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Stateful Differential Operators for Incremental Computing

RUNQING XU, KIT, Germany
SEBASTIAN ERDWEG, KIT, Germany

Differential operators map input changes to output changes and form the building blocks of efficient incre-
mental computations. For example, differential operators for relational algebra are used to perform live view
maintenance in database systems. However, few differential operators are known and it is unclear how to
develop and verify new efficient operators. In particular, we found that differential operators often need to
use internal state to selectively cache relevant information, which is not supported by prior work. To this
end, we designed a specification for stateful differential operators that allows custom state, yet places sufficient
constraints to ensure correctness. We model our specification in Rocq and show that the specification not only
guides the design of novel differential operators, but also can capture some of the most sophisticated existing
differential operators: database join and Datalog aggregation. We show how to describe complex incremental
computations in OCaml by composing stateful differential operators, which we have extracted from Rocq.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Semantics and reason-
ing.

Additional Key Words and Phrases: Incremental computing, formal specification
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ACM Program. Lang. 10, POPL, Article 86 (January 2026), 29 pages. https://doi.org/10.1145/3776728

1 Introduction
Incremental computing is concerned with programs that can react to input changes at run time. In
particular, incremental computing is about automatic approaches that can incrementalize a family
of programs. The following table summarizes the most important existing approaches:

Incremental-computing approach Program family Input change

incremental attribute grammars
[Demers et al. 1981]

grammars with
attribute definitions AST changes

incremental build systems
[Erdweg et al. 2015b] build scripts file changes

self-adjusting computations
[Acar et al. 2006; Hammer et al. 2014] functional programs external variables

incremental lambda calculus
[Cai et al. 2014; Giarrusso et al. 2019] functional programs function arguments

live view maintenance
[Gupta and Mumick 1995] relational algebra relation changes

incremental Datalog
[Pacak et al. 2022; Szabó et al. 2018]

logic programs
with aggregation relation and tree changes
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86:2 Runqing Xu and Sebastian Erdweg

Incremental attribute grammars, incremental build systems, and self-adjusting computations per-
form selective recomputing: When an external input is changed, they rerun all sub-computations
that transitively depend on that input. Selective recomputing has a fundamental limitation because
it only knows if a variable is changed, but not how. That is, there only is a notion of changed
(yes/no), but no notion of change (how). This is particularly problematic for computations that
operate on complex data, where reacting to fine-grained changes is often asymptotically better
than rerunning a sub-computation on the changed data.

The incremental lambda calculus (ILC) performs differential updating: When an input is changed,
they propagate the input delta to derive the output delta. However, whenever the original compu-
tation uses a primitive operator, differential updating requires a corresponding differential operator
to process the input change. For example, consider a grammar checker that analyzes text using
a wide range of string operators such trim, indexOf, substring, or toUpperCase. As we propagate
text changes, each operator (like trim) needs a corresponding differential operator (by convention
called Δtrim) to propagate changes through the primitives. Indeed, the incremental performance
substantially depends on the effectiveness of the available primitive differential operators. Unfor-
tunately, virtually all known differential operators stem from incremental relational algebra and
incremental Datalog, which employ powerful differential operators for relational data: projection,
selection, join, and monotonic aggregation. It is these primitives that provide asymptotic speedups
compared to the original non-incremental computation, which makes live view maintenance and
incremental Datalog so effective in practice [Szabó et al. 2021]. If differential updating is to have a
similar impact in other domains than relational algebra, we need to develop primitive differential
operators to support them.

A key characteristic of many efficient differential operators is that they are stateful, that is, they
retain information between incoming changes. For example, consider a differential operator Δtrim
that removes leading and trailing whitespace from a string. Say we start with trim("abc\n\n")

= "abc" and then append "de" to the input of trim, what is the corresponding output change?
We must append "\n\nde" to the output, which includes the deleted whitespace, because it is no
longer trailing in the current input "abc\n\nde". Thus, Δtrim must remember which whitespace
it deleted, so that it can be restored when required. As one investigates differential operators, it
quickly becomes apparent that statefulness is the rule rather than the exception. Only a few studies
have explored stateful differential operators [Budiu et al. 2023; Giarrusso et al. 2019], and they
impose restrictions on the state’s representation, which limits expressiveness and efficiency. In
particular, no prior research described how to develop differential operators with custom states or
what it means for them to be correct.

In this paper, we present the first framework for developing efficient differential operators. At it’s
heart, our framework comprises a specification of stateful differential operators that guides their
development and ensures their correctness. Indeed, since differential operators try to cut corners
to reduce work whenever possible, there is an imminent risk of breaking correctness. A differential
operator Δ𝑓 is correct if the derived output change correctly maps the old output 𝑓 (𝑥) to the new
output 𝑓 (𝑥 ⊕ Δ𝑥). For stateless differential operators, we must prove 𝑓 (𝑥 ⊕ Δ𝑥) = 𝑓 (𝑥) ⊕ Δ𝑓 (Δ𝑥).
However, stateful differential operators are more complicated: they read and update an internal
state. To this end, our specification allows differential operators to define an invariant 𝐼 (𝑥, 𝑠). A
stateful differential operator then is correct if it yields a correct output change and the invariant is
maintained between incoming changes:

𝐼 (𝑥, 𝑠) → 𝑓 (𝑥 ⊕ Δ𝑥) = 𝑓 (𝑥) ⊕ Δ𝑓 (𝑠,Δ𝑥)
∧ 𝐼 (𝑥, 𝑠) → 𝐼 (𝑥 ⊕ Δ𝑥, 𝑠′).
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We have formalized our framework for stateful differential operators in the proof assistant Rocq
and present the full details in this paper. We demonstrate the expressiveness and the utility of our
framework with operators for two case studies (stateful operators are marked ‘*’):

Differential database operators: union, select, product, join*, user-defined aggregation*
Differential string operators: length, isEmpty*, toUpperCase, toLowerCase, trimLeft*, trimRight*,

concat*, indexOf*, lastIndexOf*

Many operators require custom state that we can model and validate with our framework. To
the best of our knowledge, we provide the first mechanized proof for incremental user-defined
aggregation implemented in IncA [Szabó et al. 2018]. Moreover, all of the differential string operators
are novel and many string operators yield asymptotic speedups, because they avoid the linear
scan required by a recomputation. In the long run, we hope to establish a full standard library of
provably correct differential operators for incremental computing.
While this work focuses on the theoretical aspects of differential operators, it is important to

stress their practical relevance. In particular, we can construct complex incremental computations by
composing (stateful) differential operators in a general-purpose language. Specifically, we extracted
various differential operators from Rocq to OCaml and use modules to encapsulate the state of
stateful differential operators.We provide an API for constructing networks of connected differential
operators and show how to use it to model incremental relational queries and incremental string
processing. Our empirical experiments confirm the asymptotic speedups.

In summary, we make the following contributions in this paper:

(1) We identify that efficient differential operators need user-defined state, which is not supported
by self-adjusting computations or the incremental lambda calculus (Section 2).

(2) We define an expressive structure of changes, allowing us to precisely model the behavior of
first-order and higher-order changes (Section 3).

(3) We design a specification for stateless and stateful differential operators and present a
framework in Rocq for their development (Section 4 and Section 5).

(4) We develop various novel differential operator for strings and demonstrate the generality of
our framework by modeling and verifying two of the most sophisticated differential operators
known, database join and user-defined aggregation (Section 6).

(5) We show how to construct complex incremental computations in OCaml using our framework
of differential operators and we measure their incremental performance (Section 7).

The artifact for our Rocq formalization and experiments can be found at https://zenodo.org/records/
17428578.

2 Motivating Examples and the State of the Art
The goal of this paper is to establish a framework for developing and reasoning about differential
operators that can be used in incremental computing. In this section, we discuss two motivating
examples from relational algebra: the selection operator 𝜎 and the join operator ⊲⊳. While the
differential behavior of these operators is well-known, we use these examples to explain (i) the
limitations of prior approaches to incremental computing and (ii) why stateful differential operators
are necessary. But first, we introduce a bit of terminology and notation for relations and relation
changes.

We are interested in differential operators whose inputs are subject to change. We write 𝑥 ⊕ Δ𝑥
to denote the patching of input 𝑥 with a change Δ𝑥 (formally defined in Section 3). For relational
operators, inputs can change in two fundamental ways: we can add new tuples or we can remove
existing tuples. Thus, Δ𝑥 = ins 𝑆 or Δ𝑥 = del 𝑆 for some set of tuples 𝑆 . Moreover, we define
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86:4 Runqing Xu and Sebastian Erdweg

𝑅 ⊕ ins 𝑆 = 𝑅∪𝑆 and 𝑅 ⊕ del 𝑆 = 𝑅 \𝑆 . The challenge then is to define efficient differential operators
that map an input change Δ𝑥 to an output change Δ𝑦.

2.1 Selection – A Stateless Differential Operator
The selection operator 𝜎𝑓 (𝑅) selects those tuples from relation 𝑅 that satisfy predicate 𝑓 . When
new tuples 𝑆 are added to the input 𝑅 ⊕ ins 𝑆 , we can update the result of selection incrementally
because 𝜎𝑓 (𝑅 ⊕ ins 𝑆) = 𝜎𝑓 (𝑅) ⊕ ins 𝜎𝑓 (𝑆). Indeed, we can define a differential operator by setting
Δ𝜎𝑓 (ins 𝑆) = ins 𝜎𝑓 (𝑆) and Δ𝜎𝑓 (del 𝑆) = del 𝜎𝑓 (𝑆). This differential operator is stateless because it
only takes the change as input but does not require other information. It takes time linear in the
size of 𝑆 , but is independent of the size of 𝑅, which is an asymptotic improvement. This corresponds
to the definition of incremental selection in real-world database systems.

Now, let us investigate if this differential operator can be integrated into existing approaches to
incremental computing. Frameworks that perform selective recomputing such as Adapton [Hammer
et al. 2014] do not have a notion of change; they only have a notion of changed (yes/no). Therefore,
it is not possible to integrate differential operators that read and produce changes. The best we can
do is to wrap our differential operator in a function that takes the old input 𝑅 and new input 𝑅′:

𝜎 ′
𝑓
(𝑅, 𝑅′) = 𝜎𝑓 (𝑅) ⊕ Δ𝜎𝑓 (𝑅′ ⊖ 𝑅).

But this incurs a considerable overhead due to diffing ⊖ and patching ⊕.1 Alternatively, we can
forgo differential computing and use selective recomputing for operators as well:

𝜎 ′
𝑓
(𝑅, 𝑅′) = if 𝑅 = 𝑅′ then 𝜎𝑓 (𝑅) else 𝜎𝑓 (𝑅′).

That is, we do not use a differential operator at all, but selectively rerun 𝜎𝑓 on 𝑅′ when it differs
from the previous input 𝑅. However, the comparison of the inputs takes time and even a slight
change of the input results in a complete recomputation. Therefore, both these integrations take
time linear in |𝑅 |, which is unacceptable for an efficient incremental computation.

Let us consider the Incremental Lambda Calculus (ILC) [Cai et al. 2014] instead. The ILC frame-
work derives differential programs in a type-drivenmanner. Specifically, since our selection operator
𝜎𝑓 has type Rel → Rel, the differential operator Δ𝜎𝑓 has type Rel → ΔRel → ΔRel in ILC. That is,
the differential operator obtains two inputs: the original input and its change. This typing discipline
is elemental to ILC, because it transforms the rest of the program in accordance to this interface.
And it is also quite flexible: we can embed our differential operator in ILC by ignoring the first
argument:

𝜆 𝑅. 𝜆 Δ𝑅. Δ𝜎𝑓 (Δ𝑅) : Rel → ΔRel → ΔRel.

However, we pay a price for the unused parameter: Code that uses our differential operator has to
compute the original input. In particular, most applications of incremental computing will change
the input multiple times in sequence Δ𝑅1, . . . ,Δ𝑅𝑛 after an initial input 𝑅0. For each change, we
then have to compute and store 𝑅𝑛 = 𝑅𝑛−1 ⊕ Δ𝑅𝑛 , even though this data is never used. While it may
be possible to rely on lazy evaluation or other optimizations to eliminate the overhead, it would be
better to avoid this overhead altogether. Besides, the original input is often insufficient for stateful
differential operators as the following example shows.

2.2 Join – A Stateful Differential Operator
The binary join operator 𝑃 ⊲⊳ 𝑅 combines relations 𝑃 and 𝑅: For each tuple in 𝑃 , the join operator
finds all matching tuples in 𝑅 and concatenates them. The exact matching criteria varies for different
1Diffing and patching can be optimized. For example, Incr_map uses immutable data structures with substructural sharing
to reduce this overhead [Jane Street and OCaml community 2024].
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kinds of joins (natural, equi, etc.), but does not matter for our discussion. When new tuples are
added 𝑅 ⊕ ins 𝑆 , we can update the result of the join incrementally because

𝑃 ⊲⊳ (𝑅 ⊕ ins 𝑆) = 𝑃 ⊲⊳ 𝑅 ⊕ ins (𝑃 ⊲⊳ 𝑆).

That is, we can derive the join result for the new tuples 𝑆 separately from the join of the original
inputs. However, we need extra information: We need to remember the tuples in 𝑃 to match against
the new tuples in 𝑆 . Then we can define 𝑃 ⊲⊳Δ ins 𝑆 = ins (𝑃 ⊲⊳ 𝑆) and 𝑃 ⊲⊳Δ del 𝑆 = del (𝑃 ⊲⊳ 𝑆) to
react to changes of 𝑅. Analogously, we can define Δ⊲⊳ to react to changes of 𝑃 . These differential
operators Δ⊲⊳ and ⊲⊳Δ are stateful, because in order to process the changes of one relation they need
to remember the contents of the other relation.

The ILC framework supports such differential join operators gracefully. The original join operator
has type Rel𝑃 × Rel𝑅 → Rel𝑃 ·𝑅 . That is, it takes a pair of relations and yields a relation that
concatenates tuples from P and R. In the ILC framework, we can embed the differential join
operators as follows:

𝜆 𝑃 . 𝜆 Δ𝑅. 𝑃 ⊲⊳Δ Δ𝑅 : Rel𝑃 → ΔRel𝑅 → ΔRel𝑃 ·𝑅
𝜆 𝑅. 𝜆 Δ𝑃 . Δ𝑃 Δ⊲⊳ 𝑅 : Rel𝑅 → ΔRel𝑃 → ΔRel𝑃 ·𝑅

𝜆 (𝑃, 𝑅). 𝜆 (Δ𝑃,Δ𝑅). (𝑃 ⊲⊳Δ Δ𝑅) ++(Δ𝑃 Δ⊲⊳ (𝑅 ⊕ Δ𝑅)) : Rel𝑃 × Rel𝑅 →
Δ(Rel𝑃 × Rel𝑅) → ΔRel𝑃 ·𝑅

The last function illustrates the full differential join operator that accepts changes to both input
relations. To this end, we concatenate (++) the changes produced by Δ⊲⊳ and ⊲⊳Δ (formal details
follow later). It looks like the ILC framework is expressive enough to capture stateful differential
operators. But there is a severe limitation.

The ILC framework supports exactly one kind of state for differential operators: the original input.
Unfortunately, this precludes a truly efficient implementation of the differential join operators.
An efficient differential join operator ⊲⊳Δ needs to maintain an index Ix𝑃 into the original relation
𝑃 such that it can perform constant-time lookups when tuples are inserted or removed from the
other relation 𝑅. That is, instead of 𝑃 ⊲⊳Δ ins 𝑆 = ins (𝑃 ⊲⊳ 𝑆), we need to compute 𝑃 ⊲⊳Δ ins 𝑆 =

ins (Ix𝑃 ⊲⊳ 𝑆). This improves the asymptotic running time from 𝑃 · 𝑆 to𝑚 · 𝑆 , where𝑚 ≪ 𝑃 is
the number of matches for a tuple in the index. Indeed, this is the version of the differential join
operator that real-world database systems implement.
The ILC framework does not allow differential operators to define and maintain user-defined

state. It is also not clear what the formal specification of such stateful operators should look like
and how to reason about them. Our paper answers these questions and introduces a framework
for differential operators with user-defined state. We then use our framework to realize a number
of existing and novel differential operators for strings and relations that define custom states to
improve their incremental efficiency.

3 A Formal Structure of Changes
Differential operators receive and produce changes of data. That is, changes are first-class values.
In order to build a solid theory for differential operators, we must first define the formal structure
of changes.

3.1 Change Structures
A change Δ𝑥 is a value that describes how data is modified. Conceptually, the semantics of a change
is to transform data ⟦Δ𝑥⟧ : T → T. This justifies the conventional patching notation 𝑥 ⊕ Δ𝑥 , which
we define as ⟦Δ𝑥⟧𝑥 . Unfortunately, this simple design is not well-founded because ⟦Δ𝑥⟧ is often
not a total function.
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86:6 Runqing Xu and Sebastian Erdweg

For example, consider changes of the natural number inc 𝑘 and dec 𝑘 , which increment and
decrement by 𝑘 , respectively. Intuitively, we would define ⟦dec 𝑘⟧𝑛 = 𝑛 − 𝑘 , but what if 𝑛 < 𝑘? Of
course, we could require some default behavior, but (i) this breaks certain algebraic properties such
change commutativity and (ii) similar issues arise for many other change descriptors. For example,
we also get undefined behavior for removing an element from a bag that does not exist, modifying
a list at an index that does not exist, and so on. Instead of relying on default behavior, we require
the definition of changes to explicitly declare for which data a change is valid, and the semantics
must be total for valid changes.

We formalize changes and differential operators in Rocq and present a slightly prettified version
of the Rocq code in the paper. We model changes as a Rocq structure (think: record type):
Structure change T : Type ··= {

ΔT : Type ;
vc : ΔT → T → Prop ;
patch : ∀ (Δt : ΔT) (t : T), vc Δt t → T

}.
Notation "⟦ Δx ⟧" ··= (patch Δx).
Notation "t ⊕ Δt" ··= (patch Δt t _).

A change for type T consists of the type of change values ΔT, the valid-change relation vc between
ΔT and T, and the patch function. The patch function has three parameters:2 a change Δt, a value t
to be patched, and proof of type vc Δt t to witness that the change is valid for the given value. The
result of patching is an updated value of type T. Lastly, we define some notation for convenience.
In particular, we write t⊕Δt to let Rocq infer the validity proof.3

For example, we can define the change structure for natural numbers and bags as follows:

Inductive nat_change : Type ··=
| nat_inc : nat → nat_change
| nat_dec : nat → nat_change.

Definition natc : change nat ··= {|
ΔT ··= nat_change;
vc Δn n ··= match Δn with

| nat_inc k ⇒ True
| nat_dec k ⇒ k ≤ n
end;

patch Δn n _ ··= match Δn with
| nat_inc k ⇒ n + k
| nat_dec k ⇒ n - k
end

|}.

Variable T : Type.
Inductive bag_change : Type ··=

| bag_ins : bag T → bag_change
| bag_del : bag T → bag_change.

Definition bagc : change (bag T) ··= {|
ΔT ··= bag_change;
vc Δb b ··= match Δb with

| bag_ins s ⇒ True
| bag_del s ⇒ s ⊆ b
end;

patch Δb b _ ··= match Δb with
| bag_ins s ⇒ union_all b s
| bag_del s ⇒ diff_all b s
end

|}.

A nat change is an increment or decrement, increments are always valid, but decrements are only
valid if the patched number is large enough. Under these conditions, patch is well-defined and does
not need to rely on default behavior of subtraction. Similarly, a bag change restricts validity of
deletions to those tuples that are actually in the bag.

Our formalization of changes incorporates some subtle design decisions that we want to elabo-
rate on. In particular, readers familiar with the ILC framework may recall their change structure
(𝑇,Δ𝑡, ⊕, ⊖). There are two important differences to our change structure. First, ILC uses a depen-
dent type Δ𝑡 for changes, where dt ∈ Δ𝑡 implies dt is a valid change for 𝑡 . The problem with this

2Note that ∀(x:X),T represents a dependent function type in Rocq. That is, it behaves like a function type X→ T, but T
may vary with the argument value x.
3In the paper, we freely write t⊕Δt even when Rocq fails to infer the validity proof vc Δt t automatically. In those
places, our implementation provides the witness explicitly.
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design is that we need the original value 𝑡 to even formulate the type signature of a differential op-
erator. That is, instead of Δ𝑓 :Δ𝑋 → Δ𝑌 , we would have to specify Δ𝑓 : (𝑥 :𝑋 ) → Δ𝑥 → Δ(𝑓 (𝑥)).
That is, the input change is valid for the original input and the resulting change is valid for the
original function result. This may make sense for the ILC, where the original input is consid-
ered available state anyways, but we do not want to carry that burden. Therefore, we decided to
externalize the validity property into its own definition vc and to prove change validity separately.
The second difference is that ILC includes a difference operation ⊖ :(𝑥 :𝑇 ) → (𝑦 :𝑇 ) → Δ𝑦,

which computes the change between two values. We omit ⊖ because (i) it is not unique, (ii) does
not always exist, and ultimately (iii) it is not necessary. A difference operation is not unique for
complex data types such as strings, where various diffing algorithms exist. For other data types, a
difference operation does not even exist. For example, the bag difference of {1, 2} and {2, 3} cannot
be described using bag_change from above, because it requires both an insertion and a deletion
simultaneously. Rather than inflating change structures to be more expressive, we add higher-order
change structures that compose more primitive changes (see below). Finally, the difference operator
is not needed for the definition of differential operators. Instead, it is mainly relevant to produce
the initial change for incremental computing, and as a backup when incremental computing fails to
construct the resulting change precisely. To this end, we provide an interface for diffing operations
that can be implemented optionally:
Structure difference T : Type ··= {
C : change T;
diff : T → T → ΔT C where "new ⊖ old" ··= (diff old new);
valid_diff : forall t1 t2, vc (t2 ⊖ t1) t1
patch_diff : forall t1 t2, t1 ⊕ (t2 ⊖ t1) = t2

}.

A difference operation for a given type T requires a change structure C for T, the diffing implemen-
tation (ΔT C accesses the change type ΔT in C), and two properties: The change t2⊖t1 is valid for
t1 and it indeed patches t1 to t2. We use the difference operator in one of our larger case studies.

3.2 Higher-Order Change Structures
So far, we have considered atomic changes that patch data in a single step. But we can also construct
complex changes that (i) change compound data types or (ii) change the same data multiple times.
We can generically describe such complex changes in higher-order change structures.

A higher-order change structure is parametric in one or more underlying change structures. This
is useful for describing changes of compound data types. For example, consider a pair A * B, where
we may change only A, only B, or both. We can define a generic change structure for such pairs
given change structures for A and B:
Variable (A : Type) (B : Type).
Variable (CA : change A) (CB : change B).
Inductive pair_change : Type ··=
| pair_fst : ΔT CA → pair_change
| pair_snd : ΔT CB → pair_change
| pair_both : ΔT CA → ΔT CB → pair_change.

Definition pairc : change (A * B) ··= {|
ΔT ··= pair_change;
vc c p ··= match c with

| pair_fst ca ⇒ vc ca (fst p)
| pair_snd cb ⇒ vc cb (snd p)
| pair_both ca cb ⇒ vc ca (fst p) ∧ vc cb (snd p)
end;

patch c p _ ··= match c with
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| pair_fst ca ⇒ (fst p ⊕ ca, snd p)
| pair_snd cb ⇒ (fst p, snd p ⊕ cb)
| pair_both ca cb ⇒ (fst p ⊕ ca, snd p ⊕ cb)
end

|}.
Arguments pairc {A B}. (* infer the first two type arguments *)

The change structure for pairs delegates to the change structures CA and CB. Note that ΔT CA accesses
the field ΔT of CA, which is the change descriptor type. Pair changes play a significant role for
differential operators with more than one input. For example, the differential binary join operator
from Section 2 reads changes from pairc (bagc A) (bagc B).

Another common scenario is the construction of change sequences, where a single piece of data
is changed multiple times. We have seen such a scenario in Section 2: The join operator yields
multiple result changes when both input relations change simultaneously. We represent change
sequences as lists of changes from a given change structure C:

Variable T : Type.
Variable C : change T.
Definition seq_change ··= list (ΔT C).
Inductive seq_vc : seq_change → T → Prop ··=
| seq_vc_nil : forall t, seq_vc nil t
| seq_vc_cons : forall Δhd Δtl t,

vc Δhd t →
seq_vc Δtl (t ⊕ Δhd) →
seq_vc (Δhd :: Δtl) t.

Program Fixpoint seq_patch Δt t (vc : seq_vc Δt t) : T ··=
match Δt with
| nil ⇒ t
| Δhd::Δtl⇒ seq_patch Δtl (t ⊕ Δhd) _
end.

Definition seqc : change T ··= {|ΔT ··= seq_change; vc ··= seq_vc; patch ··= seq_patch|}.
Arguments seqc {T}. (* infer the first type argument *)

A change sequence is valid if each contain change can be applied in order. In particular, seq_vc_cons
requires that Δtl is valid for t⊕Δhd, that is, after applying change Δhd. Function seq_patch exploits
this property to patch the individual changes, one after the other. The resulting change structure
seqc represents sequential changes of T for any underlying C that also changes T. Indeed, seqc C

and C both have type change T: A differential operator can freely choose whether to describe a
single change or a sequence of changes. For example, the differential join operator from Section 2
produces changes from seqc (bagc (A * B)), which allows it to concatenate changes. Moreover,
any differential operator can be applied to sequences of changes transparently, a property which is
often missing in prior work.

4 Stateless Differential Operators
With our formal model of changes in place, we are ready to formalize differential operators. We
start with stateless differential operators like the relational selection operator from Section 2.
Conceptually, stateless differential operators are a special case of stateful operators. However, it is
more efficient to leave out the state when it is not needed. Moreover, it is instructive to study the
simpler stateless case first.
We model differential operators in Rocq using modules. Hence, we define module types to list

the required definitions and properties that each differential operator must provide. In a module
type, Parameter declarations denote required definitions and their type, whereas Axiom declarations
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denote required properties. Stateless differential operators are defined through the followingmodule
type:
Module Type StatelessDiffOp.
Parameter (A : Type) (B : Type).
Parameter f : A → B.

Parameter (CA : change A) (CB : change B).
Parameter Δf : ΔT CA → ΔT CB.

Axiom inc_valid : ∀ x Δx, vc Δx x → vc (Δf Δx) (f x).
Axiom inc_correct : ∀ x Δx, vc Δx x → f (x ⊕ Δx) = f x ⊕ Δf Δx.

End StatelessDiffOp.

A stateless differential operator incrementalizes a given function f from A to B. Therefore, the
differential operator Δf receives changes from a change structure CA and yields changes from a
change structure CB. Any given definition of Δfmust satisfy two properties. First, for any valid input
change, the output change produced by Δf must be valid with respect to the original output f x.
That is, it must be possible to use this change and patch f x. Second, when we do patch the previous
result f x ⊕ Δf Δx, we must obtain the same result produced by a recomputation f (x ⊕ Δx).
This is the correctness property of stateless differential operators, sometimes called from-scratch
consistency in the literature [Hammer et al. 2015].

We can now cast the selection operator as a stateless differential operator:
Module SelectOp <: StatelessDiffOp.
Parameter T : Type.
Parameter cond : T → bool.
Definition A ··= bag T. Definition B ··= bag T.
Definition f (x : bag T) : bag T ··= select cond x.

Definition CA ··= bagc T. Definition CB ··= bagc T.
Definition Δf (Δx : bag_change T) : bag_change T ··=

match Δx with
| bag_union b ⇒ bag_union (select cond b)
| bag_diff b ⇒ bag_diff (select cond b)
end.

(* omitted: lemmas that prove inc_valid and inc_correct *)
End SelectOp.

The differential select operator is parametric in the type T contained in the bag and the predicate
cond. It implements module type StatelessDiffOp and hence must define all declared parameters
and prove all declared properties of the module type. We set the operator’s input and output types
A and B to bag T, and define f to be the regular non-incremental selection on bags. For CA and CB,
we can select any change structure of type change (bag T); here we simply use bagc T. We can
then define the differential operator Δf to convert input changes into output changes. Finally, we
have to prove that our definitions satisfy inc_valid and inc_correct, otherwise the module fails to
satisfy its module type and is rejected by Rocq.
Before turning to stateful differential operators, we want to emphasize the flexibility of our

approach. In our framework, many change structures of type change T co-exist, and we can select
the best fit. We can use this to solve an understudied issue in prior work: how an incremental
computation reacts to a sequence of input changes. For example, the ILC framework requires we
compute x⊕Δx1 after each change Δx1, because this is the basis for processing the next change Δx2.
In our framework, we can generically lift a differential operator to sequences of changes:
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Module Type StatefulDiffOp.
Parameter (A : Type) (B : Type).
Parameter (CA : change A) (CB : change B).
Parameter f : A → B.

(* state declarations *)
Parameter ST : Type.
Parameter init : A → ST.
Parameter vs : ΔT CA → ST → Prop.
Parameter Δst : ∀ (Δx : ΔT CA) (st : ST), vs Δx st → ST.

(* state invariant and properties *)
Parameter inv : A → ST → Prop.
Axiom inv_init : ∀ x, inv x (init x).
Axiom inv_step : ∀ x Δx st, inv x st → vc Δx x → inv (x ⊕ Δx) (Δst Δx st _).
Axiom state_valid : ∀ x Δx st, inv x st → vc Δx x → vs Δx st.

(* diff op declaration and properties *)
Parameter Δf : ∀ (Δx : ΔT CA) (st : ST), vs Δx st → ΔT CB.
Axiom inc_valid : ∀ x Δx st, inv x st → vc Δx x → vc (Δf Δx st _) (f x).
Axiom inc_correct : ∀ x Δx st, inv x st → vc Δx x →

f (x ⊕ Δx) = f x ⊕ Δf Δx st _.
End StatefulDiffOp.

Fig. 1. Signature of the stateful differential operator.

Module SeqStatelessDiffOp (op : StatelessDiffOp) <: StatelessDiffOp.
Definition A ··= op.A. Definition B ··= op.B. Definition f ··= op.f.
Definition CA ··= seqc op.CA. Definition CB ··= seqc op.CB.
Fixpoint Δf (xs : list (ΔT op.CA)) : list (ΔT op.CB) ··=

match xs with
| nil ⇒ nil
| Δhd :: Δtl ⇒ op.Δf Δhd :: Δf Δtl
end.

(* omitted: lemmas that prove inc_valid and inc_correct *)
End SeqStatelessDiffOp.

This differential operator takes another operator op as input. It then defines a differential operator
with the same original function f : A → B. However, the change structures CA and CB are different:
We accept and produce a sequence of changes. This is proof that any stateless differential operator
can be used to process sequences of changes correctly.

5 Stateful Differential Operators
Stateless differential operators are the exception, not the rule. Indeed, many differential operators
must maintain state in order to react to input changes efficiently. A simple example of a stateful
differential operator is the differential square operation. When the original input 𝑛 changes by 𝑘 ,
we can compute the updated output as (𝑛 + 𝑘)2 = 𝑛2 + 2𝑛𝑘 + 𝑘2. Relative to the old output 𝑛2, the
output change is 2𝑛𝑘 + 𝑘2. To compute that change, we need to know not only the increment 𝑘 but
also the previous input 𝑛. Stateful differential operators can keep track of such information.

5.1 A Formal Model for Stateful Differential Operators
We model stateful differential operators as module types in Rocq. Figure 1 shows the module type,
which we explain in this subsection.
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Each stateful differential operator can declare its own state type ST. Indeed, what type of state to
use becomes a primary design consideration for stateful differential operators. A well-designed
differential operator must carefully balance the effort required for maintaining its state with the
benefit the state brings when reacting to input changes. Ideally, the maintenance of the state has a
constant overhead while enabling asymptotic speedups for input changes. While the differential
square operation promises little benefit, the differential join operator from Section 2 leads to
asymptotic speedups.
Besides declaring their state type ST, stateful differential operators must provide two functions

that produce state. Initially, the state is a projection of the original input as computed by func-
tion init. Then, with each input change, the state gets updated by function Δst to support the
processing of subsequent changes. This way, for any sequence of previously seen input changes
x⊕Δx0⊕Δx1⊕Δx2, we obtain the current state Δst Δx2 (Δst Δx1 (Δst Δx0 (init x))). However,
not all states are compatible with all input changes. Therefore, we also declare a valid-state property
vs that restricts the applicability of Δst to valid changes Δx.

In order to reason about the current state, stateful differential operators can declare a state
invariant inv. The state invariant inv x st relates the current state st to the current input x.4 We
require that the initial state satisfies the invariant (inv_init) and Δst maintains the invariant for
any valid input change (inv_step). Moreover, the invariant must be sufficient to ensure each valid
input change is also valid for the current state (state_valid).

Finally, we declare a differential operator Δf. Compared to its stateless counterpart, the stateful
Δf obtains not only an input change Δx, but also the current state st, which must be compatible
with Δx. From this information, Δf must compute the corresponding output change according to
change structure CB. The differential operator Δf has to adhere to validity and correctness like
before, but may assume that the invariant holds for the current state.

In the remainder of this section, we illustrate the formal model of stateful differential operators
through two examples. Besides illustrating the definition, the examples also help clarify how exactly
our model generalizes the ILC framework.

5.2 Stateful Differential Operators Subsume ILC Operators
Operators from the Incremental Lambda Calculus (ILC) always use the current input as their state.
We can describe this behavior as a special case of our stateful differential operators. We first define
a specialized version InputDiffOp of StatefulDiffOp, where Δf takes an input change and the
current input (instead of the current state), adapt axioms inc_valid and inc_correct accordingly
(not shown). We then define a functor InputStateDiffOp that implements a StatefulDiffOp given
the simpler InputDiffOp:
Module Type InputDiffOp.
(* excerpt from StatefullDiffOp: Parameters A, B, CA, CB, f. Axioms inc_valid,

inc_correct. *)
Parameter Δf : ∀ (Δx : ΔT CA) (x : A), vc Δx x → ΔT CB.

End InputDiffOp.
Module InputStateDiffOp (op : InputDiffOp) <: StatefulDiffOp.
(* delegates to op: Definitions A, B, CA, CB, f, Δf.*)
Definition ST : Type ··= A.
Definition init : A → ST ··= id.
Definition vs : ΔT CA → ST → Prop ··= vc.
Definition Δst : forall Δx st, vs Δx st → ST ··= patch.
Definition inv : A → ST → Prop ··= eq.

4Importantly, the current input only occurs in the formalization of the invariant, but not in the differential computation Δf,
which only interacts with the state. Thus, the state type determines the efficiency of the differential operator.
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(* omitted: proofs of the following three lemmas *)
Lemma inv_init : ∀ x, inv x (init x).
Lemma inv_step : ∀ x Δx st, inv x st → vc Δx x → inv (x ⊕ Δx) (Δst Δx st _).
Lemma state_valid : ∀ x Δx st, inv x st → vc Δx x → vs Δx st.
(* Lemmas inc_valid and inc_correct proved by op.inc_valid and op.inc_correct. *)

End InputStateDiffOp.

In InputStateDiffOp, we define the state type ST to be identical to the input type A: The initial
state is the same as the initial input, hence we use the identity function to compute it. An input
change is valid for the current state if it is valid for the current input, and the next state is computed
by patching the current input. We maintain a simple invariant, namely that the state is equal to
the current input. This is sufficient to prove inv_init, inv_step, and state_valid independent of
the given InputDiffOp. Hence, it suffices to implement InputDiffOp and to prove inc_valid and
inc_correct when using the current input as current state. These are the same properties required
by the ILC framework. For example, we can define a differential square operator as an InputDiffOp:

Module SquareInputOp <: InputDiffOp.
Definition A ··= nat. Definition B ··= nat.
Definition CA ··= natc. Definition CB ··= natc.
Definition f x ··= x * x.
Definition Δf (Δx : ΔT CA) (x : nat) (_ : vc Δx x) : ΔT CB ··=

match Δx with
| nat_add k ⇒ nat_add (2 * k * x + k * k)
| nat_minus k ⇒ nat_minus (2 * x * k - k * k)
end.

(* omitted: lemmas inc_valid and inc_correct *)
End SquareInputOp.
Module SquareOp ··= InputStateDiffOp(SquareInputOp).

The last line applies functor InputStateDiffOp to construct a provably correct stateful differential
operator SquareOp from SquareInputOp. However, as explained in Section 2, efficient differential
operators often need to maintain custom state beyond the current input. Differential operators
with custom state are not expressible in the ILC, as we detail in related work (Section 9).

5.3 Using Custom State in Differential Operators
Our model of differential operator extends the state of the art by allowing operators to define
custom state. This can have crucial effects on the operator’s incremental performance, as was the
case for the differential join operator from Section 2. In this section, we present a simpler example
first: An efficient differential operator for trimming right-bound whitespace from a string. Usually,
when a string is updated, trimming the right-bound whitespace takes linear time, since it requires a
full scan of the string. But, our differential operator can compute an output change in constant time
by keeping track of two pieces of information in its state: (i) how much right-bound whitespace
exists in the current string and (ii) whether are all characters of the string whitespace.

We show the definition of TrimRightOp in Figure 2. The state is a pair of nat and bool, initialized
by function init, which scans the initial string once. Subsequently, we can maintain the state in
constant time using function Δst. The definition of Δst is not too complicated, but there is one
important corner case: When a string is all whitespace, a whitespace prepend is equivalent to a
whitespace append, and hence we must increment the whitespace count. Such corner cases are easy
to miss without a formal correctness proof; lemma inv_step would have caught any mistake here.
Also note that the trim-right operator has a simple invariant st = init s, which works because
the state has a canonical representation captured by init. In general, Δst may construct states
different from init as long as both satisfy the invariant.
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Module TrimRightOp <: StatefulDiffOp.
Definition A ··= string. Definition B ··= string.
Definition CA ··= stringc. Definition CB ··= seqc stringc.
Definition f s ··= trim_right s.

(* number of right-bound whitespaces and if the string is only whitespace *)
Definition ST : Type ··= nat * bool.
Fixpoint init (s : string) : ST ··=
match s with
| nil ⇒ (0, true)
| c :: tl ⇒ let (ws, all_ws) ··= init tl in

if all_ws
then (if c =? " " then (S ws, true) else (ws, false))
else (ws, false)

end.
Definition inv (s : string) (st : ST) ··= st = init s.
Definition Δst (Δt : ΔT CA) (st : ST) (_ : vs Δt st) : ST ··=
let '(ws, all_ws) ··= st in
match Δt with
| str_prepend c ⇒

if c =? " " then
if all_ws then (S ws, all_ws) else (ws, all_ws)

else
(ws, false)

| str_append c ⇒ if c =? " " then (S ws, all_ws) else (0, false)
end.

Definition Δf (Δt : ΔT CA) (st : ST) (_ : vs Δt st) : ΔT CB ··=
let '(ws, all_ws) ··= st in
match Δt with
| str_prepend c ⇒

if c =? " " then
if all_ws then [] else [str_prepend " "]

else
[str_prepend c]

| str_append c ⇒
if c =? " " then
[]

else
(list_mul ws (str_append " ")) ++ [str_append c]

end.
(* omitted all lemmas. inv_step and inc_correct are the key properties here. *)

End TrimRightOp.

Fig. 2. A stateful differential operator for right trimming a string, using a custom state for asymptotic speedup.

We compute the output change with function Δf, which has to observe the same corner
case. Moreover, when appending a non-whitespace character, we also have to append all pre-
viously trimmed whitespace. For example, Δf (str_append "d") (init "abc␣␣") must compute
[str_append "␣"; str_append "␣"; str_append "d"], where we use "␣" to denote a single white-
space character. Hence, patching f "abc␣␣" = "abc" yields the expected result "abc␣␣d", as required
by inc_correct.

To the best of our knowledge, a differential trim-right operator was not known before this paper,
let alone a formal proof of its correctness. Our framework of stateful differential operators opens the
door for an extensive exploration of such operators, for strings and other data types. We envision
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to collect such operators in a standard library for incremental computing that will form the basis
for efficient incrementality in many different domains.

6 Case Studies
To demonstrate that our model of stateful differential operators is expressive and scales to real-world
needs, we use it to model two of the most complex differential operators known: database join and
user-defined aggregation. The differential join operator is at the heart of live view maintenance
in database systems in practice, but we present the first framework for differential operators that
can capture and validate its behavior. Differential aggregation with user-defined functions was
discovered more recently [Szabó et al. 2018] and is used in incremental Datalog systems, where it
enables the incremental whole-program data-flow analysis of large software projects [Szabó et al.
2021]. We faithfully cast these operations as stateful differential operators and prove them correct.
We then move on to develop novel differential string operators, many of which require custom
state.

6.1 Differential Database Join
As elaborated in Section 2.2, efficient differential join operations need to maintain an index of
the two input relations. Note that many different join variants exist in the literature, which differ
in how to select matching tuples. We chose to implement an equi-join operator that combines
tuples based on key extraction. That is, given a bag L and a bag R, we extract keys of type K using
extraction functions lk : L→ K and rk : R→ K. The join operation then yields a bag (L*R) where
tuples are composed that mapped to the same key. We applied our framework of stateful differential
operators to model this differential join operator as shown in Figure 3 and proved it correct in Rocq.
First, let us inspect the used change structures. Since join is a binary operator, CA uses pair

changes over changes of the respective bags. The output changes CB are sequences of bag changes,
which becomes relevant when both input relations change simultaneously. For example, if the left
relation grows and the right relation shrinks, we may need to insert some tuples and remove some
tuples from the join output.
The state ST of JoinOp consists of two indices: one for each input relation. Each index is a

dictionary that maps keys to a bag of values. Indices have to satisfy some properties, which are part
of the invariant described below. Initially, we obtain the state of JoinOp using a helper function
build_ix that converts a bag into an index. This only has to be done once; afterwards Δst will
update the state as needed. We can undo this conversion using the function as_bag, which makes it
easy to formulate the validity proposition vs for states. Note that validity only occurs as part of the
formalization, but is not needed during execution. Hence, the overhead of as_bag is irrelevant.

When a change arrives, Δst updates the indices using the parametric helper function Δix, which
can operate on either index. When new tuples are inserted (resp. removed), we insert (resp. remove)
the corresponding entries from the index. This is necessary to make sure that the indices always
represent the current input relations faithfully, as required by the invariant. The invariant inv uses
helper function inv_ix to restrict both indices. Each index needs to be well-formed and contain
exactly those elements that occur in the corresponding input relation (including their support
counts). An index is well-formed if it is a finite map and each tuple that occurs is indexed by its key.
The proofs of inv_init and inv_step (not shown) guarantee that JoinOp maintains this invariant.

Finally, we can use the indices to compute the output change of JoinOp. We use two helper
functions Δf_l and Δf_r that process changes of the left and right input relation, respectively.
When tuples are inserted into the left input relation, Δf_l uses the right index to find the matching
tuples in the right relation. To this end, we define a generic helper function join_ix that takes
an index and a bag and combines their elements. Specifically, for each tuple x in the bag, we find
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Module JoinOp <: StatefulDiffOp.
Parameter (L : Type) (R : Type).
Parameter (K : Type) (lk : L → K) (rk : R → K) (EqK : EqDec K).

Definition A ··= bag L * bag R. Definition B ··= bag (L * R).
Definition CA ··= pairc (bagc L) (bagc R). Definition CB ··= seqc (bagc (L * R)).
Definition f x ··= join lk rk (fst x) (snd x).

Definition ix K V ··= dict K (bag V).
Definition ST ··= ix K L * ix K R.
Definition init x ··= (build_ix lk (fst x), build_ix rk (snd x)).
Definition vs Δx st ··= vc Δx (as_bag (fst st), as_bag (snd st)).

(* Insert/remove elements from the index to keep in sync with input bags. *)
Definition Δix {C} (k : C → K) (Δx : bag_change C) (st : ix K C) : ix K C ··=

match Δx with
| bag_union b ⇒ ix_union_bag k st b
| bag_diff b ⇒ ix_diff_bag k st b
end.

Definition Δst Δx st (_ : vs Δx st) : ST ··=
match Δx with
| pair_fst Δbl ⇒ (Δix lk Δbl (fst st), snd st)
| pair_snd Δbr ⇒ (fst st, Δix rk Δbr (snd st))
| pair_both Δbl Δbr ⇒ (Δix lk Δbl (fst st), Δix rk Δbr (snd st))
end.

(* Each index is well-formed and contains the same elements as the input bag. *)
Definition inv_ix {C} (k : C → K) (b : bag C) (st : ix K C) ··=
wellformed_ix st ∧ forall x, bag_support b x = ix_support st (k x) x.

Definition inv x st : Prop ··=
inv_ix lk (fst x) (fst st) ∧ inv_ix rk (snd x) (snd st).

(* For each x in b, do an index lookup and combine the resulting tuples. *)
Definition join_ix {C1 C2 C3} (k : C1 → K) (st : ix K C1) (b : bag C2)

(f : bag C1 → bag C2 → bag C3) : bag C3 ··=
flat_map (fun x⇒

f (ix_lookup st (k x)) (singleton_bag x)
) b.

Definition Δf_l (Δbl : bag_change L) (st : ix K R) : bag_change (L * R) ··=
match Δbl with
| bag_union b ⇒ bag_union (join_ix lk st b (fun b a ⇒ product a b))
| bag_diff b ⇒ bag_diff (join_ix lk st b (fun b a ⇒ product a b))
end.

Definition Δf_r (Δbr : bag_change R) (st : ix K L) : bag_change (L * R) ··=
match Δbr with
| bag_union b ⇒ bag_union (join_ix rk st b (fun a b ⇒ product a b))
| bag_diff b ⇒ bag_diff (join_ix rk st b (fun a b ⇒ product a b))
end.

Definition Δf Δx st (_ : vs Δx st) ··=
match Δx with
| pair_fst Δbl ⇒ [Δf_l Δbl (snd st)]
| pair_snd Δbr ⇒ [Δf_r Δbr (fst st)]
| pair_both Δbl Δbr ⇒ [Δf_l Δbl (snd st); Δf_r Δbr (Δix lk Δbl (fst st))]
end.

End JoinOp.

Fig. 3. Modeling Δjoin as stateful differential operator that takes indices as state.
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all indexed tuples with the same key k x. We then combine them with x using function f, whose
purpose is to ensure the tuples are combined in the right order to yield a bag (L*R) (note the
swapped parameters names in Δf_l and Δf_r). The differential computation Δf delegates input
changes to Δf_l and Δf_r as needed. However, there is a pitfall that is easy to miss: When both
relations change simultaneously (pair_both), we have to process the second change using an
updated index to account for the first change. Concretely, we call Δix to update the index passed to
Δf_r to account for Δbl. Otherwise, the correctness proof would have failed.
We have verified that JoinOp is a correct stateful differential operator in Rocq. Technically, we

had to define a variant of the module type StatefulDiffOp that permits the use of setoids. In
Rocq, setoids are used for data types that are compared modulo equivalence rather than equality.
This is necessary because our bag data type does not have a canonical representation. Hence, we
defined StatefulDiffOpSetoid which is identical to StatefulDiffOp except for inc_correct, where
it uses equivalence == rather than equality = to compare the recomputation result to the updated
computation result. We elided these details in the paper for simplicity.

In summary, we modeled an efficient differential join operator using our framework and proved
it correct. The differential join operator uses a complex state, protected through a sophisticated
invariant. While the correctness of this operator was never in doubt, it is reaffirming that our
framework is expressive enough to describe and reason about a differential operator used in
real-world applications.

6.2 Differential User-Defined Aggregation
Datalog is a logic programming language that computes relations based on inference rules. Datalog
is well-known for its support for scalable source-code analysis [Bravenboer and Smaragdakis 2009],
and the use of user-defined lattice-based aggregation [Madsen et al. 2016]. Some Datalog engines
also support incremental computing [Ryzhyk and Budiu 2019; Szabó et al. 2016], where changes to
input relations trigger updates of output relations. However, user-defined lattice-based aggregation
poses a challenge for incremental Datalog engines, because naively deleting an aggregand would
require a rescan of the remaining aggregands. To this end, Szabó et al. [2018] proposed:

“We build a balanced search tree from the aggregands. At each node, we store addition-
ally the aggregate result of all aggregands at or below that node. The final aggregate
result is available at the root node. Upon insertion or deletion, we proceed with the
usual search tree manipulation. Then we locally recompute the aggregate results of
affected nodes and their ancestors in the tree. [...] This way we can incrementally
update aggregate results in 𝑂 (𝑙𝑜𝑔 𝑁 ) steps.”

They integrate this strategy in their Datalog system IncA, where it helped perform incremental
analysis of real-world software projects [Szabó et al. 2021]. However, their paper does not provide
any further detail about the implementation or correctness of this strategy.

We investigate if it is possible to express above strategy as a stateful differential operator in our
framework. In particular, we formalize a data structure called aggregate tree that implements the
strategy by Szabó et al. [2018]. We then use this aggregate tree as custom state in a differential
operator to incrementalize aggregation on bags for join-style operations.

We show an excerpt of our aggregate tree formalization in Figure 4. Aggregate trees are parametric
in type E, strict total order <E, operation join, which must be associative and commutative. An
aggregate tree AT is either empty or consists of an inner node Node with two subtrees l and r. Inner
nodes store an element, where count describes how many time elem was inserted. The special
feature of aggregate trees is that they also store the result of applying join to all elements in the
subtree. We often use the smart constructor node, which initializes result appropriately.
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Module AggregateTree (Ord : STRICT_TOTAL_ORDER) (Join : JOIN(Ord)).
Import Ord. (* Import element type E and comparison functions <E and =E. *)
Import Join. (* Import join : E → E → E *)
Inductive AT : Type ··= (* Aggregate tree is a binary tree with aggregate result *)
Empty : AT | Node (elem : P) (count : nat) (res : E) (l r : AT) : AT.

Definition result (t : AT) : E ··= (* extract result or bottom *)
match t with Empty ⇒ Ord.bottom | Node _ _ res _ _ ⇒ res end.

(* Join the same element multiple times *)
Fixpoint elem_join (elem : E) (count : nat) : E ··= match count with
| 0 ⇒ bottom
| 1 ⇒ elem
| S count ⇒ join (elem_join elem count) elem
end.

Definition node (elem : E) (count : nat) (l r : AT) : AT ··= (* make node w/ join *)
Node elem count (join (join (result l) (result r)) (elem_join elem count)) l r.

(* Invariant 1: Valid aggregate trees are binary search trees *)
Fixpoint BST (t : AT) : Prop ··= match t with
| Empty ⇒ True
| Node elem count res l r ⇒

BST l ∧ BST r ∧ AT_gt elem l ∧ count > 0 ∧ AT_lt elem r
end.
(* Invariant 2: Valid aggregate trees maintain the substree's join result *)
Fixpoint AggT (t : AT) : Prop ··= match t with
| Empty ⇒ True
| Node elem count res l r ⇒

AggT l ∧ AggT r ∧ res = join elem (join (result l) (result r))
end.
Fixpoint insert (t : AT) (x : E) : AT ··= match t with
| Empty ⇒ Node x 1 x Empty Empty
| Node elem c res l r ⇒
if x =E elem then node elem (c + 1) res l r
else if x <E elem then node elem c (insert l x) r else node elem c l (insert r x)

end.
Fixpoint delete_min (t : AT) : option (A * nat * AT) ··= ...
Definition delete_root (t : AT) : AT ··= ...
Fixpoint delete (t : AT) (x : E) : AT ··= match t with
| Empty ⇒ t
| Node elem c res l r ⇒
if x =E elem then

if 1 <? c then node elem (c - 1) res l r
else delete_root t

else if x <E elem then node elem c (delete l x) r else node elem c l (delete r x)
end.
Lemma BST_insert : forall x t, BST t → BST (insert t x).
Lemma AggT_insert : forall x t, AggT t → AggT (insert t x).
Lemma BST_delete : forall x t, BST t → BST (delete t x).
Lemma AggT_delete : forall x t, AggT t → AggT (delete t x).
End AggregateTree.

Fig. 4. An aggregate tree is a binary search tree that maintains the subtree’s aggregation result at each node.

Aggregate trees must adhere to two invariants. First, each aggregate tree must be a binary search
tree as specified by property BST. Szabó et al. [2018] also required the tree to be balanced to avoid
degenerate trees to affect performance, we omitted this detail from our formalization. Second, the
aggregate result stored in a tree must be computed correctly. It is this invariant which ensures we
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Module AggregationOp (Ord : STRICT_TOTAL_ORDER) (Join : JOIN Ord)
<: StatefulDiffOp.

Module Agg ··= AggregateTree Ord Join.
Import Ord Join Agg.
Definition A ··= bag E. Definition B ··= E.
Definition f x ··= fold_right join bottom x.
Parameter DiffE : difference E. (* A difference structure for type E. *)
Definition CA ··= bagc E. Definition CB ··= DiffE.(C). (* change structure for E. *)
Definition ST : Type ··= AT.
Definition init x ··= fold_left insert Empty x.
Definition vs dt1 st : Prop ··= ...
Definition Δst (Δx : bag_change E) st (_ : vs Δt st) : ST ··=

match Δx with
| bag_union b ⇒ fold_left insert st b
| bag_diff b ⇒ fold_left delete st b
end.

Definition inv (x : bag E) st : Prop ··=
BST st ∧ AggT st ∧ forall (e : E), bag_count_occ x e = tree_count_occ st e.

Definition Δf Δt st (H : vs Δt st) : ΔT CB ··=
let st' ··= Δst Δt st H in (result st') ⊖ (result st).

End AggregationOp.

Fig. 5. Modeling incremental user-defined aggregation as a stateful differential operator.

can read the correct aggregation result from the root of tree. Our differential operator will enforce
both invariants, and we have proven that they are maintained correctly.
We define functions to add and remove elements from an aggregate tree. Function insert

navigates the binary search tree until it either (i) finds the element already exists or (ii) reaches an
empty tree. If the element exists, we increment its count and update the aggregation result at the
current node in accordance with the updated count. If the element does not exist, we insert it and
update the join results along the spine. In total, insert takes time logarithmic in the size of the
(balanced) tree.

Deletion is more involved, because we may need to remove nodes from the middle of the tree in
a way that restores both invariants. Specifically, when delete finds the element to be removed has a
count of 1, the node must be removed. To remove the root of (Node elem c res l r), we implement
the common strategy of finding and removing the minimal (i.e, left-most) leaf in r and making the
leaf element the new root element. This maintains the binary search tree invariant. To maintain
the aggregate result invariant, we must recompute the aggregation result along the complete spine
from the minimal leaf to the root of the tree, which takes logarithmic time as desired.

Finally, we can define a differential aggregation operator that uses the aggregate tree as its state
as shown in Figure 5. The aggregation operator takes a bag E and yields its join result of type E.
Incremental Datalog engines process bag changes as represented by our change structure bagc.
However, they do not handle fine-grained changes of individual elements, and our aggregate trees
compute the updated join result rather than how it changed. There are different ways of integrating
updated results into our framework. We demonstrate the most general approach: We require a
difference structure DiffE on values of type E and use its internal change structure. This design
works for any data type that implements the difference interface, without having a differential
join operator. Alternatively, we could have used a trivial change structure that replaces the current
element by a new one:
Definition repl_change A : change A ··= {| ΔT··=A; vc _ _··=True; patch new _ _··=new |}.
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We use an aggregate tree as the state of the differential operator, which we initialize and maintain
using insert and delete. Through inv, we enforce the invariants of the aggregate tree’s and
additionally guarantee that it contains the exact same elements as the current input bag. The
differential computation Δf then becomes easy: We read the old and the new aggregation results
from the root of the tree, and use the diffing operation ⊖ to compute the corresponding change. Our
correctness proof establishes that the aggregation tree indeed is a valid implementation strategy
for supporting incremental aggregation over bags.

6.3 String Differential Operators
In the previous case study, we showed how to formalize existing differential operators from
relational algebra and Datalog as stateful differential operators. But our framework also forms the
basis for discovering novel differential operators. To this end, in our second case study, we develop
a series of novel and efficient differential operators for strings and prove them correct.

First, let us reconsider the change structure for strings. In Section 5.3, we introduced the trim-right
operator to illustrate stateful differential operators. However, for simplicity, we only considered
two basic changes: prepend and append of individual characters. In general, string changes should
support changes at any index of the string, and they should support the insertion and deletion of
entire substrings. The following change structure encodes these kind of changes and their validity:

Inductive str_change ··= ins (i : nat) (s : string) | del (i : nat) (n : nat).
Definition stringc : Change string ··= {|

ΔT ··= str_change;
vc Δs s ··= match Δs with

| ins i _ ⇒ i <= length s | del i n ⇒ i + n <= length s
end;

patch Δs s _ ··= match Δs with
| ins i ss ⇒ substring s 0 i ++ ss ++ substring s i (length s)
| del i n ⇒ substring s 0 i ++ substring s (i + n) (length s)
end

|}.

Based on this change structure, we have developed and verified 7 differential string operators, of
which 3 are stateless and 4 are stateful. Here, we summarize our findings.

Stateless operators. We developed differential operators length, toUpperCase, and toLowerCase.
These operators do not require state to process input changes. For example, length yields nat_inc
(length s) for ins i s and nat_dec n for del i n. And since toUpperCase maps over the string, it
yields ins i (toUpperCase s) for ins i s, whereas deletions are simply forwarded to the output.
Hence, the three stateless operators take time linear in the size of the change, but independent of
the original input. Since the orignal operations require linear time in the size of the full input, our
differential operators provide an asymptotic speedup.

Stateful operators. We developed stateful differential operators isEmpty, concat, indexOf, and
lastIndexOf. These operators use different kinds of states:
isEmpty uses nat as state, which represents the length of the current string. The operator yields

bool_neg when the length flips from zero to positive or vice versa. In general, this operator
does not speedup the original computation, which takes constant time.

concat uses nat as state, which represents the length of the left input string. The operator uses
the state to shift any manipulation of the right input string by the length of the left input
string. Differential concat takes time linear in the size of the change (to compute the length
of the inserted string), whereas the non-incremental concat takes time linear in the size of
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the left string (to perform list concatenation). Hence, we obtain asymptotic speedups when
the change size is significantly smaller than the input size.

indexOf uses string * option nat as state, which represents the previous input and the previously
found index. We use the previous index to determine whether a change can affect the search
result. When inserting before the previously fond index, we check if the inserted substring
contains the character we search, which may lead to an updated index. This takes time linear
in the size of the change. However, when deleting a substring that contains the previously
found index, we have to search the remaining string for another occurrence, which takes
time linear the input size. Hence, this operator’s asymptotic performance varies.

lastIndexOf also uses string * option nat as state and behaves analogously to indexOf. In par-
ticular, the differential performance is the same as for indexOf: Many changes can be handled
in time linear in the size of the change, but deleting a substring that contains the previously
found index triggers a search for the second-to-last occurrence. However, the non-incremental
performance of lastIndexOf is worse than indexOf in practical scenarios, because we always
have to search until the end of the string.5 Hence, the potential for incremental speedups is
larger here, as our evaluation will show.

All of these stateful differential are new discoveries, and the custom state is elemental in pro-
viding efficient incremental performance. We believe that our framework opens the door for the
community-driven development of a complete standard library of differential operators.

7 Building Incremental Computations from Differential Operators
So far, this paper focused on the theoretical aspects of (stateful) differential operators: how to
specify their behavior, how to model them, and how to prove them correct. In this section, we
show that our differential operators give rise to practical incremental computations. Specifically,
we demonstrate the following:

(1) We can express differential operators in general-purpose languages. To this end, we extract
OCaml code from the Rocq formalization of the differential operators from relational algebra
and strings.

(2) We can compose differential operators into incremental computations. To this end, we
encapsulate stateful differential operators and provide an API for composing them.

(3) The resulting incremental computations yield significant speedups when processing input
changes. To this end, we construct and exercise a few relational queries and string operations
built from differential operators.

7.1 Extracting Differential Operators into OCaml
The Rocq Prover supports the extraction of programs to different target languages via plug-
ins [Letouzey 2008], retaining the functional properties of the code. We used this facility to extract
OCaml implementations of a few differential operators that we previously modeled and verified.
Specifically, we obtain one OCaml module for each differential operator and the functions have
the same signature as in Rocq, albeit without dependent types. In particular, the extracted stateful
differential operators remain in a purely functional style, where Δst returns the updated state. As
noted before, our formalization omitted the rebalancing of the aggregation tree. We implemented
AVL-style rebalancing in OCaml after extraction to avoid degenerated aggregation trees [Szabó
et al. 2018]. Other than that, we reuse the data structure of bags, join indices, and strings from our
Rocq formalization, which are list-based and not efficient.

5We assume a list-based representation of strings, which is typical in functional programming languages.
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We implement an API for building incremental computations from differential operators. Each
incremental computation maps input changes da to output changes db, as captured by the following
interface:

module type IC = sig type da ; type db ; val ic : da → db end

For stateless differential operators, it is easy to implement this interface by setting ic = Δf. But for
stateful operators, we must encapsulate their internal state like this:

module Product (P : ProductParams) : IC = struct
type da = (P.t1 bag_change, P.t2 bag_change) pair_change
type db = (P.t1 * P.t2) bag_change list
let state ··= ref (init P.init_input)
let ic da =

let res = Δf da !state in
state ··= Δst da !state; res

end

Here, P captures the parameters of the differential operator, including the types of the input relations
and their initial value init_input. The latter is used to initialize a mutable reference cell named
state. In OCaml, !state reads the content of the reference cell and state ··= v; w writes v before
returning w. We can now implement ic by running Δf on the old state before updating the state
using Δst. The same pattern applies to all stateful differential operators: we encapsulate their
internal state and hide it behind interface IC.

To construct interesting incremental computations, we must also be able to compose differential
operators that implement IC. To this end, we provide module functors for the unary and binary
composition of incremental computations:
module Seq (F : IC) (G : IC with type db = F.da) : IC = struct
type da = G.da
type db = F.db
let ic da = F.ic (G.ic da)

end

module Binary (F : IC) (G : IC)
(H : IC with type da = (F.db, G.db) pair_change) : IC = struct

type da = (F.da, G.da) pair_change
type db = H.db
let ic da = match da with
| Pair_fst da1 → H.ic (Pair_fst (F.ic da1))
| Pair_snd da2 → H.ic (Pair_snd (G.ic da2))
| Pair_both (da1, da2) → H.ic (Pair_both (F.ic da1, G.ic da2))

end

module Map (F : IC) = struct
type da = F.da list
type db = F.db list
let rec dop da = match da with [] → [] | x :: xs → (Op.dop x) :: (dop xs)

end

A sequential composition Seq feeds the output changes of G to F as input changes. The sharing
constraint with type asserts that the output type G.db conforms with F.da. The implementation
then becomes very simple and represents functional composition F ◦ G. We can use Seq to apply
unary differential operators like select and aggregate. A Binary composition is more complex:
It feeds the output changes of two computations F and G to a single computation H, which must
accept a pair_change as input. This construction corresponds to fun (x1,x2) → H (F x1) (G x2).
We use Binary to apply binary differential operators like product and join. Lastly, Map transforms
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Fig. 6. Execution time of incremental computation and recomputation for Q1 and Q2

an incremental computation to handle sequence of input changes. The Map functor is useful for
composing F and G when F.da = G.db list, so that Seq(Map(F))(G) becomes valid.

7.2 Evaluation on RelationalQueries
We have used the extracted operators and our API to construct a few relational queries and
performed benchmarking. This is to show that our framework is well-suited for developing useful
differential operators that can power realistic incremental computations. The concrete operators
we used are known from database systems and do not require a dedicated performance evaluation.
We performed our benchmarking on a machine with an Apple M2 chip at 3.49 GHz with 24 GB of
RAM running 64-bit OSX 15.3.2 and OCaml 5.1.1. We consider two incremental queries Q1 and Q2

in our evaluation:
module S0 = SelectDiffOp(struct type a = int; let cond x = x mod 10 = 0 end)
module S1 = SelectDiffOp(struct type a = int; let cond x = x mod 5 = 0 end)
module J = JoinOp(struct ...; let lk x = x mod 500;; let rk y = y mod 1000 end)
module Q1 = Binary(S0)(S1)(J) (* S_0 ⊲⊳ S1 *)
module A = AggregationOp(struct ...; let lt = pair_lt; let join = pair_max end)
module Q2 = Seq(Map(A))(Q1) (* Aggregatepair_max Q1 *)

The first query Q1 joins the results of two selection operators S0 and S1. S0 selects numbers divisible
by 10 from its input, whereas S1 selects numbers divisible by 5. We feed the results of the selections
into the join J using the Binary functor. The join merges inputs whose remainder is equal modulo
500 and 1000, respectively During the execution, Q1 takes a change of type (int bag_change, int

bag_change) pair_change as input, and returns a change of type (int * int) bag_change list.
The second query Q2 further performs an aggregation on top of the results of Q1. The aggregation
operator can be used with any user-defined function that is associative, commutative, and order-
preserving. To illustrate, our aggregation A takes pairs of numbers as input and computes their
maximum using a lexicographic ordering. As Q1 returns a list of bag changes, but AggregateOp
expects a single bag change, we apply the Map functor before using Seq to connect it with Q1.

We measured the incremental and non-incremental execution time of Q1 and Q2, along with the
memory usage for incremental computation, across initial database sizes ranging from 1 000 to
64 000 tuples. We use half of the initial tuples as input for S0 and the other half for S1. All inputs
are consecutive numbers, such that the result of the join operator J grows superlinearly with the
number of inputs. We can observe the consequential non-incremental recomputation times in
Figure 6 for both Q1 and Q2.
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Fig. 7. Differential string operators deliver tremendous speedups compared to a from-scratch computation.

To measure the incremental performance, we synthesized input changes that insert or remove
random numbers. Each synthesized change affects 1% of the current tuples, evenly split between
S0 and S1. For example, when the initial database contains 1 000 numbers, we might generate
a change Pair_both (Bag_union [748;...;752], Bag_diff [777;...;781]). We ensure to only re-
move existing elements and to only insert new elements, which will trigger more computations in
the incrementalization. Moreover, since the cost of computing different changes are different, we
average the execution time of three runs. We can observe that both Q1 and Q2 bring asymptotic
speedups compared with a recomputation. For example, when the input size is 64k, the average
execution time of Q1 is 0.16ms, while recomputation requires 76.8ms. The incremental performance
of Q2 is getting slower for larger inputs, which may be due to our use of inefficient data structures
for bags and join indices.

7.3 Evaluation on String Operations
Our second benchmarking experiment targets string operations, aiming to demonstrate that stateful
differential operators enable efficient incremental computation for new domains. We consider a
simple string-processing function that combines four string operators:
let f (s1, s2) = lastIndexOf('A', concat (toLowerCase s1, toUpperCase s2))

Note that the differential operators of concat and lastIndexOf are stateful, whereas the other two
are stateless. We choose this function for the evaluation because it highlights an important property
of differential updating: different types of changes can have significantly different impact on the
incremental performance. We build a differential version of f using our API:
module M = Binary(ToLowerCase)(ToUpperCase)(Concat)
module F = Seq(Map(LastIndexOf(struct let c = 'A' end)))(M)

Here, M builds the incremental computation concat(toLowerCase(s1), toUpperCase(s2)), whose
output is a list of string changes. This is necessary because when both operands of concat are
modified, the resulting change to the output cannot, in general, be represented by a single change.
We forward the concat changes to LastIndexOf, finding the last occurrence of 'A'.

In our evaluation, we consider five types of changes to the input of f:
(1) Delete a substring in s1. Expected incremental behavior: constant time processing.
(2) Insert a substring in s1. Expected incremental behavior: linear time in the size of the inserted

string, which toLowerCase must map over and for which concat computes the length.
(3) Delete a substring in s2 before the last occurrence of 'A'. Expected incremental behavior:

constant time processing.
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(4) Insert a substring in s2 before the last 'A'. Expected incremental behavior: linear time in the
size of the inserted string, which toUpperCase must map over.

(5) Delete a substring containing the last 'A' in s2. Expected incremental behavior: linear time
in the size of the original input, because lastIndexOf must search for the next occurrence.

We evaluate the differential computation using two paragraphs of text as input for s1 (1425
characters) and s2 (570 characters). Then, for each kind of change, we consider different change sizes
relative to the input string: 1% (20 characters), 5% (100 characters), and 10% (200 characters), where
inserted characters are randomly generated. We repeat each measurement 3000 times, eliminate
outliers, and compute the average speedup relative to a from-scratch computation. We show the
results in Figure 7a, which deviates from what we expected. For example, we expected change (1)
to provide constant time updates and the time for change (2) should be dependent on the change
size. Further investigation revealed that there is a performance bottleneck in lastIndexOf.
Our stateful differential operators define separate functions Δ𝑓 and Δ𝑠𝑡 to update their output

and state, which is nice for reasoning about them. However, for lastIndexOf, this leads to redundant
computations. Therefore, wemerged Δ𝑓 and Δ𝑠𝑡 in the extracted Ocaml code to eliminate this redun-
dancy, which improves performance considerably. But we noted another performance improvement,
which we implemented: lastIndexOfmaintains the current input as part of its state. However, it only
requires this part of the state in case a recomputation becomes necessary. There is a generic opti-
mization we can use: Collect the input changes and only patch them once the current input is needed.
That is, we modified the state of lastIndexOf to string * string_change list * option nat and
delay patching until necessary. With this optimization, we repeated the measurements and show
the results in Figure 7b, which demonstrates significant speedups that match our expectations.
Interestingly, even when we delete the last occurrence of 'A' to force lastIndexOf to recompute
from scratch, the incremental computation still outperforms recomputation because the other
operators maintain their incremental performance advantage.
In summary, we have shown that it is possible to implement stateful differential operators in

general-purpose languages, that stateful differential operators can be composed to describe complex
incremental computations, and that these computations achieve the asymptotic speedups promised
by incremental computing.

8 Discussion
While our framework provides a comprehensive interface for implementing efficient differential
operators, how to design them effectively remains an open question. Drawing from the insights
we learned from designing the string operators shown in Section 6.3, we outline the challenges
programmers face and offer some strategies for the design process.
The efficiency of a differential operator hinges on its smart use of state to cache relevant

information. To design a stateful operator, we must balance three factors: the reaction time of Δf,
the update time of Δst, and the memory required to maintain the state. In our experience, it is
usually best to start defining the change-processing function Δf and to observe what information is
necessary to implement it. And there are reusable design patterns. For example, when an operator
only requires an up-to-date state for some changes but not others, it is often more efficient to delay
the state updating until necessary, as we have done for lastIndexOf in Section 7.3.

Moreover, programmers should be aware that differential operators are error-prone. Most bugs
we encountered were due to the incorrect or missing handling of corner cases in the definition
of Δf and Δst. Fixing these bugs sometimes involves revising the state and the state updating,
which then requires fixes in Δst, and so on until we reach a fixed point. This iterative design loop
makes formal verification with Rocq impractical for day-to-day development. The challenge is
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not just using the proof assistant, but re-proving correctness after each design change. Therefore,
we propose an alternative for programmers: using our framework’s correctness specification as a
foundation for property-based testing, which provides a more efficient way to validate operators
during development, before proving them correct.

Finally, we want to discuss the impact of the change structure on the design of differential opera-
tors. So far, we have not developed a comprehensive algebraic structure for changes. Consequently,
implementing certain differential operators requires extra effort on the part of the user. For example,
suppose we want to implement a differential operator for fst : A * B → A, which maps a pair to
its first element. When a change to a pair (a, b) only modifies the second element, implementing
Δfst must yield a "no change" of type ΔA, which is not part of the elemental change structure
we provided. Instead, we defined additional type classes such as no_change and difference, which
introduce additional part of the algebra of changes. With this, Δfst can be implemented using an
extra type class constraint [no_change A ΔA], which then provides a zero change noc : ΔA such
that a ⊕ noc = a for all a : A. Moreover, compared to the change algebra introduced in the ILC
framework [Cai et al. 2014; Giarrusso 2020], our work does not support function changes yet,
which poses a problem when programmers want to define differential operators for higher-order
functions. For future work, we plan to investigate richer algebraic structures over changes and how
incorporate function changes.

9 Related Work
In this work, we proposed a framework for developing and verifying stateful differential operators.
This design differs from most prior work which either neglect the algebraic properties of changes
or lack support for using custom states to accelerate incrementalization.

We categorize the literature of incremental computing into two approaches: differential updating
and selective recomputation. Differential updating approaches translate any change of a compu-
tation’s input to change of the computation’s output by chaining differential operators. Selective
recomputation approaches try to reuse the previous computation results by analyzing the program
structure. Our framework belong to the differential updating approach, but to the best of our
knowledge, we give the first formal specification of differential operators. In the remainder of this
section, we discuss the related work based on this distinction.

9.1 Differential Updating
Incremental view maintenance. Blakeley et al. first proposed change-processing operators to

update views in relational database [Blakeley et al. 1986]. The change-processing operators only
perform necessary updates to maintain the views. Their approach was later refined to efficiently
support duplicates in bags [Chaudhuri et al. 1995; Griffin and Libkin 1995; Gupta et al. 1993] and
aggregation [Ramakrishnan et al. 1994]. DBToaster [Koch et al. 2014] introduced higher-order
deltas that further speed up change processing for certain expensive queries.

DBSP [Budiu et al. 2023] gives a formal model that unifies streaming computation and incremental
view maintenance. DBSP builds incremental computations by composing primitive operators and
supports stateful operators such as equi-join, which share some similarities with our framework.
Nevertheless, we find DBSP and our framework differ in both approach and scope. DBSP targets
database queries rather than general-purpose computations and provides a fixed set of built-in
primitive operators. In particular, DBSP abstracts away the implementation and internal state
management of stateful operators, as long as they correctly translate input changes into output
changes. In contrast, our work provides a framework for building custom stateful operators for
general-purpose computation, enabling explicit reasoning about their states. Furthermore, although
DBSP allows supplying auxiliary information via a delayed feedback loop, emulating our stateful
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differential operators within DBSP remains impossible. This is because DBSP operates purely on
stream of changes, while our operators require access to the full and up-to-date state. Moreover,
DBSP only allows changes that form commutative groups. As we have shown with string changes,
this constraint is too strong to model data changes beyond relational algebra.

Incremental Datalog. Differential updating in relational algebra has enabled the development of
incremental solvers for Datalog. Datalog resembles relational algebra in some senses, but it allows
expressing recursions from its basic language constructs [Green et al. 2013]. This induces difficulty
for incrementalization, since tracking the dependencies across the mutual recursive Datalog rules is
tricky. Gupta et al. proposed the first algorithmDRed [Gupta andMumick 1995] for incrementalizing
recursive Datalog programs. Differential dataflow [McSherry et al. 2013; Ryzhyk and Budiu 2019]
is an alternative for DRed that sometimes provides better incrementality by tracking the recursion
depth for each tuple. IncA [Klopp et al. 2024; Szabó et al. 2018, 2016] is a Datalog engine that
supports efficient incremental recursive aggregation. We can observe that most related work of
differential updating limits to the relational algebra. Our framework provides a foundation for
developing differential operators in other domains, as witnessed by our differential string operators.

Incremental lambda calculus (ILC). ILC [Cai et al. 2014] extends the simply-typed lambda calculus
(STLC)with change types and present a framework for static differentiation of STLC programs. Static
differentiation refers to computing a derivative Δ𝑓 from the original function 𝑓 at compile time that
satisfies the equation 𝑓 (𝑥⊕Δ𝑥) = 𝑓 (𝑥)⊕Δ𝑓 (𝑥,Δ𝑥). They define basic rules for differentiating closed
STLC terms like constants, variables, abstraction, and application. But the translated programs are
usually not efficient, as the differential rules overlook the algebraic properties of the functions and
changes, such as those in relational algebra operations. Hence, they also allow users to provide
differential plugins to integrate handcrafted derivatives. The main difference between their work
and ours is that their derivatives, Δ𝑓 , must carry and can only use the original input to compute
the output change. This design limits efficiency and flexibility when derivatives are stateless or
require custom states, as demonstrated in our work.
Technically, ILC provides a program transformation that converts normal programs into incre-

mental programs. During transformation, each primitive operator 𝑓 : 𝐴 → 𝐵 is replaced with a
differential operator Δ𝑓 : 𝐴 → Δ𝐴 → Δ𝐵 that must be manually designed. Since Δ𝑓 must take
the previous input 𝑥 as argument for each change Δ𝑥 , one issue is that the current 𝑥 has to be
recomputed for all operators that occur in a computation. To this end, Giarrusso et al. [2019] pro-
pose a systematic caching strategy to reuse previously computed inputs. Technically, they use the
same form of differential operators as the original ILC work, the only difference is their operators
can also obtain the cache, but the cache is from previous sub-computations, rather than previous
change-processing rounds. Thus, although this eliminates some of the accidental overhead, it does
not reduce the inherent loss of efficiency: The transformed program is only efficient if Δ𝑓 requires
the current input exactly, but neither stateless nor custom-state operators are well-supported.
For example, our trim, join, and aggregate operators perform asymptotically better than the best
possible differential operator in ILC.

We also considered if it is possible to integrate stateful differential operators into ILC. The only
option seems to be to incorporate the differential state in the non-incremental operator already
𝑓 : (𝐴, ST ) → 𝐵, changing existing call sites from 𝑓 (𝑥) to 𝑓 (𝑥, init 𝑥). ILC would then derive
Δ𝑓 : (𝐴, ST ) → (Δ𝐴,ΔST ) → Δ𝐵 and transform 𝑓 (𝑥, init 𝑥) to Δ𝑓 (𝑥, init 𝑥) (Δ𝑥,Δinit 𝑥 Δ𝑥). We
can now set Δinit 𝑥 Δ𝑥 = Δ𝑥 and st ⊕ Δ𝑥 = Δst 𝑠𝑡 Δ𝑥 to update the current state correctly. Then,
Δ𝑓 (𝑥, st) (Δ𝑥,Δ𝑥 ′) = Δ𝑓stateful st Δ𝑥 should yield the correct result when calling one of our stateful
differential operators Δ𝑓stateful (we have not formalized this). However, there is a lot of overhead
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in the derived program, and it is not clear how easily this can be eliminated. We leave a deeper
investigation for future work.
Giarrusso’s Ph.D. thesis [Giarrusso 2020] presents a more comprehensive theory of change

algebra than any previous work on ILC. Specifically, they define a notion of basic change structure.
It only consists of a value set𝑉 , a change set Δ𝑉 , and a tenary relation dv ⊲ 𝑣1 ↩→ 𝑣2, which denotes
dv : ∆V is a valid change from value 𝑣1 : 𝑉 to 𝑣2 : 𝑉 . It is different from the original ILC framework
as the change set Δ𝑉 does not depend on a specific value 𝑣 ∈ 𝑉 , as well as the diffing operation ⊖
is removed. Our change structure builds on a similar idea but we explicitly separate the validity
relation from the patching operation ⊕. While their ternary relation may offer better guidance for
specification, this separation allows us to treat patching as a computable function rather than as
part of a logical relation. Giarrusso’s thesis also explores other topics, such as equational reasoning
on changes, which is important for optimizing differential operators.

9.2 Selective Recomputing
The simplest form of selective recomputing is function memoization [Abadi et al. 1996; Heydon et al.
2000; Liu et al. 1998], where arguments and calls are stored in a cache. Before invoking a function,
memoization checks the cache to see if the result is known, otherwise it performs recomputation.
This is not efficient since sometimes not all the intermediate results depend on the input changes.

More advanced selective recomputing approaches track control and data dependencies between
subcomputation. They construct and maintain a dependency graph that connect the producer of
a value to its consumer. One example is static dependency graph [Demers et al. 1981; Erdweg
et al. 2015a], which is solely based on the program’s computation and independent of the input.
Approaches based on static dependency graphs are not expressive because the dependency between
data can be changed by different inputs.
Approaches based on dynamic dependency graphs avoids these problems by tracking the data

dependencies at runtime. Acar et al. [Acar 2005; Acar et al. 2006] originally proposed self-adjusting
computation (SAC), which builds dynamic dependency graphs to incrementalize programs. SAC
traces dependencies by storing changable data in special cells that record read and write activities.
A dependency is built when the cell is visited, and updating the cell triggers recomputation of
dependent values. SAC yields outstanding performance on a wide range of tasks [Acar et al. 2009],
including quicksort and convex-hull computations. The Adapton framework further improves
the efficiency of SAC by modeling pull-based demand [Hammer et al. 2014] and granularity of
nodes [Hammer et al. 2015] on the dependency graph. Compared with our work, the problem of
SAC and other selective recomputing approaches is they have no notion of how values change, they
only have a notion of changed (yes/no). Consequently, they cannot use the algebraic properties of
changes to incrementalize program.

10 Conclusion
In this work, we proposed a formal framework for developing and verifying efficient differential
operators. Notably, our framework supports modeling stateful differential operators that maintain
information between incoming changes, which is the common characteristics of efficient differential
operators. We formalized our framework in Rocq, and demonstrated its expressiveness by modeling
both existing complex differential operators in relational algebra and novel differential string
operators. Our framework provides a solid foundation for developing differential operators. An
immediate future work is to investigate the optimization of differential operators. For example, if the
input to a differential operator is a sequence of primitive changes, it is not efficient to handle each
change individually if the primitive changes can be compressed. Ultimately, we want to establish a
standard library of differential operators for incremental computing.
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