KIT | KIT-Bibliothek | Impressum | Datenschutz

High-dimensional limits arising from hyperbolic Poisson k-plane processes

Bühler, Tillmann 1; Hug, Daniel ORCID iD icon 1; Thäle, Christoph
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a stationary Poisson process of $k$-planes in the $d$-dimensional hyperbolic space $\mathbb H^d$ of constant curvature $-1$, with $d \ge 4$ and $1 \le k \le d-1$. It is known that, after centring and normalization, the total $k$-volume of all intersections of $k$-planes with a geodesic ball of radius $R$ converges in distribution, as $R \to \infty$, to a non-Gaussian infinitely divisible random variable $Z_{d,k}$ whenever $2k > d+1$. We investigate the distributional behaviour of $Z_{d,k}$ in the high-dimensional regime $d \to \infty$ and depending on how fast $k$ grows in relation to $d$. We derive precise conditions for the variance normalized sequence to converge in law to a standard Gaussian random variable or to a degenerate law, respectively, and show that an alternative rescaling of the Lévy measures yields an explicit non-Gaussian infinitely divisible limit for fixed codimension $d-k$ and a standard Gaussian limit for $d-k \to \infty$.


Volltext §
DOI: 10.5445/IR/1000187630
Veröffentlicht am 27.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 25.11.2025
Sprache Englisch
Identifikator KITopen-ID: 1000187630
Verlag arxiv
Umfang 12 S.
Schlagwörter Probability (math.PR), 60D05, 60F05
Nachgewiesen in Dimensions
OpenAlex
arXiv
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page