KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved coolant channel flow efficiency for grooving tools through simulation and additive manufacturing

Fischmann, Patrick 1; Galland, Sebastian 1; Zanger, Frederik ORCID iD icon 1; Ducobu, Francois [Hrsg.]; Lauwers, Bert [Hrsg.]
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Laser-based powder bed fusion for metals (PBF-LB/M) enables the production of complex external and internal shapes. This enables tool production with targeted supply of cooling lubricant. The simulative channel design and the resulting increase in coolant flow after production are the focus of this work. The optimization process is illustrated using a commercially available grooving tool with three channels and four outlets. Accordingly, a simulation was conducted to investigate and ultimately reduce the pressure loss between the inlet and outlet of the channel.
This approach resulted in a calculated reduction in pressure loss of up to 97 % in the channels, as well as increased uniformity of the stream at the coolant outlet. After production of the optimized tool using PBF-LB/M, a volume flow measurement was conducted under varying coolant pressure. Fluctuations between the different tool holders were observed, which can be attributed to the additive manufacturing process and resulting spatter. In relation to all cooling channels in the grooving tool, an increase in the flow rate of up to 6% was determined.


Verlagsausgabe §
DOI: 10.5445/IR/1000187610
Veröffentlicht am 27.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2025
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000187610
Erschienen in 20th CIRP Conference on Modeling of Machining Operations (CMMO2025)
Verlag Elsevier
Band 133
Seiten 346–351
Bemerkung zur Veröffentlichung 20th CIRP Conference on Modeling of Machining Operations (CMMO2025)
Schlagwörter Additive Manufacturing, Computational Fluid Dynamics, Roughness
Nachgewiesen in Dimensions
Scopus
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page