KIT | KIT-Bibliothek | Impressum | Datenschutz

A high-order localized orthogonal decomposition method for heterogeneous Stokes problems

Hauck, Moritz 1; Lozinski, Alexei
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we propose a high-order extension of the multiscale method introduced by the authors in [SIAM J. Numer. Anal., 63(4) (2025), pp. 1617–1641] for heterogeneous Stokes problems, while also providing several other improvements, including a better localization strategy and a more precise pressure reconstruction. The proposed method is based on the Localized Orthogonal Decomposition methodology and achieves optimal convergence orders under minimal structural assumptions on the coefficients. A key feature of our approach is the careful design of so-called quantities of interest, defining functionals of the solution whose values the multiscale approximation aims to reproduce exactly. Their selection is particularly delicate in the context of Stokes problems due to potential conflicts arising from the divergence-free constraint. We prove the exponential decay of the problem-adapted basis functions, justifying their localized computation in practical implementations. A rigorous a priori error analysis proves high-order convergence for both velocity and pressure, if the basis supports grow logarithmically with the desired accuracy. ... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000187707
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 33 S.
Serie CRC 1173 Preprint ; 2025/52
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Forschungsdaten/Software
Schlagwörter Stokes problem, flow around obstacles, multiscale method, localized orthogonal decomposition, high-order, a priori error analysis, exponential decay
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page