, 2008). Seat height was individually
adjusted to the height of the lateral epicondyle of the femur. To induce a higher demand on balance
capabilities, an additional “challenging condition” was set up by placing a circular rubber-made

Figure 4.1: Experimental setup. Left: Participant stands up from an instrumented chair with the custom-made robot
rollator simulator. Full-body passive markers for motion tracking and EMG electrodes (data not included in
this article) were placed on the body. Two movements were studied: sit-to-stand and stand-to-sit. Middle
column: Three different support conditions were used: unassisted (top, handles not used), light touch (middle,
palm on the handles), and full support (bottom, power grip). Right column: Two floor conditions were used:
non-challenging (lab floor, top) and challenging (balance pads, bottom).
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balance pad with a compliant surface (Dynair® Ballkissen®, diameter 33 cm, height 8 cm, TOGU
GmbH, 83209 Prien-Bachham, Germany) underneath each foot. Participants performed two
trials in each condition to familiarize themselves with the setup. Everyone performed three valid,
non-consecutive trials in a random order for every support (unassisted, light touch, full support)
and floor condition (non-challenging and challenging).

4.3.3 Data collection

Full-body 3D kinematics were recorded (150 Hz, 10 type 5+ cameras, Qualisys, Gothenburg,
Sweden) using retroreflective markers placed according to the IOR full-body gait model (Cappozzo
et al., 1995, Leardini et al., 2011). Ground reaction forces (GRF) (1000 Hz; Bertec Corp.,
Columbus, OH, USA) and forces on the seating surface (142 Hz; Phidgets Inc., Calgary, AB,
Canada) were measured.

4.3.4 Data processing

Raw kinematic data were processed offline with Qualisys Track Manager (v2018.1, Qualisys
Medical Ltd., Sweden) to reconstruct the 3D coordinates of the markers. Subsequently, force
and kinematic data were filtered with a 4th-order, 10 Hz, Butterworth low-pass filter. Full-body
kinematics and the CoM were then calculated with Visual3D (v6, C-Motion Inc., Germantown,
MD, USA). Further data analyses were done in Matlab (R2020a, Natick, MA, USA). Movement
start, seat-off, and movement end were segmented using a k-means++ algorithm (Sloot et al.,
2020). The trials were time-normalized to 1001 time points (100%).

4.3.5 Data analysis

The following variables were selected for further analyses as they have been described as determi-
nants for the strategies: 3D ground reaction force, normalized to body weight (Borzelli et al., 1999,
Gilleard et al., 2008), the 3D CoM, normalized to body height (Hesse et al., 1994, Hughes et al.,
1994, Pai et al., 1994, Roebroeck et al., 1994), sagittal angles of the ankle, knee, and hip (Coghlin
and McFadyen, 1994, van der Kruk et al., 2021b, Yamasaki and Shimoda, 2016), the sagittal angle
between a virtual line connecting the heel and the CoM and the floor perpendicular (“CoM-heel
angle”) (Anan et al., 2012, Hanawa et al., 2017), and the sagittal angles of thigh, shank, and pelvis
relative to the floor perpendicular (Komaris et al., 2018). We focused on the right body side as
their values were similar to those of the left side. Kinematic time series of arm movements were
not included in the analysis to identify movement strategies. They would have provoked a strict
separation between unassisted and light touch/full support trials and thus obscured the similarities
of the trials across all support conditions regarding whole-body strategies.
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4.3.5.1 Identification of movement strategies

Principal component analysis (PCA)was used to reduce the dimensionality of the data by extracting
relevant features. These featureswere then used to identifymovement strategies through k-means++
clustering (Figure 4.2, Deluzio and Astephen 2007, van Drongelen et al. 2021, Robertson et al.
2013). This was done separately for the two movements (sit-to-stand and stand-to-sit) and floor
conditions (non-challenging and challenging).
First, the data of each variable was arranged into a matrix R180×1001, in which every column
represented one timepoint (of 1001 timepoints) and every row one trial (20 participants × three
support conditions × three repetitions = 180; Deluzio and Astephen 2007, van Drongelen et al.
2021). After subtracting the mean of the matrix (Leporace et al., 2012, Nüesch et al., 2012), PCA
transformed the data into a low-dimensional coordinate system spanned by principal components
(Halilaj et al., 2018, Jolliffe, 1986, 2002). We selected the number of principal components
so that 90% of the variance was explained (see Table 4.1 for an overview of the number of
principal components; Jolliffe 1986, 2002). Following previous studies (van Drongelen et al.,
2021, Halilaj et al., 2018, Rein et al., 2010), a single coordinate system was spanned from the
PCs of each variable. The scores, i.e., the original data represented in the new coordinate system,
were scaled to the interval [0, 1] so that each extracted PC had equal importance in the subsequent
clustering (Mohamad and Usman, 2013). First, hierarchical clustering (ward distance) was used
to determine the appropriate number of clusters based on the scree and silhouette coefficient
plots. Then, k-means++ (Matlab kmeans with the ’plus’ option) clustering grouped all 180 trials
into the determined number of clusters. Each cluster represented one movement strategy. If the
strategy of a single trial differed from all identified strategies, it was still assigned to one of the
strategies because k-means does not terminate until every trial is assigned to a cluster. These
outlier strategies were identified after clustering with the generalized extreme Studentized deviate
test for outliers based on their distance to the centroid (Iglewicz and Hoaglin, 1993, Rosner, 1983,
Vera et al., 2013). Clustering was repeated ten times to confirm the robustness of the cluster
assignments (van Drongelen et al., 2021).
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Figure 4.2: Process for identifying strategies, performed separately for each of the four combinations of sit-to-stand,
stand-to-sit, and non-challenging, challenging floor conditions. For each variable, a matrix (e.g., GRFa/p)
served as input for the variable-specific PCA (PCAGRFa/p ). The input for the clustering consists of a coordinate
system with axes formed by the extracted principal components of all variables, as well as the scores obtained
from the PCAs. The extracted clusters constitute the strategies. Pi ith participant, UAi ith unassisted trial, FSi
ith full support trial.

Table 4.1: Number of principal components necessary to explain 90% of the variance within the time series of every
selected variable.

Sit-to-stand Stand-to-sit

Non-challenging Challenging Non-challenging Challenging

GRF medio-lateral 3 5 5 8
GRF anterior-posterior 4 6 6 8
GRF vertical 3 4 4 5
CoM medio-lateral 2 2 2 2
CoM anterior-posterior 2 2 2 2
CoM vertical 2 2 2 3
Ankle angle 3 3 3 3
Hip angle sagittal 2 2 2 3
Knee angle sagittal 2 2 2 3
Pelvis-lab angle sagittal 2 2 3 3
Shank-lab angle sagittal 2 2 2 3
Thigh-lab angle sagittal 2 3 2 3
CoM-heel angle sagittal 2 2 2 2
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4.3.5.2 Dependent variables

This study aimed to identify if participants switched strategy with support condition. A participant
was identified as switching strategies if at least two of the three repetitions of one support condition
had a different strategy than in another support condition.
Further, total trial duration and the duration between start and seat-on or -off in seconds were
assessed because prolonged times have been associated with increased fall risk and less movement
stability (Cheng et al., 2014, Goulart and Valls-Solé, 1999, Krafft et al., 2022, Prudente et al.,
2013). As arm movement in the unassisted condition was not restricted to allow for a “natural”
movement, it was operationalized as a dichotomous variable: Arms were identified as “involved”
when the most anterior elbow position was anterior to the shoulder.

4.3.6 Statistics

Independent tests were used to assess differences between the identified strategies in the time
series and dependent variables because trials, not participants, were clustered into strategies
(see 4.4.1). First, analyses of the results found that the distributions of the individuals’ trials
are different across the participants (see section 4.4.1). Hence, dependent tests cannot be used.
Therefore, independent tests were used that do not eliminate individuals as a source of variability,
which results in less statistical power and thus are more conservative regarding significance
than dependent tests. Normality was assessed with Shapiro-Wilk tests, and the homogeneity of
variances was confirmed with Levene’s tests. Differences between the time series of the respective
strategies were assessed with the spm1d toolbox (statistical parametric mapping, SPM; Friston
et al. 1994, Pataky et al. 2019). As normality was violated, the non-parametric SPM versions of
the ANOVA (three strategies) and t-tests (two strategies) were used (Daly, 2021, Stief et al., 2021).
Post-hoc pairwise comparisons by SPM were only performed on regions of interest indicated by
the SPM-ANOVA (Pataky et al., 2016, Pickle et al., 2019). In line with recent recommendations
(Honert and Pataky, 2021), the aim of applying SPM was to exploratively analyze where the
time series tended to differ, to help with the qualitative description of the strategies. Differences
in the dependent variables, i.e., trial durations and time until seat contact, were tested with the
Kruskal-Wallis and Mann-Whitney U-tests as homogeneity was violated. The significance level
(two-tailed) was set a priori at 0.05 and adjusted for multiple comparisons post-hoc to 0.05/3 =
0.017 (Bonferroni correction). All statistics were performed in Matlab (R2020a, Natick, MA,
USA).
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4.4 Results

Overall, in sit-to-stand, three strategies in the non-challenging and two in the challenging condition
were identified (non-challenging: silhouette coefficient = 0.23, scree test SSE = 0.01; challenging:
silhouette coefficient = 0.19, scree test SSE = 0.33). In stand-to-sit, three strategies in the non-
challenging and two strategies in the challenging condition were also identified (non-challenging:
silhouette coefficient = 0.18, scree test SSE = 0.31; challenging: silhouette coefficient = 0.19,
scree test SSE = 1.30). The assignment of trials to clusters was robust throughout each instance
of the 10 clustering runs.

4.4.1 Most of the participants switched
their movement strategies

Figure 4.3 illustrates which strategy was used for every trial. Of the 20 participants, between 14
and 17 (depending on the task) did not use just a single strategy for all their trials. Therefore, we
accept our first hypothesis that individuals switch their strategy depending on the level of rollator
assistance.

4.4.2 Description and comparison of the
identified movement strategies

4.4.2.1 Sit-to-stand movement strategies

Three different strategies were identified for sit-to-stand in the non-challenging condition (Fig-
ure 4.4a, Supplementary Video A.1): a “forward leaning” strategy (blue), a “vertical rise” (green)
strategy, and a “hybrid” (brown) strategy, inferred by visual inspection of the stick figures and
supported by the different courses in the hip and CoM-heel angles before seat-off and the CoM
trajectory in the sagittal plane (Figure 4.4b). The kinematics and stick figures of the “hybrid”
strategy are either in-between the other two strategies or change from being closer to the one to
being closer to the other over the course of the trial, thus named the “hybrid” strategy. These
strategies appeared in each support condition, i.e., no strategy was identified to comprise only
trials with handle support.
The trial duration with the forward leaning strategy was shorter than the other strategies. However,
seat-off timing was not different between strategies (trial duration: forward leaning: 1.16 s± 0.25,
hybrid: 1.24 s ± 0.20, vertical rise: 1.24 s ± 0.22; χ2(2) = 10.37, p = 0.006; forward leaning vs.
hybrid: z = -2.40, p = 0.016; forward leaning vs. vertical rise: z = -3.04, p = 0.002; hybrid vs.
vertical rise: z = 0.04, p = 0.969; seat-off: forward leaning: 0.49 s ± 0.13, hybrid: 0.50 s ± 0.11,
vertical rise: 0.50 s ± 0.12; χ2(3) = 0.23, p = 0.892).
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Figure 4.3: Distribution of trials among strategies. One dot represents one trial. The row indicates the strategy to which
it belongs. The column shows to which participant it belongs. The support conditions are color coded as
indicated by the legend. The labels on the right y-axis show how many trials were associated with the strategy
written on the left y-axis.
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Figure 4.4: Strategies of the non-challenging sit-to-stand task. (a) The strategies are given in different colors (see legend)
and separated into rows according to the support condition. The CoM is depicted as an asterisk (∗). (b) Means
and standard deviations of the variables, aggregated by cluster. The gray shaded area illustrates the range of
seat-off (mean ± s.d.). The red lines and corresponding p-values indicate significant differences revealed by
the post-hoc tests (p < 0.017).
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In the challenging condition, only two strategies were identified (Figure 4.5a, Supplementary
Video A.2): an “exaggerated forward leaning” (purple) and a “forward leaning” strategy (blue). In
comparison, the exaggerated forward leaning strategy shows a smaller hip angle in the transition
phase after seat-off. The wide forward lean is underpinned by the CoM progression in the sagittal
plane and the larger CoM-heel angle after seat-off Figure 4.5b). Similar to the normal floor
condition, no support-specific strategy was identified. The trial duration was shorter, and seat-on
was earlier in the forward leaning strategy (trial duration: exaggerated forward leaning: 1.36 s
± 0.32, forward leaning: 1.27 s ± 0.27; z = 1.99, p = 0.046; seat-contact: exaggerated forward
leaning: 0.65 s ± 0.17, forward leaning: 0.54 s ± 0.10; z = 5.07, p < 0.001). The trials identified
as outliers are shown in Supplementary Figure A.5. Concerning our hypothesis, we can state that
we did not find specific strategies for 2a, the different degrees of rollator assistance, but we did for
2b, the challenging floor condition.

4.4.2.2 Stand-to-sit movement strategies

Three strategies were found in the non-challenging condition (Figure 4.6a, Supplementary Video
A.3): a “backward lowering” (blue), a “vertical lowering” (green), and a “hybrid” strategy
(brown), inferred from visual inspection of the stick figures and supported by (1) the different
CoM progressions and (2) the smaller hip, knee, and ankle angles of especially the backward-
lowering strategy (Figure 4.6b). Like with the sit-to-stand tasks, the three identified strategies
appeared in each support condition.
Vertical lowering took less time, and seat-on was earlier than in the backward lowering and the
hybrid strategy (trial duration: backward lowering: 1.47 s ± 0.29, hybrid: 1.49 s ± 0.26, vertical
lowering: 1.33 s ± 0.24; χ2(3) = 17.41, p < 0.001; backward lowering vs. hybrid: z = -0.09,
p = 0.925; backward lowering vs. vertical lowering: z = 2.60, p = 0.009; hybrid vs. vertical
lowering: z = 4.24, p < 0.001; seat-on: backward lowering: 0.88 s ± 0.20, hybrid: 0.87 s ±
0.19, vertical lowering: 0.71 s ± 0.15; χ2(3) = 33.44, p < 0.001; backward lowering vs. hybrid:
z = 0.14, p = 0.889; backward lowering vs. vertical lowering: z = 4.64, p < 0.001; hybrid vs.
vertical lowering: z = 5.21, p < 0.001).
As with the sit-to-stand task, only two strategies were identified in the challenging condition
(Figure 4.7a, Supplementary Video A.4): an “exaggerated forward leaning” (purple) and a
“forward leaning” (blue) strategy. These strategies were inferred from visual inspection and
underpinned by the smaller sagittal hip and ankle angles after seat-on in the exaggerated forward
leaning strategy and the smaller CoM-heel angles after seat-on (indicating that the CoM is more
anterior to the heel position than in the forward leaning strategy). As in the other task, no strategy
was identified to comprise only trials with handle support. Exaggerated forward leaning took
less time, and seat-contact was earlier than with forward leaning (duration: exaggerated forward
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Figure 4.5: Strategies of the challenging sit-to-stand task. (a) The strategies are given in different colors (see legend) and
separated into rows according to the support condition. The CoM is depicted as an asterisk (∗). (b) Means and
standard deviations of the variables, aggregated by cluster. The gray shaded area illustrates the range of range
of seat-off (mean± s.d.). The red lines and corresponding p-values indicate significant differences (p < 0.05).
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Figure 4.6: Strategies of the non-challenging stand-to-sit task. (a) The strategies are given in different colors (see legend)
and separated into rows according to the support condition. The CoM is depicted as an asterisk (∗). (b) Means
and standard deviations of the variables, aggregated by cluster. The gray shaded area illustrates the range of
seat-off (mean ± s.d.). The red lines and corresponding p-values indicate significant differences revealed by
the post-hoc tests (p < 0.017).
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leaning: 1.39 s ± 0.30, forward leaning: 1.47 s ± 0.29; z = -2.01, p = 0.044; seat-on: exaggerated
forward leaning: 0.70 s ± 0.15, forward leaning: 0.81 s ± 0.19; z = -4.29, p < 0.001).
With respect to our hypotheses and in line with sit-to-stand, we can state that we did not find specific
strategies for 2a, the different degrees of rollator assistance, but we did for 2b, the challenging
floor condition.

4.4.2.3 The use of the arms in unassisted sit-to-stand
and stand-to-sit movements

Armswere only used for two trials of the forward leaning and the hybrid strategy. In the challenging
condition, 20 trials included arm movement, 15 of which belonged to the exaggerated forward
leaning strategy (Figure 4.8). In stand-to-sit, arms were not involved in the backward lowering,
but five were involved in the vertical lowering and two in the hybrid strategy. When challenged,
arms were involved in four trials in the exaggerated forward and two trials in the forward leaning
strategy (Figure 4.8). As inferred from the parallel lines in Figure 4.8, arms were moved at a
similar speed to the CoM, i.e., not swung.
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Figure 4.7: Strategies of the challenging stand-to-sit task. (a) The strategies are colored in different colors (see legend)
and separated into rows according to the support condition. The CoM is depicted as an asterisk (∗). (b) Means
and standard deviations of the variables, aggregated by cluster. The gray shaded area illustrates the range of
seat-off (mean ± s.d.). The red lines and corresponding p-values indicate significant differences revealed by
the post-hoc tests (p < 0.017).

116



4.5 Discussion

Figure 4.8: Example arm activity for two movements (left: sit-to-stand, right: stand-to-sit). Top: Spatial progression of
the CoM and the lateral elbow marker. The black and red lines connecting the points illustrate the spatial
progression. The distances between the points illustrate 5% of the total duration in each case. The cross-
connections help assess whether the elbow and CoM moved at comparable speeds (as with nearly parallel
cross-connections). Bottom: The whole-body movement is shown along with the plots above.

4.5 Discussion

Rollators are often prescribed to assist older individuals in their daily life, but paradoxically have
been found to increase fall risk. Standing up and sitting down are often executed, yet are complex
and demanding movements for older individuals. To improve this movement for older individuals,
this study with young, non-disabled individuals identified if and how rollators affect movement
strategies. We found that (1) most (14-17 of 20, task-dependent) participants switched their
strategies with rollator assistance, (2a) no support-specific strategies were revealed, but (2b) new
strategies emerged when participants’ balance was challenged.
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4.5.1 Participants switch their strategies with full support,
especially when challenged

Participants who stood up with the forward leaning strategy in the unassisted condition did not
show a common pattern of which strategy they switched to when having the handle support: some
kept leaning forward, and others switched to a vertical rise or hybrid strategy. However, those who
used the vertical rise or hybrid strategy unassisted never used the forward leaning strategy with
handle support. When their balance was challenged, most participants (16 of 20) switched from
the exaggerated forward to the forward leaning strategy with full support. During the light touch
trials, one-third used the exaggerated and two-thirds the forward leaning strategy, i.e., presumably
the somatosensory input is not the entire reason for changing the strategy. In stand-to-sit, almost
all participants who used the backward lowering strategy in the unassisted condition switched
their strategy in the full support condition, but not all switched in the light touch condition. When
challenged, almost every trial with full support belonged to the forward leaning strategy, i.e.,
participants who used the exaggerated forward leaning strategy in the unassisted and/or light touch
condition switched with full support.
Taken together, full handle support appears to influence strategy selection, especially when
the participants were challenged, i.e., the demands on balance control were higher. Further,
somatosensory input does not seem to determine the change in strategy under the studied task
conditions. A change in the CoM position may be a potential triggering factor for strategy selection.
Having the arms on the handles may lead to an anterior shift of the CoM, though rather small,
due to the relatively small mass of the arms. This is supported by Jeyasurya et al. (2013), who
did not find significant differences in the CoM position when they compared an arm-assist and
bar-assist position to the unassisted condition (arm crossed in front of the chest). Furthermore,
the causal relationship between CoM-position and strategy selection is debatable. In fact, a recent
study (Richmond et al., 2021) argues that the CoM represents the whole body well but questions
if the CoM position/movement is optimized regarding a task goal. Hence, it remains an open
question if the CoM position may trigger the strategy selection or if anything else triggers the
strategy selection resulting in a shifted CoM position. According to a prevailing theory in motor
control, the optimal control theory (Todorov and Jordan, 2002), movement strategy selection
is based on a cost function that is minimized about the movement goal (e.g., to stand up or sit
down). Therefore, a unique control policy is implemented to transform the state estimate (i.e., the
internal body representation and task-relevant variables) into motor commands (Kim et al., 2021).
The multi-dimensional state estimate could be considered a multi-dimensional input weighted to
yield the selected movement strategy. A shift in the weighting, e.g., toward a higher importance
of stability in the challenging condition, may explain a change toward a different, then optimal,
movement strategy. A previous study (van der Kruk et al., 2021a) proposed that this could explain
age-related differences in movement strategies.
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4.5.2 Sit-to-stand was achieved with three different strategies

Our data-driven approach revealed three movement strategies (forward leaning, hybrid, and vertical
rise). While these three have often been described in unassisted standing up (Anan et al., 2012,
Coghlin and McFadyen, 1994, Doorenbosch et al., 1994, Frykberg and Häger, 2015, Hughes
et al., 1994, van der Kruk et al., 2021b), we can now add that rollator assistance does not lead
to the emergence of new strategies. In line with the literature, we found that participants using
the forward leaning strategy showed higher upper body flexion (Coghlin and McFadyen, 1994,
van der Kruk et al., 2021b) and stood up faster (Hughes et al., 1994). In Hughes et al.’s study
(1994), participants were older than in our study. Thus, we can now conclude that the forward
leaning strategy is faster regardless of the individual’s age. Scarborough et al. (2007) found that
knee moment is smaller with the vertical rise strategy. However, more muscle activity around the
knee is needed due to lack of generated upper body momentum. Possibly, rollator use reduces the
demand on muscle activity around the knee, as has been shown for walking (Alkjær et al., 2006).
To recommend the best strategies, which are safe and with the least demand on knee moment, for
older individuals to stand up with a rollator, future studies may investigate muscle activity and
joint load in the vertical rise and hybrid strategies with rollator support.
Interestingly, no different strategies were identified for the light touch and full support compared to
the unassisted condition. Thus, receiving sensory input and/or weight support to stabilize oneself
did not change the movement, even when the balance was challenged. Possibly, the identified
strategies are optimal solutions to achieve the task goal, i.e., to stand up, so no new strategies need
to emerge. de Rugy et al. (2012) proposed that habitual movement strategies might be retained
when the task goal can be achieved, even if conditions change. This could have been the case with
our young participants.

4.5.3 When the balance was challenged, participants only
used two different strategies to stand up

Participants used an exaggerated forward or forward leaning strategy when their balance was
challenged. They did not use a third, vertical rise strategy as they did under non-challenging
conditions. An exaggerated forward leaning strategy, based on increased trunk flexion, has been
found in older individuals (Papa and Cappozzo, 2000) and in those with pathologies, when stability
and safety seem to be of priority, thus often called “stabilization strategy” or “exaggerated trunk
flexion strategy” (Cunha et al., 2021, Frykberg and Häger, 2015, van der Kruk et al., 2021b,
Nikfekr et al., 2002, Scarborough et al., 2007). Here, participants moved their CoM over the base
of support (“stable position”) at the earliest time point by an exaggerated trunk flexion and then
raised the CoM vertically. This behavior hints at why we found this strategy. The balance pads
under the participants’ feet contained air, which was re-distributed when the pressure point from
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above changed. It seems plausible that the transitioning is easier when the CoM is centered above
the balance pad at seat-off (CoM-heel angle ≈ 0◦, see Figure 4.5b).
Furthermore, the constantly changing demands due to the pressure distribution in the pads possibly
required constant adjustment of the motor commands, as has been shown in studies on postural
control (Anderson and Behm, 2005). The higher number of principal components extracted for
all GRF directions (Table 4.1) reflects this by indicating a more complex time series structure
(Deluzio and Astephen, 2007). Thus, the emergence of the exaggerated forward leaning strategy
could result in participants wanting to increase their stability and safety to better cope with the
increased balance challenge.
When using handles, the choice in favor of the forward leaning strategy could hint that participants
cope with the challenging floor condition by relying more on the rollator handles (Chang et al.,
2014): e.g., to lessen the pressure on the pads and so the difficulty standing on them, or to
interact with the handles correcting unforeseen instabilities during the transition. This issue can
be addressed in more detail in future studies, e.g., with instrumented handles. Possibly, as the hip
angle is larger in the forward leaning strategy, this strategy is more suitable for individuals with
limited range of motion e.g., due to issues like lower-back-pain (Shum et al., 2005).
That the participants showed two instead of three strategies to successfully perform the sit-to-stand
task suggests that young individuals are flexible concerning task demands (Frykberg and Häger,
2015). The vertical rise strategy is possibly not a good solution for this new task demand: here, the
CoM-heel angle does not reach 0° until after seat-off (see Figure 4.4b). This could explain why the
participants did not use it. Furthermore, we suggest balance pads can be a way to provoke young
individuals to use sit-to-stand strategies observed with older individuals or those with pathologies.

4.5.4 Stand-to-sit was achieved with three different strategies

Our data-based approach identified three strategies for sitting down: backward lowering, hybrid,
and vertical lowering. To the best of our knowledge, no previous study explicitly identified
strategies in the stand-to-sit movement or performed detailed biomechanical measurements on
this motion. Only Dubost et al. (2005) observed two general patterns comparable to our study’s
backward and vertical lowering strategies, although they did not explicitly name them. The main
difference between the two patterns they found was the more vertical orientation of the trunk (like
in our vertical lowering strategy) in the one predominantly used by their older participants. Their
young participants flexed their trunks more (like in our backward lowering strategy).
In contrast to (Dubost et al., 2005), in our study the young participants only used the backward
lowering strategy to sit down without rollator support in two of 60 trials. However, unlike in our
study, participants had to cross their arms in front of their chests, which makes movement less
natural, as supported by studies that evaluated the five-times-sit-to-stand test (Carr, 1992, Khuna
et al., 2020). Therefore, not imposing this restriction in our study may have fostered the use of
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the vertical lowering or hybrid strategy. In both strategies, seat-on occurred earlier than with the
backward lowering strategy. Based on this measure, it is suggested that this is a safer strategy as
the unstable transition phase is shorter (Prudente et al., 2013). However, this safety assumption
needs to be investigated more thoroughly in future studies.
Unlike with the unassisted condition, we found the preferred strategies to sit down with full
support to be the backward lowering and hybrid strategies. Here, knee flexion happens more
slowly but more steadily. Possibly, this reduces the knee load and muscle activity demand, and
handle support helps carrying out this strategy. However, future studies may investigate the three
strategies in every condition by imposing these on participants. An examination of muscle activity,
interaction forces, and joint moments may then improve understanding of which strategies are
optimal for older rollator users.

4.5.5 When the balance was challenged, participants only
used two different strategies to sit down

With challenged balance, participants used either a forward leaning or an exaggerated forward
leaning strategy to sit down. Like with the sit-to-stand task, participants demonstrated only two
instead of three strategies. The backward lowering strategy was not used. With the exaggerated
and forward leaning strategies, the CoM is first lowered vertically, presumably to keep the pressure
ratio in the balance pads as constant as possible. The rearward movement occurs later (CoM-heel
angle≈ 0◦, not until seat-off, see Figure 4.7b). Probably, shifting the CoM posteriorly earlier, like
in backward lowering (CoM-heel angle ≈ 0◦ slightly earlier than seat-off, see Figure 4.6b), would
lead to the balance pads filling increasingly in the front, resulting in more air in the anterior area of
the balance pads and so the body moving posteriorly. Like with standing up, the higher number of
principal components in the GRF variables compared to the non-challenging condition indicates
a more complex time series and, thus, constant adjustments of motor commands (Deluzio and
Astephen, 2007). This more complex pattern possibly triggered the strategy selection toward a
“safer” strategy. Future studies could examine sitting down with older participants and/or those
with pathologies. It seems plausible that the exaggerated forward leaning strategy could arise
there as a counterpart to the “stabilization strategy” of the sit-to-stand movement.

4.5.6 Arm usage in unassisted sit-to-stand and stand-to-sit
does not lead to new strategies

For standardization reasons, arm movement is often restricted, e.g., the arms are to be crossed in
front of the chest (Frykberg and Häger, 2015, van der Kruk et al., 2021b). This, however, hinders
the participants from performing the transitions naturally, as indicated by validation studies for
the five-times-sit-to-stand test (Carr, 1992, Khuna et al., 2020). Furthermore, individuals could
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possibly keep to their strategy when using the arms to compensate for difficulties (van der Kruk
et al., 2021a,b). We only instructed our participants to let their arms hang laterally in the sitting
position in the unassisted condition. Trials with arm usage were not identified as outliers, nor did
they lead to a new strategy cluster. This is in line with Millington et al.’s 1992 study, in which
angles and moments of the trunk, pelvis, and knee remained similar regardless of participants
moving to flex their shoulders or elbows in unassisted standing up. Further, Carr and Gentile
(1994) found that trunk flexion or peak horizontal and vertical momentum of the CoM did not
differ between restricted and flexible arm movement conditions. Hence, arm use does not lead to
a new movement strategy. Standing up from a chair at knee height and with “natural” speed may
not create difficult task demands for young individuals. Therefore, arm use may not be necessary
for them and therefore not done. This is in contrast to the challenging condition, where arms were
involved in 23 of 60 unassisted trials. As participants moved their arms at a comparable speed to
the CoM (Figure 4.8), rather than using the swing to create extensive, additional momentum as
is often done to increase height in jumps (Harman et al., 1990, Lees et al., 2004), they probably
used their arms to shift the CoM anteriorly (Swearingen, 1962). This possibly helps to hold the
CoM as long as possible over the pads (CoM-heel angle ≈ 0◦) in the exaggerated forward leaning
strategy. In stand-to-sit, arms were only used in seven (non-challenging) and six (challenging)
of 60 unassisted trials. Here, similar to the sit-to-stand movement in the challenging condition,
participants did not extensively swing their arms but seemed to hold them anteriorly, possibly also
to hold the CoM in the same horizontal position.

4.5.7 Limitations

Several potential shortcomings need to be considered. First, our simulator device is heavier than a
commercially available rollator and can neither dip nor move horizontally, even if the handles are
pulled or pushed on heavily. Thus, the outlier “pulling strategy” (Supplementary Material A.2.2),
where one participant extensively pulled on the handles to stand up, would not be possible with
a real-world rollator. Nevertheless, pulling extensively on rails that are fixed to propel the body
upward has been observed as a strategy in older individuals to stand up and sit down (Dekker
et al., 2007, Kato et al., 2020) and should therefore be considered in future studies examining older
individuals. Secondly, although not uncommon in other biomechanical studies (van der Kruk
et al., 2021b), for standardization purposes, we restricted the foot placement to be parallel and
underneath the knees, which hindered the participants from pulling their feet backward to stand
up, as it is sometimes observed (Dolecka et al., 2015). Thirdly, we applied PCA and k-means
clustering. It cannot be excluded that other methods would have led to a different constellation.
However, these methods are well-established and frequently used in biomechanics (van Drongelen
et al., 2021, Halilaj et al., 2018, Rein et al., 2010), and the allocation of the trials into the identified
strategy clusters is plausible and robust. Fourthly, to the best of our knowledge, there are no
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criteria based on which trials can be assigned a movement strategy in rollator-assisted sit-to-stand
and stand-to-sit movements. Thus, there was no prior knowledge regarding the number and
composition of the movement strategy clusters, precluding an a priori power analysis. Hence,
we used a common unsupervised, data-driven approach to identify movement strategies. With
unsupervised algorithms, it is unforeseeable how the data are clustered. Consequently, the number
of participants and trials were selected not based on an a priori power analysis but on comparable
studies (Jeon et al., 2021, Komaris et al., 2018, Norman-Gerum and McPhee, 2020, Wang et al.,
2021). Fifthly, statistics between the strategies were calculated as if the trials between the clusters
were independent and single observations. Therefore, these need to be treated with caution.
However, statistics were only applied here to give an impression of where the time series tend to
differ and to help qualitatively describe the strategies. Lastly, we investigated strategies in young
people. Even though we used balance pads to challenge them, this probably limits the validity of
the results concerning individuals who are older or physically limited and dependent on a rollator.

4.6 Conclusion

This study found that young individuals switch their strategies to standing up and sitting down
with rollator handle support and when their balance is challenged. Our data-driven approach
revealed three strategies for sit-to-stand. The strategies found are in line with the literature on
unassisted standing up. They have now been shown to hold with rollator support. Our challenging
floor condition approach in using balance pads under the participants’ feet provoked two strategies,
one of which was previously found for older individuals and those with pathologies. We suggest
balance pads can be used in future studies as a way to provoke young individuals to use sit-to-stand
strategies observed with older individuals or those with pathologies. For the first time, strategies
for stand-to-sit have been described based on biomechanical data. Participants used three sit-down
strategies, reduced to two in the challenging balance condition. Like with sit-to-stand, rollator
support and challenging balance conditions greatly influence strategy selection. In our study, the
strategies have been described and discussed predominantly based on kinematics. Future studies
may investigate joint loading and muscle activity to assess which strategies can eventually be
recommended to fall-prone individuals for safe and efficient rollator usage.
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

5.1 Abstract

Background: Older individuals are at risk of falling. Assistive devices like rollators help to reduce
that risk, especially by compensating for decreased leg muscle strength and balance problems.
Paradoxically, rollators have been found to be a fall risk as well as being difficult to use. To
investigate the causes, this study examines how different levels of rollator support (no assistance,
light touch, and full support) and balance demands (standard lab floor, balance pads) affect
movement coordination during standing up and sitting down movements.
Methods: Twenty young participants stood up and sat down while full-body kinematics and
muscle activity (30 channels) were recorded. Participants stood up and sat down using different
movement strategies (e.g., forward leaning, hybrid, and vertical rise standing up movement
strategies). For each movement strategy, spatial and temporal muscle synergies were extracted
from the muscle activity patterns. Temporal muscle synergies provided a more compact, low-
dimensional representation than spatial muscle synergies, so they were subsequently clustered
with k-means++. The activation duration of the temporal muscle synergies was assessed with
full-width at half-maximum at the main peak. Multivariate linear mixed models were used to
investigate if the muscle weightings associated with the temporal muscle synergies differed across
the support conditions.
Results: The timings of the temporal muscle synergy activations, but not the shape, differed
across the movement strategies for both types of movement. Across all tasks, temporal muscle
synergies showed a narrower width of activation around the time of seat-off and seat-on than at the
movement start and end. No support-specific temporal muscle synergies were found, but lower
limb muscle weightings decreased while upper-limb muscle weightings increased with increased
support.
Conclusion: The narrow shape of the temporal synergy activation profiles suggests that the
central nervous system controls the movements tightly, especially around seat-off and seat-on
and in challenging conditions with increased balance demands. Furthermore, rollator support
increases the weightings of upper body and decreases the weightings of lower limb muscles,
especially around seat-off and seat-on. Future studies may further investigate how the loss of tight
movement control may cause falls in older individuals.

5.2 Background

Worldwide, at least one in four individuals over 65 falls every year (Rubenstein, 2006, Salari et al.,
2022). Falls and associated injuries often lead to insecurities and restricted mobility, thereby
making daily activities challenging and reducing older people’s independence (Gaxatte et al., 2011,
Rubenstein, 2006). Assistive devices, including canes, crutches, walkers, or rollators, are intended
to reduce falls by providing stability and facilitating daily activity independence (Bateni and
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Maki, 2005). Rollators, i.e., four-wheeled walkers, are often prescribed to patients who require
an assistive device to compensate for muscular weaknesses. By lessening lower limb loading and
enhancing balance, they can help alleviate pain and injuries (Bateni and Maki, 2005, Bradley and
Hernandez, 2011, Ko et al., 2014, Mann et al., 1995). Paradoxically, studies have shown that
rollators are associated with falls (Bateni and Maki, 2005, Kallin et al., 2004). Also, Mann et al.
(1995) reported that 57% of the problems with using walkers relate to a “difficult and/or dangerous”
use. Although rollators are used widely, the reasons for the difficulties and the increased fall risk
have remained unclear due to the lack of thorough biomechanical studies (Mundt et al., 2019).
Rollators are prescribed primarily to help with walking but are also used to stand up and sit down,
especially when other assistance, like a handrail or armrest, is missing (Komisar et al., 2023, Leung
and Yeh, 2011). Standing up and sitting down are crucial movements to live an independent life but
are demanding due to the dynamic balance requirement during the transitions between sitting and
standing (Dall and Kerr, 2010, Hughes et al., 1994, Komisar et al., 2023, Pai et al., 1994). Lower
limb muscular strength and balance are two main predictors of successful sit-to-stand movements
(Frykberg and Häger, 2015). However, these decline with age. In particular, knee extensor
strength has been found to decline annually by approximately 2-4% after age 50 (Goodpaster
et al., 2006), and a meta-analysis (Moreland et al., 2004) found lower limb weakness to be a
statistically significant risk factor for falls. A rollator may help by providing load transfer from
the lower limbs to the upper body, reducing the strength demand for the hip and knee extension
musculature (Bateni and Maki, 2005, Joyce and Kirby, 1991). Furthermore, the additional contact
points through the rollator handles might provide extra positional information next to the feet
and enlarge the base of support (BoS), potentially improving balance (Jeka, 1997). However, the
evidence is not clear. While a related study found that rollator support increases movement stability
during standing up and sitting down movements in young adults (Krafft et al., 2022), a recent
observational study in a long-term care setting found that 44.4% of the falls while using a rollator
occurred while transitioning between sitting and standing (Nickerson et al., 2024). A possible
explanation for the increased fall risk in rollator use could be that they interfere with the movement
strategies of different tasks. Literature shows that individuals use different movement strategies,
e.g., with or without upper body momentum, to stand up and sit down without a rollator (Dolecka
et al., 2015, Frykberg and Häger, 2015, Hughes et al., 1994, Komaris et al., 2018), but with no
clear answer as to which movement strategy is the safest (Sadeh et al., 2023). Furthermore, based
on kinematic analyses, we have previously found that young individuals change their kinematic
movement strategy when provided with rollator support, especially when the balance is challenged
(Herzog et al., 2023). These changes in movement strategies indicate that rollators affect the
underlying movement coordination patterns, which could be key to understanding human-rollator
interactions and safe use.
With approximately 700 muscles and 300 mechanical degrees of freedom, the musculoskeletal
system allows countless movement possibilities (Bernstein, 1967, Bruton and O’Dwyer, 2018).
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To reduce the inherent complexity, the central nervous system (CNS) may employ a modular
control architecture (Bernstein, 1967, Bizzi et al., 2008, Giszter, 2015), of which synergies have
been proposed as a possible representation (Berniker et al., 2009, Bizzi et al., 1991, Bruton and
O’Dwyer, 2018). Regardless of whether synergies are identified in spinal reflexes (Grillner, 1981),
as muscle synergies (d’Avella et al., 2003, Lee, 1984, Tresch et al., 1999), or as kinematic synergies
(Daffertshofer et al., 2004, Santello et al., 1998), they may generate movement by activating a
few functional groups rather than specifying each single element independently (d’Avella, 2016).
Muscle synergies are often used as a compact low-dimensional representation of a set of recorded
muscle activity (Bruton and O’Dwyer, 2018). Through flexible recruitment and combinations
of synergies, the CNS can generate an extensive movement repertoire (d’Avella et al., 2003).
According to a hierarchical organization, movement is generated through a combination of a
preexisting, trial-independent part and a flexible, trial-dependent part (Ting and McKay, 2007).
The trial-independent part is reused across movements and presumably stored in subcortical
areas of the CNS; whereas the trial-dependent part, which accounts for variations across trials, is
presumably under cortical control (d’Avella et al., 2003, Ting and Chvatal, 2010). Different models
of muscle synergies have been proposed and differ in terms of which part of the decomposition
is trial-dependent and which is trial-independent (Berger et al., 2020, Delis et al., 2014, Russo
et al., 2014). In spatial muscle synergies, also called time-invariant or synchronous synergies,
the trial-independent part is made up of vectors. These vectors, the weightings, represent the
activations of multiple muscles, relative in magnitude to each other. These fixed vectors are
combined with trial-dependent activation profiles (or time-varying coefficients), representing the
amount and timing of the muscle weightings. In contrast, temporal muscle synergies (or temporal
components, basic patterns), consist of muscle activation profiles, invariant over muscles and
conditions, and trial-dependent muscle weightings. Hence, the relative weightings of muscle
activations vary across trials. Another difference between these two models is the compactness of
the muscle activity representation. In some studies, temporal muscle synergies provided a more
compact representation than spatial synergies (Delis et al., 2014, Brambilla et al., 2023a, Safavynia
and Ting, 2012) but this is not always the case (Chiovetto et al., 2013, Safavynia and Ting, 2012).
Regardless of the model, muscle synergies are robust against the highly variable and stochastic
nature of EMG patterns. Since they therefore reveal the neural organization underlying behavior
and functional outcomes of muscular activation (Bizzi and Cheung, 2013, Dominici et al., 2011,
Safavynia et al., 2011), they have been used in various settings to investigate questions regarding
movement coordination (Singh et al., 2018), as well as in sit-to-stand movements.
Three to four spatial muscle synergies typically explain 87-94% of the variance in unassisted
sit-to-stand movements across various age groups (An et al., 2013, Carey et al., 2021, Hanawa
et al., 2017, Kogami et al., 2021, Ranaldi et al., 2023, Yang et al., 2017). Usually, each synergy
represents one biomechanical function, such as momentum transfer and postural stabilization.
While muscle synergy structure seems robust in unassisted standing up, even with visual or
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vestibular disturbances, the activation timing changes with these disturbances (Yoshida et al.,
2019). Furthermore, synergy activation timings have been found to differ across movement
strategies (Yang et al., 2017). Consequently, analyzing the temporal structure is crucial. In
contrast to unassisted standing up, assistive devices seem to impact not only the activation timing
in standing up, but also the number of synergies increased when participants stood up while being
pushed up by the chair (Wang et al., 2021), and studies with Nordic walking sticks (Candow
and Chilibeck, 2005) or exoskeletons (Lynch et al., 1999, Ashford and De Souza, 2000) show
that assistive tools alter movement coordination; such that, for example, synergies specific to
the device emerge. Consequently, when studying rollator-assisted standing up, it is essential to
consider upper body involvement to account for the involvement of the arms. This is particularly
relevant as the aging process leads to muscle weakening (Candow and Chilibeck, 2005, Lynch
et al., 1999), and individuals thus often need to push on armrests to master transitioning between
sitting and standing. Consequently, it remains an open question how rollator usage influences
full-body movement coordination in standing up movements, especially considering the different
movement strategies and upper body involvement.
Like in standing up, assistive devices may alter sitting down coordination. Only a few biome-
chanical and movement coordination studies have analyzed sitting down (Ashford and De Souza,
2000, Carey et al., 2021, Jeon et al., 2021), let alone with a rollator. This is surprising as sitting
down is also a complex movement and not simply the opposite of standing up (Dubost et al.,
2005, Frykberg and Häger, 2015). For example, the gluteus maximus works concentrically when
standing up but eccentrically when sitting down (Ashford and De Souza, 2000). Also, upper body
muscles may act differently when sitting down using a rollator, such that the arm extensor muscles
presumably work eccentrically rather than concentrically. Accordingly, this implies that rollator
usage may influence stand-to-sit movement coordination in a different manner from sit-to-stand.
To improve our understanding of the understudied human-rollator interactions and safe use
in transitions between sitting and standing, it is necessary: (1) to develop a protocol and a
methodology for assessing coordination during these understudied movements and (2) to establish
baseline values in healthy cohorts. Therefore, we apply muscle synergy analysis and examine
the movement coordination underlying different movement strategies for standing up and sitting
down. We first examine which muscle synergy model is most appropriate, as it is not a priori
clear which model best represents the sit-to-stand and stand-to-sit movements (Berger et al., 2020,
Brambilla et al., 2023a, Safavynia and Ting, 2012). Then, we explore how different rollator
support conditions (no assistance, light touch with haptic cues through the rollator handles, and
full support with supposed lower limb load reduction) affect muscle synergies. As thorough
studies on movement coordination underlying rollator-assisted movement are scarce (Mundt et al.,
2019), and the rollator-prone population is heterogeneous regarding their underlying deficits,
this study investigates young participants as a baseline measure, with potentially limited loss of
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generalizability, even though Hanawa et al. (2017) found that the synergies in standing up remain
similar regardless of the participant’s age.
Still, to make standing up and sitting down more challenging, and as proprioceptive signals from
the leg muscles are the primary source for postural control (Henry and Baudry, 2019), we placed
balance pads underneath their feet to evaluate the effect of rollator support while experiencing
increased postural instability. Postural instability is common in many neurodegenerative diseases
and movement disorders (Djaldetti et al., 2006) and often leads to the prescription of rollators to
improve postural stability (Bateni and Maki, 2005, Mundt et al., 2019).
We hypothesized that (1) temporal muscle synergies represent sit-to-stand and stand-to-sit EMG
patterns with a different compactness than spatial muscle synergies. Furthermore, we hypothesize
that (2) the muscle synergy activation differs across movement strategies and that (3) rollator
support influences the weightings between upper body and lower limb muscles for both standing
up and sitting down.

5.3 Materials and methods

Our previously published articles on this dataset describe our analysis of the kinematic and kinetic
data (Herzog et al., 2023, Krafft et al., 2022). Here, we introduce all the steps regarding the EMG
analysis.

5.3.1 Participants

Twenty young and healthy volunteers (10 women, 10 men; 25.5± 3.8 years, 1.71± 0.08 m height,
67.6± 10.9 kg mass) gave written informed consent and participated in the study. The participant
shown in Figure 5.1 gave informed consent to publish the image. The Ethics Committee of the
Medical Department of Heidelberg University (S-105/2021) approved the study, which was then
performed according to the Declaration of Helsinki.

5.3.2 Experimental protocol

The participants sat still and, after hearing “stand up” by the experimenter, they stood up at their
own pace. Then, the experimenter said, “stand still”. After standing still for at least two seconds,
the experimenter said, “sit down,” and the participants sat down at their own pace. The seat height
was set to the height of the participant’s lateral epicondyle of the femur, and a custom-built robot
rollator simulator was used to provide rollator support (Figure 5.1). Following recommendations
in the health care literature (Boelen, 2009, Lockette, 2011, Wilkins, 2008), the handle height was
set at the participant’s standing wrist height. According to the support condition, they did not use
the rollator handles at all (unassisted, UA), only with a light touch of the hand, i.e., by placing the
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hand with a palm grip onto the handle to receive a haptic cue (light touch, LT), or with a power
grip (full support, FS).
These support conditions were combined with two floor conditions: the standard lab floor and
a more “challenging ground”, which was created by positioning a circular rubber balance pad
with a compliant surface (Dynair® Ballkissen®, diameter 33 cm, height 8 cm, TOGU GmbH,
Prien-Bachham, Germany) under each foot.
Participants familiarized themselves with the task by performing two repetitions in each condition
combination (support: unassisted, light touch, full support; floor: non-challenging, challenging).
No further instructions on the movement execution were given, allowing the participants to stand
up and sit down as naturally as possible. All participants performed three valid, non-consecutive
repetitions in each condition combination, resulting in a total of 18 trials per participant. The
order of the support and floor conditions was randomized across participants.
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Figure 5.1: Experimental setup and data analysis. A: The participant stands up from an instrumented chair with the
custom-made robot rollator simulator. Full-body passive markers for motion tracking and EMG electrodes
were placed on the body. Two movements were studied: sit-to-stand and stand-to-sit. Two floor conditions
were used (middle): non-challenging (lab floor) and challenging (balance pads). Three different support
conditions were used (right): unassisted (handles not used), light touch (palm on the handles), and full support
(power grip). The figure is adapted from (Herzog et al., 2023). B: Participants used different movement
strategies and switched between them, as exemplarily shown for the non-challenging sit-to-stand task. The
bottom plot shows the distribution of the trials among strategies. One dot represents one trial. The row
indicates to which movement strategy it belongs. The column shows to which participant it belongs. The
support conditions are color-coded as indicated by the legend. The labels on the right y-axis show how
many trials were associated with the strategy written on the left y-axis. The figure is adapted from (Herzog
et al., 2023). C: EMG data from the trials of the same movement strategy were arranged into a matrix (for
example, Mvertical rise). Temporal muscle synergies were extracted from each matrix with NMF (Lee and Seung,
1999, 2001, Russo et al., 2024), resulting in trial-independent activation profiles and trial-dependent muscle
weightings. The activation profiles were matched across the movement strategies and ordered chronologically
using k-means++ clustering, ensuring a correlation coefficient above 0.9. Bottom: The duration of each
activation profile was assessed as full-width at half-maximum. Linear mixed models were used to investigate
how rollator support affects the muscle weightings. P1 participant 1, UA1 first unassisted trial, LT1 first light
touch trial, FS1 first full support trial, ES M. erector spinae, RA M. rectus abdominis, NMF non-negative
matrix factorization (Lee and Seung, 1999, 2001).

5.3.3 Data collection

Full-body 3D kinematics were obtained using the IOR full-body marker model (Cappozzo et al.,
1995, Leardini et al., 2011) and ten cameras (150 Hz; Type 5+, Qualisys, Gothenburg, Sweden).
Ground reaction forces (GRF; 1,000 Hz; Bertec Corp., Columbus, OH, USA) and forces on the
seating surface (142 Hz; Phidgets Inc., Calgary, AB, Canada) were measured.
Thirty surface EMG electrodes (two systems, 1,500 and 4,000 Hz; Noraxon USA, Scottsdale,
AZ, USA) captured full-body muscle activity of the following muscles bilaterally: pectoralis
major (Pec), latissimus dorsi (Lat), trapezius (Tra), deltoideus (Del), biceps brachii (Bic), triceps
brachii (Tri), gluteus medius (GM), tensor fasciae latae (TF), rectus femoris (RF), vastus medialis
(VM), biceps femoris (BF), tibialis anterior (TA), peroneus longus (PL), and gastrocnemius
(GA). Additionally, erector spinae (ES) and rectus abdominis (RA) activities were recorded.
The participants’ skin was prepared by shaving, abrasion, and cleansing with alcohol to ensure
good electrode-skin contact before the Ag/AgCl electrodes were attached according to SENIAM
guidelines (Hermens et al., 2000) and Perotto (2011).

5.3.4 Data processing

To reconstruct the 3D coordinates of the markers, raw kinematic data were processed offline
with Qualisys Track Manager (v 2018.1). Subsequently, force and kinematic data were filtered
with a 4th-order zero-lag low-pass Butterworth filter at 10 Hz. Using Visual3D (v6, C-Motion
Inc., Germantown, MD, USA), full-body kinematics and the center of mass (CoM) were then
calculated. Further data analyses were done in Matlab (R2023b, Natick, MA, USA). Raw EMG
data were bandpass (20-500 Hz) and notch (50 Hz) filtered with a 4th-order zero-lag Butterworth
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filter (Hanawa et al., 2017). ECG artifacts apparent in the trunk muscle recordings were removed
with a template-matching procedure (Peri et al., 2021). For robustness, we created a muscle- and
participant-specific template of ECG artifacts using the data from the sit-to-stand and stand-to-sit
recordings and an additional 9 min of still-standing recordings. Subsequently, filtered EMG data
were full-wave rectified and smoothed with a 4th-order zero-lag low-pass Butterworth filter at
10 Hz (Hanawa et al., 2017). Movement start, seat-off/on, and movement end were identified
using a k-means++ algorithm on the GRF and CoM data (Sloot et al., 2020). As muscles need
to be active before a visible movement starts, data from 200 ms before the detected start of the
movement were included (Dehail et al., 2007, Kim et al., 2011). Afterward, data were segmented
and time-normalized to 101 time points (100%) using a spline interpolation. Finally, EMG data
were amplitude-normalized per muscle and participant to their maximum activity across the 18
trials (Lee and Seung, 2001). Of the 720 trials, 24 were not included in the analyses as some
recordings of a few muscles were corrupt (Supplementary table A.3).

5.3.5 Movement strategies

Our previous investigation found that participants switched movement strategies when introduced
to a rollator (Herzog et al., 2023). In particular, three movement strategies were identified for the
sit-to-stand non-challenging task (“forward leaning”, “hybrid”, and “vertical rise”) and two for
the challenging task (“exaggerated forward leaning” and “forward leaning”). Likewise, three and
two movement strategies were identified respectively in the stand-to-sit tasks (“vertical lowering”,
“hybrid”, and “backward lowering”; and “exaggerated forward leaning” and “forward leaning”).
The naming of these strategies was inferred by visual inspection of their movement progression,
the different hip, knee, and ankle sagittal angle courses, and the relative movements between the
CoM and the heel. The grouping of trials into the movement strategies was used in the current
analysis to extract muscle synergies specific to the movement strategies. Supplementary figure A.6
shows the distribution of trials among strategies.
In short, the forward leaning strategy in the sit-to-stand movement showed more hip flexion
and less overlapping anterior and vertical CoM movement than the vertical rise strategy. The
hybrid strategy showed kinematic and kinetic time courses sometimes more aligned with one
than the other strategy. In the challenging condition, the exaggerated forward leaning strategy
was characterized by a wide upper body forward lean and an earlier movement of the CoM over
the BoS than the forward leaning strategy. In the stand-to-sit movement, the backward lowering
strategy revealed smaller hip, knee, and ankle angles than the other two, and the vertical lowering
strategy showed a vertical orientation of the trunk. In the challenging condition, like with the
sit-to-stand movement, the exaggerated forward leaning strategy was characterized by a wide
upper body forward lean and showed less overlapping vertical and posterior CoM movement than
the forward leaning strategy.
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5.3.6 Data analysis

5.3.6.1 Muscle synergy analysis

We extracted muscle synergies with respect to our previous findings that participants switched their
movement strategies when introduced to a rollator (Herzog et al. (2023); Figure 5.1). As stated in
the introduction, the two models (spatial and temporal muscle synergies) describe different aspects
of movement coordination (Brambilla et al., 2023a, Chiovetto et al., 2013, Delis et al., 2018,
Russo et al., 2014, Safavynia and Ting, 2012). Temporal muscle synergies allow us to follow the
underlying assumption that the CNS uses a fixed temporal sequence (trial-independent activation
profiles) for the different movement strategies and that muscle weightings vary (trial-dependent
muscle activation vectors) across the support conditions. Spatial and temporal muscle synergies are
commonly extracted using non-negative matrix factorization (NMF) but with differently arranged
EMG input matrices (Brambilla et al., 2023a, Chiovetto et al., 2013, Delis et al., 2018, Russo et al.,
2014, Safavynia and Ting, 2012).
For the extraction of temporal muscle synergies, the EMG signals (30 channels) of all trials (tr is
the number of trials) belonging to the same strategy (strat) were horizontally concatenated into a
data matrix Mstrat ∈ R101×30·tr

≥0 . NMF decomposed Mstrat into a set of Nstrat trial-independent
activation profiles Cstrat, n ∈ R101×1

≥0 , and trial-dependent muscle weightings Ws
strat, n ∈ R1×30

≥0

(Lee and Seung, 1999, 2001, Russo et al., 2024). Thus, EMG data from a single trial (s is the trial
index)Ms

strat(t) were decomposed with:

Ms
strat(t) ≈

∑
n∈Nstrat

Cstrat, n(t) ·Ws
strat, n

To investigate hypothesis 1 that temporal muscle synergies represent sit-to-stand and stand-to-sit
EMG patterns with a different compactness than spatial muscle synergies, we also extracted
spatial muscle synergies. Therefore, the EMG signals (30 channels) of all trials belonging to the
same strategy (strat) were horizontally concatenated into a data matrix Mstrat, spatial ∈ R30×101·tr

≥0 .
NMF decomposed Mstrat, spatial into a set of Nstrat, spatial trial-independent muscle weightings
Wstrat, n, spatial ∈ R30×1

≥0 , and trial-dependent activation profiles Cs
strat, n, spatial ∈ R1×101

≥0 (Lee and
Seung, 1999, 2001, Russo et al., 2024). Thus, EMG data from a single trial (s is the trial index)
Ms

strat spatial(t) were decomposed with:

Ms
strat, spatial(t) ≈

∑
n∈Nstrat, spatial

Wstrat, n, spatial · Cs
strat, n, spatial(t)

NMF’s iterative decomposition was limited to 3,000 iterations and started 50 times to avoid
convergence to a local minimum (Bach et al., 2021, Carey et al., 2021).
A fivefold cross-validation procedure was used to increase the confidence that the extracted muscle
synergies were robust and generalizable rather than due to characteristics of single trials. In
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line with the literature, a training/test split of 80:20 was employed (d’Avella et al., 2003, Muceli
et al., 2010). Muscle synergies were extracted from a random 80% portion of the trials. Then,
the trial-independent parts were fixed and fitted to the remaining 20% of the trials. Finally,
the reconstruction quality R2

CV of the fits to the test sets was used to identify the number of
synergies. R2 is a multivariate measure allowing assessment of the reconstruction quality: R2 = 1 -
SSE/SST , with SSE being the sum of the squared residuals and SST the sum of the squared
residuals from the mean vector (d’Avella et al., 2006). The numbers of synergies Nstrat and
Nstrat, spatial were chosen at the R2-knee point, after which the R2 curve remained approximately
straight (d’Avella et al., 2006). Therefore, a series of linear regressions were fitted to the R2

curve, starting with the interval [N1, N30] and iteratively removing the smallest N from the
interval. Then, the regressions’ mean squared residual errors (MSE) were calculated, and Nstrat

andNstrat, spatial were selected for the first numberN with anMSE smaller than 10-4. The number
of synergies to extract must be chosen carefully to obtain a good low-dimensional representation of
the data with minimum noise (Banks et al., 2017, Tresch et al., 2006), and numerous criteria have
been proposed (Zhao et al., 2023). To avoid the results being specific to the choice ofNstrat, rather
than reflecting physiological patterns, an additional criterion was used to compare the results.
Therefore, N∗

strat was chosen to be the minimum number fulfilling both a global (R2
Nstrat

≥ 0.9)
and a local criterion (R2

n − R2
n−1 < 0.05; n = 1 . . . Nstrat).

To investigate hypothesis 1 that temporal muscle synergies represent sit-to-stand and stand-to-
sit EMG patterns with a different compactness than spatial muscle synergies, we compared
the compactness of the spatial and temporal muscle synergy extractions using two metrics.
Firstly, we compared the dimensionality reduction (R2-knee criterion) between temporal and
spatial extractions (Nstrat and Nstrat, spatial). Secondly, the number of trial-dependent parameters
(temporal: synergies · muscles, spatial: time samples · synergies) and the number of trial-
independent parameters (temporal: time samples · synergies, spatial: synergies · muscles) were
also compared between the temporal and spatial extraction, with the number of synergies selected
at the respective R2-knee point (Delis et al., 2014).
This justified the choice of temporal muscle synergies beyond the assumption that the CNS
uses a fixed temporal sequence (trial-independent activation profiles) for the different movement
strategies and that muscle weightings vary (trial-dependent muscle activation vectors) across the
support conditions (degree of handle support). All steps regarding muscle synergy analyses were
done separately for the two movements and floor conditions.

5.3.6.2 Matching of similar synergies across the movement strategies

To investigate hypothesis 2 that muscle synergy activation differs across movement strategies, the
activation profiles of the different movement strategies were matched with k-means++ clustering
(Matlab kmeans, with the ’plus’ option, 50 restarts with random initial cluster centroid positions,
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maximum 1,000 iterations; Figure 5.1; Ivanenko et al. 2005). Suppose two movement strategies
show n temporal synergies each. If the two movement strategies do not differ in terms of their
activation profiles, k-means++ groups them into n clusters, each with two activation profiles, one
from the first and one from the second movement strategy. A difference between the movement
strategies is identified if there are more than n clusters. In this case, there are clusters with only
one synergy. These clusters are specific to one of the two movement strategies. Accordingly, the
activation profiles within the same cluster are characterized by a similar shape of activation and
timing.
The number of clusters was increased from one until the minimum number for which (1) a
correlation coefficient (Ivanenko et al., 2005) of at least 0.9 per match of all activations profiles
within each cluster with their centroid was ensured and (2) only one activation profile per strategy
was included within each cluster. The clustering was repeated ten times to confirm the robustness
of the cluster assignments (van Drongelen et al., 2021).

5.3.6.3 Statistics

Timing and duration of temporal synergies

To investigate hypothesis 2 that muscle synergy activation differs across movement strategies
beyond their similarity (see 5.3.6.2), we assessed the duration of activation by measuring the
full-width at half-maximum of the main peak (FWHM ; Matlab findpeaks; Ivanenko et al.
2005). Therefore, the time difference between the two points at half-height on either side of the
main peak was calculated. As sit-to-stand and stand-to-sit are sequential movements, we cannot
assume that the boundary synergies (synergies with the peaks close to the movement start and
end) are symmetrical. In the case of boundary synergies, we measured the difference between the
movement start and the point of half-height of the descending synergy or the difference between
the point of half-height and the movement end.

Linear mixed model to assess differences in the muscle weightings

To investigate hypothesis 3, i.e., to identify the changes in the muscle weightings between the
support conditions (unassisted, light touch, full support), a linear mixed model (LMM) was
used (Matlab fitlme). The LMM considers that repeated measures of a single participant are
likely correlated (Aarts et al., 2014, Tirrell et al., 2018) allowing us to manage the distribution of
participants’ trials over several movement strategies. To account for the simultaneous changes in
multiple muscle weightings (trial-dependent muscle activation vectors) with the support condition,
a multivariate LMM approach was used (Twisk, 2019).
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Single trials (level 1) were nested into participants (level 2). The support conditions were included
as dummy variables using reference coding (LT or FS set to 1, or both to 0 for the unassisted
condition). The first multivariate LMM was calculated with UA as the reference group, and the
second multivariate LMM with LT as the reference group, allowing investigation of all pairwise
comparisons within the support conditions. Each vector of muscle weightings belongs to one
temporal synergy, i.e., the reference frames in which the muscle weightings lie are different across
the temporal synergies, so one multivariate LMM was used for each vector. For example, for
the non-challenging sit-to-stand task using the forward leaning strategy, seven synergies led to
14 multivariate LMM tests within this task (seven synergies tested once with UA and once with
LT as reference group). Sex was added as a within-participant control variable at level 1 but
was not included in the final model as it did not improve the model based on the change in the
-2 log-likelihood or the Akaike’s information criterion (Matlab’s linearmixedmodel.compare
function; Ippersiel et al. 2021, Russell and Haworth 2014). The residual plots were inspected
to assess normality, linearity, and homoscedasticity as prerequisites for LMM, and no gross
violations were found (Hox et al., 2017, Snijders and Bosker, 2012).
The multivariate LMM regression formula was:
Level 1:

Weightingstp = β0p + β1pLTtp + β2pFStp + ϵtp

Level 2:
β0p = γ00 + µ0p

β1p = γ10

β2p = γ20

Weightingstp represents the meanmuscle weighting across the left and right limb of each bilaterally
assessed muscle and the single weightings of M. erector spinae and M. rectus abdominis of a given
synergy on the tth trial for the pth participant. The β0p represents the intercept, β1p and β2p the
fixed effects for the support conditions, and ϵtp represents the trial- and participant-specific residual.
The variable µ0p is a support-specific random component of β0p and the γ fixed effect parameters.
Accordingly, the following formula was used for the function specification of the fitlme function:
’Weightings ∼ LT + FS + (1 | Participant)’. To account for the multivariate nature, muscle
weightings were vertically concatenated into Weightingstp. For the second multivariate LMM
test, ’LT ’ was exchanged with ’UA’ to have LT as the reference group. The t-statistic on the
β coefficients was used for hypothesis testing with the significance set a priori at a two-sided
α = 0.05 (Russell and Haworth, 2014). To reduce the probability of type I errors, the level of
significance was adjusted according to the number of tests within one movement strategy (e.g.,
for the seven synergies in the non-challenging, sit-to-stand forward leaning strategy, the level of
significance was adjusted for 14 tests with Bonferroni correction).
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If the multivariate LMM showed significance regarding the support groups (Twisk, 2019),
MscName (a categorical variable representing the muscle names, using effect coding,MscName
indicates the vector of dummy variables) was used in the second step as a dummy variable of the
LMM analyses using effect coding. Therefore, the interaction between the muscles and the support
condition was added to the LMM. This revealed the muscles in which the support condition affects
their weighting with respect to the mean of the group mean of the reference muscle (M. Rectus
abdominis) and support group (effect coding). Consequently, the following model was used:
Level 1:

Weightingstp = β0p + β1pLTtp + β2pFStp

+ βT
3pMscNamep + βT

4pLTtpMscNamep + βT
5pFStpMscNamep

+ ϵtp

Level 2:
β0p = γ00 + µ0p

β1p = γ10

β2p = γ20

β3p = γ30

β4p = γ40

β5p = γ50

Matlab model function: Weightings ∼ (LT + FS) ∗ MscName + (1 | Participant)
To reduce the probability of type I errors, the significance level (α = 0.05) was adjusted to the
number of tests with the second model, at maximum three if a significant effect was found for
each pairwise comparison of UA, LT , and FS. The LMMwas implemented using the maximum
likelihood method.

5.4 Results

5.4.1 Temporal muscle synergies result in a more
compact representation than spatial muscle
synergies in sit-to-stand and stand-to-sit
EMG patterns

To investigate if temporal muscle synergies represent sit-to-stand and stand-to-sit EMG patterns
with different compactness than spatial muscle synergies, both types of synergy were extracted
from the EMG data. In each movement task, six to ten temporal synergies reconstructed the EMG
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patterns (Figure 5.2) with an R2 between 0.84 and 0.89 (Figure 5.2, Table 5.1). In particular,
5.8 ± 2.4 fewer synergies were necessary for the temporal than for the spatial extraction with
the R2-knee criterion. Figure 5.4 shows the EMG and the good reconstruction for an exemplary
participant. Furthermore, Figure 5.3 also shows that muscle activity and their reconstruction
are very symmetrical between the left and right sides, along with an increase in upper body
muscle activity with increasing support. The number of trial-independent parts is smaller for the
temporal muscle synergies than for the spatial muscle synergies, and fewer trial-dependent parts
are necessary for every trial (Table 5.2). Accordingly, the total number of the trial-independent and
trial-dependent parts is smaller for the temporal muscle synergies, which indicates that the higher
R2 of the temporal muscle synergies is not simply due to the number of parts. Thus, temporal
muscle synergies represent the EMG patterns more compactly than spatial muscle synergies
(hypothesis 1). Accordingly, the subsequent analyses were done with temporal muscle synergies.
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

Figure 5.3: Kinematics (top), original EMG (gray areas), and reconstruction (red solid lines). Data from one exemplary
participant using the forward leaning strategy to stand up. The dashed line indicates the movement start, i.e.,
the first visible CoM movement. The dotted line indicates seat-off. Left: unassisted, middle: light touch,
right: full support condition. Muscle activity of the right limb is in the positive direction, and the left limb is
in the negative direction.
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5.4 Results

5.4.2 The timing of temporal muscle synergies differs across
movement strategies

To investigate hypothesis 2 that muscle synergy activation differs across movement strategies, tem-
poral synergy activation profiles were clustered using k-means++ across the movement strategies
and differences were identified if specific clusters were found (see 5.3.6.2).

5.4.2.1 Sit-to-stand movement strategies

In the non-challenging task (Figure 5.4), the activation profiles of the seven forward leaning
synergies and the six hybrid and six vertical rise strategies were grouped into eight clusters.
Timing differed across the movement strategies between movement start and shortly before seat-
off. Also, there is one distinct forward leaning synergy active right after seat-off. At movement
start, seat-off, and at movement end, the clusters contained synergies from all three movement
strategies. Hence, at these times, the activation profiles do not differ.
In the challenging condition (Figure 5.5), the ten synergies of the exaggerated forward leaning
and eight from the forward leaning strategy were grouped into eleven clusters. Right after seat-
off, the timing of the synergies differs between the two movement strategies, with three distinct
exaggerated forward leaning temporal synergies. This differs from the non-challenging task, where
we additionally found differences between movement start and seat-off. Across all movement
strategies, the main synergy peaks widths (FWHM ) were larger at movement start and end than
in the middle, especially around seat-off (Table 5.3).
The findings that the timing of the temporal muscle synergies differs across themovement strategies
are robust regarding the criterion for selecting the numbers of synergies (Supplementary figure A.7.
Therefore, we accept our second hypothesis that muscle synergy activation differs across movement
strategies regarding sit-to-stand movements.
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

Figure 5.4: Temporal muscle synergies in the sit-to-stand movement and non-challenging condition. Top: Exemplary
movements in the unassisted, light touch, and full support conditions (in rows) and movement strategies
(color-coded). Bottom, left: Temporal muscle synergies sorted chronologically and color-coded according to
the movement strategy. The dashed line indicates the movement start, i.e., the first identified CoM movement.
The dotted line indicates seat-off. The timing of the three movement strategies was different, as indicated by
the strategy-specific temporal synergies 2, 3, and 6. Bottom, right: Bar graphs show mean muscle weightings
across the left and right side (except ES and RA), all trials within a strategy and support condition, and single
dots represent trial-specific weightings in two columns for the left and right limbs. The different color shades
indicate the support conditions. The bars indicate statistically significant differences according to the LMM
statistics (details in section A.3.4).
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

Figure 5.5: Temporal muscle synergies in the sit-to-stand movement and challenging condition. Top: Exemplary
movements in the unassisted, light touch, and full support conditions (in rows) and movement strategies
(color-coded). Bottom, left: Temporal muscle synergies sorted chronologically and color-coded according to
the movement strategy. The dashed line indicates the movement start, i.e., the first identified CoM movement.
The dotted line indicates seat-off. The timing of the two movement strategies was different, as indicated by the
strategy-specific temporal synergies 1, 7, 8, and 10. Bottom, right: Bar graphs show mean muscle weightings
across the left and right side (except ES and RA), all trials within a strategy and support condition, and single
dots represent trial-specific weightings in two columns for the left and right limbs. The different color shades
indicate the support conditions. The bars indicate statistically significant differences according to the LMM
statistics (details in section A.3.4).

5.4.2.2 Stand-to-sit movement strategies

In the non-challenging task (Figure 5.6), the activation profiles of the eight backward lowering,
hybrid, and vertical lowering strategies were grouped into ten clusters. Most of the time, the timing
across the three movement strategies did not differ. However, there was one distinct synergy for
each of the movement strategies: the distinct backward lowering synergy is active after seat-on, the
distinct hybrid synergy at seat-on, and the distinct vertical lowering synergy between movement
start and seat-on.
In the challenging condition (Figure 5.7), seven synergies of the exaggerated forward leaning and
the forward leaning strategy were grouped into eight clusters. As in the non-challenging task, the
timing did not differ between the two strategies most of the time. However, each strategy shows
a distinct synergy. For the exaggerated forward leaning strategy, the synergy is active at seat-on,
and for the forward leaning synergy after seat-on.
Similar to the sit-to-stand movements, the widths of the main synergy peaks (FWHM ) were
larger at movement start and end than in the middle, especially around seat-off (Table 5.3). Also,
the finding that the timing of the temporal muscle synergies differs across the movement strategies
is robust regarding the criterion for selecting the numbers of synergies (Supplementary figure A.7).
Therefore, we accept our second hypothesis that muscle synergy activation differs across movement
strategies for stand-to-sit movements.
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5.4 Results

Figure 5.6: Temporal muscle synergies in the stand-to-sit movement and non-challenging condition. Top: Exemplary
movements in the unassisted, light touch, and full support conditions (in rows) and movement strategies
(color-coded). Bottom, left: Temporal muscle synergies sorted chronologically and color-coded according to
movement strategy. The dashed line indicates movement start, i.e., the first identified CoM movement. The
dotted line indicates seat-off. The timing of the three movement strategies was different, as indicated by the
strategy-specific temporal synergies 4, 7, and 9. Bottom, right: Bar graphs show mean muscle weightings
across the left and right side (except ES and RA), all trials within a strategy, and support condition, and single
dots represent trial-specific weightings in two columns for the left and right limbs. The different color shades
indicate the support conditions. The bars indicate statistically significant differences according to the LMM
statistics (details in section A.3.4).
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

Figure 5.7: Temporal muscle synergies in the stand-to-sit movement and challenging condition. Top: Exemplary
movements in the unassisted, light touch, and full support conditions (in rows) and movement strategies
(color-coded). Bottom, left: Temporal muscle synergies sorted chronologically and color-coded according to
the movement strategy. The dashed line indicates movement start, i.e., the first identified CoM movement.
The dotted line indicates seat-off. The timing of the two movement strategies was different, as indicated by
the strategy-specific temporal synergies 5 and 7. Bottom, right: Bar graphs show mean muscle weightings
across the left and right side (except ES and RA), all trials within a strategy and support condition, and single
dots represent trial-specific weightings in two columns for the left and right limbs. The different color shades
indicate the support conditions. The bars indicate statistically significant differences according to the LMM
statistics (details in section A.3.4).
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

5.4.3 The degree of support influences muscle weighting

To test for differences in muscle weightings (right-hand columns of Figure 5.4, Figure 5.5,
Figure 5.6, and Figure 5.7) across the support conditions (UA, LT, FS) with regard to hypothesis
3, that rollator support influences the weightings between upper body and lower limb muscles,
LMMs were calculated. Detailed statistical results with p-values corrected for multiple testing are
presented in section A.3.4.

5.4.3.1 Sit-to-stand movement strategies

In the non-challenging task, muscle weightings changed from the start of the movement onwards.
The main change was an increased weighting of upper body muscles in the full support condition
compared to unassisted across all movement strategies. Shortly before and at seat-off, muscle
weightings showed a changewith increased upper body and decreased lower limbmuscleweightings
in full support compared to the unassisted condition in the forward leaning and vertical rise strategy.
After seat-off, minor changes were only observed in the vertical rise strategy.
More changes were observed in the challenging task than in the non-challenging task. At movement
start, upper body muscles were more weighted in the full support condition than in the unassisted
condition for all movement strategies. Shortly before and at seat-off, muscle weightings showed
increased upper body and decreased lower limb muscle weightings in full support compared to
the unassisted condition, as in the non-challenging task. After seat-off, we observed decreased
weightings of the muscles acting around the ankle with light touch and full support, which is a
specific finding of the challenging condition.
With regard to the sit-to-stand task, we accept the hypothesis that rollator support influences the
weightings between upper body and lower limb muscles.

5.4.3.2 Stand-to-sit movement strategies

In the non-challenging task, no significant differences between the support conditions were
observed for the backward lowering strategy. However, some changes were observed in the
hybrid and vertical lowering strategy: at and after seat-on, the weightings of M. pectoralis major,
latissimus dorsi, and arm muscles increased in the light touch and full support conditions.
In the challenging task, no significant changes in muscle weightings were observed in the forward
leaning strategy after the movement began. However, muscle weightings changed at seat-on and
movement end in the exaggerated forward leaning strategy. Comparable to the non-challenging
task, the weightings of M. pectoralis major, latissimus dorsi, and arm muscles increased in the
light touch and full support conditions. In addition, the weightings of M. gluteus medius and
tensor fasciae latae decreased with support.
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5.5 Discussion

With regard to the sit-to-stand task, we accept the hypothesis that rollator support influences the
weightings between upper body and lower limb muscles.

5.5 Discussion

The study investigated the influence of rollator handle support on movement coordination in
sit-to-stand and stand-to-sit movements while considering that people employ different movement
strategies. Three support conditions were investigated: no assistance, light touch (haptic cue), and
full support (supposed load reduction in the lower limbs). Furthermore, balance pads were placed
underneath the young participants’ feet to make the movements challenging by increasing postural
instability (non-challenging vs. challenging condition). We hypothesized that (1) temporal muscle
synergies represent sit-to-stand and stand-to-sit EMG patterns with a different compactness than
spatial muscle synergies. Furthermore, we hypothesized that (2) muscle synergy activation differs
across movement strategies and that (3) rollator support influences the weightings between upper
body and lower limb muscles.

5.5.1 Temporal muscle synergies represent sit-to-stand
and stand-to-sit EMG patterns more compactly
than spatial muscle synergies

With six to ten temporal muscle synergies, low-dimensional representations of the sit-to-stand
and stand-to-sit movement strategies with 30 EMGs were obtained with R2 values between 0.84
and 0.89. The number of synergies found was higher than in studies investigating sit-to-stand
movements, in which three to four spatial muscle synergies explained 87-94% of the variance
(An et al., 2013, Carey et al., 2021, Hanawa et al., 2017, Kogami et al., 2021, Ranaldi et al., 2023,
Yang et al., 2017). However, in these studies, no upper body muscle activity was measured, and no
assistive device was used. In particular, previous studies also found that the number of synergies
increased when participants used assistive devices, for example, Nordic walking sticks (Candow
and Chilibeck, 2005) or exoskeletons (Lynch et al., 1999, Ashford and De Souza, 2000) or while
they were pushed up by the chair during sit-to-stand (Wang et al., 2021). This supports the higher
number of synergies found here compared to earlier sit-to-stand studies (An et al., 2013, Carey
et al., 2021, Hanawa et al., 2017, Kogami et al., 2021, Ranaldi et al., 2023, Yang et al., 2017).
Also, spatial or spatiotemporal rather than temporal synergies were extracted in the referenced
studies. Thus, comparisons regarding the reconstruction quality are limited. Nevertheless, the
main functional groups, i.e., groups of coactivated muscles, identified with spatial synergies in
the studies mentioned above largely align with the muscle weightings in our study.

153



5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

We found that temporal muscle synergies provide a more compact representation than spatial
synergies, which is supported by studies of upper-limb and postural tasks (Brambilla et al., 2023a,
Russo et al., 2014, Safavynia and Ting, 2012) and our finding that the change in slope (“knee”)
in the R2 curve was more pronounced with temporal synergies was also found recently during
postural tasks (Brambilla et al., 2023a). Spatial and temporal muscle synergies are two of several
possible representations of modular control (Delis et al., 2014). In general, the CNSmight generate
motor commands by a few sample-independent modules, which are thought to be shared across
tasks and conditions (d’Avella et al., 2003) and are activated sample-dependently. The sample-
independent part is thought to be stored in subcortical areas (Delis et al., 2014). Consequently,
with temporal synergies, it is assumed that activation profiles are stored and muscle weightings
are sample-dependently composed (Alessandro et al., 2013, Hart, 2004, Hart and Giszter, 2010).
The good reconstruction quality with temporal synergies hints that the CNS may store activation
sequences for sit-to-stand and stand-to-sit movements, while it has to be acknowledged that the
neural underpinning of muscle synergies is still debated (Cheung and Seki, 2021, Tresch and Jarc,
2009).

5.5.2 The activation profiles of the temporal muscle
synergies show similar shapes but differ in timing
across movement strategies

Across all conditions, the activation profiles of the temporal muscle synergies mostly have a
symmetric bell shape with a single point of maximum activation, similar to those found in the
literature (Chiovetto et al., 2013, Torricelli et al., 2020). The shapes are similar across the
movement strategies, with a narrower width at seat-on and seat-off than at movement start and
end. Furthermore, no support-specific synergies emerged with only high lower limb or upper-limb
muscle weightings. However, the timing of the temporal muscle synergies differs across the
movement strategies, which supports hypothesis 2. Similarly, Yang et al. (2017) found that their
momentum transfer and stabilization movement strategy only differed in the activation timing of
the spatial muscle synergy, which was predominantly active around seat-off. This aligns with the
activation times of the forward leaning, hybrid, and vertical rise strategies (synergies 2, 3, and 6).
Accordingly, the differences may stem from strategy-specific biomechanical requirements during
this phase, e.g., in the forward leaning strategy to transfer the momentum generated by the upper
body from the trunk to the thigh to stand up (Anan et al., 2012, Jeon et al., 2019, Riley et al., 1991).
Also, comparing the exaggerated forward leaning to the forward leaning strategy in the sit-to-stand
challenging movement, there are distinct activation profiles after seat-off while the body is erected,
probably reflecting different biomechanical demands when participants keep their CoM over the
BoS for longer in the exaggerated forward leaning strategy (Herzog et al., 2023). Hence, different
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5.5 Discussion

movement strategies may emerge through different activation sequences, and rollator support does
not provoke a different pattern of impulses.

5.5.3 Temporal synergies reveal that tightness of control is
increased in balance-critical phases

A recent study related temporal muscle synergies to the model of intermittent control of movement
(Brambilla et al., 2023a). According to this model, the CNS sends pulsed commands that are
transformed into muscle activation profiles (Leib et al., 2020). The muscle activation profiles are
adjusted in amplitude (here: sample-dependent muscle weightings) and finally result in motor
output (Gross et al., 2002). Sit-to-stand and stand-to-sit movements consist of multiple phases.
Indeed, the literature has identified four to six phases, and even up to eleven (Etnyre and Thomas,
2007, Kotake et al., 1993, Schenkman et al., 1990), each of which has different requirements for
motor control.
Numerous temporal synergies have been observed in this study, and their peaks are narrow,
especially around the balance-critical seat-off and seat-on (Hughes et al. 1994, Komisar et al. 2023,
Pai et al. 1994; see Table 5.3). Regarding the intermittent control model, these narrow, i.e., tight
in time, peaks could reflect that each “control action” has a short duration. Accordingly, the CNS
might tightly control the movements using multiple, successive pulsed commands to fulfill the
demands of the phases’ different requirements. This tight CNS control is further supported by
the increased number of temporal synergies in the challenging sit-to-stand condition, where the
balance difficulty was increased. The exaggerated forward leaning strategy revealed three more
synergies than the forward leaning strategy in the challenging sit-to-stand task. We previously
aligned the former with the so-called “stabilization strategy”, based on visual inspection of the
stick figures, the hip and CoM-heel angles before seat-off, and the sagittal CoM trajectory (Herzog
et al., 2023). We suggested it increases stability and safety when coping with the increased balance
challenge due to the longer time the CoM resides inside the BoS (Herzog et al., 2023, Sadeh et al.,
2023). The higher number of temporal synergies found here may reflect this coping mechanism.
However, the prolonged time keeping the CoM inside the BoS might increase the need for CNS
control. In particular, Scarborough et al. (2007) propose that participants might need to sit back
if adequate momentum could not be generated (Scarborough et al., 2007). Therefore, the CNS
probably increases the tightness of control to enable successful movements and prevent a sit-back.
However, the high number of required narrow synergies, and thus a high demand for CNS control,
may be critical for older people or people with disabilities. This aligns with Scarborough et al.’s
(2007) argument that this strategy might not be the safest because both vertical and anterior
momentum need to be generated adequately. Although this cannot be addressed with our healthy
cohort, future studies may investigate whether people with reduced balance capacity in standing
up and sitting down movements lack tight CNS control.
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5 Topic B, Study B2: Muscle synergies in rollator-supported sit-to-stand and stand-to-sit tasks

5.5.4 Rollator support increases upper body and decreases
lower limb muscle weightings

In support of hypothesis 3, we found that the weightings of upper body muscles increased with
support across movement strategies in general, especially at seat-off and seat-on. Likewise, lower
limb muscle weightings decreased with support. In particular, the weightings of muscles acting
around the ankle decreased with support in the challenging sit-to-stand task.
Generally, these shifts find support in the literature. Suica et al. (2016) found that walking with a
rollator significantly reduced lower limb muscle activity in healthy subjects, and IJmker et al.’s
(2015) EMG analysis with stroke survivors showed a drop in lower limb muscle activity when
participants touched or held a handrail while walking on a treadmill. However, in these studies,
participants walked rather than performing sit-to-stand or stand-to-sit movements, and only lower
limb EMG was measured. Chihara and Seo (2014) compared the activity of the anterior deltoid,
triceps brachii, rectus femoris, and tibialis anterior in sit-to-stand movements with different handle
heights positioned at either side of the participant and found that triceps activity increased while
tibialis anterior activity decreased with higher handle height, while the anterior deltoid and rectus
femoris were unaffected. This partly supports our findings, yet comparisons are limited as they
did not compare muscle activity to unassisted standing up.
Interestingly, the lower limb muscles that often showed reduced weightings with increased support
in our study, namely rectus femoris, gluteus medius, tibialis anterior, and peroneus longus, are
highly relevant for both knee extension and balance (Donath et al., 2015, Gottschalk et al., 1989,
Louwerens et al., 1995, Salzman et al., 1993), exemplifying the easing support of the rollator.
These results could be very relevant to balance in older adults. Amiridis et al. (2003) found that
older adults rely more on hip muscles to maintain balance than younger adults in a number of
static balance tasks, and a systematic review (Lanza et al., 2022) found that hip abductor strength
is critical for balance and to avoid falls. In particular, gluteus medius was among those with
decreased activity with support in our study. Upper body muscle weightings, most often in the
triceps, biceps brachii, and latissimus dorsi, increased with support across all movements. Their
contributions likely enabled our participants to stand up and sit down with less lower limb muscle
activity. The biceps flexes the elbow, and the latissimus dorsi adducts and medially rotates the
humerus at the glenohumeral joints, bringing the body to the arms. The triceps is an elbow
extensor (Kholinne et al., 2018), assisting in bringing the body upward against gravity and helping
to balance the trunk during sit-to-stand (Munro and Steele, 1998). Thus, the rollator-induced
decrease in lower limb muscle weightings can be associated with a reduced leg strength required
to fulfill both standing up and sitting down, following the roughly linear EMG/force relationship
(Alkner et al., 2000). Therefore, if less force can or needs to be generated by the lower limb
muscles, a rollator can help people with problems standing up. An in-depth analysis relating the
changes in muscle weightings to the different movement strategies may further help to recommend
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specific movement strategies, e.g., strategies that most dramatically shift the muscle weightings
from lower to the upper body.

5.5.5 Limitations

Several potential limitations of this study need to be considered. First, our rollator-simulator
device is heavier than a commercially available rollator and cannot dip or roll, which might
influence how much people can lean and pull on the rollator handles. Secondly, we restricted
the foot placement to be parallel and underneath the knees for standardization purposes, in line
with other biomechanical studies (van der Kruk et al., 2021b). While this is standard practice, it
hindered the participants from pulling their feet backward to stand up, which is another everyday
common movement strategy while standing up (Dolecka et al., 2015). Thirdly, we included
only young people. Even though we used balance pads to challenge them, the generalizability
of the results to persons who are older or physically limited and dependent on a rollator may
be limited. Nevertheless, Hanawa et al. (2017) found that the synergies in standing up remain
similar regardless of the participant’s age. Fourthly, despite explanation, familiarization trials,
and careful observation, we cannot rule out the possibility that the participants applied more force
to the handles in the light touch condition than is typical for studies with haptic cues (Kouzaki
and Masani, 2008). Fifthly, the participants are low in number regarding using LMM statistics but
at the highest level in the analysis; therefore, their number is not a major problem. Sixthly, even
after careful consideration, we cannot exclude that other thresholds or matching procedures might
have led to a different grouping of the temporal synergies’ activation profiles. Lastly, we observed
symmetric activation of the muscles between the right and left limbs. Thus, future studies could
focus on unilateral assessment of muscle activity and increase the resolution, e.g., by additionally
measuring the hip adductors, M. gluteus maximus, all deltoid parts, and muscles acting on the
wrist.

5.6 Conclusion

This study investigated the rollator’s influence on the movement coordination for standing up
and sitting down, while accounting for different movement strategies. Our temporal muscle
synergy analysis found that the timing, but not the shape, of the temporal muscle synergies differs
across the movement strategies. Further, we found that the CNS tightly controls standing up and
sitting down movements, especially during the balance-critical phases around seat-off and seat-on.
Additionally, no support-specific synergies were found, suggesting that the CNS does not need to
alter the control if a rollator is used. However, muscle weightings shifted from the lower limbs to
the upper body with increased support. In sum, we suggest that people struggling with rollator
use practice movement strategies requiring less tight CNS control, like the forward leaning instead
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of the exaggerated forward leaning strategy to stand up. Further studies should investigate if these
findings hold for older and fall-prone individuals, to enable safe and efficient recommendations
on rollator usage.
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This dissertation aimed to improve our understanding of human motor control and learning in two
topics:

Topic A: Coordination and adaptation of reaching movements using a robotic manipulandum
and virtual reality technologies

Topic B: Effects of rollator support on the coordination of sit-to-stand and stand-to-sit move-
ments using a robot rollator simulator

The topics approached human motor control and learning using human-robot interaction. Topic
A addressed the challenges of redundancy, versatility, and time-varying properties. Topic B
addressed the challenges of redundancy and versatility. In topic A, a simple skill – reaching – and
a robotic manipulandum were used. In topic B, complex skills – sit-to-stand and stand-to-sit –
and a robot rollator simulator were used. While topic A addressed the adaptation phase, topic
B addressed the coordination of human-robot interaction after adaptation. While the primary
focus was on the representational level, with movement strategy and muscle synergy analyses, the
computational and implementation levels were also addressed and discussed.
The main findings of topic A with respect to the aims and scope were:

• The first aim was to analyze the influence of the organization of practice variability on
force field adaptation, retention, and spatial generalization. It was found that the CIE
was apparent in force field adaptation. Specifically, a random practice schedule regarding
the target locations led to slower adaptation, but not to different performance levels at
the practice end, compared to a blocked practice schedule. Furthermore, it led to better
short-term retention and spatial generalization. These results were, to a great extent,
reflected by a computational state-space model. This model further provided possible
explanatory mechanisms with respect to the forgetting-and-reconstruction hypothesis for
the CIE. These findings, along with their practical implications, will be further discussed in
the sections 6.1.1-6.1.2.

• The second aim was to analyze the underlying coordination of force field adaptation, reten-
tion, and spatial generalization at the muscular level. It was found that force field adaptation
involved structural changes in muscle synergies compared to reaching in unperturbed con-
ditions, alongside a novel four-phasic muscle synergy activation pattern. Moreover, these
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structural changes and activation patterns likely facilitated retention and spatial generaliza-
tion, as the same muscle synergies and their activation patterns were also reflected in these
phases. Accordingly, muscle synergy analysis provided new insights into changes in the
representation of internal models in human motor adaptation. These findings, along with
their practical implications, will be further discussed in the sections 6.1.3-6.1.4.

The main findings of topic B with respect to the aims and scope were:
• The third aim was to analyze the influence of rollator support on movement strategies for
transitions between sitting and standing. It was found that most participants switched their
movement strategies with rollator support in sit-to-stand and stand-to-sit movements. They
tended to stand up and sit down with less upper body forward lean and a more vertical trunk
orientation when they used the rollator handles. This tendency was also found when the
participants’ balance was challenged by balance pads beneath their feet. Participants stood
up and sat down with less upper body forward lean and a more vertical trunk orientation
when they used the rollator handles. These findings, along with their practical implications,
will be further discussed in the sections 6.2.1-6.2.2.

• The fourth aim was to analyze the underlying coordination for transitions between sitting
and standing at the muscular level with respect to movement strategies. It was found that the
activation functions of the temporal muscle synergies showed similar shapes but differed
in timing across movement strategies. Furthermore, rollator support altered the muscle
weightings, such that the weightings of the arm muscles increased and the weightings of the
lower limb muscles decreased. This was especially evident during seat-off and seat-on. In
addition, regardless of the movement strategy, during both standing up and sitting down,
the CNS may employ intermittent control and send impulses at a high frequency during
the balance-critical seat-off and seat-on phases. Accordingly, the tightness of control was
increased in balance-critical phases. These findings, along with their practical implications,
will be further discussed in the sections 6.2.1-6.2.2.

The following section discusses the main findings and their implications. Limitations, outlooks,
and the conclusion complete this chapter.

6.1 Main findings in topic A – Coordination and
adaptation of reaching movements

Humans have the remarkable capability to adapt their motor commands in response to a systematic
perturbation, reapply, and generalize the thereby acquired knowledge to new situations. The two
studies in this topic have investigated if motor adaptation, retention, and spatial generalization
(1) are affected by the organization of practice variability and (2) how they are represented at
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the level of muscle activations. Their results are discussed in the following section, along with a
perspective on sports-related considerations.

6.1.1 State-space models help unravel why the random group
outperforms the blocked group with regard to the
forgetting-and-reconstruction hypothesis

The first study investigated the CIE by comparing two practice protocols, a blocked and an
interleaved protocol. While the CIE has been studied extensively since it was first mentioned
(Battig, 1972, Magill and Hall, 1990, Schmidt et al., 2019), its underlying mechanisms are still
unclear. This becomes evident as recent meta-analyses found that CI has only a medium effect
on retention and learning in favor of random practice (Czyż et al., 2024a,b). Furthermore, while
in laboratory settings, the effect of random practice was medium for retention and generalization,
it was at most small in applied settings (Czyż et al., 2024a,b). To shed light on the CIE, the
force field adaptation paradigm allows control of different contexts (reaching directions, force
field magnitudes). Furthermore, SSMs fit the data with regard to the forgetting-and-reconstruction
hypothesis (Schweighofer et al., 2011, Lee and Magill, 1983, Lee et al., 1985).
Study A1’s overall findings regarding adaptation, retention, and spatial generalization align with
the force field adaptation literature and allowed us to investigate further the group differences
stemming from the different practice protocols. The CIE generally states that the random group
shows detrimental performance during the acquisition but superior performance in retention and
generalization (Shea and Morgan, 1979). Contrarily, our study showed that a random practice
schedule does not lead to different performance levels at the practice end. However, as expected,
the random practice schedule led to a slower adaptation than the blocked schedule and better short-
term retention and spatial generalization (sections 2.5.1-2.5.3). The general agreement with prior
CIE studies allowed to examine the results with respect to a potential underlying mechanism. For
adaptation, retention, and spatial generalization, the extended SSM provided possible explanations
in light of the forgetting-and-reconstruction hypothesis: The SSM output, which is fitted to the
experimental data, is calculated as the sum of a fast and a slow process. Each process is the sum
of a retention summand, which reflects “forgetting”, and an error sensitivity summand, which
reflects “reconstruction” (Schweighofer et al., 2011, Joiner and Smith, 2008). However, to account
for multiple targets, the slow process was further divided into target-specific sub-processes, along
the study by Lee and Schweighofer (2009). Furthermore, these sub-processes reflected the trial-
by-trial spatial generalization of adaptation, such that the sub-process values were increased most
for the just reached target and less for the neighboring targets, according to a Gaussian function
(section 2.3.4.3; Donchin et al. 2003, Howard and Franklin 2015, Rezazadeh and Berniker 2019).
These extensions allowed to relate the experimental results to the forgetting-and-reconstruction
hypothesis. While section 2.5.4 provides a detailed discussion, in brief, (1) the blocked group’s
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faster adaptation could be attributed to a higher error-sensitivity – “reconstruction” – of the fast
process (large effect). This means that with blocked practice, the learning gain toward the next
trials is higher than with random practice, at the beginning of the practice when the fast process
dominates the overall adaptation. This may reflect that no new action plan, in the notion of Lee and
Magill (1983) and Lee et al. (1985), needs to be reconstructed, when the same trials are reached
subsequently. (2) The random group’s better retention in the short-term tests relates to a higher
value of the slow process at the practice end (only medium effect). The slow process contains
the values of the sub-processes and these values are the result of forgetting and reconstructing.
The higher value of the random group probably comes from the fact that each sub-process’ value
increases roughly equally, as the targets were constantly being reached. This contrasts the blocked
group. Here, the values of the sub-processes decreased when they were no longer reached. For
example, the target which was first reached in the blocked schedule gets forgotten while the other
targets are practiced (despite a small gain through the trial-by-trial adaptation). Finally, these
differences in the sub-processes lead to different levels of the slow process at practice end. Overall,
this highlights a difference in the forgetting and reconstruction interplay across the two groups
which was made visible by the SSM. This finds support in the literature, a higher value of the
slow process was also seen as cause for better retention in the study by Schweighofer et al. (2011),
when they compared patients to controls. (3) Finally, the better spatial generalization of the
random group are reflected by sub-processes values of the slow process. That the activity of the
slow process increased more uniformly for the four contexts in random than in blocked practice
resulted in a higher value for the interpolation target, as it was calculated as the average over
the four contexts. For the shifted-origin targets, the context of the practice target with the same
direction served as the context of the respective shifted-origin target. The higher value of the
random group’s spatial generalization could be because the targets were constantly reached. Thus,
the values of the sub-processes increased evenly and were not forgotten, similar to what was just
discussed for retention.
The good fit and gained insights by the SSM support the forgetting-and-reconstruction hypothesis
and the detailed decomposition increases our knowledge of the CIE. Future studies can build on
this and try to assign the processes and sub-processes to the underlying learning processes, such as
the short- and long-term memory, to further understand the CIE (Schweighofer et al., 2011). This
study’s behavioral and computational results can contribute further to the understanding of the
CIE in other motor learning settings. The following section discusses how they can help improve
our understanding of the organization of practice variability in sports.
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6.1.2 Practical implications for the organization
of practice variability in sports

The CIE has extensively been studied in a variety of sports. Yet, in applied settings, the effect
of CI is low at most (Ammar et al., 2023, Czyż et al., 2024a,b). However, the successful use of
different directions as different contexts for CIE in study A1 motivates the practice of different
directions in sports movements, which will be elaborated in the following. Predominantly error-
based learning seems to underly the studied force field adaptation (Wolpert and Bastian, 2021).
This learning type also underlies or at least contributes to the performance in various sports
movements (Spampinato and Celnik, 2021). Hence, the study results may help foster the CIE in
sports movements, especially when error-based learning is underlying.
A potential motor adaptation scenario could be the following. Recalling the exemplary tennis
player who changes their racket to onewith other physical properties and fails with their initial shots.
Considering that the goal is to place the shot at a specific position on the court, the discrepancy
between the intended landing point and the actual landing point of the ball can be seen as a
sensory prediction error. The distance and direction of the discrepancy can be seen as a directional
(signed) error, the type of error necessary for error-based learning (Wolpert et al., 2011). In order
to be able to play successfully with the new racket in the competition, i.e., to be able to shoot
balls where they are intended to land, one could, based on the results of our study, recommend
the player to play at different targets at random instead of blocked while getting used to the new
physical racket characteristics (motor adaptation). In the sense of the CIE, one would associate the
different targets with corresponding contexts and assume a forgetting-and-reconstructing process.
With random practice, the player would forget and reconstruct the action plans for the different
directions, i.e., contexts, respectively, yet surpass another player who practices the different targets
with a blocked schedule. This might be in particular possible when targeting motor adaptation to
a longer lasting change, like a change of rackets (see section 1.4.3.2). This is because, we found
that the benefits in short-term retention and generalization in study A1 related to the slow process
rather than the fast process. However, this is just a gedankenexperiment and has not been tested
to the best of my knowledge.
Furthermore, skill learning studies have shown that the CIE is hard to detect in sports movements,
even if error-based learning underlies: Error-based learning also seems to underly free throw
practice in basketball (Truong et al., 2023), with the difference that motor adaptation does not take
place here. Still, the discrepancy between the intended landing point and the actual landing point
of the ball can be seen as a directional (signed) sensory prediction error (Truong et al., 2023).
Accordingly, players could benefit from a random practice schedule here, too. Indeed, a positive
effect of a random practice schedule on the retention test was found for basketball throws from
different distances (Landin et al., 1993), yet not when directions and locations were varied (Porter
et al., 2020).
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Hence, when translating results from study A1 to sports movements, one must be aware of many
factors potentially mediating the CIE, which need to be acknowledged. First of all, study A1
investigated motor adaptation. Hence, it needs to be tested how much of the findings can be
translated to skill learning, being likely that the underlying processes of motor adaptation overlap
with those of skill learning (Krakauer et al., 2019). Yet, error-based learning is presumably not
the only principle underlying such a real-world skill (Wolpert and Bastian, 2021). This means
that error-based learning presumably does not influence solely the successful acquisition of the
described tennis and basketball skills. Furthermore, while reaching to different directions has
been an appropriate context in the force field study, it is unclear if this is the case for different
shooting directions in tennis or basketball. The CIE seems to take effect only when the practice
contexts are dissimilar to the right amount, as the literature suggests that the effect increases with
the amount of dissimilarity of the contexts up to a certain degree (Guadagnoli and Lee, 2004).

6.1.3 Muscle synergy analysis reveals structural changes
underlying force field adaptation, retention,
and spatial generalization

While study A1 investigated the influence of the organization of practice variability on the
acquisition, retention, and spatial generalization of internal model knowledge using task-related
end-point kinematic and kinetic variables and focused on the computational level, study A2
investigated how internal model knowledge might be represented at a muscular level by muscle
synergies. While the SSM is an elegant tool to investigate motor adaptation and many phenomena
within, it is a function that mapsmany complex sensorimotor mechanisms onto a few parameters on
the task level. Hence, additional information on the mechanisms can be gained by investigating at a
different level of analysis, such as the representational level usingmuscle synergies. However, force
field adaptation, retention, and spatial generalization have not been researched much in relation to
muscle synergies. To our knowledge, study A2 was the first to comprehensively investigate muscle
synergies underlying force field adaptation, retention, and spatial generalization.
The key findingwas thatmuscle activation patterns after adaptation cannot be explained by baseline,
i.e., unperturbed reaching muscle synergies. Instead, structural changes to muscle synergies
alongside a novel muscle synergies activation pattern are required. While in line with previously
published results on kinematic, kinetic, and single muscles (Brashers-Krug et al., 1996, Darainy
and Ostry, 2008, Gandolfo et al., 1996, Milner and Franklin, 2005, Rezazadeh and Berniker, 2019,
Shadmehr and Mussa-Ivaldi, 1994, Thoroughman and Shadmehr, 1999), we presented a novel
characterization of muscular coordination that underlies force field adaptation. These structural
changes were also shown to facilitate retention and spatial generalization, increasing the confidence
that the structural changes reflect an actual mechanism underlying force field adaptation. That
force field adaptation requires structural changes in muscle synergies compared to unperturbed
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reaching is an intriguing novel finding concerning the adaptation of reaching movements and motor
learning in general. In particular, it concerns the question of how motor learning is represented by
muscle synergies.
It is still unclear how changes in muscle synergies relate to improved task performance (Cheung and
Seki, 2021). From a more general perspective, a change in task performance could be represented
by (1) changes in the number of muscle synergies or by changes in (2) the activation functions
or (3) the muscle synergy structure (Park and Caldwell, 2022). All of these changes in relation
to motor learning have been found in the literature. (1) The change in the number of muscle
synergies has often been found with respect to development (Hinnekens et al., 2024, Sylos-Labini
et al., 2020), skill levels (Cheung et al., 2020, Sawers et al., 2015) or impairments (Cheung
et al., 2012, Hayes et al., 2014). A comparison regarding the number of muscle synergies would
make sense in study A2 when comparing different stages of adaptation. However, a comparison
between the baseline and the adapted state is a less fair comparison as the number of conditions
(five directions versus one direction) is unequal, and comparing only the 0◦ direction would
probably lead to the aforementioned methodological problems when sampling to few variations,
as discussed in section 3.5.2. (2) A change in muscle synergy activation patterns has been found
to reflect isometric visuomotor rotation adaptation (De Marchis et al., 2018, Gentner et al., 2013,
Severini and Zych, 2020) and was initially hypothesized also for force field adaptation in study A2
(HSynergies 1). As section 3.5.2 elaborates in detail, literature shows that the muscle activation
patterns for unperturbed reaching to different directions can be reconstructed by a number of
muscle synergies which is lower than the number of directions and muscles, regardless of the
speed or weight support, and that they are even robust for via-point or change-in-target reaching
movements (d’Avella et al., 2006, 2008, 2011,Muceli et al., 2010, Coscia et al., 2014). Furthermore,
it has been shown that changes in the tuning of the muscle synergies facilitate adaptation and
spatial generalization in an isometric visuomotor rotation adaptation task, a paradigm related to
the force field adaptation (De Marchis et al., 2018, Gentner et al., 2013, Severini and Zych, 2020).
Specifically, in these visuomotor rotation adaptation studies, muscle activation patterns during
adaptation and spatial generalization phases could be reconstructed by baseline reaching muscle
synergies, and only the tuning changed. However, these findings are in contrast with the study A2’s
findings and accordingly, (3) muscle synergy structure changed. This is surprising as structural
changes have been more closely related to skill learning than motor adaptation (Cheung et al.,
2020, Park and Caldwell, 2022). The difference between the force field and isometric visuomotor
rotation adaptation may stem from the fact that visuomotor rotation adaptation requires a new
mapping between which direction the reach is supposed to go and where it goes (Krakauer, 2009)
and that there is no additional perturbation during the reach. In contrast, in force field adaptation,
the perturbation endures and changes in magnitude throughout the reach while joint angles and
muscle lengths change. The findings of structural changes can probably be better related to the
virtual surgery paradigm (Berger et al., 2013), especially to incompatible surgeries. Here, a virtual
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surgery swaps the tendons of different muscles so that the muscle-to-force mapping is changed.
After the virtual surgery, structural changes in muscle synergies are necessary to reach targets, as
otherwise, participants cannot adapt to this perturbation successfully. In contrast to the virtual
surgery in which participants cannot fully adapt to the perturbation (surgery), need an extensive
exploration phase (Berger et al., 2022) or multiple sessions (Borzelli et al., 2022), in study A2,
participants successfully adapted to the imposed perturbation within 250 trials. Furthermore,
even if the comparability to reaching movements is minor, a recent study of walking adaptation
to exoskeletons in stroke survivors also showed structural changes in muscle synergies (Rinaldi
et al., 2020). Accordingly, it is to be further explored in which experimental paradigms and how
structural changes occur with adaptation, as a strict association of structural changes and skill
learning on the one hand and changes in activation functions and motor adaptation, on the other
hand, is questioned.

6.1.4 Practical implications for motor learning in sports

Study A2 found that structural changes in muscle synergies are necessary for adaptation during
dynamic reaching, contrasting prior isometric visuomotor rotation adaptation results. Against the
background of improving the understanding of adaptation in sports movements, the presented
findings may be of increased value compared to the isometric visuomotor rotation adaptation
results, as most of the sports movements are dynamic – the tennis player’s arm moves to strike
the ball. Even if the comparability to reaching movements is minor, studies of walking adaptation
to exoskeletons in stroke survivors also showed structural changes in muscle synergies (Rinaldi
et al., 2020), supporting our findings for non-isometric tasks.
In general, muscle synergy analysis has been applied to sports movements (Taborri et al., 2018),
especially in light of different skill and performance levels (Hug et al., 2010, Kim et al., 2018,
Kristiansen et al., 2015, Turpin et al., 2011, Vaz et al., 2016). The benefit from these investigations
could be to extract information on what aspects of the movement the athlete could practice to
improve. Theoretically, weaker performers could optimize their practice to develop their muscle
synergy structure toward the good performers’ muscle synergies. Or, if the differences between
weak and good performers are present in the activation profiles, the athlete could work on the
timing of the individual muscle synergies, like the interplay of upper and lower body movements
(Carson, 2006, Taborri et al., 2018). The result of study A2, that acquired muscle synergies
also enable spatial generalization, can be suggested as an approach to learning movements, while
acknowledging that study A2 investigated motor adaptation and carrying-over the findings to skill
learning needs to be tested. In light of the modular control architecture that individual muscle
synergies are shared across several movements, practicing one movement could simplify the
learning of further movements (generalization). Presumably, if both movements share muscle
synergies, these muscle synergies could be targeted with practice of the first movement and
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facilitate the improvement of the second movement. In sports practice, setting up a series
of drills for skill progression is an effective and frequently used approach (Irwin et al., 2005,
Sands, 2018, Magill and Anderson, 2010). The series of drills is structured in such a way that
a generalization takes place between the successive elements of the series: Surf students first
learn how to paddle and stand up on the board properly on land before applying what they have
learned in the water (Magill and Anderson, 2010). Gymnasts first learn the back extension
roll, then a hip circle (Sands, 2018). Likewise, they start with handstands on the floor before
proceeding to the balance beam or the parallel bars (Sands, 2018). Künzell and Lukas (2011)
compared the snowboarding performance between two groups and found that the group that had
previously completed skateboarding exercises showed a better snowboarding performance than
those without skateboarding exercises. However, the method of series of drills for skill progression
lacks objective foundations, as they are primarily built upon coaches’ experimental practice and
reflection (Irwin et al., 2005). Furthermore, the generalization is not always clear. For example,
humans learning forehand in tennis before learning forehand in badminton often experience an
adverse, detrimental effect due to a different technique of holding the racket (Magill and Anderson,
2010). Hence, insights from examining the shared muscle synergies across tasks and with respect
to generalization could provide a window and an objective means to better understand and set up
a beneficial series of drills for skill progression. Still, this remains speculative, as elaborated in
section 6.1.3, the relationship between practice and changes in muscle synergies is not clear yet
and requires more research (Carson, 2006).

6.1.5 Limitations and future research directions

Study A1 has some limitations, which are discussed below in addition to those in section 2.5.7.
Firstly, individual FF trials were performed at the beginning of the long-term test to address the
warm-up decrement. In this phase, we found no group differences (CIE), i.e., overcoming thewarm-
up decrement with single FF trials may havemasked the CIE. Secondly, the organization of practice
variability was operationalized with a comparison of blocked and interleaved practice along the
CIE. This type of variability concerns the scheduling aspect of practice (Raviv et al., 2022), i.e.,
participants learn from the same examples and the same number of examples but with different
schedules. However, according to a recent feature review, there are several other types of variability,
such as numerosity, heterogeneity, and situational (Raviv et al., 2022). Numerosity operationalizes
variability with the difference in the number of practice items. Heterogeneity operationalizes
variability with differences in practice items used by different groups, e.g., practicing less or
more similar practice items. Situational refers to the difference in environmental conditions, e.g.,
in the same or different environments. From this broader perspective, study A1 improves our
understanding of which kind of variability is effective; adapting using a more variable schedule
shows superior performance in retention and spatial generalization. To improve practice schedules,

167



6 General discussion

future studies may investigate if any of the three other types of variability can further increase
retention and spatial generalization. For examplewith numerosity, a recent study showed continued
improvement in adaptation and retention even after multiple sessions and 7,000 force field trials
(Franklin et al., 2025). Hence, it would be interesting to test, whether the CIE becomes more or
less prominent with an increased number of trials. Lastly, the SSM could be further extended, for
example, to include other aspects that may have played a role in the study: possible non-linear error
sensitivity (Fine and Thoroughman, 2007, Wei and Körding, 2009), a context-dependent decay
(Ingram et al., 2013), or additional ultraslow processes (Forano and Franklin, 2020). However,
when including additional parameters such as the ones proposed, attention must be paid to
overfitting problems (Kitago et al., 2013), which may reduce the external validity of the results
(Badrulhisham et al., 2024).
Study A2 was the first to thoroughly investigate force field adaptation, retention, and spatial
generalization with muscle synergies. Therefore, the experimental setup and the trial conditions
were designed to align with former force field adaptation studies. However, especially for the
unperturbed baseline trials, not much force and thus only minor muscle activity is required from
the participant. Consequently, the modulations in the EMG data belonging to the movement
are less distinguishable from other artifacts in the recorded EMG data, at least for a single-trial
examination. Further studies may, therefore, consider testing force field adaptation with increased
force field magnitudes and movement speeds and then being able to relate the computational
level to the representational level more closely. In particular, this would open ways to relate
mechanisms described using internal models (Kawato, 1999, Shadmehr and Mussa-Ivaldi, 1994)
to the trial-by-trial alterations with a muscle synergy perspective. Another limitation is that
even though the sampling of muscle activation patterns comprised a semi-circle, it cannot be
excluded that a more extensive sampling, e.g., comprising a full circle or both reaching forward
and backward, would have led to some different or additional muscle synergies. While the precise
recording of surface EMG from the rotator cuff muscles is subject to debate (Waite et al., 2010),
their contributions to muscle synergies could provide further information on coordination. These
muscles are involved in horizontal reaching movements (Perotto, 2011) and may be activated
earlier than the larger muscle groups, reflecting a predictive component (Day et al., 2012) and
allow further associations with internal models.
The results of study A2, that structural changes and a novel four-phasic activation of muscle
synergies are necessary for adaptation, raise further interesting questions: As Huang et al. (2012)
showed that muscle activity continued to further decrease in force field adaptation even after a
plateau in kinematic- and kinetic-dependent variables, it would be interesting to see, how muscle
synergies evolve, when participants adapt to the force field over multiple sessions (Franklin
et al., 2025). Often, it is assumed that the CNS aspires effort optimization (Huang et al., 2012).
Accordingly, one could expect the CNS to optimize the muscle synergy structure so that the
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acceleration part of the reach movement is not made up of two successively activated muscle
synergies, but only one, just like with unperturbed reaches.
Furthermore, it would be interesting to bring the findings of studies A1 and A2 together, to
examine if the group differences in speed of adaptation, retention, and spatial generalization found
in study A1 can be associated with changes at the muscular level. Possibly, the process and
sub-process characteristics reflected by the SSM could be related to changes in the activations
functions or muscle synergy structure.
Lastly, even if links to motor adaptation and skill learning in the sports context have been presented,
it must be acknowledged that these links are hypotheses and must be carefully tested. As such,
they should be seen as starting points for a step-by-step approach to studying the more complex
movements in the sports context (Cisek and Green, 2024, Maselli et al., 2023).

6.2 Main findings in topic B – Effects of rollator
support on the coordination of transitions
between sitting and standing

In topic B, the complex skills of sit-to-stand and stand-to-sit with a robot rollator simulator were
investigated. Sit-to-stand, and particularly stand-to-sit, had been vastly understudied, let alone with
a rollator. This is surprising, as these movements are executed multiple times a day, important for
independent living, and of special clinical interest (Yamada and Demura, 2009, Perry et al., 2006,
Branch and Meyers, 1987, Frykberg and Häger, 2015). Furthermore, a rollator is a frequently used
assistive device (Bateni and Maki, 2005, Bradley and Hernandez, 2011), but how rollators affect
these movements has hardly found attention in the literature. Therefore, we comprehensively
investigated the influence of rollator support on sit-to-stand and stand-to-sit movements.

6.2.1 Rollator support influences the movement strategy
and muscle weightings, and the CNS controls
balance-critical phases tightly

Sit-to-stand and stand-to-sit are complex multijoint movements and already multiple movement
strategies have been identified in unassisted standing-up (Anan et al., 2012, Dolecka et al.,
2015, Frykberg and Häger, 2015, Hughes et al., 1994, Komaris et al., 2018, van der Kruk
et al., 2021b). Therefore, we expected multiple movement strategies in particular with the
rollator (see section 1.5.2). In-line with this assumption, much variance in the high-dimensional
biomechanical and EMG dataset was found and treated accordingly. The following parts extend
the discussions from sections 4.5 and 5.5, firstly from a content-wise perspective and secondly
from the methodological perspective.
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Study B1 found that the young participants changed their movement strategy with rollator support,
especially when their balance was challenged. The general trend was to stand up and sit down
with less upper body forward lean when the handles were used. This switching of movement
strategies indicates that rollator support affects the underlying coordination. This interference
is of interest when trying to understand human-rollator interactions. The paradox that rollator
use has been found to be a fall risk factor (Nickerson et al., 2023), even though they are built to
support and stabilize human movements, could stem from the fact that they interfere with the
movement strategies humans are used to. This is plausible as even simple reaching movements
are influenced by the device used, and several possible factors are causing these differences:
different biomechanical constraints, familiarity, or cognitive demands (Moher and Song, 2019).
Accordingly, the findings that rollator support influences the movement strategy selection could
help improve the human-rollator interaction, as elaborated in similar studies on sit-to-walk (Perera
et al., 2023) or floor-to-stand movement strategies (Bohannon and Lusardi, 2004): A potential
deduction for improvement could be to design rollators in a way that they assist the user in
standing-up and sitting-down such that the user can utilize the strategies chosen by the young,
healthy adults. Furthermore, users and therapists could be informed which specific strategy to
train for, with the ones found in study B1 as references, as these are the naturally chosen strategies.
Yet, further information regarding different strategies is required from additional studies. These
ideas need to be tested with the target group, i.e., actual rollator users, for a more thorough
evaluation to recommend strategies. For example, with the knowledge that different movement
strategies are used and that participants switched them with rollator support, it is interesting how
the CNS might control them and if they are controlled differently.
Therefore, in study B2, muscle synergy analysis was used based on full-body EMG measurements
to unravel the underlying coordination at a muscular level with respect to the movement strategies.
There were three major findings. First, the timings of the activation functions differed across
the movement strategies. In particular, when comparing the activation functions of the muscle
synergies between the movement strategies, there were specific time points during the trials at
which a particular strategy showed muscle synergy activation, but the other strategies did not.
These differences may reflect biomechanical requirements specific to this particular strategy. For
example, a muscle synergy activation observed in the forward leaning strategy only relates to
transferring the momentum generated by the upper body from the trunk to the thigh to stand up
(Anan et al., 2012, Jeon et al., 2019, Riley et al., 1991). Hence, the differences in kinematics and
kinetics found across the movement strategies in study B1, align with strategy-specific activations
of muscle synergies. The second major finding was that muscle weightings increased in the arm
and decreased in the lower body muscles with rollator support, especially during seat-off and
seat-on. This is particularly relevant as lower limb muscle strength is one main predictors of
successful sit-to-stand movements (Frykberg and Häger, 2015). This shows that rollator support
can be a valuable way to cope with lower leg strength and potentially foster standing-up and
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sitting-down. The third major finding was that the width of the activation functions was narrower
around the time of seat-off and seat-on than at the beginning and end of the movement. This is
an intriguing finding providing insight into how the CNS controls movement: Recently, a study
related the “intermittent control” theory to temporal muscle synergies (Brambilla et al., 2023a)
stating that the CNS sends descending commands at designated times, which are then transformed
into muscle activation profiles. We found multiple narrow, i.e., short in time, muscle synergy
activations around the balance-critical seat-off and seat-on.
With the assumption that the CNS employs intermittent control and sends impulses with a high
frequency, our results suggest that the CNS tightly controls the balance-critical seat-off and seat-on.
With intermittent control, the CNS adjusts motor commands according to incoming, intermittent
feedback in an open-loop way (Gawthrop et al., 2014). In particular, using sensory input, the
CNS estimates a current state and plans muscle activations according to the body’s current state
and the movement goal (Gawthrop et al., 2019, Karniel, 2011). According to Gawthrop et al.
(2014), the sway motion in human balance tasks can be interpreted in the context of intermittent
control (Gawthrop et al., 2014, Tanabe et al., 2017). In brief, bipedal standing could be achieved
by monitoring stability and generating joint torques that stabilize the body when a certain balance
threshold, a critical state with respect to the movement goal, is reached. For example, bipedal
standing is considered stable when the CoM resides within the BoS provided by the feet (Shumway-
Cook and Woollacott, 2007, Bateni and Maki, 2005). If the CoM moves outside the BoS, one
way to avoid falling is to take a compensatory step. With respect to intermittent control, this
means if the body’s CoM approaches the BoS edge critically, muscles are activated so that the
CoM moves back inside the BoS so that the user’s balance is maintained (Loram et al., 2005).
As during seat-off and seat-on, balance is critical (Pai et al., 1994, Frykberg and Häger, 2015,
Schenkman et al., 1990), maybe the threshold that triggers corrective action is reached relatively
fast, and multiple, successive pulses result in keeping the user in balance. A good example, already
discussed in section 5.5.3, is the tight control around the seat-off in the exaggerated forward
leaning strategy. This strategy is characterized by an extensive upper body forward lean and
an early movement of the CoM over the BoS. Compared to the forward leaning strategy with
less extensive upper body forward lean, three more temporal muscle synergies are found around
seat-off. Accordingly, this higher number may reflect how the CNS copes to keep the CoM inside
the BoS. This tight control may, for example, aim to prevent a sit-back. Indeed, Scarborough and
colleagues 2007 argue that a sit-back can happen if no sufficient anterior and vertical momentums
are generated. Taken together, the findings of the two studies hint that rollator support tends to
let users stand up and sit down with less forward body lean, which may relate to less tight control
required by the CNS. Referring back to potentially recommending specific movement strategies, a
less tight control could be a beneficial aspect of the forward leaning strategy.
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6.2.2 Practical implications for the analysis of human-robot
interaction and complex whole-body movements

Analysis of high-dimensional data with an effective interpretation on the one hand and without
losing essential information on the other hand is complex (Robertson et al., 2013). This holds
especially in complex whole-body movements with many degrees of freedom due to the high
variance (Reisman et al., 2002). Traditional statistics using discrete parameters that aggregate
data (e.g., a knee angle time series is aggregated to the value of maximum knee flexion) bear
the risk that further information inherent in the high-dimensional dataset is obscured (Stetter and
Stein, 2024). High variation in the data can, for example, stem from users employing various
movement strategies (James and Bates, 1997). Therefore, in study B1, movement strategies were
identified, which facilitated further analyses. Therefore, a data-driven approach, a combination
of PCA and clustering, was used. With PCA, the dimensionality of the data is reduced, such that
most of the information of the original data is contained within the first few principal components
(Robertson et al., 2013). This low-dimensional representation facilitates interpreting and further
analyzing the data set. As employed in study B1, the first principal components can serve as input
for subsequent clustering. With this approach, we could group the numerous trials into movement
strategies. The following qualitative and quantitative analysis allowed us to discuss the movement
strategy selection and the kinematic and kinetic differences between the strategies. As discussed
in the next paragraph, identifying movement strategies paved the way for muscle synergy analysis.
A follow-up analysis of the movement strategy analysis could have been done to narrow down the
differences to presumably a few of the most distinguishable principal components using a support
vector machine (SVM; Begg and Kamruzzaman 2005, Stetter et al. 2020). The thereby extracted
condensed information could help instruct patients and therapists to use the appropriate movement
strategy, allowing them to focus on only a few parameters instead of multiple ones.
The high variation in the data set described at the beginning of this section on kinematic and
kinetic data applies also to EMG data, as elaborated in the section 1.4.2. This high variance
was accounted for in two steps. Firstly, the previously identified movement strategies allowed
a separate analysis for every movement strategy. This means muscle synergies were extracted
separately per movement strategy. While muscle synergies are usually extracted separately per
participant, the cross-validation results from this novel approach of pooling trials by movement
strategy instead of by participant demonstrated the validity of the extracted muscle synergies,
i.e., the validity of the approach. This way, the inter-strategy variability was omitted for the
extractions, providing better data access and interpretability as the muscle synergies were less
variable. Secondly, as it was not a priori clear which muscle synergy model best represented
the data, we extracted spatial and temporal muscle synergies in the first step. We found that
temporal muscle synergies provided a more compact representation than spatial muscle synergies
(see section 5.4.1). For example, the forward leaning strategy in the sit-to-stand movement could
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be represented by eight muscle synergies less using temporal instead of spatial muscle synergies,
easing the data interpretation. Taken together, these methodological steps provide insightful access
to evaluating complex whole-body movements in human-robot interaction and provide a way to
meaningfully reduce the dimension of the data to answer the research question.

6.2.3 Limitations and future research directions

The main limitation of topic B with respect to ecological validity is the participant sample.
Although female and male participants were included, everyone was approximately 40 years
younger than the usual population of rollator users (Charette et al., 2018). This is not untypical; a
recent review showed that more than 20% of gait aid studies are conducted with younger adults
(Zhang et al., 2025). Furthermore, the two studies had an exploratory character due to the limited
existing research. This, in combination with an extensive methodological apparatus (e.g., full-body
kinematics and EMG), would have been a burden for older and frail participants (Bowsher et al.,
1993). However, the results and insights gained can now be further analyzed and verified with
a rollator-prone sample while condensing the experimental protocol. While we have identified
movement strategies that align with movement strategies described for older individuals in sit-to-
stand without rollator support, it is possible that we would find further movement strategies when
applying our methodology on rollator-prone users. Furthermore, rollator-prone users might have
problems establishing the discussed tight control around seat-off and seat-on (Liaw et al., 2009).
This is one probably important aspect of human-rollator interactions, which can now be addressed
specifically in future studies.
Further valuable insights could be gained if the rollator handles provided precise force and torque
data. From a methodological point of view, a quantitative assessment of the light touch condition
would have been possible, such as controlling for a threshold of 1N not to be exceeded (Kouzaki
and Masani, 2008). From a content perspective, the human-rollator interaction could have been
assessed in greater detail: Firstly, it would be interesting to see whether the previously discussed
tight control is also reflected in the interaction forces, i.e., to what extent the CNS integrates the
hand-handle interaction and possibly contributes to the balance (e.g., changing the CoM position
by pulling on the handle). Secondly, the effects of rollator support on joint loading could have
been addressed, e.g., to confirm proposed reductions in required lower limb strength. However,
this would have needed to develop and validate a coupled human-rollator biomechanical model
(Costamagna et al., 2017).
While the paradox that rollators should aid but have been associated with fall risk has motivated
this research, a direct link between the movement strategies and fall risk needs further investigation
in future studies. Disentangling the effects of different movement strategies and rollator support in
relation to balance control, fall risk, and safety are promising directions to help develop protocols
and instructions for safer rollator use. For example, it could be investigated if the proposed
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movement strategies with less tight control – e.g., the forward leaning instead of the exaggerated
forward leaning strategy – can be carried out by rollator-prone users and if they show indeed better
balance control (e.g., with center of pressure (CoP) sway as dependent variable; Shumway-Cook
and Woollacott 2007).
In addition to the proposed directions, the presented findings motivate studies with human-rollator
interaction in further movements in closely related movements such as sit-to-walk (Carey et al.,
2021), for which research has shown that users struggle with, too. This includes walking downhill
and uphill, backward, on uneven ground, while turning, or over the door threshold (Lindemann
et al., 2016). Furthermore, various gait aids, such as orthoses or exoskeletons, can also be seen as
human-robot interactions with potentially detrimental effects on balance, as shown by Dooley et al.
(2023) and Panwalkar and Aruin (2013). According to our findings, the interaction could influence
the movement strategy selection, the muscle weightings, and the CNS control. In fact, a recent
study found that wearing an exoskeleton influences the users’ strategies in balance tasks (Gonzalez
et al., 2022). Future studies could also help improve rollator design and provide suggestions for
smart assistance. There is growing interest in using rollators with sensors and actuators, such as to
develop handles that assist in a good manner (Zhang et al., 2025). One example is the lift support
for sit-to-stand movements provided by the handles of the SkyWalker (Mahdi et al., 2022).

6.3 Conclusion

This dissertation revealed novel insights into the coordination and adaptation of humanmovements.
The findings in topic A facilitated a better understanding of the coordination and adaptation of
humanmovements in human-robot interaction using the force field adaptation paradigm. Retention
and spatial generalization benefit from a random compared to a blocked practice schedule in force
field adaptation. These experimental results aligned well with the forgetting-and-reconstruction
hypothesis of the CIE by means of a computational state-space model. Furthermore, it was found
that force field adaptation, retention, and spatial generalization require structural changes of the
muscle synergies underlying the movements. This novel characterization of force field adaptation
adds to our understanding of how observable motor learning processes are represented at the
muscular level, providing insights into how the CNS copes with the redundancy, versatility, and
time-varying properties challenges at the muscular level during motor learning. Future studies can
try to translate the findings regarding the organization of practice variability and the structural
changes in muscle synergies underlying force field adaptation step-by-step to sports movements.
The findings in topic B showed that humans use different movement strategies to stand up and
sit down when using a rollator. Furthermore, the findings showed that rollator support influences
the movement strategy selection, such that humans stand up with less upper body forward lean
and a more vertical trunk orientation when supported by a rollator. Furthermore, we found that
the movement strategies differ regarding the timings of the temporal muscle synergies’ activation
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profiles. Another finding was that rollator support affects the muscle weightings, such that arm
muscle weighting increases and lower limb muscle weighting decreases. Lastly, our analysis
suggests that the CNS controls the balance-critical seat-off and seat-on tightly. Hence, topic B
provided insights into how the CNS copes with the redundancy and versatility challenges at the
muscular level when using a rollator. These findings from experimental studies with young, healthy
adults can now be verified with rollator-prone humans. In addition, certain movement strategies
could be identified that required less tight CNS control and showed a shift in the muscle weighting
to the arms. These movement strategies could potentially ease standing up and sitting down with
a rollator and therefore be suitable for rollator users. Topic B further followed the methodological
steps of using a data-driven way to group movement strategies and then to analyze these strategies
further at a muscular level. As such, the steps provide a well-suited approach to analyze complex
whole-body movements and further human-robot interactions. They demonstrate high potential to
thoroughly unravel human-rollator interaction at different levels and pave the way for investigating
complex whole-body movements with other interactive devices, such as prostheses, smart rollators,
and exoskeletons.
To summarize, the scientific novelties and the developed and applied methodologies presented in
this dissertation enhance our understanding of how the CNS meets the challenges of redundancy,
versatility, and time-varying properties. Future research can benefit from and build upon these
findings, in particular with respect to the organization of practice variability and coordination at a
muscular level in motor adaptation, as well as the influence of rollator support on coordination.
As such, the findings help us advance our understanding of the underlying CNS processes that
facilitate our astonishing movements.
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A.1 Supplementary material: topic A, study A1

A.1.1 Supplemental tables

Table A.1: Detailed description of the target ordering during short- and long-term transfer (in parentheses). Numbers are
as follows. Practice targets: 1: 1.30, 2: 12, 3: 9, and 4: 7.30 h, 5: interpolation, 6: extrapolation, 7-10: targets
with shifted origin in the same order as the practice targets.

Participant EC EC (FF) EC EC (FF) EC EC (FF)

1 1 2 3 4 1 2 3 4 5 6 5 6 7 8 9 10 7 8 9 10
2 1 2 3 4 1 2 3 4 6 5 6 5 7 8 9 10 7 8 9 10
3 4 3 2 1 4 3 2 1 5 6 5 6 10 9 8 7 10 9 8 7
4 4 3 2 1 4 3 2 1 6 5 6 5 10 9 8 7 10 9 8 7

5 2 3 4 1 2 3 4 1 5 6 5 6 8 9 10 7 8 9 10 7
6 2 3 4 1 2 3 4 1 6 5 6 5 8 9 10 7 8 9 10 7
7 1 4 3 2 1 4 3 2 5 6 5 6 7 10 9 8 7 10 9 8
8 1 4 3 2 1 4 3 2 6 5 6 5 7 10 9 8 7 10 9 8

9 3 4 1 2 3 4 1 2 5 6 5 6 9 10 7 8 9 10 7 8
10 3 4 1 2 3 4 1 2 6 5 6 5 9 10 7 8 9 10 7 8
11 2 1 4 3 2 1 4 3 5 6 5 6 8 7 10 9 8 7 10 9
12 2 1 4 3 2 1 4 3 6 5 6 5 8 7 10 9 8 7 10 9

13 4 1 2 3 4 1 2 3 5 6 5 6 10 7 8 9 10 7 8 9
14 4 1 2 3 4 1 2 3 6 5 6 5 10 7 8 9 10 7 8 9
15 3 2 1 4 3 2 1 4 5 6 5 6 9 8 7 10 9 8 7 10
16 3 2 1 4 3 2 1 4 6 5 6 5 9 8 7 10 9 8 7 10
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Table A.2: Results of the grid search with bootstrapping. Values in the RMSE and R2 columns are mean and 97.5%
confidence intervals

As Af bf, bs RMSE R2

∈ ]0, 1[ ∈ ]0, 1[ ∈ ]0, 1[ 4-1: 0.29 (0.11) 0.74 (0.14)
1-4: 0.29 (0.10) 0.70 (0.29)
4-4: 0.30 (0.13) 0.70 (0.18)

∈ ]0, 0.5[ 4-1: 0.28 (0.11) 0.74 (0.14)
1-4: 0.29 (0.10) 0.72 (0.23)
4-4: 0.30 (0. 3) 0.70 (0.19)

∈ ]0.5, 1[ ∈ ]0, 1[ 4-1: 0.28 (0.11) 0.74 (0.14)
1-4: 0.29 (0.09) 0.73 (0.15)
4-4: 0.30 (0.13) 0.70 (0.19)

∈ ]0, 0.5[ 4-1: 0.28 (0.10) 0.75 (0.14)
1-4: 0.29 (0.10) 0.74 (0.14)
4-4: 0.30 (0.13) 0.70 (0.16)

∈ ]0, 0.9] ∈ ]0, 1[ 4-1: 0.29 (0.09) 0.73 (0.14)
1-4: 0.30 (0.10) 0.72 (0.35)
4-4: 0.30 (0.13) 0.70 (0.18)

∈ ]0, 0.5[ 4-1: 0.29 (0.11) 0.73 (0.18)
1-4: 0.29 (0.10) 0.73 (0.23)
4-4: 0.30 (0.11) 0.70 (0.23)

∈ ]0.9, 1[ ∈ ]0, 0.9] ∈ ]0, 1[ 4-1: 0.29 (0.09) 0.72 (0.17)
1-4: 0.29 (0.09) 0.73 (0.17)
4-4: 0.31 (0.11) 0.70 (0.18)

∈ ]0, 0.5[ 4-1: 0.30 (0.12) 0.72 (0.16)
1-4: 0.29 (0.06) 0.73 (0.17)
4-4: 0.30 (0.13) 0.70 (0.18)

∈ ]0.5, 0.9] ∈ ]0, 1[ 4-1: 0.29 (0.11) 0.73 (0.18)
1-4: 0.29 (0.09) 0.73 (0.17)
4-4: 0.30 (0.12) 0.70 (0.19)

∈ ]0, 0.5[ 4-1: 0.29 (0.11) 0.73 (0.18)
1-4: 0.28 (0.08) 0.73 (0.15)
4-4: 0.30 (0.12) 0.71 (0.19)
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A.1.2 Supplemental data: detailed analysis of the model data

A.1.2.1 Practice

According to our experimental data analysis, we conducted an NOVA for the model data for the
practice phase. It revealed significant time (F(1,30) = 315.515, p < 0.001, η2p = 0.913), group
(F(1,30) = 15.685, p < 0.001, η2p = 0.343), and interaction effects (F(1,30) = 35.541, p < 0.001,
η2p = 0.541). Post-hoc t-tests revealed that both groups adapted to the force field (blocked:
t(15) = -11.186, p < 0.001, |d| = 2.796; random: t(15) = -13.963, p < 0.001, |d| = 3.491). The
groups differed at practice start (t(30) = -6.626, p < 0.001, |d| = 2.419), but not at practice end
(t(21.482) = -1.371, p = 0.071, |d| = 0.819).
In summary, the model data reproduced the behavioral results, except for a significant group
difference at practice start which was not present in the experimental data.

A.1.2.2 Retention

We conducted two ANOVAs, one regarding short-term retention ([Group: Blocked vs. Random,
Time: Practice end, Short-term]) and the other regarding long-term retention ([Group: Blocked
vs. Random, Time: Practice end, Long-term]). The ANOVA for the short-term retention revealed
significant group (F(1,30) = 32.960, p < 0.001, η2p = 0.988), time (F(1,30) = 46.655, p < 0.001,
η2p = 0.609), and interaction effects (F(1,30) = 12.191, p = 0.002, η2p = 0.289). Post-hoc t-tests
found a superior performance for the random group against the block group only in short term
retention (t(30) = 6.416, p < 0.001, |d| = 2.343). Both groups showed a decrease with time
(blocked: t(15) = 6.675, p < 0.002, |d| = 1.669; random: t(15) = 2.632, p = 0.019, |d| = 0.658).
The ANOVA for the long-term retention revealed a significant time effect (F(1,30) = 351.523,
p < 0.001, η2p = 0.921) but no significant interaction effect (F(1,30) = 2.617, p = 0.116, η2p = 0.080),
which resembles the experimental findings. Unlike the experimental findings, we found a
significant group effect (F(1,30) = 24.628, p < 0.001, η2p = 0.541). Post-hoc t-tests revealed
a significant decrease in performance during the long-term retention for both groups (blocked:
t(15) = 13.493, p < 0.001, |d| = 3.373; random: t(15) = 13.057, p < 0.001, |d| = 3.264), alike the
behavioral results. In contrast to our behavioral findings, we found a significant difference in the
long-term retention test between the groups (t(30) = 6.416, p < 0.001, |d| = 2.343).
In summary, the SSM reproduced the short-term retention performance of the experimental data,
showing a better retention for the random group. Consistent with the behavioral results, the SSM
was able to replicate the decline in performance in the long-term retention test for both groups.
However, the model data revealed a significant group difference in the long-term retention test that
was not present in the experimental data.
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A.1.2.3 Spatial transfer

Analogously to our experimental statistics, we tested themodel data for the interpolation, extrapola-
tion, and shifted origin targets for both short- and long-term transfer. First, we tested for short-term
transfer. The one- sample t-tests vs. 0 revealed transfer for all short-term transfer tasks for both
the blocked (interpolation: t(15) = 12.910, p < 0.001, |d| = 3.228; extrapolation: t(15) = 2.437,
p < 0.001, |d| = 0.609; shifted origin: t(15) = 12.068, p < 0.001, |d| = 3.017) and the random group
(interpolation: t(15) = 22.432, p < 0.001, |d| = 5.608; extrapolation: t(15) = 4.518, p < 0.001,
|d| = 1.129; shifted origin: t(15) = 16.218, p < 0.001, |d| = 4.054). Then, we tested for each target
which group performed better. The t-tests showed a better performance for the interpolation and
extrapolation target for the random group (interpolation: t(30) = 5.502, p < 0.001, |d| = 2.009;
extrapolation: t(30) = 2.217, p = 0.035, |d| = 0.847). Further, the modelled performance was
better for the random group for the shifted origin targets (t(30) = 4.605, p < 0.001, |d| = 1.681).
We tested long-term transfers analogously to the short-term transfers. The one-sample t-tests vs.
0 showed transfer for both the blocked and the random group for the interpolation target (blocked:
t(15) = 4.606, p < 0.001, |d| = 1.151; random: t(15) = 5.488, p < 0.001, |d| = 1.372). However,
the tests showed transfer to the extrapolation target only for the random group, but not for the
blocked group (blocked: t(15) = 0.009, p = 0.993, |d| = 0.002; random: t(15) = -3.216, p = 0.006,
|d| = 0.804). Both groups showed transfer to the shifted origin targets (blocked: t(15) = 20.986,
p < 0.001, |d| = 5.246; random: t(15) = 31.579, p < 0.001, |d| = 7.895).
Then, we tested for each target if the groups’ performances differ to each other. The t-tests showed
no differences for the interpolation (t(30) = 0.248, p = 0.806, |d| = 0.090) and extrapolation target
(t(30) = -1.940, p = 0.062, |d| = -0.708). The t-test to compare the shifted origin targets for
the long-term transfer revealed a better transfer for the random compared to the blocked group
(t(30) = 2.323, p = 0.027, |d| = 0.848). Except for the found transfer for the extrapolation target in
the random group, these findings resemble those of the behavioral data.
To sum up, the SSM reproduced the behavioral results of all transfer tests, except for the
extrapolation target. For the latter, the modelled data showed a low transfer for both groups during
short-term tests and for the random group during long-term tests, though the behavioral data
showed no transfer.
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A.2 Supplementary material: topic B, study B1

A.2.1 Supplementary videos

The animated versions of the static figures below can be found online:
• Sit-to-stand, non-challenging condition: https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM2_ESM.gif

• Sit-to-stand, challenging condition: https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM1_ESM.gif

• Stand-to-sit, non-challenging condition: https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM4_ESM.gif

• Stand-to-sit, challenging condition: https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM3_ESM.gif
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Figure A.1: Sit-to-stand, non-challenging condition. Animated version at https://static-content.springer.com/esm/art
%3A10.1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM2_ESM.gif
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Figure A.2: Sit-to-stand, challenging condition. Animated version at https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM1_ESM.gif
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Figure A.3: Stand-to-sit, non-challenging condition. Animated version at https://static-content.springer.com/esm/art
%3A10.1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM4_ESM.gif
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Figure A.4: Stand-to-sit, challenging condition. Animated version at https://static-content.springer.com/esm/art%3A10.
1038%2Fs41598-023-43401-6/MediaObjects/41598_2023_43401_MOESM3_ESM.gif
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A.2.2 Outlier trials in the sit-to-stand and stand-to-sit tasks
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Figure A.5: Trials identified as outliers. These trials were first assigned to one of the strategies with k-means clustering
but were later identified as outliers due to their large distance to the clusters’ centroids. a-c: sit-to-stand,
non- challenging, d-e: sit-to-stand, challenging, f: stand-to-sit, non-challenging, g-h: stand-to-sit, challenging
condition. We call a-c “pulling strategy”, as this movement execution is only possible with extensive pulling
on the handles.
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A.3.1 Trials with corrupt EMG signals

Table A.3: Trials with corrupt EMG signals. Except for these trials, all EMG recordings were valid. l: left side, r: right side.

Participant Movement and
conditions Trial Strategy Bic Lat Tra GMTF RF VM BF TA PL GA

2
Stand-to-sit,

non-challenging,
unassisted

1 Vertical
lowering l

2
Stand-to-sit,

non-challenging,
unassisted

2 Vertical
lowering l

2
Stand-to-sit,

non-challenging,
unassisted

3 Vertical
lowering l

2
Sit-to-stand,

non-challenging,
light touch

1 Hybrid l, r l, r l, r l, r l, r l, r l, r

2
Sit-to-stand,

non-challenging,
light touch

2 Hybrid l, r l, r l, r l, r l, r l, r l, r

2
Sit-to-stand,

non-challenging,
light touch

3 Hybrid l, r l, r l, r l, r l, r l, r l, r

2
Stand-to-sit,

non-challenging,
light touch

1 Vertical
lowering l, r l, r l, r l, r l, r l, r l, r

2
Stand-to-sit,

non-challenging,
light touch

2 Vertical
lowering l, r l, r l, r l, r l, r l, r l, r

2
Stand-to-sit,

non-challenging,
light touch

3 Vertical
lowering l, r l, r l, r l, r l, r l, r l, r

2
Sit-to-stand,

non-challenging,
full support

1 Vertical rise l, r l, r l, r l, r l, r l, r l, r

2
Sit-to-stand,

non-challenging,
full support

2 Hybrid l, r l, r l, r l, r l, r l, r l, r
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2
Sit-to-stand,

non-challenging,
full support

2
Exaggerated
forward
leaning

l, r l, r l, r l, r l, r l, r l, r

2
Stand-to-sit,

non-challenging,
full support

1 Vertical
lowering l l l, r l, r l, r

2
Stand-to-sit,

challenging, light
touch

2 Backward
lowering l, r l, r l, r

4
Sit-to-stand,

challenging, light
touch

2 Forward
leaning l, r r l l, r l, r l, r l, r r

4
Stand-to-sit,

challenging, light
touch

2
Exaggerated
forward
leaning

l, r r l l, r l, r l, r l, r r

5
Sit-to-stand,

non-challenging,
light touch

1 Hybrid l l l l, r l, r l, r

5
Stand-to-sit,

non-challenging,
light touch

1 Backward
lowering l l l l, r l, r l, r

9
Sit-to-stand,

non-challenging,
unassisted

3 Hybrid r l l l, r r l, r

9
Stand-to-sit,

non-challenging,
unassisted

3 Vertical
lowering r l l l, r r l, r

9
Sit-to-stand,
challenging,
unassisted

3
Exaggerated
forward
leaning

l l l, r r l

9
Stand-to-sit,
challenging,
unassisted

3
Exaggerated
forward
leaning

l l l, r r l

12
Sit-to-stand,

non-challenging,
light touch

2 Forward
leaning l l, r l, r l l, r r l, r

12
Stand-to-sit,

non-challenging,
light touch

2 Vertical
lowering l l, r l, r l l, r r l, r
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A.3.2 Distribution of trials among strategies

Figure A.6: Distribution of trials among strategies. One dot represents one trial. The row indicates the strategy to which
it belongs. The column shows to which participant it belongs. The support conditions are color-coded as
indicated by the legend. The labels on the right y-axis show how many trials were associated with the strategy
written on the left y-axis. This figure is taken from Herzog et al. (2023).
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A.3.3 Differences in the temporal composition remain with the
R2 > 0.9 (N∗

strat) criterion

Figure A.7: Temporal synergies for every movement strategy with the R2 > 0.9 (N∗
strat) criterion. Clustered and ordered

chronologically.
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A.3.4 Detailed linear mixed model statistics

Table A.4: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.502
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.017 0.029 7.614 <.001
LT 0.008 0.003 0.014 7.614 0.047
FS 0.010 0.004 0.016 7.614 0.032
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.015
Error 0.034 0.032 0.035

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.025 0.038 9.167 <.001
UA 0.031 -0.014 -0.003 -2.941 0.047
FS 0.031 -0.005 0.008 0.513 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.015
Error 0.034 0.032 0.035

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.007 -0.023 0.008 -0.899 0.738
ES:LT -0.007 -0.014 0.017 0.195 1.000
Pec:LT -0.007 -0.018 0.013 -0.339 1.000
Lat:LT -0.007 -0.007 0.024 1.055 0.584
Tra:LT -0.007 0.036 0.067 6.553 <.001
Del:LT -0.007 -0.010 0.021 0.661 1.000
Bic:LT -0.007 -0.015 0.016 0.115 1.000
Tri:LT -0.007 -0.014 0.017 0.251 1.000
GM:LT -0.007 -0.025 0.006 -1.160 0.493
TF:LT -0.007 -0.030 0.001 -1.886 0.119
RF:LT -0.007 -0.024 0.007 -1.117 0.528
VM:LT -0.007 -0.022 0.009 -0.869 0.770
BF:LT -0.007 -0.022 0.009 -0.819 0.826
TA:LT -0.007 -0.022 0.009 -0.805 0.843
PL:LT -0.007 -0.020 0.011 -0.582 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.015
Error 0.026 0.025 0.027
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.024 -0.041 -0.007 -2.725 0.013
ES:FS -0.024 -0.025 0.009 -0.901 0.735
Pec:FS -0.024 -0.010 0.024 0.795 0.854
Lat:FS -0.024 -0.008 0.027 1.069 0.571
Tra:FS -0.024 0.040 0.075 6.547 <.001
Del:FS -0.024 -0.038 -0.003 -2.323 0.041
Bic:FS -0.024 0.031 0.065 5.454 <.001
Tri:FS -0.024 0.002 0.037 2.241 0.051
GM:FS -0.024 -0.042 -0.008 -2.853 0.009
TF:FS -0.024 -0.035 -0.001 -2.022 0.087
RF:FS -0.024 -0.019 0.016 -0.178 1.000
VM:FS -0.024 -0.020 0.015 -0.306 1.000
BF:FS -0.024 -0.025 0.009 -0.924 0.711
TA:FS -0.024 -0.032 0.003 -1.646 0.200
PL:FS -0.024 -0.028 0.006 -1.263 0.414
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.015
Error 0.026 0.025 0.027
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Table A.5: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.566
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.020 0.014 0.027 6.490 <.001
LT 0.016 0.011 0.021 6.490 <.001
FS 0.011 0.005 0.017 6.490 0.008
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.015
Error 0.032 0.031 0.034

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.029 0.043 10.350 <.001
UA 0.036 -0.021 -0.011 -5.924 <.001
FS 0.036 -0.011 0.001 -1.601 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.015
Error 0.032 0.031 0.034

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.014 -0.032 0.003 -1.660 0.195
ES:LT -0.014 -0.002 0.032 1.744 0.163
Pec:LT -0.014 -0.031 0.004 -1.555 0.241
Lat:LT -0.014 -0.009 0.026 0.980 0.655
Tra:LT -0.014 -0.025 0.009 -0.937 0.698
Del:LT -0.014 -0.000 0.034 1.937 0.106
Bic:LT -0.014 -0.015 0.019 0.191 1.000
Tri:LT -0.014 -0.019 0.015 -0.213 1.000
GM:LT -0.014 -0.023 0.011 -0.698 0.971
TF:LT -0.014 -0.018 0.016 -0.118 1.000
RF:LT -0.014 -0.009 0.026 0.976 0.658
VM:LT -0.014 0.006 0.040 2.622 0.018
BF:LT -0.014 -0.025 0.009 -0.919 0.717
TA:LT -0.014 -0.021 0.014 -0.412 1.000
PL:LT -0.014 -0.023 0.011 -0.664 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.016
Error 0.029 0.027 0.030
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.007 -0.026 0.012 -0.720 0.944
ES:FS -0.007 -0.028 0.010 -0.929 0.706
Pec:FS -0.007 -0.023 0.015 -0.438 1.000
Lat:FS -0.007 -0.002 0.036 1.756 0.159
Tra:FS -0.007 -0.032 0.006 -1.312 0.380
Del:FS -0.007 -0.020 0.018 -0.119 1.000
Bic:FS -0.007 0.010 0.049 3.036 0.005
Tri:FS -0.007 -0.013 0.025 0.611 1.000
GM:FS -0.007 -0.032 0.006 -1.343 0.359
TF:FS -0.007 -0.015 0.023 0.383 1.000
RF:FS -0.007 -0.016 0.023 0.359 1.000
VM:FS -0.007 0.000 0.038 1.988 0.094
BF:FS -0.007 -0.026 0.013 -0.672 1.000
TA:FS -0.007 -0.027 0.012 -0.764 0.890
PL:FS -0.007 -0.027 0.011 -0.834 0.809
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.016
Error 0.029 0.027 0.030
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Table A.6: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.434
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.024 0.036 10.441 <.001
LT 0.009 0.003 0.015 10.441 0.025
FS 0.005 -0.001 0.012 10.441 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.004 0.013
Error 0.035 0.033 0.037

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.039 0.033 0.046 11.893 <.001
UA 0.039 -0.015 -0.003 -3.133 0.025
FS 0.039 -0.010 0.003 -1.083 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.004 0.013
Error 0.035 0.033 0.037

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.011 -0.028 0.006 -1.281 0.201
ES:LT -0.011 -0.036 -0.002 -2.187 0.029
Pec:LT -0.011 -0.025 0.009 -0.907 0.365
Lat:LT -0.011 -0.004 0.029 1.452 0.147
Tra:LT -0.011 -0.020 0.014 -0.375 0.708
Del:LT -0.011 0.015 0.049 3.674 <.001
Bic:LT -0.011 -0.007 0.027 1.123 0.262
Tri:LT -0.011 -0.025 0.009 -0.948 0.343
GM:LT -0.011 -0.028 0.006 -1.295 0.196
TF:LT -0.011 -0.009 0.025 0.955 0.340
RF:LT -0.011 -0.014 0.019 0.289 0.772
VM:LT -0.011 -0.012 0.022 0.553 0.580
BF:LT -0.011 -0.010 0.024 0.815 0.415
TA:LT -0.011 -0.020 0.014 -0.374 0.709
PL:LT -0.011 -0.024 0.010 -0.796 0.426
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.013
Error 0.028 0.027 0.030
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Table A.7: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.598
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.039 0.032 0.047 10.559 <0.001
LT -0.008 -0.014 -0.002 10.559 0.125
FS -0.012 -0.018 -0.005 10.559 0.015
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.007 0.017
Error 0.036 0.035 0.038

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.023 0.039 7.661 <0.001
UA 0.031 0.002 0.014 2.621 0.125
FS 0.031 -0.011 0.003 -1.019 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.007 0.017
Error 0.036 0.035 0.038

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.004 -0.013 0.022 0.509 0.611
ES:FS 0.004 -0.052 -0.018 -3.977 <0.001
Pec:FS 0.004 0.009 0.043 2.959 0.003
Lat:FS 0.004 0.002 0.036 2.144 0.032
Tra:FS 0.004 -0.002 0.032 1.739 0.082
Del:FS 0.004 0.023 0.057 4.545 <0.001
Bic:FS 0.004 0.007 0.041 2.752 0.006
Tri:FS 0.004 0.003 0.037 2.318 0.021
GM:FS 0.004 -0.013 0.021 0.440 0.660
TF:FS 0.004 -0.048 -0.013 -3.504 <0.001
RF:FS 0.004 -0.060 -0.026 -4.965 <0.001
VM:FS 0.004 -0.042 -0.008 -2.834 0.005
BF:FS 0.004 -0.026 0.008 -1.030 0.303
TA:FS 0.004 -0.030 0.004 -1.490 0.137
PL:FS 0.004 -0.019 0.015 -0.212 0.833
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.007 0.017
Error 0.026 0.024 0.027
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Table A.8: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.576
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.024 0.037 9.299 <0.001
LT 0.001 -0.005 0.006 9.299 1.000
FS 0.000 -0.006 0.006 9.299 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.017
Error 0.033 0.032 0.035

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.024 0.039 8.560 <0.001
UA 0.031 -0.006 0.005 -0.202 1.000
FS 0.031 -0.007 0.006 -0.159 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.017
Error 0.033 0.032 0.035

Table A.9: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.339
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.024 0.034 12.360 <0.001
LT 0.003 -0.002 0.008 12.360 1.000
FS 0.007 0.001 0.013 12.360 0.460
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.003 0.010
Error 0.033 0.031 0.034

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.027 0.038 11.705 <0.001
UA 0.032 -0.008 0.002 -1.137 1.000
FS 0.032 -0.003 0.010 1.106 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.003 0.010
Error 0.033 0.031 0.034
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Table A.10: Detailed statistics: sit-to-stand, non-challenging condition, forward leaning strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.346
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.040 0.034 0.046 13.390 <0.001
LT -0.005 -0.012 0.001 13.390 1.000
FS -0.002 -0.010 0.005 13.390 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.013
Error 0.041 0.039 0.043

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.028 0.041 9.985 <0.001
UA 0.035 -0.001 0.012 1.583 1.000
FS 0.035 -0.005 0.011 0.781 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.013
Error 0.041 0.039 0.043

Table A.11: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.220
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.024 0.035 9.978 <0.001
LT 0.000 -0.008 0.008 9.978 1.000
FS 0.011 0.001 0.021 9.978 0.346
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.001 0.023
Error 0.037 0.035 0.040

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.023 0.036 9.124 <0.001
UA 0.030 -0.008 0.008 -0.065 1.000
FS 0.030 0.001 0.021 2.085 0.451
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.001 0.023
Error 0.037 0.035 0.040
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Table A.12: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.703
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.014 0.035 4.797 <0.001
LT 0.022 0.014 0.031 4.797 <0.001
FS 0.034 0.024 0.044 4.797 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.013 0.007 0.023
Error 0.037 0.034 0.039

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.047 0.036 0.057 8.616 <0.001
UA 0.047 -0.031 -0.014 -5.026 <0.001
FS 0.047 0.001 0.023 2.118 0.416
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.013 0.007 0.023
Error 0.037 0.034 0.039

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.005 -0.027 0.017 -0.429 1.000
ES:LT -0.005 -0.014 0.029 0.672 1.000
Pec:LT -0.005 -0.026 0.018 -0.337 1.000
Lat:LT -0.005 0.002 0.045 2.108 0.071
Tra:LT -0.005 -0.016 0.028 0.556 1.000
Del:LT -0.005 -0.027 0.017 -0.447 1.000
Bic:LT -0.005 -0.007 0.036 1.309 0.383
Tri:LT -0.005 -0.031 0.012 -0.848 0.794
GM:LT -0.005 -0.042 0.002 -1.823 0.138
TF:LT -0.005 -0.026 0.018 -0.358 1.000
RF:LT -0.005 -0.015 0.028 0.587 1.000
VM:LT -0.005 -0.013 0.031 0.836 0.807
BF:LT -0.005 -0.033 0.011 -1.019 0.618
TA:LT -0.005 -0.013 0.031 0.825 0.820
PL:LT -0.005 -0.022 0.022 0.012 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.014 0.008 0.023
Error 0.029 0.027 0.031
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.003 -0.032 0.026 -0.211 1.000
ES:FS -0.003 -0.017 0.041 0.845 0.797
Pec:FS -0.003 -0.015 0.043 0.960 0.676
Lat:FS -0.003 0.077 0.134 7.162 <0.001
Tra:FS -0.003 -0.033 0.025 -0.254 1.000
Del:FS -0.003 -0.067 -0.009 -2.576 0.021
Bic:FS -0.003 0.064 0.122 6.324 <0.001
Tri:FS -0.003 -0.002 0.056 1.861 0.127
GM:FS -0.003 -0.075 -0.017 -3.125 0.004
TF:FS -0.003 -0.060 -0.002 -2.122 0.069
RF:FS -0.003 -0.043 0.014 -0.985 0.650
VM:FS -0.003 -0.034 0.023 -0.375 1.000
BF:FS -0.003 -0.060 -0.002 -2.117 0.070
TA:FS -0.003 -0.040 0.017 -0.783 0.869
PL:FS -0.003 -0.058 0.000 -1.964 0.100
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.014 0.008 0.023
Error 0.029 0.027 0.031

Table A.13: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.439
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.046 0.038 0.054 11.567 <0.001
LT -0.010 -0.019 -0.001 11.567 0.312
FS -0.012 -0.023 -0.001 11.567 0.310
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.004 0.018
Error 0.039 0.036 0.041

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.028 0.045 8.327 <0.001
UA 0.036 0.001 0.019 2.233 0.312
FS 0.036 -0.014 0.009 -0.418 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.004 0.018
Error 0.039 0.036 0.041
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Table A.14: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.527
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.045 0.035 0.055 9.198 <0.001
LT 0.003 -0.006 0.013 9.198 1.000
FS 0.000 -0.012 0.012 9.198 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.006 0.023
Error 0.043 0.040 0.046

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.049 0.038 0.059 9.145 <0.001
UA 0.049 -0.013 0.006 -0.679 1.000
FS 0.049 -0.015 0.010 -0.468 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.006 0.023
Error 0.043 0.040 0.046

Table A.15: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.760
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.023 0.047 5.701 <0.001
LT 0.012 0.002 0.022 5.701 0.273
FS 0.005 -0.007 0.017 5.701 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.016 0.009 0.027
Error 0.042 0.039 0.045

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.047 0.034 0.060 7.175 <0.001
UA 0.047 -0.022 -0.002 -2.284 0.273
FS 0.047 -0.019 0.006 -1.072 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.016 0.009 0.027
Error 0.042 0.039 0.045
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Table A.16: Detailed statistics: sit-to-stand, non-challenging condition, hybrid strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 496
Number of participants 9
ICC 0.304
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.045 0.037 0.054 10.664 <0.001
LT -0.005 -0.015 0.006 10.664 1.000
FS -0.002 -0.015 0.012 10.664 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.003 0.018
Error 0.049 0.046 0.052

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.040 0.031 0.050 8.655 <0.001
UA 0.040 -0.006 0.015 0.888 1.000
FS 0.040 -0.011 0.017 0.449 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.003 0.018
Error 0.049 0.046 0.052
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Table A.17: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.424
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.020 0.032 8.712 <0.001
LT 0.005 -0.001 0.010 8.712 1.000
FS 0.010 0.005 0.016 8.712 0.004
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.013
Error 0.038 0.036 0.039

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.025 0.036 10.804 <0.001
UA 0.031 -0.010 0.001 -1.516 1.000
FS 0.031 0.001 0.011 2.259 0.288
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.013
Error 0.038 0.036 0.039

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.039 -0.054 -0.024 -4.976 <0.001
ES:FS -0.039 -0.017 0.014 -0.188 0.851
Pec:FS -0.039 0.009 0.039 3.080 0.002
Lat:FS -0.039 -0.000 0.031 1.947 0.052
Tra:FS -0.039 0.071 0.101 10.973 <0.001
Del:FS -0.039 -0.029 0.002 -1.721 0.086
Bic:FS -0.039 0.012 0.042 3.437 0.001
Tri:FS -0.039 -0.005 0.026 1.299 0.194
GM:FS -0.039 -0.038 -0.008 -2.951 0.003
TF:FS -0.039 -0.037 -0.006 -2.789 0.005
RF:FS -0.039 -0.022 0.008 -0.904 0.366
VM:FS -0.039 -0.022 0.009 -0.840 0.401
BF:FS -0.039 -0.022 0.009 -0.860 0.390
TA:FS -0.039 -0.033 -0.002 -2.234 0.026
PL:FS -0.039 -0.031 -0.001 -2.047 0.041
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.029 0.028 0.030
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Table A.18: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.827
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.020 0.012 0.028 4.845 <0.001
LT 0.016 0.011 0.022 4.845 <0.001
FS 0.025 0.020 0.031 4.845 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.015 0.010 0.021
Error 0.036 0.034 0.037

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.028 0.044 8.988 <0.001
UA 0.036 -0.022 -0.011 -5.655 <0.001
FS 0.036 0.004 0.014 3.644 0.003
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.015 0.010 0.021
Error 0.036 0.034 0.037

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.008 -0.026 0.009 -0.924 1.000
ES:LT -0.008 -0.010 0.025 0.803 1.000
Pec:LT -0.008 -0.038 -0.003 -2.347 0.057
Lat:LT -0.008 -0.018 0.017 -0.068 1.000
Tra:LT -0.008 0.006 0.041 2.583 0.030
Del:LT -0.008 -0.013 0.022 0.491 1.000
Bic:LT -0.008 0.002 0.037 2.224 0.079
Tri:LT -0.008 -0.011 0.024 0.759 1.000
GM:LT -0.008 -0.030 0.005 -1.386 0.498
TF:LT -0.008 -0.019 0.016 -0.220 1.000
RF:LT -0.008 -0.007 0.028 1.153 0.747
VM:LT -0.008 -0.012 0.023 0.569 1.000
BF:LT -0.008 -0.025 0.010 -0.820 1.000
TA:LT -0.008 -0.016 0.019 0.193 1.000
PL:LT -0.008 -0.030 0.005 -1.365 0.517
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.015 0.010 0.021
Error 0.031 0.030 0.032
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.017 -0.033 -0.001 -2.038 0.125
ES:FS -0.017 -0.020 0.012 -0.496 1.000
Pec:FS -0.017 -0.029 0.004 -1.493 0.407
Lat:FS -0.017 0.012 0.044 3.356 0.002
Tra:FS -0.017 -0.015 0.017 0.100 1.000
Del:FS -0.017 -0.040 -0.008 -2.881 0.012
Bic:FS -0.017 0.011 0.043 3.289 0.003
Tri:FS -0.017 -0.009 0.023 0.853 1.000
GM:FS -0.017 -0.032 0.001 -1.886 0.179
TF:FS -0.017 -0.009 0.024 0.915 1.000
RF:FS -0.017 0.010 0.042 3.115 0.006
VM:FS -0.017 0.017 0.049 3.984 <0.001
BF:FS -0.017 -0.026 0.006 -1.217 0.672
TA:FS -0.017 -0.018 0.015 -0.163 1.000
PL:FS -0.017 -0.037 -0.005 -2.565 0.031
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.015 0.010 0.021
Error 0.031 0.030 0.032
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Table A.19: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.353
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.037 0.031 0.043 11.650 <0.001
LT 0.013 0.006 0.020 11.650 0.001
FS 0.004 -0.003 0.010 11.650 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.043 0.041 0.044

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.050 0.044 0.056 16.823 <0.001
UA 0.050 -0.020 -0.006 -3.884 0.001
FS 0.050 -0.015 -0.004 -3.280 0.013
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.043 0.041 0.044

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.007 -0.025 0.011 -0.757 0.899
ES:LT -0.007 -0.042 -0.006 -2.660 0.016
Pec:LT -0.007 -0.024 0.012 -0.655 1.000
Lat:LT -0.007 -0.019 0.017 -0.118 1.000
Tra:LT -0.007 -0.024 0.012 -0.683 0.989
Del:LT -0.007 -0.002 0.034 1.792 0.147
Bic:LT -0.007 -0.015 0.021 0.319 1.000
Tri:LT -0.007 -0.019 0.017 -0.150 1.000
GM:LT -0.007 -0.018 0.018 0.019 1.000
TF:LT -0.007 -0.005 0.031 1.458 0.290
RF:LT -0.007 -0.001 0.035 1.886 0.119
VM:LT -0.007 -0.008 0.028 1.053 0.586
BF:LT -0.007 -0.014 0.022 0.401 1.000
TA:LT -0.007 -0.014 0.022 0.472 1.000
PL:LT -0.007 -0.028 0.008 -1.119 0.526
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.031 0.033
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Table A.20: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.351
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.058 0.051 0.065 15.893 <0.001
LT -0.007 -0.014 0.001 15.893 1.000
FS -0.013 -0.020 -0.005 15.893 0.007
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.014
Error 0.049 0.047 0.051

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.051 0.045 0.058 15.032 <0.001
UA 0.051 -0.001 0.014 1.715 1.000
FS 0.051 -0.012 0.000 -1.820 0.827
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.014
Error 0.049 0.047 0.051

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.003 -0.020 0.014 -0.370 0.711
ES:FS -0.003 -0.043 -0.009 -3.065 0.002
Pec:FS -0.003 0.020 0.053 4.259 <0.001
Lat:FS -0.003 0.064 0.097 9.414 <0.001
Tra:FS -0.003 -0.003 0.031 1.631 0.103
Del:FS -0.003 0.033 0.067 5.824 <0.001
Bic:FS -0.003 0.000 0.034 2.003 0.045
Tri:FS -0.003 0.029 0.063 5.401 <0.001
GM:FS -0.003 -0.027 0.006 -1.211 0.226
TF:FS -0.003 -0.062 -0.028 -5.240 <0.001
RF:FS -0.003 -0.080 -0.047 -7.427 <0.001
VM:FS -0.003 -0.071 -0.037 -6.311 <0.001
BF:FS -0.003 -0.013 0.020 0.392 0.695
TA:FS -0.003 -0.051 -0.018 -4.014 <0.001
PL:FS -0.003 -0.032 0.002 -1.757 0.079
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.007 0.015
Error 0.032 0.031 0.033
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Table A.21: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.197
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.030 0.041 12.193 <0.001
LT 0.007 0.000 0.014 12.193 0.564
FS 0.013 0.007 0.020 12.193 0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.002 0.010
Error 0.046 0.044 0.048

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.043 0.037 0.048 16.051 <0.001
UA 0.043 -0.014 -0.000 -1.988 0.564
FS 0.043 0.000 0.012 2.037 0.502
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.002 0.010
Error 0.046 0.044 0.048

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.015 -0.035 0.005 -1.477 0.140
ES:FS -0.015 -0.058 -0.018 -3.716 <0.001
Pec:FS -0.015 -0.012 0.028 0.818 0.414
Lat:FS -0.015 0.001 0.041 2.081 0.038
Tra:FS -0.015 -0.031 0.008 -1.131 0.258
Del:FS -0.015 0.015 0.055 3.441 0.001
Bic:FS -0.015 -0.025 0.015 -0.527 0.598
Tri:FS -0.015 0.061 0.100 7.946 <0.001
GM:FS -0.015 -0.013 0.027 0.721 0.471
TF:FS -0.015 -0.023 0.017 -0.332 0.740
RF:FS -0.015 -0.015 0.025 0.495 0.620
VM:FS -0.015 -0.021 0.019 -0.090 0.928
BF:FS -0.015 -0.039 0.001 -1.848 0.065
TA:FS -0.015 -0.040 -0.001 -2.015 0.044
PL:FS -0.015 -0.046 -0.006 -2.579 0.010
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.010
Error 0.038 0.036 0.039
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Table A.22: Detailed statistics: sit-to-stand, non-challenging condition, vertical rise strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 1344
Number of participants 18
ICC 0.338
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.049 0.042 0.056 13.873 <0.001
LT -0.003 -0.010 0.004 13.873 1.000
FS -0.005 -0.013 0.002 13.873 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.014
Error 0.048 0.047 0.050

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.046 0.040 0.053 13.941 <0.001
UA 0.046 -0.004 0.010 0.787 1.000
FS 0.046 -0.009 0.004 -0.766 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.014
Error 0.048 0.047 0.050
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Table A.23: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.458
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.024 0.034 11.991 <0.001
LT 0.011 0.005 0.016 11.991 0.002
FS 0.015 0.007 0.023 11.991 0.003
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.013
Error 0.037 0.035 0.038

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.040 0.034 0.046 13.020 <0.001
UA 0.040 -0.016 -0.005 -3.853 0.002
FS 0.040 -0.003 0.012 1.091 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.013
Error 0.037 0.035 0.038

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.009 -0.023 0.004 -1.387 0.331
ES:LT -0.009 -0.003 0.023 1.467 0.285
Pec:LT -0.009 -0.036 -0.009 -3.251 0.002
Lat:LT -0.009 -0.018 0.009 -0.608 1.000
Tra:LT -0.009 0.033 0.060 6.854 <0.001
Del:LT -0.009 -0.012 0.015 0.165 1.000
Bic:LT -0.009 -0.001 0.026 1.798 0.145
Tri:LT -0.009 -0.005 0.022 1.254 0.420
GM:LT -0.009 -0.028 -0.002 -2.186 0.058
TF:LT -0.009 -0.025 0.001 -1.753 0.160
RF:LT -0.009 -0.018 0.009 -0.697 0.972
VM:LT -0.009 -0.023 0.003 -1.467 0.285
BF:LT -0.009 -0.022 0.005 -1.209 0.454
TA:LT -0.009 -0.001 0.026 1.814 0.140
PL:LT -0.009 -0.013 0.014 0.103 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.026 0.025 0.027
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.005 -0.023 0.013 -0.541 1.000
ES:FS -0.005 -0.032 0.004 -1.506 0.265
Pec:FS -0.005 -0.006 0.031 1.362 0.347
Lat:FS -0.005 -0.007 0.029 1.171 0.484
Tra:FS -0.005 0.058 0.094 8.219 <0.001
Del:FS -0.005 -0.064 -0.027 -4.937 <0.001
Bic:FS -0.005 0.048 0.085 7.207 <0.001
Tri:FS -0.005 -0.008 0.028 1.052 0.586
GM:FS -0.005 -0.039 -0.003 -2.242 0.050
TF:FS -0.005 -0.034 0.002 -1.768 0.155
RF:FS -0.005 -0.024 0.012 -0.687 0.985
VM:FS -0.005 -0.027 0.010 -0.918 0.717
BF:FS -0.005 -0.026 0.010 -0.880 0.758
TA:FS -0.005 -0.044 -0.008 -2.783 0.011
PL:FS -0.005 -0.034 0.002 -1.717 0.172
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.026 0.025 0.027

Table A.24: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.437
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.027 0.036 14.212 <0.001
LT 0.007 0.002 0.012 14.212 0.204
FS -0.002 -0.009 0.005 14.212 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.035 0.033 0.036

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.033 0.044 13.535 <0.001
UA 0.038 -0.012 -0.002 -2.573 0.204
FS 0.038 -0.016 -0.001 -2.331 0.398
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.035 0.033 0.036
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Table A.25: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.482
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.034 0.029 0.038 15.385 <0.001
LT 0.002 -0.003 0.007 15.385 1.000
FS -0.003 -0.010 0.004 15.385 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.031 0.034

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.031 0.041 13.089 <0.001
UA 0.036 -0.007 0.003 -0.901 1.000
FS 0.036 -0.012 0.002 -1.396 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.031 0.034
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Table A.26: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.607
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.033 0.042 15.178 <0.001
LT -0.009 -0.014 -0.005 15.178 0.002
FS -0.012 -0.019 -0.006 15.178 0.006
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.031 0.030 0.032

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.028 0.022 0.034 9.526 <0.001
UA 0.028 0.005 0.014 3.879 0.002
FS 0.028 -0.010 0.004 -0.867 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.031 0.030 0.032

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.003 -0.015 0.010 -0.408 1.000
ES:LT -0.003 -0.030 -0.005 -2.657 0.016
Pec:LT -0.003 -0.009 0.017 0.617 1.000
Lat:LT -0.003 -0.007 0.019 0.877 0.761
Tra:LT -0.003 -0.014 0.012 -0.203 1.000
Del:LT -0.003 0.021 0.047 5.198 <0.001
Bic:LT -0.003 0.006 0.032 2.890 0.008
Tri:LT -0.003 0.015 0.041 4.242 <0.001
GM:LT -0.003 -0.023 0.003 -1.572 0.232
TF:LT -0.003 -0.039 -0.013 -3.988 <0.001
RF:LT -0.003 -0.027 -0.002 -2.205 0.055
VM:LT -0.003 -0.019 0.006 -0.994 0.641
BF:LT -0.003 -0.021 0.005 -1.217 0.448
TA:LT -0.003 -0.015 0.011 -0.329 1.000
PL:LT -0.003 -0.017 0.009 -0.605 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.007 0.015
Error 0.025 0.024 0.026
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.009 -0.008 0.026 1.017 0.619
ES:FS 0.009 -0.039 -0.004 -2.446 0.029
Pec:FS 0.009 -0.000 0.035 1.945 0.104
Lat:FS 0.009 0.002 0.036 2.136 0.066
Tra:FS 0.009 -0.014 0.021 0.385 1.000
Del:FS 0.009 -0.001 0.034 1.884 0.120
Bic:FS 0.009 -0.000 0.035 1.935 0.107
Tri:FS 0.009 0.015 0.050 3.687 <0.001
GM:FS 0.009 -0.022 0.012 -0.561 1.000
TF:FS 0.009 -0.052 -0.017 -3.870 <0.001
RF:FS 0.009 -0.035 0.000 -1.945 0.104
VM:FS 0.009 -0.028 0.007 -1.191 0.467
BF:FS 0.009 -0.021 0.014 -0.356 1.000
TA:FS 0.009 -0.035 -0.001 -2.031 0.085
PL:FS 0.009 -0.027 0.007 -1.143 0.507
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.007 0.015
Error 0.025 0.024 0.026
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Table A.27: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.449
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.028 0.035 17.801 <0.001
LT -0.009 -0.013 -0.005 17.801 <0.001
FS -0.005 -0.010 0.001 17.801 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.027 0.026 0.028

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.017 0.026 9.841 <0.001
UA 0.022 0.005 0.013 4.493 <0.001
FS 0.022 -0.001 0.010 1.624 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.027 0.026 0.028

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.001 -0.011 0.014 0.208 0.835
ES:LT 0.001 -0.018 0.007 -0.833 0.405
Pec:LT 0.001 -0.014 0.011 -0.184 0.854
Lat:LT 0.001 -0.001 0.024 1.773 0.077
Tra:LT 0.001 -0.007 0.018 0.805 0.421
Del:LT 0.001 0.006 0.030 2.837 0.005
Bic:LT 0.001 -0.004 0.021 1.380 0.168
Tri:LT 0.001 0.013 0.038 4.045 <0.001
GM:LT 0.001 -0.025 0.000 -1.938 0.053
TF:LT 0.001 -0.023 0.002 -1.633 0.103
RF:LT 0.001 -0.017 0.007 -0.790 0.430
VM:LT 0.001 -0.005 0.020 1.159 0.247
BF:LT 0.001 -0.012 0.013 0.044 0.965
TA:LT 0.001 -0.035 -0.010 -3.509 <0.001
PL:LT 0.001 -0.030 -0.005 -2.807 0.005
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.024 0.023 0.025
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Table A.28: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.473
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.031 0.039 16.607 <0.001
LT -0.016 -0.021 -0.012 16.607 <0.001
FS -0.016 -0.023 -0.010 16.607 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.012
Error 0.031 0.030 0.033

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.019 0.014 0.024 7.047 <0.001
UA 0.019 0.012 0.021 6.769 <0.001
FS 0.019 -0.007 0.007 -0.021 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.012
Error 0.031 0.030 0.033

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.003 -0.011 0.017 0.457 1.000
ES:LT 0.003 -0.027 0.001 -1.768 0.155
Pec:LT 0.003 -0.007 0.022 1.029 0.607
Lat:LT 0.003 -0.002 0.026 1.657 0.196
Tra:LT 0.003 -0.003 0.025 1.545 0.245
Del:LT 0.003 0.009 0.037 3.234 0.003
Bic:LT 0.003 0.002 0.031 2.283 0.045
Tri:LT 0.003 0.029 0.057 5.992 <0.001
GM:LT 0.003 -0.013 0.015 0.130 1.000
TF:LT 0.003 -0.030 -0.002 -2.236 0.051
RF:LT 0.003 -0.024 0.005 -1.335 0.365
VM:LT 0.003 -0.016 0.012 -0.238 1.000
BF:LT 0.003 -0.019 0.009 -0.686 0.986
TA:LT 0.003 -0.038 -0.010 -3.365 0.002
PL:LT 0.003 -0.042 -0.014 -3.849 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.027 0.026 0.029
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.002 -0.017 0.022 0.252 1.000
ES:FS 0.002 -0.045 -0.007 -2.647 0.016
Pec:FS 0.002 0.002 0.040 2.163 0.061
Lat:FS 0.002 -0.001 0.037 1.864 0.125
Tra:FS 0.002 -0.010 0.028 0.895 0.742
Del:FS 0.002 0.009 0.047 2.839 0.009
Bic:FS 0.002 -0.002 0.036 1.748 0.162
Tri:FS 0.002 0.041 0.080 6.210 <0.001
GM:FS 0.002 -0.026 0.012 -0.720 0.943
TF:FS 0.002 -0.038 -0.000 -1.981 0.096
RF:FS 0.002 -0.032 0.006 -1.371 0.342
VM:FS 0.002 -0.023 0.015 -0.378 1.000
BF:FS 0.002 -0.024 0.014 -0.490 1.000
TA:FS 0.002 -0.042 -0.004 -2.393 0.034
PL:FS 0.002 -0.051 -0.013 -3.248 0.002
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.027 0.026 0.029
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Table A.29: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.355
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.029 0.035 20.775 <0.001
LT -0.015 -0.019 -0.011 20.775 <0.001
FS -0.016 -0.021 -0.010 20.775 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.027 0.026 0.028

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.017 0.013 0.021 8.527 <0.001
UA 0.017 0.011 0.019 7.143 <0.001
FS 0.017 -0.007 0.005 -0.345 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.027 0.026 0.028

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.003 -0.009 0.016 0.502 1.000
ES:LT 0.003 -0.023 0.002 -1.672 0.189
Pec:LT 0.003 -0.009 0.016 0.535 1.000
Lat:LT 0.003 -0.007 0.017 0.780 0.871
Tra:LT 0.003 -0.001 0.024 1.771 0.154
Del:LT 0.003 0.009 0.034 3.364 0.002
Bic:LT 0.003 0.001 0.025 2.076 0.076
Tri:LT 0.003 0.027 0.051 6.180 <0.001
GM:LT 0.003 -0.011 0.013 0.163 1.000
TF:LT 0.003 -0.020 0.004 -1.250 0.423
RF:LT 0.003 -0.025 0.000 -1.934 0.107
VM:LT 0.003 -0.012 0.013 0.131 1.000
BF:LT 0.003 -0.020 0.005 -1.158 0.495
TA:LT 0.003 -0.023 0.002 -1.633 0.206
PL:LT 0.003 -0.043 -0.018 -4.819 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.024 0.023 0.025
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.011 -0.006 0.028 1.316 0.377
ES:FS 0.011 -0.026 0.007 -1.089 0.553
Pec:FS 0.011 -0.007 0.027 1.169 0.486
Lat:FS 0.011 -0.009 0.024 0.906 0.730
Tra:FS 0.011 -0.001 0.032 1.787 0.148
Del:FS 0.011 -0.004 0.029 1.487 0.275
Bic:FS 0.011 0.003 0.037 2.325 0.041
Tri:FS 0.011 0.022 0.056 4.588 <0.001
GM:FS 0.011 -0.020 0.013 -0.409 1.000
TF:FS 0.011 -0.034 -0.000 -1.974 0.097
RF:FS 0.011 -0.019 0.014 -0.313 1.000
VM:FS 0.011 -0.019 0.014 -0.281 1.000
BF:FS 0.011 -0.019 0.014 -0.263 1.000
TA:FS 0.011 -0.030 0.004 -1.536 0.250
PL:FS 0.011 -0.056 -0.023 -4.663 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.024 0.023 0.025
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Table A.30: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 9

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.253
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.039 0.036 0.042 23.596 <0.001
LT -0.018 -0.023 -0.014 23.596 <0.001
FS -0.014 -0.021 -0.007 23.596 0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.009
Error 0.034 0.033 0.036

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.021 0.016 0.025 8.973 <0.001
UA 0.021 0.014 0.023 7.429 <0.001
FS 0.021 -0.003 0.012 1.232 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.009
Error 0.034 0.033 0.036

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.009 -0.006 0.024 1.161 0.492
ES:LT 0.009 -0.018 0.012 -0.440 1.000
Pec:LT 0.009 -0.006 0.024 1.189 0.469
Lat:LT 0.009 -0.006 0.024 1.211 0.453
Tra:LT 0.009 0.001 0.031 2.121 0.068
Del:LT 0.009 -0.002 0.028 1.746 0.162
Bic:LT 0.009 -0.003 0.027 1.628 0.208
Tri:LT 0.009 0.032 0.062 6.201 <0.001
GM:LT 0.009 -0.019 0.010 -0.600 1.000
TF:LT 0.009 -0.021 0.008 -0.853 0.788
RF:LT 0.009 -0.016 0.013 -0.205 1.000
VM:LT 0.009 -0.005 0.025 1.337 0.363
BF:LT 0.009 -0.031 -0.001 -2.060 0.079
TA:LT 0.009 -0.032 -0.003 -2.299 0.043
PL:LT 0.009 -0.059 -0.029 -5.784 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.029 0.028 0.030
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.014 -0.007 0.034 1.327 0.370
ES:FS 0.014 -0.032 0.009 -1.101 0.542
Pec:FS 0.014 0.022 0.062 4.050 <0.001
Lat:FS 0.014 -0.006 0.034 1.363 0.346
Tra:FS 0.014 -0.002 0.039 1.811 0.141
Del:FS 0.014 -0.005 0.035 1.448 0.296
Bic:FS 0.014 0.006 0.047 2.589 0.020
Tri:FS 0.014 0.030 0.070 4.861 <0.001
GM:FS 0.014 -0.026 0.014 -0.574 1.000
TF:FS 0.014 -0.031 0.010 -1.018 0.617
RF:FS 0.014 -0.028 0.012 -0.756 0.899
VM:FS 0.014 -0.020 0.020 0.021 1.000
BF:FS 0.014 -0.058 -0.018 -3.711 <0.001
TA:FS 0.014 -0.042 -0.002 -2.135 0.066
PL:FS 0.014 -0.068 -0.027 -4.625 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.029 0.028 0.030
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Table A.31: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 10

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.210
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.030 0.035 24.172 <0.001
LT -0.014 -0.018 -0.009 24.172 <0.001
FS -0.011 -0.017 -0.006 24.172 0.002
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.008
Error 0.029 0.028 0.031

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.019 0.015 0.022 9.915 <0.001
UA 0.019 0.009 0.018 6.465 <0.001
FS 0.019 -0.004 0.008 0.685 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.008
Error 0.029 0.028 0.031

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.006 -0.007 0.019 0.929 0.706
ES:LT 0.006 -0.009 0.016 0.553 1.000
Pec:LT 0.006 -0.005 0.020 1.130 0.517
Lat:LT 0.006 -0.010 0.015 0.411 1.000
Tra:LT 0.006 0.001 0.026 2.165 0.061
Del:LT 0.006 0.001 0.026 2.084 0.075
Bic:LT 0.006 -0.003 0.022 1.515 0.260
Tri:LT 0.006 0.017 0.042 4.537 <0.001
GM:LT 0.006 -0.019 0.007 -0.936 0.699
TF:LT 0.006 -0.014 0.011 -0.184 1.000
RF:LT 0.006 -0.012 0.013 0.067 1.000
VM:LT 0.006 -0.002 0.023 1.689 0.183
BF:LT 0.006 -0.031 -0.005 -2.806 0.010
TA:LT 0.006 -0.031 -0.006 -2.919 0.007
PL:LT 0.006 -0.037 -0.012 -3.817 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.007
Error 0.024 0.024 0.026
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.015 -0.002 0.032 1.723 0.170
ES:FS 0.015 -0.000 0.034 1.916 0.111
Pec:FS 0.015 0.017 0.051 3.959 <0.001
Lat:FS 0.015 -0.005 0.029 1.359 0.349
Tra:FS 0.015 -0.002 0.032 1.738 0.165
Del:FS 0.015 0.001 0.035 2.032 0.085
Bic:FS 0.015 0.013 0.048 3.514 0.001
Tri:FS 0.015 0.015 0.049 3.708 <0.001
GM:FS 0.015 -0.024 0.010 -0.783 0.867
TF:FS 0.015 -0.028 0.007 -1.203 0.458
RF:FS 0.015 -0.028 0.006 -1.304 0.385
VM:FS 0.015 -0.027 0.007 -1.161 0.492
BF:FS 0.015 -0.052 -0.018 -4.024 <0.001
TA:FS 0.015 -0.038 -0.003 -2.364 0.037
PL:FS 0.015 -0.052 -0.018 -4.063 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.007
Error 0.024 0.024 0.026
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Table A.32: Detailed statistics: sit-to-stand, challenging condition, exaggerated forward leaning strategy, synergy 11

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 19
ICC 0.211
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.035 0.041 24.836 <0.001
LT -0.015 -0.019 -0.010 24.836 <0.001
FS -0.015 -0.022 -0.009 24.836 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.008
Error 0.033 0.032 0.035

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.019 0.027 10.644 <0.001
UA 0.023 0.010 0.019 6.246 <0.001
FS 0.023 -0.007 0.006 -0.137 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.008
Error 0.033 0.032 0.035

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT 0.015 0.001 0.028 2.153 0.063
ES:LT 0.015 -0.018 0.009 -0.652 1.000
Pec:LT 0.015 -0.003 0.024 1.533 0.251
Lat:LT 0.015 -0.005 0.022 1.288 0.396
Tra:LT 0.015 -0.001 0.027 1.885 0.119
Del:LT 0.015 -0.005 0.022 1.274 0.406
Bic:LT 0.015 -0.004 0.023 1.346 0.357
Tri:LT 0.015 0.014 0.041 3.940 <0.001
GM:LT 0.015 -0.022 0.005 -1.296 0.390
TF:LT 0.015 -0.012 0.015 0.208 1.000
RF:LT 0.015 -0.016 0.011 -0.376 1.000
VM:LT 0.015 -0.003 0.024 1.518 0.259
BF:LT 0.015 -0.037 -0.010 -3.365 0.002
TA:LT 0.015 -0.037 -0.010 -3.405 0.001
PL:LT 0.015 -0.032 -0.005 -2.677 0.015
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.026 0.025 0.027
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Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS 0.014 -0.005 0.032 1.469 0.284
ES:FS 0.014 -0.011 0.025 0.747 0.910
Pec:FS 0.014 0.009 0.046 2.921 0.007
Lat:FS 0.014 0.004 0.041 2.410 0.032
Tra:FS 0.014 0.000 0.037 1.996 0.092
Del:FS 0.014 -0.014 0.023 0.473 1.000
Bic:FS 0.014 0.010 0.046 2.988 0.006
Tri:FS 0.014 0.007 0.043 2.685 0.015
GM:FS 0.014 -0.018 0.018 0.002 1.000
TF:FS 0.014 -0.021 0.015 -0.337 1.000
RF:FS 0.014 -0.029 0.008 -1.100 0.544
VM:FS 0.014 -0.022 0.015 -0.378 1.000
BF:FS 0.014 -0.052 -0.016 -3.647 0.001
TA:FS 0.014 -0.043 -0.006 -2.633 0.017
PL:FS 0.014 -0.045 -0.009 -2.901 0.008
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.026 0.025 0.027
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Table A.33: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.436
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.021 0.015 0.027 6.954 <0.001
LT 0.002 -0.004 0.008 6.954 1.000
FS 0.012 0.006 0.017 6.954 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.011
Error 0.035 0.034 0.036

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.018 0.028 9.926 <0.001
UA 0.023 -0.008 0.004 -0.661 1.000
FS 0.023 0.006 0.014 5.137 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.011
Error 0.035 0.034 0.036

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.018 -0.033 -0.003 -2.406 0.033
ES:FS -0.018 -0.022 0.007 -0.986 0.649
Pec:FS -0.018 0.003 0.033 2.389 0.034
Lat:FS -0.018 -0.020 0.010 -0.669 1.000
Tra:FS -0.018 0.053 0.082 8.864 <0.001
Del:FS -0.018 -0.038 -0.008 -3.044 0.005
Bic:FS -0.018 0.029 0.059 5.779 <0.001
Tri:FS -0.018 0.004 0.034 2.456 0.028
GM:FS -0.018 -0.049 -0.019 -4.455 <0.001
TF:FS -0.018 -0.026 0.003 -1.519 0.258
RF:FS -0.018 -0.022 0.008 -0.913 0.723
VM:FS -0.018 -0.021 0.009 -0.843 0.799
BF:FS -0.018 -0.034 -0.004 -2.516 0.024
TA:FS -0.018 -0.010 0.020 0.651 1.000
PL:FS -0.018 -0.020 0.010 -0.649 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.027 0.026 0.028
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Table A.34: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.439
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.016 0.029 6.983 <0.001
LT 0.008 0.002 0.014 6.983 0.233
FS 0.015 0.009 0.021 6.983 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.038 0.036 0.039

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.026 0.036 12.207 <0.001
UA 0.031 -0.014 -0.002 -2.445 0.233
FS 0.031 0.003 0.012 3.634 0.005
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.038 0.036 0.039

Post-hoc UA vs. FS
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:FS -0.018 -0.034 -0.001 -2.123 0.068
ES:FS -0.018 -0.014 0.019 0.259 1.000
Pec:FS -0.018 -0.027 0.006 -1.247 0.425
Lat:FS -0.018 -0.001 0.031 1.791 0.147
Tra:FS -0.018 -0.002 0.031 1.767 0.155
Del:FS -0.018 -0.045 -0.013 -3.472 0.001
Bic:FS -0.018 0.063 0.096 9.470 <0.001
Tri:FS -0.018 0.012 0.045 3.371 0.002
GM:FS -0.018 -0.035 -0.002 -2.253 0.049
TF:FS -0.018 -0.019 0.014 -0.316 1.000
RF:FS -0.018 -0.009 0.024 0.875 0.763
VM:FS -0.018 -0.018 0.015 -0.208 1.000
BF:FS -0.018 -0.028 0.005 -1.354 0.352
TA:FS -0.018 -0.035 -0.002 -2.258 0.048
PL:FS -0.018 -0.033 0.000 -1.929 0.108
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.012
Error 0.029 0.028 0.030
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Table A.35: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.500
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.031 0.044 10.893 <0.001
LT 0.005 -0.001 0.012 10.893 1.000
FS 0.003 -0.003 0.009 10.893 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.038 0.036 0.039

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.043 0.038 0.048 15.793 <0.001
UA 0.043 -0.012 0.001 -1.695 1.000
FS 0.043 -0.006 0.002 -1.108 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.038 0.036 0.039
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Table A.36: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.284
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.044 0.039 0.048 18.266 <0.001
LT -0.008 -0.013 -0.003 18.266 0.020
FS -0.014 -0.019 -0.010 18.266 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.003 0.007
Error 0.031 0.030 0.032

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.032 0.039 21.006 <0.001
UA 0.035 0.003 0.013 3.230 0.020
FS 0.035 -0.009 -0.003 -3.531 0.007
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.003 0.007
Error 0.031 0.030 0.032

Post-hoc UA vs. LT
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
RA:LT -0.001 -0.017 0.015 -0.067 1.000
ES:LT -0.001 -0.000 0.032 1.920 0.165
Pec:LT -0.001 -0.013 0.019 0.336 1.000
Lat:LT -0.001 -0.008 0.024 0.983 0.977
Tra:LT -0.001 -0.021 0.011 -0.588 1.000
Del:LT -0.001 0.011 0.043 3.275 0.003
Bic:LT -0.001 -0.001 0.031 1.818 0.208
Tri:LT -0.001 0.011 0.042 3.258 0.003
GM:LT -0.001 -0.029 0.003 -1.567 0.352
TF:LT -0.001 -0.027 0.005 -1.385 0.499
RF:LT -0.001 -0.008 0.024 1.008 0.940
VM:LT -0.001 -0.016 0.015 -0.062 1.000
BF:LT -0.001 -0.022 0.010 -0.749 1.000
TA:LT -0.001 -0.032 0.000 -1.955 0.152
PL:LT -0.001 -0.050 -0.018 -4.186 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.007
Error 0.027 0.027 0.028
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Table A.37: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.425
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.041 0.035 0.046 14.535 <0.001
LT 0.002 -0.003 0.007 14.535 1.000
FS -0.011 -0.016 -0.006 14.535 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.010
Error 0.033 0.032 0.034

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.043 0.039 0.047 20.042 <0.001
UA 0.043 -0.007 0.003 -0.733 1.000
FS 0.043 -0.017 -0.010 -7.349 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.010
Error 0.033 0.032 0.034

Table A.38: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.491
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.047 0.041 0.053 15.373 <0.001
LT -0.006 -0.012 -0.001 15.373 0.369
FS -0.021 -0.026 -0.016 15.373 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.034 0.033 0.035

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.040 0.036 0.045 16.853 <0.001
UA 0.040 0.001 0.012 2.275 0.369
FS 0.040 -0.018 -0.011 -7.813 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.034 0.033 0.035
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Table A.39: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 9

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.392
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.063 0.057 0.069 20.377 <0.001
LT -0.025 -0.031 -0.019 20.377 <0.001
FS -0.031 -0.036 -0.025 20.377 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.037 0.036 0.038

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.033 0.043 16.412 <0.001
UA 0.038 0.019 0.031 8.061 <0.001
FS 0.038 -0.010 -0.002 -2.722 0.105
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.037 0.036 0.038

Table A.40: Detailed statistics: sit-to-stand, challenging condition, forward leaning strategy, synergy 11

Reference group: UA

Model information Values
Number of observations 1648
Number of participants 19
ICC 0.308
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.069 0.062 0.076 18.872 <0.001
LT -0.026 -0.034 -0.019 18.872 <0.001
FS -0.028 -0.035 -0.021 18.872 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.012
Error 0.047 0.045 0.048

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.042 0.037 0.048 16.357 <0.001
UA 0.042 0.019 0.034 6.779 <0.001
FS 0.042 -0.007 0.003 -0.653 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.012
Error 0.047 0.045 0.048
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Table A.41: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.542
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.024 0.018 0.030 8.040 <0.001
LT -0.004 -0.011 0.002 8.040 1.000
FS -0.005 -0.011 0.000 8.040 0.919
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.020 0.019 0.021

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.020 0.015 0.024 8.254 <0.001
UA 0.020 -0.002 0.011 1.421 1.000
FS 0.020 -0.005 0.003 -0.405 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.020 0.019 0.021

Table A.42: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.632
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.020 0.034 7.185 <0.001
LT 0.005 -0.002 0.013 7.185 1.000
FS 0.002 -0.004 0.009 7.185 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.024 0.023 0.025

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.026 0.038 10.525 <0.001
UA 0.032 -0.013 0.002 -1.382 1.000
FS 0.032 -0.008 0.002 -1.100 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.024 0.023 0.025
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Table A.43: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.708
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.024 0.016 0.032 6.075 <0.001
LT 0.007 -0.000 0.015 6.075 0.920
FS 0.002 -0.004 0.009 6.075 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.014
Error 0.024 0.023 0.025

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.025 0.038 9.557 <0.001
UA 0.031 -0.015 0.000 -1.903 0.920
FS 0.031 -0.010 0.000 -1.835 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.005 0.014
Error 0.024 0.023 0.025

Table A.44: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.593
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.019 0.032 7.354 <0.001
LT -0.002 -0.009 0.005 7.354 1.000
FS -0.005 -0.011 0.001 7.354 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.011
Error 0.022 0.021 0.024

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.018 0.029 8.349 <0.001
UA 0.023 -0.005 0.009 0.619 1.000
FS 0.023 -0.007 0.002 -1.040 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.011
Error 0.022 0.021 0.024
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Table A.45: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.484
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.017 0.033 6.271 <0.001
LT -0.003 -0.011 0.005 6.271 1.000
FS 0.000 -0.007 0.008 6.271 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.011
Error 0.027 0.026 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.016 0.028 6.965 <0.001
UA 0.022 -0.005 0.011 0.759 1.000
FS 0.022 -0.002 0.009 1.161 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.011
Error 0.027 0.026 0.029

Table A.46: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.817
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.019 0.036 6.465 <0.001
LT -0.005 -0.012 0.003 6.465 1.000
FS -0.006 -0.013 0.001 6.465 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.016
Error 0.024 0.023 0.026

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.016 0.030 6.376 <0.001
UA 0.023 -0.003 0.012 1.176 1.000
FS 0.023 -0.007 0.004 -0.476 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.016
Error 0.024 0.023 0.026
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Table A.47: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 9

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.711
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.015 0.008 0.022 4.170 0.001
LT 0.007 0.000 0.014 4.170 0.675
FS 0.006 -0.000 0.012 4.170 0.814
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.022 0.021 0.023

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.016 0.028 7.400 <0.001
UA 0.022 -0.014 -0.000 -2.036 0.675
FS 0.022 -0.006 0.004 -0.409 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.022 0.021 0.023

Table A.48: Detailed statistics: stand-to-sit, non-challenging condition, backward lowering strategy, synergy 10

Reference group: UA

Model information Values
Number of observations 672
Number of participants 14
ICC 0.373
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.018 0.010 0.025 4.679 <0.001
LT 0.002 -0.006 0.010 4.679 1.000
FS 0.003 -0.004 0.010 4.679 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.027 0.026 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.019 0.014 0.025 6.745 <0.001
UA 0.019 -0.010 0.006 -0.430 1.000
FS 0.019 -0.004 0.007 0.476 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.027 0.026 0.029
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Table A.49: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.723
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.021 0.016 0.026 8.813 <0.001
LT 0.002 -0.002 0.005 8.813 1.000
FS 0.003 -0.000 0.006 8.813 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.020 0.019 0.021

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.018 0.027 10.327 <0.001
UA 0.023 -0.005 0.002 -0.995 1.000
FS 0.023 -0.002 0.004 0.948 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.020 0.019 0.021

Table A.50: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.367
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.031 0.027 0.035 15.256 <0.001
LT -0.002 -0.006 0.001 15.256 1.000
FS -0.004 -0.008 0.000 15.256 0.950
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.025 0.024 0.026

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.025 0.032 16.716 <0.001
UA 0.029 -0.001 0.006 1.259 1.000
FS 0.029 -0.005 0.002 -0.798 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.025 0.024 0.026
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Table A.51: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.090
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.027 0.033 18.009 <.001
LT -0.002 -0.006 0.002 18.009 1.000
FS -0.003 -0.007 0.001 18.009 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.001 0.000 0.029
Error 0.028 0.026 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.025 0.030 20.889 <0.001
UA 0.027 -0.002 0.006 1.153 1.000
FS 0.027 -0.005 0.003 -0.399 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.001 0.000 0.029
Error 0.028 0.026 0.029

Table A.52: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.220
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.023 0.030 15.080 <0.001
LT -0.004 -0.007 0.000 15.080 1.000
FS 0.002 -0.002 0.006 15.080 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.006
Error 0.026 0.025 0.027

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.021 0.026 16.262 <0.001
UA 0.023 -0.000 0.007 1.799 1.000
FS 0.023 0.002 0.009 2.877 0.065
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.006
Error 0.026 0.025 0.027
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Table A.53: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.233
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.028 0.036 15.827 <0.001
LT -0.005 -0.010 -0.001 15.827 0.254
FS -0.006 -0.011 -0.002 15.827 0.134
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.002 0.008
Error 0.029 0.028 0.031

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.024 0.030 16.341 <0.001
UA 0.027 0.001 0.010 2.415 0.254
FS 0.027 -0.005 0.003 -0.418 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.002 0.008
Error 0.029 0.028 0.031

Table A.54: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.451
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.017 0.026 9.963 <0.001
LT 0.004 0.001 0.008 9.963 0.346
FS 0.003 -0.001 0.007 9.963 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.024 0.023 0.025

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.022 0.030 13.827 <0.001
UA 0.026 -0.008 -0.001 -2.300 0.346
FS 0.026 -0.005 0.002 -0.873 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.024 0.023 0.025
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Table A.55: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.700
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.016 0.029 6.893 <0.001
LT 0.007 0.003 0.012 6.893 0.012
FS 0.002 -0.002 0.007 6.893 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.015
Error 0.028 0.027 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.024 0.036 10.032 <0.001
UA 0.030 -0.012 -0.003 -3.381 0.012
FS 0.030 -0.009 -0.001 -2.545 0.177
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.010 0.006 0.015
Error 0.028 0.027 0.029

Table A.56: Detailed statistics: stand-to-sit, non-challenging condition, hybrid strategy, synergy 10

Reference group: UA

Model information Values
Number of observations 1152
Number of participants 14
ICC 0.536
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.016 0.027 8.094 <0.001
LT 0.008 0.004 0.012 8.094 0.002
FS 0.004 -0.001 0.008 8.094 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.027 0.026 0.028

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.025 0.035 12.642 <0.001
UA 0.030 -0.012 -0.004 -3.899 0.002
FS 0.030 -0.009 -0.001 -2.318 0.330
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.027 0.026 0.028
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Table A.57: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.674
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.018 0.027 9.218 <0.001
LT 0.001 -0.003 0.005 9.218 1.000
FS 0.003 -0.003 0.008 9.218 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.023 0.022 0.024

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.018 0.029 8.453 <0.001
UA 0.023 -0.005 0.003 -0.444 1.000
FS 0.023 -0.004 0.008 0.665 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.023 0.022 0.024

Table A.58: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.383
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.021 0.028 13.619 <0.001
LT 0.005 0.000 0.009 13.619 0.450
FS -0.004 -0.010 0.003 13.619 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.025 0.024 0.026

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.025 0.034 12.879 <0.001
UA 0.029 -0.009 -0.000 -2.199 0.450
FS 0.029 -0.014 -0.002 -2.540 0.180
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.008
Error 0.025 0.024 0.026
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Table A.59: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.321
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.020 0.026 14.452 <0.001
LT -0.001 -0.005 0.003 14.452 1.000
FS 0.002 -0.004 0.008 14.452 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.008
Error 0.025 0.024 0.026

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.018 0.026 10.817 <0.001
UA 0.022 -0.003 0.005 0.369 1.000
FS 0.022 -0.003 0.009 0.960 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.004 0.002 0.008
Error 0.025 0.024 0.026

Table A.60: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.222
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.021 0.025 18.385 <0.001
LT -0.004 -0.008 -0.001 18.385 0.353
FS -0.006 -0.011 -0.000 18.385 0.639
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.006
Error 0.023 0.022 0.024

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.019 0.016 0.022 11.107 <0.001
UA 0.019 0.001 0.008 2.293 0.353
FS 0.019 -0.007 0.004 -0.489 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.006
Error 0.023 0.022 0.024
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Table A.61: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.261
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.022 0.028 16.516 <0.001
LT -0.000 -0.004 0.004 16.516 1.000
FS -0.002 -0.008 0.004 16.516 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.007
Error 0.026 0.024 0.027

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.024 0.020 0.028 12.222 <0.001
UA 0.024 -0.004 0.004 0.180 1.000
FS 0.024 -0.008 0.005 -0.464 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.003 0.001 0.007
Error 0.026 0.024 0.027

Table A.62: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.513
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.022 0.018 0.026 10.413 <0.001
LT 0.007 0.003 0.011 10.413 0.013
FS 0.002 -0.004 0.008 10.413 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.024 0.023 0.025

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.028 0.024 0.033 11.478 <0.001
UA 0.028 -0.011 -0.003 -3.353 0.013
FS 0.028 -0.011 0.001 -1.570 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.024 0.023 0.025
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Table A.63: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.672
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.017 0.013 0.022 7.464 <0.001
LT 0.011 0.007 0.015 7.464 <0.001
FS 0.018 0.012 0.023 7.464 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.012
Error 0.022 0.021 0.023

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.028 0.023 0.033 10.791 <0.001
UA 0.028 -0.015 -0.007 -6.036 <0.001
FS 0.028 0.001 0.012 2.343 0.309
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.012
Error 0.022 0.021 0.023

Table A.64: Detailed statistics: stand-to-sit, non-challenging condition, vertical lowering strategy, synergy 10

Reference group: UA

Model information Values
Number of observations 864
Number of participants 12
ICC 0.377
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.018 0.014 0.022 8.754 <0.001
LT 0.009 0.004 0.013 8.754 0.005
FS 0.011 0.004 0.018 8.754 0.037
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.029 0.028 0.030

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.022 0.032 10.309 <0.001
UA 0.027 -0.013 -0.004 -3.617 0.005
FS 0.027 -0.005 0.009 0.598 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.005 0.003 0.009
Error 0.029 0.028 0.030
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Table A.65: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.591
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.034 0.029 0.038 14.297 <0.001
LT -0.007 -0.011 -0.004 14.297 0.001
FS -0.007 -0.012 -0.002 14.297 0.129
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.028 0.027 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.022 0.031 10.759 <0.001
UA 0.026 0.004 0.011 4.019 0.001
FS 0.026 -0.004 0.006 0.265 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.028 0.027 0.029

Table A.66: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.426
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.034 0.029 0.038 15.929 <0.001
LT -0.005 -0.009 -0.001 15.929 0.315
FS -0.003 -0.008 0.002 15.929 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.010
Error 0.031 0.030 0.032

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.025 0.033 13.014 <0.001
UA 0.029 0.001 0.009 2.285 0.315
FS 0.029 -0.004 0.007 0.560 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.010
Error 0.031 0.030 0.032
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Table A.67: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.554
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.030 0.040 15.109 <0.001
LT -0.003 -0.007 0.001 15.109 1.000
FS 0.002 -0.003 0.007 15.109 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.029 0.028 0.030

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.027 0.037 13.210 <0.001
UA 0.032 -0.001 0.007 1.651 1.000
FS 0.032 -0.000 0.010 1.933 0.749
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.029 0.028 0.030

Table A.68: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.694
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.025 0.021 0.030 11.068 <0.001
LT 0.000 -0.003 0.003 11.068 1.000
FS 0.002 -0.002 0.007 11.068 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.024 0.023 0.025

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.021 0.030 10.869 <0.001
UA 0.026 -0.003 0.003 -0.212 1.000
FS 0.026 -0.002 0.006 0.916 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.006 0.012
Error 0.024 0.023 0.025
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Table A.69: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 5

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.672
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.021 0.031 10.766 <0.001
LT 0.003 -0.000 0.007 10.766 0.723
FS 0.002 -0.002 0.007 10.766 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.026 0.025 0.027

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.024 0.034 11.749 <0.001
UA 0.029 -0.007 0.000 -1.948 0.723
FS 0.029 -0.006 0.004 -0.378 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.026 0.025 0.027

Table A.70: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.680
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.023 0.018 0.028 9.766 <0.001
LT 0.005 0.002 0.009 9.766 0.013
FS 0.008 0.004 0.013 9.766 0.005
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.025 0.024 0.026

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.028 0.024 0.033 11.705 <0.001
UA 0.028 -0.009 -0.002 -3.322 0.013
FS 0.028 -0.002 0.007 1.166 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.013
Error 0.025 0.024 0.026
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Table A.71: Detailed statistics: stand-to-sit, challenging condition, exaggerated forward leaning strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 1200
Number of participants 17
ICC 0.383
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.021 0.017 0.025 10.160 <0.001
LT 0.009 0.005 0.013 10.160 <0.001
FS 0.004 -0.001 0.010 10.160 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.032 0.030 0.033

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.025 0.034 13.597 <0.001
UA 0.029 -0.013 -0.005 -4.217 <0.001
FS 0.029 -0.010 0.001 -1.510 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.006 0.004 0.010
Error 0.032 0.030 0.033

Table A.72: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 1

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.510
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.042 0.037 0.048 15.997 <0.001
LT -0.010 -0.014 -0.005 15.997 <0.001
FS -0.014 -0.018 -0.010 15.997 <0.001
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.031 0.033

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.033 0.028 0.038 13.316 <0.001
UA 0.033 0.005 0.014 4.201 <0.001
FS 0.033 -0.008 -0.000 -2.153 0.440
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.031 0.033
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Table A.73: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 2

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.488
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.034 0.029 0.039 13.269 <0.001
LT -0.001 -0.006 0.003 13.269 1.000
FS -0.003 -0.007 0.001 13.269 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.030 0.033

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.028 0.037 13.755 <0.001
UA 0.032 -0.003 0.006 0.581 1.000
FS 0.032 -0.005 0.002 -0.771 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.008 0.005 0.012
Error 0.032 0.030 0.033

Table A.74: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 3

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.557
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.027 0.038 11.290 <0.001
LT 0.006 0.001 0.011 11.290 0.147
FS 0.005 0.000 0.009 11.290 0.567
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.033 0.032 0.034

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.038 0.033 0.044 14.282 <0.001
UA 0.038 -0.011 -0.001 -2.561 0.147
FS 0.038 -0.005 0.002 -0.735 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.033 0.032 0.034
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Table A.75: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 4

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.500
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.035 0.031 0.040 14.533 <0.001
LT 0.001 -0.003 0.005 14.533 1.000
FS -0.000 -0.004 0.003 14.533 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.030 0.029 0.031

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.036 0.032 0.041 15.988 <0.001
UA 0.036 -0.005 0.003 -0.375 1.000
FS 0.036 -0.005 0.002 -0.704 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.005 0.011
Error 0.030 0.029 0.031

Table A.76: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 6

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.460
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.034 0.030 0.038 15.283 <0.001
LT -0.005 -0.009 -0.001 15.283 0.267
FS -0.004 -0.008 -0.000 15.283 0.409
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.010
Error 0.029 0.028 0.030

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.029 0.025 0.033 14.253 <0.001
UA 0.029 0.001 0.009 2.347 0.267
FS 0.029 -0.003 0.004 0.341 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.007 0.004 0.010
Error 0.029 0.028 0.030
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Table A.77: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 7

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.674
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.030 0.025 0.035 11.029 <0.001
LT -0.004 -0.008 0.000 11.029 0.737
FS -0.005 -0.009 -0.001 11.029 0.106
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.028 0.027 0.029

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.026 0.021 0.031 10.130 <0.001
UA 0.026 -0.000 0.008 1.940 0.737
FS 0.026 -0.004 0.002 -0.686 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.009 0.006 0.014
Error 0.028 0.027 0.029

Table A.78: Detailed statistics: stand-to-sit, challenging condition, forward leaning strategy, synergy 8

Reference group: UA

Model information Values
Number of observations 1616
Number of participants 18
ICC 0.628
Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.027 0.020 0.033 8.006 <0.001
LT 0.005 -0.000 0.010 8.006 0.764
FS 0.002 -0.003 0.007 8.006 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.008 0.016
Error 0.036 0.035 0.037

Reference group: LT

Fixed effects Estimate Lower 95% CI Upper 95% CI t p
(Intercept) 0.032 0.026 0.038 10.016 <0.001
UA 0.032 -0.010 0.000 -1.924 0.764
FS 0.032 -0.007 0.002 -1.261 1.000
Random effects Estimate Lower 95% CI Upper 95% CI
(Intercept) 0.011 0.008 0.016
UA -0.005 -0.010 0.000
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