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ABSTRACT With the increasing level of driving automation, localization and navigation are not only used
to provide positioning and route guidance information for users, but are also important inputs for vehicle
control.Odometry localization method is the most widely used localization method due to its good short-
term accuracy and cost-effectiveness, despite its known limitations like drift and environment dependency.
Optimizing odometry remains a valuable area of research. By using the UKF-based odometry localization
methode for vehicles with increased maneuverability introduced in our previous work, this paper presents a
simulation-based optimization method to improve the accuracy of the odometry. This proposed simulation-
based optimization method aims to achieve the accuracy goal with low computation effort. The covariance
matrices of the UKF-based odometry are optimized by the particle swarm algorithm. In order to make
the in simulation optimized covariance also applicable in the real vehicle, sensor error models are built
up to generate realistic sensor signals. To reduce the computation effort during optimization an efficient
driving maneuver, which covers more vehicle states is generated and used instead of normal parking
maneuvers. The use of the efficient driving maneuver has been shown to reduce the optimization effort
by approximately 60% without sacrifice the optimization effect. The efficacy of the optimized covariance
matrices in enhancing odometry accuracy has been validated in both simulated and real-driving tests. The
optimized odometry can reach an average end position error of 11cm and average end orientation error
of 0.4◦. Furthermore, a sensitivity analysis of sensor accuracy and noise level on odometry has been
performed in the simulation environment with the help of the proposed optimization methods. Odometry
using sensors of various accuracy and noise levels are optimized to achieve its best performance. The
simulation results indicate the importance of the IMU sensor in the odometry localization method. This
conclusion is supported by the results of a real driving test that used two IMU sensors with different
accuracy and noise levels. The results of the sensitivity analysis provides a basis for sensor selection in
vehicle system design.

INDEX TERMS Odometry, unscented Kalman filter, optimization, particle swarm optimization, omnidi-
rectional, efficient manuever generation, sensor configuration.

ABBREVIATION
ABS anti-lock braking system
AMR anisotropic magnetoresistive sensor
ARW angular random walk
ASR anti slip regulation
BIS bias instability

The review of this article was arranged by Associate Editor Johannes
Betz.

COG center of gravity
CVG Coriolis vibratory gyroscope
EKF extended Kalman filter
ESP electronic stability program
FGO factor graph optimization
FOG fibre optic gyroscope
GA genetic algorithm
GNSS global navigation satellite system
ICR instantaneous center of rotation
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INS inertial navigation system
IMM interacting multiple model
IMU inertial measurement unit
MEMS micro-machined electromechanical system
PPR pulse per revolution
PSO particle swarm optimization
RLG ring laser gyroscope
RMSE root-mean-square error
RRW rate random walk
UKF unscented Kalman filter
YRS yaw rate sensor.

NOMENCLATURE
Variables
ēp average position error
¯er,p relative position error
f frequency
L traveled distance
Q covariance matrix of system noises
R covariance matrix of measurement noises
r vehicle turning radius
SP95 area enclosed by the 95th-quantile-line of position

error.
v vehicle Speed at COG
vi wheel velocity at i
x y vehicle position in the global coordinate frames
β vehicle side slip angle
δi wheel steering angle at i
εi wheel velocity angle at i
θ vehicle orientation in the global coordinate frames
ω vehicle yaw rate
Constant
ri,x distance between tire–road contact point and vehi-

cle COG in vehicle longitudinal direction
ri,y distance between tire–road contact point and vehi-

cle COG in vehicle lateral direction
�t sample time
Subscript
k time step
i position of wheel i ∈ {fl, fr, rl, rr} stands for front

left, front right, rear left and rear right
Superscript
× sensor measurements.

I. INTRODUCTION

WITH the increasing level of driving automation,
localization and navigation will be used not only

to provide users with positioning and routing information,
but also to provide important inputs for safety-critical
automated driving functions. This places high demands on
the accuracy and robustness of localization. In addition to
vehicle automation, the electrification of the automotive
industry continues to advance. Since electric drives can be
integrated into the wheel, the maneuverability of vehicles
can be significantly improved (see Fig. 1) with the help of

FIGURE 1. Possible driving modes using novel suspensions [3].

FIGURE 2. Demonstration vehicle with increased maneuverability, and its novel
suspension at ±90◦ steering angle [3].

novel suspensions [1], [2]. The increased maneuverability
presents new challenges for localization, especially for
relative localization methods such as odometry.
In a previous paper [3], a novel odometry localization

method using an unscented Kalman filter (UKF) was
developed for a demonstration vehicle [4]. This demonstra-
tion vehicle is equipped with a wheel individual steering
system, which allows each wheel to achieve a 90◦ steering
angle in both directions (Fig. 2). By using the extended
vehicle models, the implemented novel odometry method is
able to overcome the limitations of conventional odometry
methods during omnidirectional parking maneuvers and
obtains position errors less than 20 cm and orientation errors
less than 1◦.
However, the covariance matrices for the process noise

Q and the observation noise R were determined in the
previous paper empirically and therefore are not optimal.
The full potential of the odometry has yet been realized.
In addition, the results from the previous paper were
based on high-quality sensors that are not realistic to
be equipped in production cars. Therefore, it would be
worthwhile to discuss which sensors play key roles in
odometry application and how to reach a better odometry
performance by using low-cost sensors. In this context, this
paper proposes a simulation-based optimization method to
achieve a more accurate odometry estimation. Based on
the proposed optimization method, a sensitivity analysis
of sensor accuracy and noise level on odometry will be
performed in the simulation environment.

A. STATE OF THE ART
Localization methods for automated driving functions can be
categorized into two types: global and relative localization.
The group of absolute localization methods includes first

of all the global navigation satellite systems (GNSS). GNSS
record the distances between the phase centers of the
satellite and receiver antenna by measuring the time of
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flight of the signal [5]. Real-time kinematic (RTK-GPS) can
even provide a position with centimeter-level precision [6].
GNSS is characterized by long-term stable absolute accuracy.
However, disturbances caused by environmental conditions
that affect the measured variables of a GNSS receiver are
problematic. They are caused by diffraction or reflection of
electromagnetic waves on the earth’s surface, mountains or
buildings, and cause multipath reception [7] and thus errors
in measurements. In landmark-based navigation, the object
uses its own sensors to create a map of its environment
and attempts to match it to a previously stored map to
get the absolute position [8]. LiDAR and camera are two
common sensors used to identify landmarks [9], [10], [11].
Landmark-based navigation provides higher localization
accuracy in known environments. However, it is an expensive
solution and depends on the environment.
The group of relative localization methods includes mainly

inertial navigation system (INS) and wheel odometry.
An inertial navigation system uses an inertial measurement

unit (IMU) to measure the three-dimensional values of
vehicle acceleration and rotation speed. The acceleration and
gyroscope measurements are integrated twice to determine
the position and orientation of the vehicle. Typical for INS
is the accumulation error, but the availability of an IMU is
generally independent of external factors.
Wheel odometry (abbr. odometry) refers to a method

for estimating the position and orientation of a mobile
system based on the data of its propulsion system. In the
automotive industry, measured variables from the chassis
(wheel rotation), the yaw rate sensor and the steering (wheel
steering angle or steering wheel angle) are generally used.
Typical errors of odometry include error accumulation due
to integration. Furthermore, there are environment-dependent
errors due to high slip, for example due to a low coefficient
of friction, high accelerations or driving through potholes.
Incorrect model parameters of tires and chassis lead to
considerable errors in position estimation. Nevertheless,
odometry remains the most widely used localization method.
It offers good short-term accuracy, is cost-effective and
enables very high sampling rates. Odometry is always fused
with other localization methods to increase the accuracy and
ensure the robustness of the fused localization results [12].
Therefore, there is still a need to enhance the estimation
results of odometry.

B. RELATED WORKS
The accuracy of state estimators can usually be increased by
tuning filter parameters such as the covariance matrices Q
and R. The most common manual tuning method is the so-
called divide-and-conquer strategy [13]. The first step is to
obtain the covariance matrix for the measurement noises by
statistically characterizing the difference between the sensor
signals and the actual values [14]. Then the matrix for the
process noises need to be determined. Since the process
noises contain model and parameter uncertainties that cannot
be easily quantified, it is often adjusted until the performance

of the estimators is acceptable in the operational domain.
This tuning method can satisfy most industrial requirements.
Nevertheless, such tuning requires a deep understanding of
the system and is a time-consuming and tedious procedure.
Therefore, many studies have focused on searching the
optimal covariance matrices.
One of the most mentioned terms is the adaptive

Kalman filter in which the covariance matrices are
estimated. It can be broadly classified into four cate-
gories [15]: covariance-matching [16], [17], [18], correlation
techniques [19], [20], [21], maximum likelihood [22], [23]
methods and Bayesian method [13], [24], [25]. The basic
idea behind the covariance-matching method is to make
the innovations or residuals consistent with their theoretical
covariance. The innovation covariance is computed by sub-
tracting the actual and predicted measurement and is used to
compute Q and R. This method can be used online, but can-
not ensure positive definiteness of Q and R [23]. Regarding
correlation techniques, a set of equations is derived relating
the system matrices to the sample autocorrelation functions
of innovations. These equations are solved simultaneously for
Q and R. The correlation methods are mainly applicable to
time-invariant systems and estimate the covariance matrices
in an offline setting [26]. Maximum likelihood or Bayesian
methods formulate the covariance estimation problem as
maximization of the likelihood function associated with the
innovations [23].

Instead of estimating the covariance matrices, many works
have tried to find the covariance matrices Q and R directly
by implementing numerical optimization methods to find
the minimum of a defined optimization criteria. The most
popular algorithms are the two evolutionary algorithms:
genetic algorithm (GA) [27], [28], [29], [30] and particle
swarm optimization (PSO) [31], [32]. They are particularly
suitable for the optimization problems with high dimensions
and large search space, even if the structural knowledge
about the problem is not available [33]. In some works,
state-dependent optimization has been used to achieve higher
estimation accuracy. In [34], various cluster analysis methods
were performed to automatically classify parking maneuvers
into different states and enable state-dependent optimization
using Bayesian optimization in [35], an artificial neural
network-based learning module was applied to learn the
errors of a temperature sensor at different humidity levels,
so that the measurement covariance R of the Kalman
filter-based temperature estimator can be properly adjusted
according to the actual humidity. Similarly, a fuzzy logic
algorithm was used in [36] to adjust the covariance R
according to the system state.
Recently, factor graph optimization-based (FGO-based)

fusion provides a new way to optimize the state estimator.
In this method, all measurements and states are encoded
into a factor graph, and the sensor fusion problem is
solved iteratively by using the Gauss-Newton algorithm [37].
This method also considers the historical measurements,
which means that the delayed measurements can also be
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handled. This method is commonly applied in GNSS/INS
integration [38], [39], [40].
Another efficient way to improve the estimation result is

to apply more accurate process and/or observation models.
Reviewing the literature about odometry localization in
robotics and automotive industry, the most widely used
models are double-track kinematic model [41], [42], [43],
linear single-track model [44] and kinematic yaw rate
model [45], [46]. However, these models have their own
limitations, such as imprecise wheel steering angles due
to elasticity in the steering system, tire slip due to high
longitudinal and lateral acceleration. In [14], a lookup-table
model for the actual wheel steering angle was built using the
trajectory measured by RTK-GPS to compensate this error
during parking. In [47], vehicle lateral dynamic model was
implemented to predict the side slip angle and thus improve
the accuracy of the estimated position. A similar idea was
presented in [48], in which an interacting multiple model
(IMM) filter combined the extended Kalman filter (EKF)
estimates from a kinematic vehicle model and a dynamic
vehicle model to adapt to different driving conditions.
Properly parameterized models can significantly improve

the accuracy of localization results. Tire dynamic radius,
wheelbase and track width are the three most impor-
tant parameters for odometry. Since these parameters are
time-varying due to the suspension geometry and driving
conditions, current research has mostly focused on parameter
estimation. In [49] an EKF is applied to estimate the tire
dynamic radius and the rear track from an onboard GNSS
sensor. In [50] a laser sensor was used to measure the
actual tire radius and a neural network was continuously
trained based on localization information as ground truth.
A calibration method with Gauss–Newton method and
integrated Kalman filter using only cost-effective sensors was
introduced in [47].

C. MAIN CONTRIBUTIONS AND OUTLINE
It is noticed that some papers [26], [54] mentioned the
excessive computation time of offline optimization methods,
in spite of the satisfactory optimization results. Besides
the reason of the optimization algorithms themselves, not
carefully designed maneuvers for optimization also lead
to a huge data set because some maneuvers like starting
and stopping are repeated. Without designing the maneuver
properly, it will significantly waste computational resources.
In this paper, a method to generate efficient maneuver for
optimizing and validating the odometry is presented. This
method make it possible to reduce the data volume, while
all relevant driving states during parking are covered. The
decoupling of the correlation between vehicle speed, yaw
rate and side slip angle due to the novel suspension system
is also considered in the maneuver generation.
Furthermore, compared to many other simulation-based

optimization methods that only considered the unbiased
Gaussian noise of sensor signals, more precise sensor models
are applied in this paper. In combination with a validated

multi-body vehicle dynamic model [53], more realistic sensor
behavior can be achieved in the simulation, so that the
optimized covariance matrices from the simulation can also
be applied to real driving tests.
Furthermore, most research efforts on optimizing Kalman

filter have focused on filter parameters, model quality
and model parameters. Few studies have taken sensor
configurations into account. Meanwhile, high quality sensors
are usually used in research works such as [51], [52], which
are not realistic to be equipped in production vehicles. In this
paper, with the help of the proposed optimization method,
a sensitivity analysis regarding sensor accuracy and noise is
performed in the simulation environment. The result serves
as a basis for the sensor selection during the system design.
The contributions of this paper can be summarized as

follows:

• An efficient driving maneuver for the optimization is
generated to reduce the computation time.

• Sensor models are built up to achieve realistic sensor
signals, enabling the application of optimized covari-
ance matrices from simulations in real driving tests.

• A sensitivity analysis regarding sensor accuracy and
noise level on odometry is performed for the sensor
selection for the system design.

In addition, combined with the modular concept for build-
ing state estimators from our previous contribution [3], [53],
a systematic methodology for designing, optimizing and
validating state estimators is proposed in this paper.
The structure of this paper is organized as follows: In

Section II, the proposed methodology is presented at first.
The odometry to be optimized from [3] and the optimization
problem including algorithm and criteria are introduced in
Section III. The sensor error models used for the sensitivity
analysis are presented in Section IV. Section V gives details
about the efficient maneuver generation method used for
optimization and validation. Section VI briefly explains how
optimization is done in the simulation environment. The
optimization results from the simulation and real driving test
are reported in Section VII. The conclusion and outlook are
given in Section VIII.

II. PROPOSED METHODOLOGY
The proposed methodology for designing, optimizing and
validating state estimators is illustrated in Fig. 3 using
odometry as an example. The five columns in this figure
are the relevant aspects of this methodology. The columns
with green borders are the estimator relevant aspects.
These are the estimator itself and the applied models and
sensors. In addition, validation and data collection (blue
bordered columns) are also considered in this methodology.
The concrete steps in each aspect are represented by the
rectangular boxes and labeled with lowercase letters in the
upper left corner. A detailed description of these steps can
be found either in the given paper or in the corresponding
sections of this paper in the upper right corner.
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FIGURE 3. Proposed methodology of design, optimization and validation of state estimators. (Content of gray boxes are presented in [3], [53] and of color boxes in the
corresponding sections in this paper. Box (j) is the planed work for the next step.)

The concept part is presented in grey, since they are
already reported in [3], [53]. The main task of this part is
to design odometry localization filters using the prepared
vehicle kinematic models (a) and available sensors (c).
A novel modular approach (b) was developed and applied
to systematize this process. This approach enables the
theoretical prediction of the accuracy of estimators without
test data. To validate the odometry, a complex multi-body
vehicle model (d) was built up and validated. Different
omnidirectional parking maneuvers (e) have been defined.
The optimization part (presented in color) focuses on

how to optimize the odometry, which is the aim of this
paper. First, the optimization problem (f) is formulated
by determining the tuning parameters, the optimization
algorithm and criteria. To perform the sensitivity analysis
for sensor selection, the established simulation environment
in our previous work [53] is extended by sensor models (h).
The proposed optimization method aims to improve not only
the odometry accuracy, but also the optimization efficiency.
Hence, test maneuvers for optimization are generated (i). In
contrast to (e), target of (i) is to reduce the data volume
and thus the optimization effort without sacrificing the
quality of the optimization result. With the help of (f),
(h) and (i), a sensitivity analysis can be performed, and the
sensor configuration can be determined (g). State-dependent
optimization (j) will be the next step of our research work.

III. OPTIMIZATION
A. SYSTEM DESCRIPTION
The odometry localization filter to be optimized originates
from our previous publication [3]. 15 UKF-based odometry
variants, differing in the applied system or observation

models, were introduced and tested in terms of accuracy
and robustness. The most accurate and robust variant will be
optimized here. Its system states from time step k to k + 1
are described as follows:

xk+1 = xk + vk · �t · cos (βk + θk + ωk · �t/2) (1a)

yk+1 = yk + vk · �t · sin (βk + θk + ωk · �t/2) (1b)

θk+1 = θk + ωk · �t (1c)

vk+1 = vk (1d)

ωk+1 = ωk (1e)

βk+1 = fβ
(
εi,k

)
(1f)

εi,k+1 = arctan
vk · sin βk + ri,x · ωk

vk · cos βk − ri,y · ωk
. (1g)

Eqs. (1a), (1b) and (1c) form the motion model, where
[x y θ ]T are the vehicle position and orientation in the global
coordinate frame. The vehicle velocity v and the yaw rate
ω are predicted by (1d) and (1e) using the random walk
model. β is the side slip angle and fβ in (1f) is a lookup-
table model, which uses four wheel velocity angles εi to
calculate β. Different from the wheel steering angle δi, the
wheel velocity angle εi contains the tire slip angle αi, that
is εi = δi + αi. Since αi can only be measured with great
effort, εi in (1g) is calculated by using v, ω and β. ri,x and
ri,y are the distances between the center of gravity (COG)
and the tire-road contract points in the vehicle longitudinal
and lateral direction. The subscript i refers to the individual
wheels i ∈ {fl, fr, rl, rr}. �t stands for the sample time.

The UKF-based odometry uses the system model (1) to
predict the states at first. These states are then updated
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TABLE 1. Standard deviation of the covariance matrices in [3].

through the observation models

v×i,k = vk · cos
(
εi,k − βk

)

+ωk · (
ri,x · sin εi,k − ri,y · cos εi,k

)
(2a)

ω×
k = ωk (2b)

δ×
k = εk, (2c)

by using the four wheel speed sensor signals v×i , the yaw rate
sensor signal ω× and the four wheel steering angle sensor
signals δ×

i .

B. FORMULATION OF OPTIMIZATION PROBLEM
1) CRITICAL PARAMETERS

According to the system description, the time-invariant
covariance matrices Q and R are set to:

Q = diag
(
σ 2
x , σ 2

y , σ 2
θ , σ 2

v , σ 2
ω, σ 2

β , σ 2
εi

)
(3a)

R = diag
(
σ 2
v×i

, σ 2
ω× , σ 2

δ×
i

)
. (3b)

They are determined empirically in [3]. These values are
summarized in Table 1. As [x, y, θ ] only depend on the state
variables v, ω and β and themselves, the process noises of
the motion model (1a), (1b) and (1c) were set to a very
small value 10−6, which means that the motion model was
treated as a quite accurate model.
Theoretically it is possible to optimize all 10 parameters.

For the reason that the motion model describes the general
law of object motion and its output was decided by v, ω and
β, we keep using the existing σx, σy and σθ for the motion
model, so that the amount of the parameters to be optimized
is reduced to seven.

2) OPTIMIZATION CRITERION

In most studies, the maximum or root-mean-square error
(RMSE) of absolute position and heading error have been
used as criteria of optimization. Such criterion are intuitive
and easy to apply. But when multiple maneuvers are used for
optimization, since each maneuver has a different distance

FIGURE 4. Non-repeatability of Odometry Output.

and vehicle state, it is difficult to determine the weight of
each maneuver. The optimized covariance matrices may only
be the best for certain maneuvers.
Another factor to consider is the non-repeatability of

the odometry output, which means that a given set of
covariance matrices can produce different outputs for the
same maneuver. As an example, Fig. 4 shows the distribution
of the estimated trajectories (grey lines) and the histogram
of the maximum position within 1000 simulations using
the same covariance matrices. The root cause of this
distribution can be explained as follows. Odometry is a
relative localization method and the position and orientation
of the vehicle are achieved by integrating the estimated v,
ω and β with the help of the motion model (1a), (1b)
and (1c). Since the quality of estimated v, ω and β depends
on the sensor noise, it can also be said that the position and
orientation are indirectly integrated by the sensor signals.
Although the sensor noise is within a certain standard, it has
its randomness. The errors due to the noise are sometimes
compensated and sometimes accumulated leading to the
unrepeatable odometry outputs. Therefore, it is not sufficient
to evaluate the odometry for a certain maneuver only once.
Considering the two factors mentioned above, the

optimization criterion used in this paper is described in
Fig. 5. Suppose there are m parking maneuvers for the
optimization process. For a particular parking maneuver, the
position error can be plotted against the traveled distance
(see Fig. 5(a)). After repeating the simulation for several
times, the curves can form a banded area and we assume
that the banded area will no longer extend after n repetitions.
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FIGURE 5. Optimization criterion.

After the banded areas of all m maneuvers are overlapped
(see Fig. 5(b)), the contour of the overlapped area is able to
contain the largest errors of all maneuvers over the traveled
distance. By minimizing the enclosed area under the contour,
the optimization result is not optimal but stable for each
maneuver.
In practice, not the contour rather the 95th-quantile-line

is applied (see Fig. 5(c)). The goal is to exclude the outlier,
which will be optimized individually (process (j) in Fig. 3) in
our future work. The 95th-quantile is determined empirically.
Furthermore, since odometry is a relative localization

method, a criteria with the unit m/m is more intuitive and
appropriate. So a relative position error is introduced here:

¯er,p = SP95

L2
max

(4)

where SP95 is the area enclosed by the 95th-quantile-line
and Lmax is the maximal traveled distance among the m test
maneuvers.

3) OPTIMIZATION ALGORITHMS

Optimization algorithms begin with an initial variable and
generate a sequence of improved estimates iteratively until
optimization criteria are reached or boundary conditions are
satisfied. The strategy used to move from one iterate to the
next distinguishes one algorithm from another. Good algo-
rithms should possess the properties of robustness, efficiency

FIGURE 6. Flowchart of PSO.

and accuracy [55]. Since the optimization problem here is not
differentiable, classic optimization methods such as gradient
descent or quasi-Newton method are not suitable. In addition,
there are seven parameters to optimize, which also leads to a
large search space when using grid search or random search.
Therefore, a metaheuristic method is considered here, which
is able to deal with complex optimization problem with large
search space. In this paper, Particle Swarm Optimization
(PSO) [56] is applied, since PSO can converge faster than
GA in our application according to our experience.
The PSO, which was first introduced by Kennedy and

Eberhart [57], is a population-based stochastic search algo-
rithm inspired by the social behavior of bird flocking. In
PSO, the population is called a Swarm and each individual
in the swarm is called a Particle. As shown in Fig. 6, the
PSO begins by creating the initial particles, and assigning
them initial velocities. It evaluates the fitness at each particle
position, and determines the best location. The next searching
directions of each particle are calculated based on the current
velocity, the particles’ individual best locations and the best
locations of their neighbors. The particles move to the new
positions and will be evaluated again. Iterations proceed until
the algorithm reaches a stopping criterion.

IV. SENSOR MODELING AND CONFIGURATION
Different from demonstration vehicles, which can use high
quality sensors for research purposes, the cost of each com-
ponent in production vehicles requires careful consideration.
It is also necessary to analyze how the sensor quality affects
the estimation accuracy, which sensors dominate, so that an
optimal sensor combination can be found. Such analysis are
usually carried out in a simulation environment. The first
step is to identify the sensor parameters and to build the
sensor models.

A. WHEEL SPEED SENSOR
The speed signals are transmitted to ABS, ASR or ESP
control unit of vehicle, which controls the braking force for
each wheel individually. The navigation system also requires
the wheel speed signals to calculate the traveled distance.
The signals are generated by means of a steel signal plate to
the wheel hub (for passive sensors) or multi-pole magnetic
encoder (for active sensors) [58]. They have the same rotation
speed as the wheel and move without contact along the
sensitive area of the sensor head. Regardless of the sensor
type, the output of speed sensors is usually rectangular pulse.
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FIGURE 7. Model for wheel speed sensor and its signal processing.

FIGURE 8. Wheel speed signals of different pulses per revolution (PPR).

We assume that all edges are detected. Then the pulse signals
are only dependent on the true traveled angle and the number
of pulses per revolution (PPR). The simulation of the wheel
speed sensor signal is shown in Fig. 7. The pulse signal is
generated using the ideal rotated angle of the wheel. The
wheel speed is calculated by counting the number of pulses
within the sample time �t. Fig. 8 shows the wheel speed
signals with 96, 240, 480, 960 and 3840 PPR. The higher
the PPR, the lower the quantization error. The green curve
with the highest PPR is the closest to the ideal wheel speed
(black).

B. WHEEL STEERING ANGLE SENSOR
Modern steering angle sensors work with “anisotropic mag-
netoresistive sensors” (AMR), whose electrical resistance
changes due to the orientation to an external magnetic field.
Table 2 shows the specifications of steering angle sensors
from different manufacturers for automotive applications.
Accuracy and resolution are considered for the sensor
modeling. The accuracy is modeled as white noise. For
the simulation, we didn’t take the data directly from the
datasheets, but derived certain value classes from them. The
data used are shown in Table 3.

C. YAW RATE SENSOR
Yaw rate sensor (YRS) is in principle gyroscope. There
are mainly three types of gyroscope: ring laser gyroscope
(RLG), fibre optic gyroscope (FOG) and Coriolis vibratory
gyroscope (CVG). They tend to be large, expensive and used
in aerospace and military applications. In contrast, MEMS
(micro-machined electromechanical system) sensors, which
use silicon micro-machining techniques, have fewer parts and
are relatively inexpensive to manufacture [59]. According to

TABLE 2. Accuracy specification of available steering angle sensors.

TABLE 3. Parameters of steering angle error models used in simulation.

the IEEE standard [60], the errors of a gyroscope are divided
into deterministic and stochastic errors. The error model of
a gyroscope is shown in Fig. 9. The deterministic errors
include scaling error, axes misalignment, linear acceleration
sensitivity and constant bias. The main components of the
stochastic errors are Angular Random Walk (ARW), Bias
Instability (BIS) and Rate Random Walk (RRW), which can
also be referred to white, pink and brown noise, respectively.
The differences are that the spectral density of white noise
is constant with f , those of pink and brown are inversely
proportional to 1/f and 1/f 2 (where f is the frequency).

A full factorial parameter analysis for gyroscopes is
too complex. Since the deterministic errors can usually be
compensated by calibration, these types of errors are treated
as constant in the simulation. Considering the RRW only
has a long term effect on the signal and the duration of
a parking process is usually less than a few minutes, the
ARW and the BIS are identified as the main factors. In
order to obtain reasonable parameters, several datasheets
of the inertial measurement units (IMU) with application
for automotive industry, including autonomous driving are
collected. It can be seen in Fig. 10 that there is a certain
relationship between ARW and BIS in logarithmic coordinate
system. After fitting the curve, we selected eight points for
the following simulations. The concrete parameter can be
found in Table 4. The given resolutions are chosen so that
the quantization errors do not dominate to the errors.

V. EFFICIENT MANEUVER GENERATION METHOD
Driving maneuvers are required to perform the optimization.
In our previous paper [3] we presented eight scenarios
that can benefit from the increased maneuverability of the
vehicle. A total of 35 parking maneuvers were derived
from the eight scenarios and used for the validation. These
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FIGURE 9. Error model of a gyroscope.

FIGURE 10. Features of gyroscopes for different applications.

TABLE 4. Parameters of gyroscope error models used in simulation.

maneuvers can also be used for the optimization in this
paper. However, using the 35 maneuvers directly for the
optimization is time consuming and not efficient as many
vehicle states such as starting and stopping are repeated in
each maneuver.
In order to reduce the amount of data during the

optimization without sacrificing its quality, a method to gen-
erate efficient maneuver specifically for the demonstration
vehicle is introduced. The goal is to generate a maneuver
that covers as many of the relevant vehicle states for parking
as possible.
According to the motion model (1a), (1b) and (1c), these

three vehicle state variables v, ω and β need to be determined
to generate the trajectory x, y and θ . For vehicles with front

steering only, this is a two dimensional problem during the
low speed parking maneuvers, because β is a function of v
and ω [61]:

β = ri,y · ω/v. (5)

With the introduction of wheel individual steering system,
this relationship no longer exists. For example, when the
vehicle is driving in parallel (see the third and fifth driving
modes in Fig. 1), the side slip angle β can vary from –90◦
to 90◦ depending on the wheel steering angle, while the
yaw rate ω remains zero. Therefore, these three vehicle state
variables v, ω and β have to be determined separately to
cover as many driving states as possible during parking.

A. ANALYSIS OF SYSTEM LIMITATION
Although these three vehicle state variables have to be
determined separately, they are still constrained by physical
limitations. A general permutation of these three vehicle state
variables is not reasonable. Therefore, the physical limits of
v, ω and β during parking need to be found out to exclude
physically inaccessible vehicle states. v is limited to 7 km/h
and β to ±90◦.

In order to determine the limitation of ω, the location
of the instantaneous center of rotation (ICR) has to be
determined. As shown in Fig. 11(a), the ICR can be located
at any point in the plane due to the ±90◦ wheel steering
angle. It can be divided into four areas numbered 1, 2, 3,
4L and 4R. Note that when the ICR moves from one area to
another, the vehicle must have a stop. For example, if the ICR
moves from P1 to P2, both left wheels have to continue to
rotate over 90◦ anticlockwise, which is impossible with this
novel suspension. Thus, the vehicle hast to stop and the left
wheels have to turn clockwise. But a stop is not necessary
between 4L and 4R, because the ICR moves to infinity and
comes back. In this paper, only area 4 is considered.
The maximum yaw rate can be reached when the ICR is

very close to the line connecting the front and rear wheels
(see Fig. 11(b)). The value range of ω is then:

ω ∈
[
− |v|
rmin

,
|v|
rmin

]
. (6)

In Fig. 12, the defined physical range of v, ω and β is
shown as a grey boundary surface in a three-dimensional
plot. Compared to the vehicle states from real driving tests
(light blue crosses), there are still many vehicle states that
are not reachable in reality. The reason for this is that
the maximum lateral acceleration has not been taken into
account. Considering the relationship ω = ay/v, ω has to
be further limited. Based on the measurements from the
real parking maneuvers from [3], the maximum of ay is
set to 0.5 m/s2 for parking. The boundary surface in green
therefore matches the measurement data better than before.

B. GENERATION OF TARGET MANEUVERS
As the boundaries of these three vehicle state variables are
known, the stationary states are generated homogeneously
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FIGURE 11. System limitation of the demonstration vehicle.

FIGURE 12. Determination of maximum lateral acceleration.
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FIGURE 13. Generated efficient maneuver.

within the boundary surface. The vehicle starts from the zero
state. The next state is always the closest one to the last one.
Each state lasts for five seconds and the transition time is
set to three seconds. The generated trajectory can be seen in
Fig. 13. The generated maneuver is then divided into several
segments with a distance of 25 meters to pass the distance
of normal parking use cases.
For distinction, the efficient maneuver introduced in this

paper is called DSE (Dataset Efficient”) and the collective

FIGURE 14. Implementation of optimization process.

FIGURE 15. Visualization of omnidirectional parking maneuver in simulation
environment.

of the maneuvers from our previous paper ist called DSA
(Dataset All”).

VI. SIMULATION-BASED OPTIMIZATION
Fig. 14 shows how the optimization is carried out in the
simulation environment. It consists of two steps: test case
generation and optimization.
In the first step, a validated multi-body dynamic

model [53], including the novel suspension and steering
system, is used to generate the ideal sensor signals and the
reference position and orientation for the test maneuvers
(see visualization in Fig. 15). Based on the ideal sensor
signals, simulated sensor signals are generated according to
the sensor configuration by using the sensor error models.
In the second step, these simulated sensor signals serve
as inputs to the odometry localization filter. The particle
swarm optimization algorithm begins to find the optimal
covariance matrices for the odometry based on the estimated
and reference position and orientation.
The optimization is performed by using DSE and DSA

separately.

VII. RESULTS
A. SIMULATION RESULTS
First we look at the result of two representative omni-
directional parking maneuvers after optimization. Fig. 16
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FIGURE 16. Optimization Result of Example Maneuver.

shows the estimated trajectories of these two park-
ing maneuvers before and after optimization. It can
be seen that not only the accuracy is improved,

TABLE 5. Comparison of DSA and DSE.

FIGURE 17. Vehicle States from DSA and DSE.

but also the distribution of the trajectory errors is
narrower.

1) EFFICIENT MANEUVER GENERATION

Before looking at the optimization results, a comparison
between DSA and DSE is shown. Table 5 contains the sum
of the distances of the maneuvers (total distance) and the
time taken to complete the maneuvers (total duration). As
the sample time of these two datasets is the same (10 ms),
the data size of DSE is much smaller than that of DSA.
The obvious advantage of DSE is that the time required for
optimization can be significantly reduced. Fig. 17 also shows
the plot of the covered vehicle states of DSE (green) and
DSA (pink). The physical limitation of the vehicle during
parking is shown in grey. Many of the vehicle states of
DSA are in the low speed, low yaw rate and low side
slip angle range because there are many repeated situations
such as staring and stopping. On the contrary, DSE has
a high vehicle state coverage, since the vehicle states are
specifically generated. With a high vehicle state coverage,
more critical situations can be detected and considered in
the optimization. The distribution of DSE in the 3D space is
also more homogeneous than that of DSA, which also helps
save time to optimize for same vehicle states.
The results are presented in Fig. 18 and 19. The odometry

has been optimized by using these two datasets, respectively.
Afterward, the optimized odometry has been validated again
through these two datasets.
In Fig. 18, the validation was done by DSA. Fig. 18(a)

shows the relative position errors and Fig. 18(b) the relative
orientation errors in logarithmic coordinates. The x-axis is
the number of steering angle sensors. The x-axis is classified
according to the used yaw rate sensors (YRS). The wheel
speed sensor can be distinguished by the type of marker. The
higher the number, the better the sensor quality. It can be
seen that the odometry optimized by DSE (green) can reach
almost the same accuracy level as the odometry optimized
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FIGURE 18. Validation of the optimized odometry through DSA (DataSet All).

by DSA (pink) if the wheel speed sensors are better than
no.1 and the yaw rate sensors better than no.3.
In Fig. 19, the odometry has been validated by DSE. The

advantage of the odometry optimized by DSE is obvious.
The odometry optimized by DSA cannot achieve the same
accuracy in almost all cases.
Why the DSE optimized odometry has a better

performance can be explained by the vehicle state coverage
of DSE and DSA. Since the vehicle states of DSE cover
almost all of the vehicle states of DSA, the covariance
matrices optimized by DSE are able to face most of the
states in DSA.
However, there are still outliers in the DSE optimized

odometry. The possible reasons why the DSE optimized
odometry with yaw rate sensors no.1 and 2 are even worse
than the unoptimized odometry (in Fig. 19) can be: (1) The
optimization potential of odometry by using low quality yaw
rate sensors is small. It is difficult for PSO to find covariance
matrices in a limited number of iterations and to face the high
vehicle state coverage of DSE. It is possible to find stable

FIGURE 19. Validation of the optimized odometry through DSE (DataSet Efficient).

covariance matrices after extremely increasing the maximum
iterations, but the time effort and needed resources within
the optimization should also be considered. (2) Some vehicle
states in DSA are also not contained in DSE, especially
during state transitions. In contrast to the realistic use cases
in DSA, DSE focuses only on the stationary states. The
transitions in DSE are smooth, since the next stationary state
is always geometrically the closest state to the current state
during the maneuver generation.

2) SENSITIVITY ANALYSIS

With the help of Fig. 18 and 19, the results of the sensitivity
analysis of the sensor accuracy and noise can now be
extracted:

• The yaw rate sensor plays an essential role in position
and angular accuracy. Especially after the optimization,
the potential of high-precision yaw rate sensors is fully
exploited.

• The yaw rate sensors currently used in produc-
tion vehicles for driving dynamics applications and
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TABLE 6. Real sensor parameters.

navigation can be used depending on the accuracy
requirements.

• An optimization to improve the odometry accuracy may
not be necessary if low quality yaw rate sensor already
meet the accuracy requirements of the applications.

• The PPR of the speed sensor does not plays a role after
optimization.

B. REAL DRIVING TEST
1) PREPARATION

In this section, the covariance matrices optimized in the
simulation environment are used in the real driving tests to
check if the performance of the odometry is improved as in
the simulation. The DSA maneuvers have been carried out.
Due to the limited test area and safety reason, DSE could not
be carried out. The parameters of the sensors used are listed
in Table 6. In addition, two IMUs with different accuracy
and noise levels were selected to plausibly demonstrate the
dominant role of the IMU sensor in odometry.
The real driving tests have been executed in a hall with

a flat surface. A ground truth system with RTK-GPS is
not feasible in this environment without open air. To obtain
the actual position and orientation of the vehicle, two laser
pointers were attached to the frame, one at the center of the
front plate and one at the center of the rear plate. Before the
start and at the end of each test, the laser points were used to
mark points on the ground. One way to measure the marked
points is to create a coordinate system on the floor after
the experiments. When setting up a coordinate system, it is
essential that the X-Y axes are perpendicular to each other.
In practice, however, it is challenging to ensure an exact right
angle. To ensure precise measurement of the points marked
on the floor, a method shown in Fig. 20 was used. The
principle of this method is to measure the distance between
two points instead of measuring the distance between a point
and a line (X or Y axis) to avoid angular error. Before
starting the measurement, two reference points (Ref 1 and
Ref 2) have to be defined. The blue points (PF and PR) are
the two points marked on the ground, whose positions need
to be determined. The distances from each blue point to the
two reference points (dF1, dF2, dR1 and dR2) were measured

FIGURE 20. Method to measure the reference position of the vehicle.

with a laser distance measurer. The coordinates of PF and
PR can be obtained by solving the following equations:

(PFx − 0)2 + (
PFy − 0

)2 = d2
F1 (7a)

(PFx − 0)2 + (
PFy − dR

)2 = d2
F2 (7b)

(PRx − 0)2 + (
PRy − 0

)2 = d2
R1 (7c)

(PRx − 0)2 + (
PRy − dR

)2 = d2
R2 (7d)

Please note that all blue points must be on one side of the
connecting line between the two reference points to ensure
the unique solution.

2) RESULTS OF UM7 IMU SENSOR

Fig. 21(a) shows one of the typical parking case, in which
the vehicle parks parallel in the parking lot without turning
and stopping. Fig. 21(b) shows estimated trajectories and
the position and orientation error of odometry with the
UM7 IMU. The four colors represent the results of no
optimization, manual optimization, DSA-optimization and
DSE-optimization respectively. The improvement achieved
through the optimization is proofed.
The evaluation results of all test cases are shown in the

left two plots in Fig. 22. The errors have been significantly
reduced, especially the orientation error. Similar to the
simulation result in Fig. 18 YRS 4, the DSA-optimized and
DSE-optimized odometry have no significant different while
using DSA to validate.

3) RESULTS OF BOSCH BNO055 IMU SENSOR

In addition to the results with UM7 IMU Sensor, the
two right plots in Fig. 22 show the results with Bosch
BNO055 IMU sensor. There is a slight improvement in the
position estimation, while the orientation estimation has been
obviously improved. The Bosch BNO055 IMU sensor has
a comparable level of accuracy to the IMU model No.3 in
Table 4. Compare to the simulation result in Fig. 18 YRS 3,
the position estimation improvement aligns with the result
from the simulation, while the orientation improvement in the
real driving test shows slightly more enhancement compared
to the simulation.
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FIGURE 21. Results of parallel parking without stopping.

4) COMPARISON UM7 vs BNO055 IMU

A comparison of the results with these two IMUs reveals
that the UM7 IMU provides more accurate position and
orientation estimates. This finding aligns with the simulation
result, which demonstrates the pivotal role of the IMU in
odometry.

C. LIMITATIONS
Not only the simulation, but also the real driving tests
confirmed generally that the proposed simulation-based
optimization method by using efficient driving maneuver can
improved the odometry position and orientation estimation
in the real driving tests. Nonetheless, some limitations need
to be mentioned:

• Despite the modeling of sensor models aimed at achiev-
ing more realistic behavior, there remain discrepancies
between these models and actual signals. The elasticity
in the steering system might be quite large, which
increases the error of the measured angle. The yaw rate

FIGURE 22. Boxplot of end position and end orientation errors with UM7 IMU.

sensor signal can be influenced by the vibration from
the combustion engine or other mechanical vibrations
in vehicles. The optimized covariance matrices might
not be the optimal solution.

• Since the optimization criterion aims to have a stable
result instead of optimal result, not all the test cases
can be optimized. The optimized result in some cases
is even worse than the original one, especially when
the sensor accuracy is not high.

• The real driving tests were carried out in a hall with flat
surface. The road conditions are very complex. Banked
street, pothole can affect the optimization result.

VIII. CONCLUSION AND FUTURE WORKS
This paper presents a simulation-based optimization method
for an odometry localization filter during omnidirectional
parking maneuvers. The covariance matrices of the UKF-
based odometry are optimized by the PSO algorithm. Sensor
models are built up to generate realistic sensor signals, so
that the optimized covariance from the simulation can also be
applied in the reality. To reduce the optimization effort while
ensuring a stable and accurate odometry result, a method for
generating efficient driving maneuver was introduced. With
the help of this method, the generated maneuver has a large
vehicle state coverage, while the distance and duration of
it are more than halved. The results from simulation and
real driving tests show that using the generated efficient
maneuver can still keep good optimization results. Based
on the proposed method, a sensitivity analysis of sensor
accuracy and noise on odometry was performed. The result
shows an important role of IMU sensor in the position and
orientation estimation.
In future work, the presented method for generating

efficient maneuvers will be improved in terms of vehicle
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state coverage and state transition. In order to carry out these
maneuvers in real driving tests, the limited area of the test
site must also be considered. Since the optimization criterion
in this paper used the 95th-quantile of the outline of position
errors, the vehicle states of the remaining 5% of the data
need to be identified. A state dependent optimization for
this 5% data will be carried out to improve the odometry
accuracy of all vehicle states.
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