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Abstract

Monitoring the surface deformation of large infrastructure elements, such as dams, is
part of assessing their structural health. Unexpected surface deformation or a change
in the temporal pattern of the deformation can indicate either structural damage to the
infrastructure element itself or a nearby ground surface deformation phenomenon, which
in turn can damage the infrastructure element. Hence, regular analysis of their surface
displacement is a crucial task.

Persistent Scatterer Interferometry (PSI) is a remote sensing technique well-suited for
monitoring the surface deformation of large infrastructure elements and thus, contributes
to assessing their structural health. The technique exploits the phase of Synthetic Aperture
Radar (SAR) images to estimate surface displacement rates. The technique has several
strong suits. One, it is capable of providing ground surface deformation datasets with
an accuracy of submillimeter for the TerraSAR-X (TSX) sensors and millimeter for the
Sentinel-1 (S1) sensors for displacement rates in the line-of-sight of the sensor. Second,
it can be utilized without any personnel or sensors on site. Third, under favorable condi-
tions, a dense grid of measuring points is far more achievable than it is using the Global
Navigation Satellite System. Additionally, the launch of the S1 satellites has provided
users with a steady stream of SAR images, which has promoted recent developments in
the field to shift from analyzing a distinct time span to continuously updating ground
surface deformation datasets with new incoming data. However, frequent processing of a
continuously expanding dataset presents challenges concerning both the PSI processing
itself and the systematic analysis of the resulting ground surface deformation data.
Concerning the PSI processing itself, a continuously expanding dataset raises questions
regarding persistent scatterer density, processing efficiency, and the comparability of results
from different updates. Within the scope of this thesis, three different strategies to continu-
ously process a steady stream of SAR images with PSI are presented and evaluated. The
first strategy is to always process all available SAR images, i.e., a growing dataset. The sec-
ond strategy is to process the steady stream of SAR images in consecutive non-overlapping
subsets, and the third strategy is to use overlapping consecutive subsets, similar to a
sliding-window. In order to take full advantage of the possibility to re-use intermediate
results given by the third strategy, the PSISlider processing chain was implemented. The
strategies are evaluated and compared to each other based on key processing parameters.
It could be concluded that the third strategy is the approach best-suited for processing a
steady stream of SAR images for monitoring tasks. It provides a relatively constant number
of PS, while keeping the processing time and needed hard disk space limited. Additionally,
the strategy allows for quickly paced updates and ensures comparability of intermediate
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results.

Additionally, a need for automatic post-processing procedures to extract relevant infor-
mation on the temporal pattern of ground surface deformation datasets was identified.
The often used mean deformation velocity maps, neglect any acceleration, deceleration
or periodic behavior of deformation phenomena and thus, can be misleading. Therefore,
the post-processing tool PSDefoPAT® was designed to extract the underlying time series
model in the displacement time series resulting from advanced DInSAR processing. The
tool assigns each displacement time series a best-fitting time series model using a sequence
of statistical tests. Additionally, a standardized visualization of the PSDefoPAT® results
was designed to facilitate an easy interpretation of the results. The capabilities of the tool
were tested and demonstrated on synthetic and real displacement time series.

Further, challenges that can arise from tailoring a monitoring system for a specific large
infrastructure element were addressed. Monitoring large infrastructure elements, such
as dams, can lead to a need for data that has a wide coverage and a high spatial resolu-
tion. This demand can only be met using two sets of SAR images. For example, S1 SAR
images that fulfill the requirement of wide coverage and high-resolution TSX SAR images
that fulfill the requirement of high spatial resolution. However, their different spatial
resolution and wavelengths make the datasets unequally complex to process. The two
processing steps affected the most by this are the PS selection and the phase unwrapping
process. It is suggested to combine different selection criteria so that they complement
each other. Applying this approach to a TSX SAR time series, mapping the deformation of
the Parapeiros-Peiros Dam, increased the number of PS and with that effectively closed
significant gaps on the dam body, which prevented the mapping of its surface deformation.
As for phase unwrapping, the process can be supported by reconstructing an idealized
deformation-induced phase based on displacement time series models extracted with PSDe-
foPAT® from a simpler-to-process dataset. Applying the approach to a complex-to-process
dataset resulted in an improvement of the displacement time series.

All three aspects contribute to moving forward from only analyzing a distinct time span to
continuously updating ground surface deformation datasets with new incoming data in the
context of infrastructure monitoring with PSI. Additionally, they also address a systematic
approach to post-processing to extract relevant information.



Kurzfassung

Die Uberwachung von Oberfldchendeformationen groRer Infrastrukturelemente, wie z.B.
die Absperrwerke von Talsperren, ist Bestandteil der Beurteilung ihrer strukturellen In-
tegritdt. Unerwartete Oberflichendeformationen oder eine Verdnderung in ihrem zeitlichen
Verhalten kann als Indikator fiir einen strukturellen Schaden oder eine Bodendeformation,
die die Infrastrukturelemente beschédigt, dienen. Aufgrund dessen ist eine regelméallige
Beurteilung der strukturellen Integritét eine entscheidende Aufgabe. Persistent Scatterer
Interferometry (PSI) ist eine Methode der Fernerkundung, die sich zur Uberwachung
der Oberflaichendeformationen grof3er Infrastrukturelemente gut eignet. Die Methode
bestimmt aus der Phaseninformation von Synthetic Aperture Radar (SAR)-Aufnahmen die
Oberflachendeformation. Eine Stirke der Methode ist, dass sie die Oberflichendeforma-
tion in Blickrichtung des Sensors mit einer Genauigkeit im Bereich von Submillimetern
fiir die TerraSAR-X (TSX) Sensoren und im Bereich von Millimetern fiir die Sentinel-1
(S1) Sensoren bestimmen kann. Eine weitere Starke ist, dass weder Personal vor Ort
noch das Anbringen von Sensoren notwendig sind. Aulderdem ist es mit PSI erheblich
einfacher, unter giinstigen Bedingungen ein enges Messpunktnetz bereitzustellen als mit
Global Navigation Satellite System Stationen. Mit dem Start der S1-Mission kommt noch
hinzu, dass dem Nutzer eine kontinuierliche Abfolge von SAR-Aufnahmen weltweit zur
Verfiigung steht. Dies hat die Entwicklung zu einer kontinuierlichen Auswertung eines
sich regelmaf3ig aktualisierenden Datensatzes malfsgeblich unterstiitzt. In diesem Zusam-
menhang ergeben sich einige Fragen beziiglich der eigentlichen Prozessierung und der
systematischen Analyse der berechneten Oberflichendeformationsdatensétze.

Die PSI-Prozessierung eines sich stetig erweiternden Datensatzes wirft Fragen beziiglich
der Persistent Scatterer (PS)-Dichte, der Effizienz und Vergleichbarkeit der Ergebnisse der
jeweiligen Aktualisierungen auf. Im Rahmen dieser Arbeit werden drei unterschiedliche
Strategien zur kontinuierlichen Verarbeitung eines sich stetig erweiternden Datensatzes
mittels PSI vorgestellt und evaluiert. Die erste Strategie beinhaltet die kontinuierliche
Prozessierung aller zur Verfiigung stehenden SAR-Aufnahmen bei jeder Aktualisierung. Mit
der zweiten Strategie wird der Ansatz verfolgt, die SAR-Aufnahmen in aufeinanderfolgen-
den sich zeitlich nicht {iberlappenden Teildatensétzen zu prozessieren. Die dritte Strategie
bertiicksichtigt bei der Prozessierung aufeinanderfolgende sich zeitlich iberlappende Teil-
datensitze, in Anlehnung an das Sliding-Window-Prinzip. Damit die im Rahmen der
dritten Strategie bestehenden Moglichkeiten zur Wiederverwendung von Zwischenergeb-
nissen vollstdndig ausgenutzt werden kénnen, wurde die PSISlider-Prozessierungskette
entwickelt. Die Strategien wurden beziiglich, fiir die Prozessierung relevanter, Schliissel-
parameter ausgewertet und einander gegeniibergestellt. Es wurde festgestellt, dass die
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dritte Strategie am besten geeignet ist zur kontinuierlichen Verarbeitung eines sich stetig
erweiternden Datensatzeses. Die Strategie ermoglicht eine relativ stabile PS Anzahl und
bendtigt eine begrenzte Prozessierungszeit und begrenzten Speicherplatz. Zusatzlich bietet
die Strategie die Moglichkeit eng aufeinanderfolgende Aktualisierungen zu liefern und die
Zwischenergebnisse zu vergleichen.

Im Weiteren wurde die Notwendigkeit fiir automatisierte Post-Prozessierungsverfahren
zur Extraktion relevanter Informationen aus Oberflichendeformationsdatensétzen identi-
fiziert. Die hdufig genutzten Karten der mittleren Geschwindigkeit beriicksichtigen weder
eine Beschleunigung oder Entschleunigung noch ein periodisches Verhalten der Defor-
mationsphdnomene, was zu Fehleinschédtzungen fithren kann. Aus diesem Grund wurde
das Persistent Scatterer Deformation Pattern Analysis Tool (PSDefoPAT®) entwickelt, um
zeitliche Muster in Versatzzeitreihen zu erkennen. PSDefoPAT® weist jeder Versatzzeitreihe
basierend auf statistischen Tests ein best-fitting Zeitreihenmodell zu. Zuséatzlich wurde
eine standardisierte Visualisierung der Ergebnisse entwickelt, um die Interpretation zu
vereinfachen. AuRerdem erfolgte der Test des Tools PSDefoPAT® auf simulierten und
realen Versatzzeitreihen.

Der dritte Aspekt bezieht sich auf die Anpassung des Uberwachungssystems an ein
spezielles Objekt oder eine Region. Zur Uberwachung grofRer Infrastrukturelemente,
wie z.B. einer Talsperre, sind Daten notwendig, die eine gute riumliche Abdeckung und
Auflésung aufweisen. Dies ist nur mittels zweier SAR-Datensidtze umsetzbar. Daten
der S1-Satelliten erfiillen beispielsweise die Anforderung der rdumlichen Abdeckung,
wahrend Aufnahmen der TSX-Satelliten den Anspriichen beziiglich der raumlichen Auflo-
sung Geniige tun. Die Sensoren unterscheiden sich meist nicht nur in ihrer raumlichen
Auflésung und Abdeckung, sondern auch in ihrer Wellenlange. Alle Faktoren haben einen
Einfluss auf die Oberflachendeformation, die abgebildet werden kann, und die Komplexitat
der Datenauswertung. Dies macht sich in den Prozessierungsschritten der PS-Auswahl und
der Phasenabwicklung bemerkbar. Eine Méglichkeit der PS-Dichtemaximierung bietet die
Kombination meherer PS-Auswahlkriterien. Die Realisierung dieser Moglichkeit fiir die
Auswertung des TSX-Datensatzes, der die Deformationen der Parapeiros-Peiros-Talsperre
aufzeichnet, erhohte die PS Anzahl. Dadurch konnten erhebliche Liicken auf dem Stau-
damm geschlossen werden, die zuvor eine Deformationsauswertung in diesem Bereich
umoglich machten. Die Phasenabwicklung kann mittels einer rekonstruierten durch De-
formation verursachten Phase unterstiitzt werden. Die rekonstruierte durch Deformation
verursachte Phase wird basierend auf Zeitreithenmodellen berechnet, die aus einem ein-
facher zu prozessierenden Datensatz abgeleitet werden. Mit diesem Ansatz konnte eine
Verbesserung der Ergebnisse des TSX-Datensatzes erzielt werden.

Alle drei Aspekte férdern den Ubergang von zeitlich begrenzten Auswertungen hin zu einer
kontinuiertlichen Analyse eines regelmél3ig aktualisierten Datensatzes, sowie zu einer
systematischen Auswertung der daraus resultierenden Ergebnisse.
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1.1

Introduction

Motivation

Differential Synthetic Aperture Radar Interferometry (DInSAR) has been used to map
ground surface deformation for the past decades. The technique was first applied to record
the co-seismic deformation field of the Landers earthquake, which occurred in 1992 in
California, USA [1, 2]. Since earthquakes are often linked to boundaries of lithospheric
plates, studying their distribution, focal mechanism, and the associated co-seismic surface
deformation is important to understanding the processes driving the crustal deformation
of the Earth [3]. Both co-seismic deformation, i.e., deformation directly associated with
an earthquake, and aseismic deformation, i.e., deformation alongside faults in between
seismic events, offer important information on the seismic hazards of a region. An
assessment that is becoming increasingly important, since the population in seismically
active areas continues to grow and densify. The geophysical research field dedicated to
describing and understanding these processes with geodetic methods is tectonic geodesy.
The first surface deformation associated with an earthquake was mapped in the early
1890s. Geodetic triangulation and leveling measurements were taken before and after the
Nobi earthquake in Japan (1891). However, until the end of the 20™ century, conducting
measurement campaigns to map surface deformation alongside faults or in association
with earthquakes was a labor- and time-intensive, as well as costly endeavor. Only the
development of remote sensing techniques such as the Global Navigation Satellite Systems
(GNSS) and DInSAR in the 80s and 90s facilitated regular surveys of ground surface
deformation over wide areas independently of weather and daylight conditions [4, 5]. The
advantage of DInSAR over GNSS is that, under favorable conditions, providing ground
surface deformation measurements over a dense grid of measuring points (MP) is far more
achievable with DInSAR than with GNSS. However, since GNSS measurements often tend
to be more precise and using permanently operating stations provides an uninterrupted
time series of measurements, both methods are often used to complement each other. With
an uptake in data availability in recent years, they quickly replaced traditional methods
in the field of tectonic geodesy [4, 5]. Especially DInSAR found regular application in
monitoring geohazards, other than surface deformation due to seismic events, such as
slope instabilities [6, 7] and sinkholes [8].

The capabilities of DInSAR to measure ground surface deformation are limited by a loss of
coherence due to temporal and geometric decorrelation [9, 10] and the misinterpretation
of atmospheric phase contributions [11, 12] as phase induced by the topography or
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surface deformation of the imaged scene. These limitations led to the development of
advanced DInSAR techniques such as Persistent Scatterer Interferometry (PSI) [13, 14],
Small Baseline Subset Interferometry (SBAS) [15], and SqueeSAR™ [16] (an integrated
Persistent and Distributed Scatterers (PS and DS) algorithm). These advanced DInSAR
techniques have in common that they use a time series of differential interferograms
instead of only one to estimate ground surface deformation and thus can mitigate the
earlier listed limitations of DInSAR. Especially, the capabilities of PSI to map ground surface
deformation with millimeter precision have been demonstrated in various studies over
recent years [17, 18, 19, 20].

PSI has been utilized to map and analyze naturally occurring and human-induced ground
surface deformation. Examples of naturally occurring ground surface deformation are
post-glacial uplift [21], aseismic creep alongside active faults [22, 23], slope instability [24],
and sinkholes [25, 26]. Human-induced ground surface deformations are, for example,
varying uplift and subsidence due to seasonal groundwater usage [27] or gas storage [28,
29] and subsidence due to continuing urbanization [30]. Additionally, PSI has been used
to study the surface deformation of large infrastructure elements such as bridges [31],
dams [32], or levees [33].

All the examples listed above are only snapshots of the observed deformation, i.e., only a
specific time span and Area-of-Interest (AOI) is analyzed. However, the ground surface
deformation most likely continues. With the launch of the Sentinel-1 (S1) Synthetic
Aperture Radar (SAR) satellites S1-A in 2014, S1-B in 2016 (S1-B was only operational
until December 2021) and S1-C in 2024, the amount of available SAR data capable of
interferometry increased significantly. The S1 SAR mission was designed to systematically
record SAR images with a repeat-pass time of 12 days worldwide and 6 days for European
areas provided freely to the public. However, the S1-B satellite was only operational
between October 2016 to December 2021. The loss of S1-B increased the repeat-pass
time over Europe from 6 to 12 days. With the launch of S1-C a repeat-pass time of 6 days
over Europe was achievable again. Even though the S1 SAR images have a low spatial
resolution of 5 m in range and 20 m in azimuth [34, 35, 36, 37], they can still be used
to evaluate the risk that geohazard-induced ground surface deformation poses to human
settlements and infrastructure networks [38, 39, 40, 41]. The wide spatial coverage of
S1 SAR images with 250 km wide recorded swaths [34] allows for assessments at the
regional scale, so that with advanced DInSAR (e.g., with PSI) derived mean velocity maps
and displacement time series can be used to extract active deformation areas [38, 41]
and associate them with predefined geophysical deformation mechanisms [40] in order to
create priority lists for Civil Protection Authorities [39]. Although all the described studies
above intend for their products (e.g., maps of active deformation areas) to be regularly
updated, newly incoming data is not continuously processed. The case study on monitoring
ground surface deformation at a regional scale in Tuscany presented by Raspini et al. (2018)
showcased an innovative near-real-time approach. The S1 SAR data for the region of
Tuscany is scanned every 6 days for a change in the mean deformation velocity over the past
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150 days. MPs with a velocity change greater than 10 }% are earmarked as anomalies and
recommended to be investigated further. The recent development in the use of advanced
DInSAR techniques, such as PSI, for risk assessment or structural health monitoring, from
processing and analyzing distinct time spans to continuously updating the results with new

incoming data, led to the main research question of the present work:

How can the PSI technique contribute to the continuous monitoring of human settlements and
large infrastructure elements?

Frequent processing of a continuously expanding dataset presents challenges concerning
both the PSI processing itself and the systematic analysis of the resulting ground surface
deformation data. A drawback of the PSI technique is that it only extracts ground surface
displacement rates from pixels behaving coherently for the majority of the observation
period [43, 44]. Thus, a continuously growing dataset with an expanding observation
period is likely to result in a continuous loss of MPs. A lower MP density impedes an
accurate assessment of the spatial pattern of the ground surface deformation and the
extend of the affected area. Another aspect to consider, is the comparability of the
ground surface deformation data after each update of the dataset, if processing is carried
out independently of prior processing. Concomitant with independent processing, is
the question of inefficiency. Since the majority of the SAR images in the dataset are
repossessed each time the dataset is updated. All three aspects can be summarized by the
first sub-question investigated in this thesis:

What processing approach for PSI would allow for a continuous long-term monitoring of an
area or object of interest, taking into account MP density and comparability with historic
data?

Each PSI analysis provides a map of the mean deformation velocity and a displacement time
series of each MP identified in the dataset. Typically, the mean deformation velocity map is
used to analyze the recorded ground surface deformation. The advantage of using the mean
deformation velocity maps is that actively deforming areas, their spatial pattern, and extent
can be easily assessed [38, 45]. A disadvantage is that the map does not offer information
concerning the temporal deformation pattern, since the mean deformation velocity is
estimated with the assumption of a constant velocity model. However, for monitoring
purposes, the temporal deformation pattern is of particular interest, as presented in Raspini
et al. (2019). They identified an acceleration in the deformation of a large area in the
Northern Apennines as a consequence of rainfall and snow melt, which could have been
underestimated or remained undetected by only analyzing the mean deformation velocity
maps. In combination with the amount of data generated by a continuously operating
surface deformation monitoring system, this illustrates the need for an automatic post-
processing procedure to assess the temporal deformation pattern of MPs in the dataset.
Thus, the second sub-question of the research presented is:

1.1 Motivation
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How can the results of PSI processing be utilized to provide information on the dynamic
evolution of the deformation process?

Additionally, tailoring the monitoring system for large infrastructure elements for structural
health monitoring (SHM), such as embankment dams, poses significant challenges. Dams
are subject to various surface deformations that can either be localized, such as varying
subsidence rates alongside the crest of the dam body, or occur on a larger scale, such as
slope instabilities along the shoreline of the water reservoir [47, 48]. Thus, high-resolution
and wide spatial coverage are needed. Meaning, in addition to S1 SAR images TerraSAR-X
(TSX) images of vulnerable areas are needed. Due to the higher resolution (0.6 m in
slant range and 1.1 m in azimuth direction [49, 50]) of high-resolution spotlight TSX
data compared to IW swath S1 data, the spatial variability of the deformation pattern
can be captured in greater detail. However, a high spatial variability of the deformation
pattern can lead to challenges during processing, since some PSI algorithms, such as the
Stanford Method for Persistent Scatterer (StaMPS) [14, 51, 52], require spatial smoothness
of the deformation pattern for PS selection. Further, the wavelength of the SAR sensor
used has an influence on the mapping of the ground surface deformation. Advanced
DInSAR techniques, such as PSI, exploit phase differences, i.e., the differential phase,
between acquisitions to measure deformation rates, which correspond to a fraction of
the wavelength of the used SAR sensor. The differential phase is measured modulo 27,
making it ambiguous. A requirement to unambiguously unwrap the observed differential
phase for PSI is that the phase difference of two neighboring MP over two consecutive
differential interferograms is less than 7r, which corresponds to % [53]. Thus, making the
high-resolution dataset with the sorter wavelength more complex to process in the case of
highly spatially variable and rather quick deformation, which leads to the question:

How can PSI datasets that are complex to process due to their high-resolution and shorter
wavelength still be used to map highly spatially variable and rather quick deformation?

All three sub-questions will be addressed in this thesis. The structure of the thesis and the
approach to addressing the research questions is outlined in the next section.

Chapter 1 Introduction



1.2 Road Map to the Thesis

The following section outlines the structure of this thesis and the approach taken to
address the research questions introduced in section 1.1. Three sub-questions emerge from
the overriding topic of using PSI to continuously monitor human settlements and large
infrastructure elements such as dams. The research questions are the following ones:

(1) How can the results of PSI processing be utilized to provide information on
the dynamic evolution of the deformation process?

(2) How can PSI datasets that are complex to process due to their high-
resolution and shorter wavelength still be used to map highly spatially
variable and rather quick deformation?

(3) What processing approach for PSI would allow for a continuous long-term
monitoring of an area or object of interest, taking into account MP density
and comparability with historic data?

The thesis is structured into seven chapters, with the first chapter providing a motivation
for and a road map of the thesis. The theoretical background of remote sensing techniques
to map surface deformation based on Synthetic Aperture Radar Interferometry (InSAR)
is outlined in Chapter 2. The chapter also provides an overview of the deformation a
dam is subjected to throughout its life time and conventional methods used to monitor
them, since a recently build dam in Greece is used in addition to the coastal city Patras to
demonstrate the presented research. Chapter 2 includes elements of previously published
articles. Text passages extracted from [54] M. Evers, A. Kyriou, K. Nikolakopoulos, and K.
Schulz. “How to set up a dam monitoring system with PSInSAR and GPS”. in: Proceedings
of Earth Resources and Environmental Remote Sensing/GIS Applications XI 11534 (2020),
pp. 98-114 are marked with an . The AOQ], the area around the city of Patras,
used to demonstrate the findings concerning the research sub-questions is introduced in
chapter 3.

Each question listed above is addressed in an individual chapter, containing sections pro-
viding the problem statement and an overview of related work, addressing the theoretical
fundamentals and approach to solve the problem, presenting a demonstration case and a
discussion on the topic. The first sub-question is addressed in Chapter 4. In order to asses
the dynamic evolution of the observed deformation process a post-processing tool referred
to as Persistent Scatterer Analysis Tool (PSDefoPAT®) was developed. PSDefoPAT® fully
automatically assigns a best-fitting time series model to the displacement time series of
each MP in an advanced DInSAR dataset. In this chapter the fundamentals of time series
analysis relevant for PSDefoPAT® are outlined and the capabilities of the post-processing
tool are demonstrated on the example of the city of Patras in Greece and the newly build
embankment Parapeiros-Peiros Dam south-west of the city. Additionally, PSDefoPAT® is

1.2 Road Map to the Thesis
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tested on simulated displacement time series, whose noise level increases progressively.
This chapter includes elements of previously published articles. Text passages extracted
from [55] M. Evers, A. Thiele, H. Hammer, and S. Hinz. “PSDefoPAT—Persistent Scatterer
Deformation Pattern Analysis Tool”. In: Remote Sensing 15 (2023), 1-26, paper no. 4646
are marked with a blue line. Additionally, although the following previously published
articles are not quoted verbatim and are thus not marked in the text, they are referenced
here because they address methodological concepts featured in Chapter 4. A preliminary
version of PSDefoPAT® was presented in [56] M. Evers, H. Hammer, A. Thiele, and S. Hinz.
“Psdefopat-Towards automatic model based psi post-processing”. In: ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 3 (2022), pp. 107-114.
The user interface for operating PSDefoPAT® is introduced in [57] M. Evers, A. Thiele,
H. Hammer, E. Cadario, K Schulz, and S. Hinz. “Concept to analyze the displacement
time series of individual persistent scatterers”. In: The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 43 (2021), pp. 147-154
and the user interface for the visualization of PSDefoPAT® is introduced in [58] M. Evers
and A. Thiele. “Visualization of PSDefoPAT Results”. In: EUSAR 2024; 15th European
Conference on Synthetic Aperture Radar (2024), pp. 359-364.

The second sub-question aims to accommodate PSI algorithms, such as the Stanford
Method for Persistent Scatterer (StaMPS), for ground surface deformation that depending
of the wavelength and repeat-pass time of the SAR sensor might be considered fast in
the context of PSI and additionally are spatially highly variable. Such ground surface
deformation patterns can be observed monitoring large infrastructure elements such as
the Parapeiros-Peiros Dam making the processing of high-resolution SAR data difficult.
This mostly affects the processing steps PS selection and phase unwrapping. Concepts
overcome these hurdles are presented and demonstrated in Chapter 5. Although the
following previously published articles are not quoted verbatim and are thus not marked
in the text, they are referenced here, since they address methodological concepts used in
Chapter 5. The concept to combine different PS selection criteria to maximize PS density
is introduced in [59] M. Evers, A. Thiele, H. Hammer, and S. Hinz. “The Filling Process
of an Embankment Dam Monitored with PSI”. in: IGARSS 2022 - 2022 IEEE International
Geoscience and Remote Sensing Symposium (2022), pp. 1640-1643 and the concept to
support the phase unwrapping with a reconstructed idealized deformation induced phase
is introduced in [60] M. Evers, E. Cadario, and A. Thiele. “PSDefoPAT for Phase Unwrap-
ping: Knowledge Transfer from Sentinel-1 to TerraSAR-X”. in: IGARSS 2024-2024 IEEE
International Geoscience and Remote Sensing Symposium (2024), pp. 11052-11055.

For the third sub-question, addressed in chapter 6, three different processing strategies for
a continuous monitoring with PSI: (A) a growing dataset, (B) consecutive non-overlapping
time intervals and (C) consecutive overlapping time intervals are evaluated. Additionally,
the PSISlider processing chain is introduced. Although the following previously published
article is not quoted verbatim and is thus not marked in the text, it is referenced here, since
it addresses methodological concepts used in Chapter 6. The three different processing
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strategies evaluated in this chapter are introduced in [61] M. Evers, H. Hammer, A. Thiele,
and K Schulz. “Strategies for PS processing of large sentinel-1 datasets”. In: The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43
(2020), pp. 99-106.

The final chapter contains the synopsis of the thesis and an outlook on future research.

1.2 Road Map to the Thesis
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2.1

Theoretical Background

The following chapter is divided into two parts. The first section of the chapter outlines the
theoretical background of remote sensing techniques to map surface deformation based
on InSAR with a focus on PSI. The second section of the chapter, provides an overview
on the surface deformation a dam is subjected to during its life time and the methods
used to monitor them. Section 2.2 includes text passages extracted from [54] M. Evers,
A. Kyriou, K. Nikolakopoulos, and K. Schulz. “How to set up a dam monitoring system
with PSInSAR and GPS”. in: Proceedings of Earth Resources and Environmental Remote
Sensing/GIS Applications XI 11534 (2020), pp. 98-114, which are marked with an

Synthetic Aperture Radar Remote Sensing Techniques

SAR is an imaging system that provides high-resolution images of, e.g., the surface of
the earth, day and night, independent of weather conditions and cloud coverage [62].
It was developed in the 50ties to improve the resolution of conventional side-looking
active radar imaging systems. A fine resolution in range, which measures the distance
from the radar track to a scatterer, can be obtained by a short-duration radar pulse. The
resolution in azimuth, which is the flight direction of the radar antenna, is directly tied
to the beamwidth of the system. The azimuth resolution can be improved by increasing
the antenna size and increasing the operating frequency of the system. However, even the
largest feasible antenna size and highest practical operating frequency did not achieve the
desired resolution. The key idea of SAR is to use the forward motion of the radar platform,
e.g., an aircraft or satellite, to synthesize a very long antenna. The aircraft or satellite
carries the side-looking radar antenna to different positions, at which the antenna transmits
a radar pulse and receives its echo. The various positions can then be treated like individual
antenna elements of a linear antenna array. However, in the case of a physical antenna
array or real aperture, the transmission and reception at each dipole of the antenna array
are simultaneous. For a synthetic array, the returned signal at each position of the radar
platform is stored separately. Assuming the phase information of each returned pulse is
recorded, a narrow-beamed antenna can be synthesized. This concept is known as SAR. It
was first mentioned by C. Wiley in a report while working at Goodyear Aircraft Corporation
in 1951. In 1953, a discussion between C. Sherwin of the University of Illinois, W. Hausz
of General Electric Company, J. Koehler of the Philco Corporation, and L. Cutrona of the
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SAR Sensor

Reference Plane

(a) Position of antenna footprint and sensor (b) Look 6 and incidence angle ¢

Figure 2.1.: Side-looking imaging geometry of SAR [66, 10].

University of Michigan led to the Michigan project that evaluated the concept, starting
with a roof-mounted antenna and later an aircraft as the platform. The first SAR data
from the aircraft were recorded in August 1957, and the first strip map images of Fort
Huachuca and Tucson in Arizona, USA, were created in the spring of 1958 [63, 64, 65]. In
contrast to optical sensors, SAR sensors use a side-looking imaging geometry, as is depicted
in Figure 2.1. Figure 2.1 (a) illustrates a SAR sensor moving along its path at an altitude
H above the surface of the earth approximated by a reference (x, r)-plane. Its antenna is
directed sideward to its illumination footprint rather than directly downwards. The x-axis
represents the flight direction of the sensor, also referred to as the along-track or azimuth
direction. The r-axis describes the across-track or range direction. The angle at which
the antenna is steered towards the earth is the look angle 6. The incidence angle ¢ refers
to the angle at which the transmitted radar pulse reaches the reference plane regarding
its normal. Both angles are depicted in Figure 2.1 (b), neglecting the curvature of the
earth’s surface. While moving along its track, the sensor emits microwave pulses into the
antenna’s illumination footprint at a fixed rate. This rate is called the pulse repetition
frequency (PRF). Assuming that the microwaves propagate undisturbed from the antenna
towards the earth, scattering only occurs close to its surface. The amplitude and phase of
the backscattered signal depend on the physical and electrical properties of the individual
scatterers in the illuminated scene. The backscattered signal of each pulse is received by
either the same antenna they were transmitted from (mono-static SAR) or a different one
(bi- or multi-static SAR). The individual received echoes are arranged ‘side-by-side’ as a 2D
matrix for processing, making the SAR raw data resemble a hologram more than an image.
The coordinates of the 2D matrix are slant range R, measuring the distance between the
scatterer and the SAR antenna in its line-of-sight (LOS), and azimuth x, describing the
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(a) Strip-map (b) ScanSAR (c) Spotlight

Figure 2.2.: Exemplary SAR acquisition modes [62]

position of the scatterer along the path of the sensor.

The resolution in azimuth is related to the SAR integration time, i.e., the time the SAR
sensor illuminates a scatterer. The SAR integration time depends on the SAR acquisition
mode. Commonly used modes are strip-map SAR, ScanSAR, and spotlight SAR. In the
case of strip-map SAR, the scene is continuously recorded as the antenna’s illumination
footprint sweeps along the path of the sensor with a fixed look angle. The azimuth
resolution of the SAR raw data is limited to the antenna footprint size, which is in the order

of R—LA with L being the physical size of the antenna and A the pulse carrier wavelength.
For ScanSAR, the integration time is shorter since only separate bursts are illuminated.

In between bursts, the antenna’s look angle is changed so that a swath parallel to the
previous one can be recorded, i.e., the SAR system operates in a stepped manner. The
different bursts are stitched together during processing, resulting in a wide swath. A
consequence of the high special coverage is a low resolution due to the short integration
time. In contrast, for spotlight SAR, the antenna of the sensor is continuously steered
towards a specific patch so that the integration time for the patch is elongated. This
approach yields a higher azimuth resolution but a lower spatial coverage. The three
acquisition modes are illustrated in Figure 2.2. The resolution in range is related to the
bandwidth of the transmitted chirp pulse. The chirp is the frequency-modulated pulsed
waveform commonly used for transmission by SAR sensors. The main frequency of the
frequency-modulated pulsed waveform is the carrier frequency fy [62, 66, 67, 68]. Typical
pulse carrier frequencies or wavelengths are (1) X-Band: 8-12 GHz or 2.5-3.75 cm, (2)
C-Band: 4-8 GHz or 3.75-7.5 c¢m, (3) S-Band: 2-4 GHz or 7.5-15 cm, (4) L-Band: 1-2 GHz
or 15-30 c¢m, and (5) P-Band: 0.5-0.25 GHz or 60-120 cm [62].

In order to create a focused SAR image, further processing is needed. Simply put, the

process can be divided into two steps: (1) range compression and (2) azimuth compression.

In the case of range compression, the transmitted chirp signals are compressed to short
pulses, i.e., each line in range is multiplied by the complex conjugate of the spectrum of
the transmitted chirp in the frequency domain. In the case of azimuth compression, the
signal is multiplied by the complex conjugate of the expected return signal of a point target
on the ground.

2.1 Synthetic Aperture Radar Remote Sensing Techniques
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Figure 2.3.: Speckle effect in SAR images [62].

Once the SAR image is focused, effects such as speckle, foreshortening, shadow, and
layover can be observed. These effects have their root in the SAR imaging geometry
and the coherent nature of SAR data. The ground resolution cell corresponding to a
pixel in the SAR image contains multiple randomly distributed scatterers. The microwave
pulse transmitted from the SAR antenna interacts with each scatterer, and each scatterer
produces a backscattered signal with an amplitude and phase. The coherent sum of
these values is the phase and amplitude of the pixel in the final image. Constructive and
destructive interference plays a role here, causing strong fluctuations in the backscattering
over the image. This effect, called speckle, is illustrated in Figure 2.3. The figure shows
the coherent summation of the backscattered signals of the randomly distributed scatterers
in two exemplary ground resolution cells in the complex plane with a cartesian coordinate
system. The vertical axis is the imaginary axis and the horizontal is the real axis.
Foreshortening, layover and shadow are a consequence of the side-looking image geometry
of SAR. The three-dimensional position of objects in the recorded scene is only measured
with two dimensions: slant range and azimuth. In the case of sloped terrain, this causes
foreshortening, i.e., the slope facing the sensor appears compressed. Layover is extreme
foreshortening, where a point higher on the slope is illuminated before one lower on the
terrain, causing the lower point to be obscured in the final SAR image. Shadow refers to
areas not illuminated by the SAR antenna [62, 66, 67, 68].

Synthetic Aperture Radar Interferometry

As stated previously, each pixel of a SAR image contains a measurement of the amplitude
and phase of the signal backscattered by the area of the earth’s surface the radar antenna

Chapter 2 Theoretical Background



illuminated. Both depend on the physical and electrical properties of the imaged area.
While the amplitude can provide useful information on the recorded area by examining
only one SAR image, two images are needed to extract information from the phase [62,
66]. In the late 1960s, Rogers and Ingalls were the first to utilize the phase of radar pulses
in an interferometric manner to resolve uncertainties while mapping previously identified
reflectivity features on the surface of the planet Venus. They used the earth-based Haystack
and Westford radar antennas, located approximately 1200 m apart. The Haystack antenna
transmitted radar pulses toward Venus. Both radar antennas received and recorded the
reflected signal. The signals were combined using multiplicative interferometry. The
complex cross-power of the received signals was calculated by multiplying one signal with
the complex conjugate of the other. The resulting fringe pattern, i.e., the pattern caused
by the 27t-ambiguity of the phase, was used to resolve the twofold hemispheric ambiguity
hindering the exact positioning of previously observed features in the 2D reflectivity map
of Venus [69]. A similar approach was later used to map the topography of the lunar
surface facing the Earth. Again, the Haystack and Westford radar antennas were used as an
interferometer. The fringe pattern resulting from calculating the phase difference between
the recorded SAR images was used to determine the third dimension for a previously 2D
map of the surface of the moon [70]. The first published work presenting lines of equal
elevation based on a fringe pattern caused by the topography of the Earth was generated
from airborne SAR data collected over Puerto Rico [71]. Based on these findings, different
InSAR configurations were developed to map information on the surface of the Earth, such
as the topography or the displacement of scatterers between acquisitions. All configurations
have in common that at least two SAR images are combined to form an interferogram
by multiplying the first image with the complex conjugate of the second image, resulting
in the phase difference between the two images. To generate useful information from
the images, at least one acquisition parameter needs to differ between the images [66].
In the case of the studies by Rogers and Ingalls (1969), Zisk et al. (1972), and Graham
(1974), the divergent parameter was the location of the receiving antennas. Different
information on the imaged area is generated depending on the deviant acquisition param-
eter. Table 2.1 provides an overview of the different InSAR configurations [66]. In the
case of an across-track configuration, the images are recorded from different positions and,
subsequently, with varying look angles. The difference is indicated with the perpendicular
baseline b | . Across-track InSAR can be used to reconstruct the topography of the imaged
area. The divergent parameter in the case of along-track and differential InSAR is the point
in time the images were recorded. The objective is to map the displacement of scatterers.
Different phenomena can be observed depending on the temporal baseline, i.e., the time
increment Af between acquisitions. A difference in carrier frequency, as is the case for
Ak-radar, can be used to eliminate the effects of the propagation medium and improve the
accuracy of targets in range in the recorded SAR images [66]. This chapter presents the
theoretical background of across-track and differential InSAR, focusing on the latter.

2.1 Synthetic Aperture Radar Remote Sensing Techniques
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L.C. Graham [71] presented a concept to use synthetic interferometers to map the to-
pography of the Earth in 1974 based on additive interferometry. Data from two radar
antennas mounted on one aircraft with a vertical separation was used to generate a syn-
thetic interferometer. Radar pulses were emitted from different positions along the flight
path. The backscattered signal was recorded by both radar antennas and processed to
form two focused SAR images. Simultaneously, the received signals from both antennas
were combined by simple summation and subsequently processed in the same manner as
the focused SAR images were, resulting in a synthetic interferometer. The collected data
was combined with exact measurements of the position of the aircraft to extract lines of
equal elevation for the imaged area. The concept was demonstrated using data collected in
operational flights over Puerto Rico. The generated contour lines of equal elevation were
in good agreement with conventionally generated topographic maps. Zebker et al. (1986)
extended this concept to generate a high-resolution topographic map. Two airborne SAR
images were obtained simultaneously by two spatially separated radar antennas over
the San Francisco Bay Area. The images were pixel-wise combined using multiplicative
interferometry to generate an interferogram containing the phase difference between the
two images, also known as the interferometric phase, and the product of the two original
amplitudes [72]. Later, the concept was adapted to accommodate the use of spaceborne
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Table 2.1.: Overview of possible InSAR configurations [66].
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Figure 2.4.: Acquisition geometry for SAR interferometry [75, 10].

SAR data, imaging the same area but recorded at different times, i.e., repeat-pass in-
terferometry [73, 74]. Figure 2.4 shows the acquisition geometry for spaceborne SAR
interferometry. The images for SAR interferometry are not necessarily acquired simultane-
ously, i.e., repeat-pass instead of single-pass SAR interferometry. Before the images can be
used to calculate an interferogram, they need to be aligned and resampled. The processing
step is called co-registration and will be outlined later in this chapter. The image used as
a geometric reference for co-registration is referred to as the reference image, while the
second image is referred to as the secondary image. Together, they are also referred to
as an interferometric pair. The orbits from which the images are recorded are referred
to as the reference and secondary track, respectively. In Figure 2.4, it is assumed that
the reference and secondary orbit tracks are parallel but at different altitudes, Hy; and
Hs. The spatial distance between them is defined as the spatial baseline b, which can be
decomposed into a part perpendicular b, and parallel b to the LOS direction of the sensor.
The angle between the baseline and its horizontal component is referred to as the baseline
angle ¢. Figure 2.4 also shows that the two ground resolution cells P’ and P are located
at the same slant range distance Ry in the reference image. In the secondary image the
ground resolution cells are positioned at deviating slant range distances Rg and Rg — r
if they are located at different elevations on the imaged surface. The phase difference
between the reference and secondary image is sensitive to this slant range difference,
which is exploited in InSAR to reconstruct the topography of the imaged scene [10, 75].

The reference and secondary images consist of complex values on a regular grid. These

2.1 Synthetic Aperture Radar Remote Sensing Techniques
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complex values can be decomposed into the phase and amplitude of the backscattered
signal for a specific ground resolution cell. The values, z); and zg, for pixels in the reference
and secondary image covering the same ground resolution cells Py; and Pgs respectively can
be given as:

zmp = |lzmp|| AL 2.1

zsp = ||zsp| - €/¥5P. (2.2)

After the images are aligned and the secondary image is resampled to the geometry of
the reference image, i.e., the secondary image is co-registered to the reference image, the
interferogram for the common ground resolution cell P can be calculated as follows:

up = z2mp - 25p = |lzmpl |25 pl| - /PP ¥5P) = ||z pl |||z p | - €497 (2.3)

Neglecting effects due to the propagation medium, the observed phase ¢p only depends
on the slant range distance between the sensor and the ground resolution cell P and the
scattering characteristics of the resolution cell.

2 - 2R

Pmp = _fM/P + Pscat,M,P (2.4
2 - 2R

Psp = _% + Yscats,p (2.5)

Here, scocp denotes the phase due to the scattering properties of the ground resolution
cell, A the wavelength of the SAR system, and Rp the distance from the sensor to the
ground resolution cell. Assuming that the scattering characteristics do not change in
between acquisitions, the phase difference Ap can be calculated as follows:

4 4

APp = Ppmp — Psp = _T(RM,P —Rgp) = _TARP/ (2.6)

and its derivative is: A
IAY = —T”aAR. 2.7)

In order to estimate the elevation hp of the ground resolution cell P above a reference plane,
ARp needs to be measured. Based on the acquisition geometry, presented in Figure 2.4,
ARp can be approximated as:

ARp = b -sin(6py — ). (2.8)

This equation cannot be used to accurately estimate ARp, due to orbit inaccuracies and
the ambiguous nature of the phase differences, i.e., the absolute phase differences are
only given modulo 27t. How this ambiguity can be resolved is outlined in Section 2.1.4.
However, the derivative of Equation 2.8 can be used to describe the relationship between
changes in AR and 6.

dAR =b- cos(Gg’M —¢)oo (2.9)
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Here, QgM is an initial value for the look angle obtained from an arbitrary reference plane,
such as a sphere or ellipsoid. Combining Equation 2.7 and 2.9, the relationship between a
change in the look angle and a change in the interferometric phase can be written as:

AP = —47” +b - cos(6py — 6)99. (2.10)

A change in the interferometric phase can also be expressed as the difference between the
observed phase ¢p and the expected phase for the reference body dp based on the orbit
geometry:

0AY = Pp — Up. (2.11)

The height of the SAR satellite can be expressed in geometrical terms as:
Hy = Rpwm - cos(60), (2.12)

and a change of the height of the satellite for the ground resolution cell P can be written
as:
0Hm = —hp = Ryp - sin(6))00. (2.13)

Equation 2.13 can be solved for the elevation /p of the ground resolution cell P above a
reference body employing Equation 2.10, which results in:
)LRM,p . sin(@%M)

hp = — oA 2.14
P 47Tb(i,P P ( )

with
bou) =b- cos(Gg)M —¢). (2.15)

With Equations 2.14 and 2.15, it is possible to reconstruct the topography of an imaged
area from its interferometric phase and generate a digital elevation model (DEM). The
height of ambiguity can be used as a rough estimate of the elevation change between two
points in an interferogram, since it corresponds to a full 27t phase shift, i.e., one complete
fringe. The change in elevation causing a 27t phase shift can be estimated using [10]:

ARy - sin (69

hor = |—O(M>|. (2.16)
2bY

In addition to topography, fringes in an interferogram can be caused by the displacement

of scatterers on the imaged surface. The processes of isolating the interferometric phase

contribution due to the displacement of scatterers from the contribution caused by the

topography of the imaged scene are referred to as DInSAR. The theory behind DInSAR is

outlined in the next section.

2.1 Synthetic Aperture Radar Remote Sensing Techniques
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Differential Synthetic Aperture Radar Interferometry

The interferometric phase is not only sensitive to the topography of the imaged scene, but
also to the displacement of scatterers on the ground surface between acquisitions. Gold-
stein et al. (1987) first exploited this to map ocean currents in Francisco Bay. Airborne SAR
data collected simultaneously with two L-band antennas, displaced in along-track direction
with an 18.5 m baseline, was used to generate an interferogram. The phase difference
captured in the interferogram is related to the real-time displacement of scatterers on
the water surface, and thus, the tidal current flow out of the San Francisco Bay could be
mapped. Gabriel et al. (1989) presented a study using multiple repeat-pass SAR images to
map small elevation changes in the Imperial Valley, California. Two interferograms with
one SAR image in common were calculated and subtracted from one another, removing
the part of the interferometric phase due to the local topography. The remaining part of
the interferometric phase, referred to as the differential phase, reveals elevation changes
between image acquisitions. The potential of DInSAR holds for monitoring ground surface
deformation due to geophysical processes, such as earthquakes or aseismic creep alongside
active faults, was recognized early on [75]. The first differential interferogram mapping
ground surface deformation due to an earthquake was presented 1993 capturing the
co-seismic displacement field of the Landers earthquake in California [1]. The differential
interferogram was generated using two SAR images recorded with ERS-1 data and an
external DEM to simulate and remove the topographic phase. In a second study, the
displacement field of the Landers earthquake was studied using three ERS-1 SAR images,
one taken before the earthquake occurred and two afterward. The SAR images are ar-
ranged to form a deformation pair, capturing the deformation due to the earthquake, and
a topographic pair, which is ideal for calculating the topographic phase and is unaffected
by deformation. Both pairs have one image in common, which serves as the geometric
reference, i.e. the reference image, for both interferograms. The topographic interferogram

. . . . . . b
is scaled using the ratio of the corresponding perpendicular baselines ;=** and subtracted

from the deformation interferogram, resulting in a differential interLf’grps)gram [2]. The
approach used by Gabriel et al. (1989) and Zebker et al. (1994) is referred to as three-pass
DInSAR, while the approach presented by Massonnet et al. (1993b) is two-pass DInSAR. In
case there is no external DEM and no suitable third SAR image to form the topographic pair
in combination with one image from the deformation pair, four SAR images can be used
to calculate the differential interferogram. Four-pass DInSAR is comparable to three-pass
DInSAR if the topographic and deformation interferograms are aligned correctly [10]. The
advantage of three-pass or four-pass DInSAR is that no data other than SAR data is required.
On the other hand, a significant drawback is the risk of misinterpreting non-topographic
contributions to the interferometric phase as a topographic-induced phase. The assumption
that the topographic pair is unaffected by deformation only holds true in case of abrupt
deformations, such as those observed due to an earthquake. In addition, the importance of
the phase contribution due to atmospheric changes was underestimated when the approach
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Figure 2.5.: Acquisition geometry for two-pass DInSAR [10].

was presented. In the case of two-pass DInSAR, using a DEM ensures that only the fringe
pattern due to the local topography is eliminated. However, the accuracy of the DEM is
pivotal [78]. In this work, the focus will be on two-pass DInSAR to form the differential
interferograms needed for PSI.

The acquisition geometry for spaceborne two-pass DInSAR is presented in Figure 2.5.

A displacement of the scatterers from position P to P’ contributes to a range difference
in addition to the local topography and, subsequently, the interferometric phase for the
corresponding pixel in an interferogram. If the displacement rates d of scatterers are the
wanted information and not the local topography, the reference and secondary images
would ideally be recorded from the same position with a zero spatial baseline in between
them to limit the influence of the local topography. However, operating an InSAR satellite
constellation with a zero baseline is often not possible or feasible [10]. The interferometric
phase Ay, . p related to the displacement dios can be written as [79]:

47
APg, o6p = o dros. (2.17)

Combining Equation 2.14 and 2.17 and considering that reference phase dp is given as:

Op = %b -sin(69 —¢), (2.18)

the observed interferometric phase can be written as:

0
bL,P

———hp). 2.19
RM’p . sm(f)g) P) ( )

47 .
Ayp = < (b- sm(@lg —¢) —dros —
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2.1.3 Steps of DINSAR Processing

Filtering and multilooking aside, the process to generate a differential interferogram can
be roughly divided into four steps: (1) co-registration of the SAR images, (2) interfer-
ogram generation, (3) removal of the flat-earth contribution, and (4) removal of the
topography-induced phase contribution. Co-registering the interferometric image pair is
necessary because even though the SAR images recorded in repeat-pass interferometry
cover roughly the same patch of ground surface, they do not align perfectly due to slightly
deviating orbit tracks. The correct alignment of the SAR images down to the sub-pixel

(a) Exemplary SLC taken by S1 on (b) Exemplary SLC taken by S1 on

02/15/2017 03/17/2017
(c) Interferogram (d) Phase induced by an idealized flat-
earth

(e) Flattened interferogram

(g) Differential interferogram

Figure 2.6.: Processing steps of DInSAR on the example of the North-West of the Pelopon-
nese Peninsula, Greece. For all seven images the azimuth direction extends
from the upper left to the lower left corner and the range direction from left
to right.
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level, however, is required to generate coherent interferometric products. The parameter
coherence describes the correlation between two SAR images. The value varies between
1 and 0, with 1 indicating a high correlation and 0 a low correlation. More details on
coherence is provided in Sub-section 2.1.5. Errors in alignment would lead to a loss of co-
herence. The misalignment of images is corrected in a process referred to as co-registration.
One SAR image, the reference image, serves as the reference image, and for the second
image the azimuth and range offsets are calculated, and the image is resampled to match
the reference image [10, 77, 80]. The azimuth shift depends on the start and stop times
during image acquisition, while the shift in range corresponds to the length of the parallel
component of the baseline divided by the posting in range. Realigning the images is
divided into two steps: (1) coarse and (2) fine registration. For the coarse registration,
the images are usually aligned by using common points within the images derived from a
visual inspection or by using data on the satellite’s orbit and timing as a reference. Fine
registration relies on automatic correlation algorithms to achieve accurate alignment on
a sub-pixel level. There are two types of algorithms: (1) coherent and (2) incoherent
registration. The difference is that for coherent registration, the complex values of the
phase and amplitude are used for cross-correlation, while for incoherent registration, only
the phase values, the amplitude values or the squares of the amplitude are used. While
coherent methods are very accurate, they tend to fail for large effective baselines. The
cross-correlation of the amplitude squares, i.e., the powers, is a commonly used incoherent
approach for fine registration. The cross-correlation is calculated in windows, preferably
evenly distributed over the images, and the respective correlation peak provides the offset
vectors restricting the 2D polynomial to estimate the offset of every pixel in the images.
The secondary image can then be resampled to match the reference image. Accuracy up
to % of a pixel can be achieved [10]. However, Just and Bamler (1994) showed that an
accuracy % is enough to mitigate a loss of coherence due to misregistration. An example
of a co-registered interferometric image pair is shown in Figure 2.6 (a) and (b). The
images were recorded with the S1 satellites in Interferometric Wide (IW) Swath mode and
with a descending acquisition geometry on the 02/15/2017 and 03/17/2017. The image
from the 02/15/2017 serves as the reference image. After the SAR images are accurately
co-registered, pixel-wise multiplying the first image with the complex conjugate of the
second yields an interferogram (see Equation 2.3). An Example of an interferogram is
shown in Figure 2.6 (c). The interferometric phase is given in modulo 27t and displayed in
a cyclic color code. The fringe pattern featured in the interferogram in Figure 2.6 (c) shows
a clear pattern in range, which is only disturbed by phase contributions from the local
topography. This fringe pattern is caused by a systematic decrease of the interferometric
phase with an increase in range and look angle, even for flat surfaces. Therefore, this
contribution to the interferometric phase is referred to as the flat-earth contribution or
more general reference phase. The flat-earth contribution is usually subtracted to reveal
the interferometric phase induced by the topography of the imaged scene [10, 62, 66].
Such a flattened interferogram is shown in Figure 2.6 (e). The displayed fringe pattern

2.1 Synthetic Aperture Radar Remote Sensing Techniques

21



214

22

matches the local topography. The topography-induced phase can be estimated and re-
moved using either an external DEM or a second interferogram [1, 2]. Figure 2.6 (f) shows
the topography-induced phase generated by using an external DEM, and Figure 2.6 (g)
shows the interferogram after the topographic contribution to the phase has been removed,
i.e., the differential interferogram. The last two processing steps are resolving the 27t
ambiguity of the differential phase and calculating the displacement, which are outlined in
detail in the next section.

Phase Unwrapping

The differential phase presented in Figure 2.6 (g) cannot be directly used to estimate the
displacement of each pixel in the differential interferogram. Firstly, the differential phase
is not necessarily equivalent to the deformation-induced phase. The differential phase does
also include phase contributions induced by residual topography, orbit inaccuracies and
changes in soil moisture, vegetation or atmospheric conditions [10]. Secondly, a major
drawback of any technique based on SAR interferometry is that the phase is only given
modulo 27, i.e., the phase is wrapped.

p=¢—k-2m (2.20)

Here, ¢ represents the observed wrapped phase and ¢ the unwrapped phase. The process
of retrieving the correct number of phase cycles k needed to be added to ¢ to reconstruct
¢ is referred to as phase unwrapping (PU). It is a crucial step. However, it is an ill-posed
inverse problem. Multiple combinations of a phase value and the ambiguity number or
number of phase cycles can result in the same wrapped phase value. The input to any
2D phase unwrapping problem is a 2D matrix containing the wrapped phase values, i.e.,
an interferogram. An intuitive approach to retrieve ¢ would be to integrate the phase
differences from pixel to pixel [74, 82]. This approach assumes that the sampling rate
of the wrapped phase is high enough so that the unwrapped phase difference between
adjacent pixels is less than 7t or, in more general terms, half a phase cycle [83]. In other
words, if the unwrapped phase difference between all adjacent pixels in an interferogram is
less than 7t (or half a phase cycle), there are no ambiguities. In this case, its gradient field is
irrotational, i.e., the integration of the phase differences is independent of the integration
path. The gradient field of the interferogram can then be employed to determine ¢ using a
simple integration process starting at a chosen reference point. However, in reality, the
unwrapped phase difference between adjacent pixels is not always less than 7t due to noise,
abrupt changes in the topography of the imaged scene, the deformation or effects like
layover [82]. These effect can introduce two types of errors in the unwrapped phase: (1)
local errors, where only a few pixels are affected, or (2) global errors, where the error
propagates through the entire scene. The example given in Table 2.2 (a) shows a 2D
matrix filled with wrapped phase values, where 1 equals a full phase cycle. Scanning
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00 0.1 02 03 00 01 02 03 00 01 0.2 03

0.2 0.2 03 04 02 02 03 04 0.2 02 03 04
09 0.8 05 0.5 -0.1 -0.2 -0.5 -0.5 -0.1 -0.2)10.5 0.5
0.8 0.7 0.6 0.5 -0.2 -0.3 -04 -0.5 -0.2 -03]|0.6 0.5
(a) Wrapped phase values (b) Unwrapping row by row (c) Unwrapping column by
first column first

Table 2.2.: PU example of a 2D matrix based on the example given in [74].

the matrix row by row first and then column by column (see Table 2.2 (b)) while always
adding an integer number of phase cycles to minimize the phase differences reveals an
inconsistency between the second and third rows. Here, the phase difference between
adjacent matrix elements surpasses half a phase cycle. Scanning the columns first and then
the rows of the 2D matrix (see Table 2.2 (c)) also results in an inconsistency. Varying the
order of scanning the data and integrating the phase differences yielded different results.
The example, therefore, shows that if phase inconsistencies are present in the data, the
integration of the phase differences is not path-independent. Another approach to show
the path dependence is to evaluate the closed-path integration for 2x2 matrix elements
by summing their phase differences clockwise, which is demonstrated in Table 2.3. If the
integration is path-independent, the value of the closed-path integration is zero. If it is not
zero, the value is either plus or minus a full phase cycle. In that case, the data features
a phase inconsistency, which is either referred to as a minus or plus residue, depending
on the sign of the closed-path integration [74, 82]. Any integration path that encloses
a residue leads to an inconsistency in the unwrapped result unless the integration path
encloses an equal number of minus and plus residues. The first 2D unwrapping algorithm
designed explicitly for SAR interferometry applications relies on identifying the residues
and placing branch cuts between residues of opposite signs. During the integration,
these branch cuts guide the integration path so that no residues may be encircled and
no global errors arise in the unwrapped result [74]. Over the years, other algorithms
have been presented. They can be divided into three categories: (1) path-following, (2)
optimization-based, and (3) integrated de-noising and unwrapping methods. The common
idea of path-following PU algorithms is to choose reliable integration paths [82]. This

0.0 0.1 0.2 0.3
0 0 0

0.2 0.2 0.3 0.4
0 + 0

0.9 0.8 0.5 0.5
0 0 0

0.8 0.7 0.6 0.5

Table 2.3.: Closed-path integration of the PU example of a 2D matrix based on the example
given in [74].
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can be done by detecting and balancing residues and then choosing integration paths
that do not cross their connecting branch cuts (e.g., [74]) or by using quality maps to
guide the integration path, assuming that pixels with good quality are less likely to cause
PU errors (e.g., [84]). Optimization-based PU algorithms aim to minimize the difference
between the unwrapped phase gradient and the gradient of the observed wrapped phase
(e.g., [85]). The last category of PU algorithms tries to simultaneously de-noise and unwrap
the phase, assuming that separating these steps may introduce unnecessary processing
errors (e.g., [74]).

As already mentioned, any phase noise hampers the application of PU algorithms and
may lead to unwrapping errors, independent of the PU algorithm applied [82]. The noise
overlaying the signal can be described using a dimensionless correlation parameter referred
to as the coherence between an interferometric image pair. The closer the value is to 1, the
better the correlation between the images [9, 86]. The influences of the coherence and
other effects obscuring the deformation or topography-induced phase contribution in an
interferogram are discussed in the following section.

Limits of Conventional DINSAR
Coherence and Decorrelation

The parameter providing an estimation for the correlation between an interferometric
image pair is the coherence -y, which ranges from 0 to 1. A value close to 1 indicates a
high correlation between the interferometric image pair and a value close to 0 indicates a
low correlation. The coherence can be estimated using the following equation:

_ E{zmz§} .
VE{lzmP} E{|zs}

The expectation values E{}, needed to estimate the coherence, would ideally be obtained

(2.21)

v

on the basis of a large number of interferograms acquired at the same time under the same
conditions. However, this approach is highly unpractical in the case of SAR data [10].
Even though, SAR data is not generally considered ergodic, since the statistic of the data is
dependent on the content of the imaged scene, i.e. terrain, buildings and vegetation, for
phase observations of local uniform regions stationarity and ergodicity can be assumed.
Thus, the maximum likelihood estimator of the coherence magnitude |7| can be esti-
mated by exchanging the ensemble averages with spatial averages obtained over [ pixels
neighboring the pixel in question [10, 87]:
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(2.22)
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The number [ pixels neighboring the pixel in question depends on the imaged scene.
Firstly, the number needs to be large enough to ensure that the results are statistically
reliable, and secondly, the number needs to be small enough to ensure local stationarity
and ergodicity [88].

The coherence indicates the reliability of the interferometric phase measurement, thus
providing a local measurement for the quality of an interferogram. A number of factors
can lead to a loss of coherence. The most relevant are:

(1) receiver noise,
(2) temporal decorrelation and

(3) geometric decorrelation.

The influence of the thermal noise of the SAR receiver can easily be expressed in terms of
the signal-to-noise ratio (SNR) [9]:

1

Ythermal = W . (2.23)

Geometric decorrelation describes the angular dependencies of the scattering reflectivity
of the imaged scene. The difference in imaging geometry induced by the spatial baseline
between acquisitions gives rise to three phenomena contributing to the geometric decorre-
lation of the SAR images [62].

The first is a consequence of the difference in incidence angles between the interferometric
image pair due to their spatial baseline and is also referred to as baseline decorrelation
Trgn- The phase and amplitude of a specific pixel result from the random coherent inter-
ference of the many closely spaced individual scatterers making up the corresponding
ground resolution cell. Assuming that the composition of the individual scatterers does
not change between image acquisitions, the interference pattern will still differ due to a
difference in the acquisition geometry, i.e., diverging incidence angles ¢. The difference in
the interference pattern leads to a loss of coherence [73]. The influence of the diverging
imaging geometry on the correlation between an interferometric pair, depending on the
difference in incidence angles A¢, can be written as:

Yegn =1 — 2COS(€))\|AC|07. (2.24)

Here, o, is the resolution in range and A the carrier wavelength of the SAR system. If the
baseline angle ¢ is zero, i.e. the baseline has only a horizontal component, the equation
can alternatively be expressed using the baseline b:

2|b|cos?(&)o,

(2.25)
RPath)L

Yrgn = 1-—
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The parameter Rp,y, is the distance between the sensor and the center of the resolution
element in slant range. Equation 2.25 shows that the decorrelation of an interferometric
pair increases with an increasing perpendicular baseline. The baseline at which the
interferometric image pair completely decorrelates is referred to as the critical baseline [9].
The contribution to the geometric decorrelation due to differences in the incidence angle
mainly maps into a decorrelation in range direction [62]. The decorrelation in azimuth
7Yaz is caused by either a difference in squint angle, i.e., the angle between the sensors’
LOS and the direction perpendicular to the orbit track or crossing orbits. The difference
in the imaging geometry causes the reflectivity spectrum of the imaged surface to be
mapped differently into the data spectrum of the reference and secondary images, i.e.,
a difference in the doppler centroid frequency. Only the overlapping parts of the data
spectrum correlate. The correlation for the interferometric image pair decreases linearly
with an increasing difference in the doppler centroid frequency [10].

To this point, only surface decorrelation has been considered. However, the geometric
decorrelation will be enhanced if the ensemble of scatterers is distributed in a volume. Due
to the different imaging geometry for the interferometric image pair, the vertical component
of the reflectivity spectrum of the imaged scene is projected differently into the SAR
images [89]. The volumetric decorrelation -, is directly related to the vertical distribution
F(z) of the scatterers in the ground resolution cell through a Fourier transformation

relationship
Yoo = 00 5(2/)8ik22/d2/ (2.26)
Jo  F(z')dz'
with
k, = :27; (2.27)

and &y indicates the height of the volume and zj is a reference height [62]. The different
contributions to the geometric decorrelation are combined multiplicatively:

“Ygeo = YrgnYazVYvol- (2.28)

Additionally, changes to the composition of scatterers in the ground resolution cell or its
dielectric characteristics between acquisitions add to the degree of decorrelation. Causes
can be seasonal changes in vegetation, the movement of leaves or grass due to wind, the
freezing or thawing of the surface layer, or human activities. This type of decorrelation is
referred to as temporal decorrelation. It depends on environmental parameters, such as the
type of land cover, sensor parameters, such as the wavelength, and the temporal baseline,
i.e., the amount of time between acquisitions [62, 66]. Some features, such as areas
with dense forest, tend to decorrelate easily [90, 91], while others, such as man-made
structures, can be stable over long periods of time [92].
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Atmospheric Phase Delay

Another factor to consider is the influence of varying atmospheric conditions on the travel
time of radar signals. InSAR and DInSAR rely on precise measurements of time delays
and differential phase shifts in order to calculate geometric distances and thus estimate
the local topography or ground surface deformations. Artifacts in the fringe pattern of
interferograms, most likely related to a change in the atmospheric conditions between
image acquisitions, have already been observed in the first differential interferogram
mapping the co-seismic displacement field of the Landers earthquake. The differential
interferogram shows a 25-by-20 km large feature that cannot be explained by local
topography, i.e., a DEM error, or ground surface deformation. The feature is not present
in every differential interferogram mapping the co-seismic displacement field but in
every differential interferogram generated with the SAR image acquired in July 1992,
supporting the presumption that a change in the atmospheric conditions is the cause [93].
A similar artifact has been observed in two of ten interferograms mapping the deflation
of Mount Ethna between May 1992 and October 1993 [94]. Goldstein et al. (1995)
conducted a study concerning the effects of varying atmospheric conditions on the travel
path length of radar signals in repeat-pass InSAR. Using SAR data acquired over the Mojave
Desert in California on three separate days with two wavelengths, 24 cm and 5.7 cm (L-
and C-band, respectively), they demonstrated the non-dispersive nature of the observed
effect. This characteristic suggests that the predominant part of the atmospheric signal in
interferograms originates in the troposphere, rather than the ionosphere. Additionally, no
correlation was found between topography and the results. However, a correlation with
time delays derived from water vapor radiometer data for the three days of the SAR images
could be established. In contrast, later studies showed that the atmospheric phase delay
is influenced by atmospheric stratification. Thus, a topography-related component does
exist, and a variation in the density of free electrons in the ionosphere results in a group
delay and phase advance for a radar signal traversing the ionosphere, which are inversely
proportional to frequency squared. In the case of InSAR and DInSAR measurements only
the shift in the phase is relevant [95, 96, 97, 98, 99, 100].

So far in this chapter, the assumption has been made that the radar signal propagates at a
constant known velocity from the sensor to the imaged surface and back. That is, however,
not true if the radar signal propagates through the inhomogeneous atmosphere of the
Earth. The atmosphere of the Earth has a slightly higher refraction index than free space,
i.e., the propagation velocity of the radar signal is lowered, resulting in an additional time
delay [11]. The difference between the refraction index of free space and the refraction
index of a propagation medium is referred to as the refractivity index. In the case of the
propagation of microwaves through the atmosphere, three factors significantly influence
the refractivity index. One, the stratification of the atmosphere. The atmosphere can be
imagined as multiple thin layers, each having a different constant refractivity. Second, the
distribution of water vapor significantly influences the refractivity index of the troposphere
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at a specific slant range distance R from the radar sensor. The water vapor content and
its distribution are variable over time and space. Second, the refractivity index of the
ionosphere is influenced significantly by its density of free electrons, which depends on the
activity of the sun, the atmospheric density profile, the magnitude and orientation of the
magnetic field of the Earth, as well as the geographic location, and the time of day. All
factors contaminate the measured time delays and differential phase shifts with spatially
and temporally variable additional time delays. These additional time delays can be falsely
interpreted as local topography or ground surface deformation [11, 96, 97, 101].
The phase shift ¢ of a radar signal propagating through a medium depends on the refraction
index n(R) of the medium, the wavelength A, and the slant range distance R from the
Sensor:

= 27”;1(1{) R (2.29)

The refraction index of free space is n(R)= 1. In case the radar signal passes through
the atmosphere of the Earth, the refraction index changes to 7(R)= 1+ 10(-®) N(R), with
N(R) being the refractivity index of the neutral atmosphere. The change of the refraction
index from the value 1, in the case of free space, to the neutral atmosphere of the Earth is
always positive and very small, hence the factor 107°. Thus, Equation 2.29 changes to:

2 271-107°N(R 2.40.2 2 2 2-40.2
¢:£R+LN<>R_2N#.TECZ£R+£AR_2N#.TEC
A A ¢ fé A A ¢ f2
(2.30)
with
AR =10"°N(R) - R. (2.31)

Here, TEC is the column density of free electrons integrated along the vertical, also referred
to as total electron content. Equation 2.30 expresses the additional phase shift, added to
the observed phase ¢, in terms of three contributions: (1) the hydrostatic, (2) wet and (3)
the ionospheric delay [11, 97]. The contribution due to hydrostatic delay is influenced by
the pressure v in the atmosphere, while the contribution due to water vapor by only the
partial pressure of the water vapor e. Both contributions are influenced by the temperature
@ in the atmosphere and can be approximated by:

R at] ‘R at
AR = 7.76 -10~5 / e %dR +373.10° / e édR (2.32)
0 0

Here, Rp,, represents the total length of the propagation path. The constants preceding
the integrals are valid for normal variations in humidity, pressure, and temperature, and
for frequencies up to 30 GHz within about 0.5 %. The theoretical value for the additional
phase shift, calculated with Equation 2.32, deviates from the observed one for a number of
reasons [11].

First, the phase shift depends on the atmospheric conditions, such as pressure, temperature,
and the partial pressure of water vapor along the propagation path of the signal, which
is not easy to acquire for all points recorded in the SAR images. Therefore, the values
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along the propagation path are approximated based on values observed at the surface and
models describing their altitude dependencies. Secondly, the models relating the values
for pressure, temperature, and partial pressure of water vapor at the surface to the values
along the propagation path of the signal only consider vertical slices of the atmosphere
instead of inclined ones corresponding to the incidence angle of the radar system. If the
atmospheric conditions are spatially variable due to turbulent mixing, the observed values
of a reference point at the surface might not be closely related to the values along the
actual inclined propagation path. Similarly, in Equation 2.30 the density of free electrons
is integrated along a vertical column instead of an inclined one. Thus, the third term of
Equation 2.30 needs to be multiplied by a geometry-dependent factor to account for the
typically non-nadir looking SAR systems. Thirdly, the equation above implies that the
propagation path of the radar signal is a straight line, even though the true propagation
path is curved due to refraction. Discrepancies due to the curved propagation paths can be
neglected since only differential distances are of interest for InNSAR and DInSAR.

Despite all these discrepancies, the total additional two-way phase delay can be deduced
with the following equation:

Ao 4T AR 2.408
Y= cos(0) c-f@

TEC. (2.33)

Here, 6 is the look angle. The second term in Equation 2.30 and the first term in Equa-
tion 2.33 shows that the tropospheric phase delay is strictly proportional to % and that AR
is independent of the wavelength. The last term in Equation 2.30 and 2.33 shows that the
ionospheric phase delay is dependent on the carrier frequency fy of the SAR system [10,
11, 97, 98].

In the case of the tropospheric phase delay, measurements with different frequencies
will experience the same additional time delay, and the effect cannot be determined by
employing multi-frequency measurements. It is also not possible to measure the refractivity
index of the atmosphere with sufficient accuracy, spatial resolution, and temporal sampling
to eliminate the effect entirely from interferograms. GNSS can eliminate features with
a long wavelength (A>10 km) if methods on time series or networks are employed. In
addition, the atmospheric phase delay is not easily distinguished from phase signatures due
to topography, ground surface deformation, or orbital errors that map as linear trends into
the entire interferogram [10, 11]. In the case of the ionospheric phase delay, approaches
such as Split Bandwidth InSAR or Multi-squint InSAR are sensitive to ionospheric gradients
and thus, can be used to correct for the ionospheric influence [96].

As for the magnitude of the error caused by the tropospheric delay, a distinction needs to be
made between repeat-pass InSAR to estimate topography and two- and three-pass DInSAR
to map ground surface deformation. For topography estimation, studies [11, 12] have
shown that the magnitude of the height error is inversely proportional to the perpendicular
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baseline b, . Thus, longer baselines produce smaller errors. The relationship between
phase inaccuracies ¢y and height errors ¢, can be calculated with [11, 86]:

AR -sin(6)

gy = I, ey (2.34)

A change of 20 % in humidity between SAR image acquisitions, for example, can lead to a
290 m error in the topography estimation for a 100 m baseline and less than 100 m error
for a 400 m baseline.

In the case of two-pass interferometry, the relationship between phase inaccuracies ey and
deformation errors ¢4 is independent from the perpendicular baseline [11]:

A
e = 1ty (2.35)

In addition, potential phase inaccuracy introduced by errors in the DEM, which is used
to correct for topographically induced phase, needs to be considered. The inverse of
Equation 2.34 can be used to estimate the phase inaccuracy. For example, a DEM with
an effective error of 10 m leads to a phase error of 0.25 rad for an L-band radar with a
perpendicular baseline of 100 m, pointing at a 45° angle off nadir at 300 km range. A
phase error of 0.25 rad results in a deformation error of 0.5 cm. Assuming that the external
DEM used for two-pass DInSAR is correct, a 20 % change of humidity in the atmosphere in
between SAR image acquisitions would lead to a deformation error of 10 cm.

For three-pass interferometry, the effect of the atmospheric phase delay on two interfer-
ograms needs to be considered. Here, the deformation error ¢; depends on the baseline
component parallel to the LOS of the sensor from the topography pair b (,p, and the
deformation pair by, gefo:

2
A baefo N bl defo

~ 4 2
4r bH:tOPO b||,topo

€4 €y (2.36)

If equal parallel baseline lengths, as in the example for two-pass DInSAR, can be assumed,
the deformation error or three-pass DInSAR resulting from a 20 % change in humidity
between acquisitions results in a 14 cm error. Generally speaking, the deformation error of
three-pass DInSAR due to influences of varying atmospheric conditions is v/2 times the
error of two-pass DInSAR [11].

As previously stated, the magnitude of the ionospheric induced error depends on the carrier
frequency fy of the SAR system, for example, with a P-band or L-band system a phase
advance of 7.5 or 2.6 cycles per TEC unit (which equals a TEC of 10'¢), can be observed,
respectively. In the case of SAR systems with shorter wavelengths, such as C- or X-band,
0.61 or 0.34 cycles per TEC unit can be observed, respectively [98].

As mentioned above, determining the atmospheric phase delay deterministically is im-
possible. However, one approach is to develop a mathematical model that describes its
behavior stochastically and employ a time series of differential interferograms to estimate
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the atmospheric phase screen (APS) [10]. A time series of differential interferograms can
also be used to identify features that exhibit high coherence over a long time span [102]
and use these features to mitigate the influence of temporal and geometric decorrelation
as well as varying atmospheric conditions [103]. Algorithms exploiting a multi-image
framework to estimate reliable deformation rates are referred to as advanced DInSAR. The
most important algorithms are introduced in the next section.

Advanced Differential Synthetic Aperture Radar Interferometry
Overview of Noteworthy Advanced DInSAR Algorithms

Usai et al. (1997) suggested using highly coherent pixels to mitigate the effects of temporal
and geometric decorrelation in order to monitor slow-moving deformation. In order
to identify such pixels, they examined a series of interferograms over Groningen in the
Netherlands. The area is affected by subsidence due to gas extraction. They were able to
identify a subset of pixels that kept a coherence higher than 0.8 for the entire examined
time span. The identified highly coherent features were mainly of anthropogenic origin.
Calculating the differential phase of these features showed that most of them also exhibited
a stable phase over the examined time span. The research of Usai et al. (1997) laid the
foundation for the development of a number of algorithms referred to as advanced DInSAR
techniques. All advanced DInSAR algorithms have in common that they exploit a series of
differential interferograms instead of only one to estimate reliable deformation rates. The
key idea of advanced DInSAR is outlined in the following section. Noteworthy advanced
DInSAR algorithms will briefly be introduced and their key features are summarized in
Table 2.4. However, the focus will be on the two most relevant for the presented research,
PSInSAR™ [13], the first complete advanced DInSAR algorithm to be presented, and the
StaMPS [14, 51]. Both algorithms employ a single-reference image configuration, but
they use different pixel selection criteria. The StaMPS algorithm is adapted to provide
reliable deformation measurements in urban and non-urban areas, while the approach of
PSInSAR™ tends to favor urban environments. Since the source code of StaMPS is publicly
available, it functions as the basis for the research presented in the following chapters.
The backscattered signal of a ground resolution cell is the coherent sum of the radar echo
of its individual scatterers. Slight changes in the imaging geometry or a change in the
composition of the individual scatters lead to a different coherent sum and thus a loss
of coherence over time [9, 10, 62, 73]. Two types of scatterers are typically associated
with advanced DInSAR because they maintain coherence, Persistent Scatterer (PS) and
Distributed Scatterer (DS). The ground resolution cell of a PS pixel is dominated by one
scatterer, minimizing the influence of the other scatterers in the ground resolution cell
and thus reducing the effects of decorrelation [13, 14]. DS pixels are characterized by
their similarity to adjacent pixels. Spatial averaging is used to maintain coherence over
time [16].
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The first complete algorithm exploiting PS pixels to estimate reliable deformation rates is
the PSINSAR™ [13]. The algorithm uses a single-reference image time series of differential
interferograms and the amplitude dispersion index D4 as a measure of the phase stability
to select a subset of pixels as PS. Aligning the secondary images with the reference image,
generating interferograms, and subtracting the topography-induced phase contribution
aside, the PSInSAR™ algorithm can be divided into four steps:

(1) Preliminary selection of pixels as PS

(2) Model and subtract the phase contributions due to
a) DEM errors and

b) a surface deformation with a constant velocity
(3) Estimate APS and correct the originally observed phase for it

(4) Recalculate DEM errors and the surface deformation model

The signal of each pixel in a differential interferogram consists of a complex reflectivity g
superimposed with complex circular gaussian noise n. Both the real (ng) and imaginary
(n1) component of the noise are characterized by a power ¢. In order to select a subset of
the pixels as PS candidates (PSC), the distribution of their amplitude values A, over the
observation time is examined. In general, their distribution can be described by the Rice
distribution, whose shape depends on the SNR. For low SNR, the Rice probability density
function (PDF) approaches a Rayleigh distribution and a Gaussian distribution for high
SNR. If a high SNR can be assumed, the standard deviation of the amplitude values ¢ 4
can be approximated by the standard deviation of the real component ¢, of the noise,
which is equal to standard deviation of the imaginary component ¢,,,. With that the phase
stability ¢, can be approximated as follow, in the case of high SNR:

0y~ —— =Dy (2.37)

Here, m 4 denotes the mean of the amplitude values and D, the amplitude dispersion
index. Ferretti et al. (2002) considers pixels with D4 < 0.25 to be PSC. The wrapped
differential phase ¢ of each selected PSC is the sum of multiple phase contributions:

Ppitt = W{Pamo + AdPtopo + Ppefo + Adorbit + PNoise | (2.38)

Here, W{} is the wrapping operator, ¢amo the absolute phase due to a change in atmo-
spheric condition in between acquisitions, A¢rop, the residual absolute topography-induced
phase due to DEM errors, ¢pes, the absolute deformation-induced phase, Ao the resid-
ual absolute due to orbit uncertainties and ¢n;ise the phase noise. In addition to the phase
contributions listed in Equation 2.38, the differential phase is influenced by environmental
factors such as soil moisture [104]. However, they are not listed Equation 2.38 because
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the PSInSAR™ algorithm [13] does not consider them. In an iterative process, starting
with the phase values of the differential interferograms with small spatial and temporal
baselines, PSInSAR™ estimates the phase contributions induced by deformation and
residual topography using a constant velocity model and exploiting their proportionality
to the baseline. Phase contributions due to orbit uncertainties and varying atmospheric
conditions are estimated as a phase ramp. In the next step, the estimated phase contribu-
tions are subtracted from the differential phase, leaving phase residues due to atmospheric
phase effects not modeled in the estimated phase ramp and phase noise. The remaining
atmospheric effects are estimated by spatially smoothing the residual phase. Once the
complete APS is estimated, interpolated, and subtracted from the original differential
interferograms, the phase contributions due to deformation and residual topography are
recalculated. Small phase residuals may reveal further PS pixels. Similar algorithms have
been developed by Werner et al. (2003), Interferometric Point Target Analysis (IPTA), and
Kampes et al. (2006), who adapted the LAMBDA method usually used for GNSS analysis to
PSI. The IPTA includes low spectral phase diversity as a selection criterion to accommodate
smaller datasets. The initial selection of pixels is later refined using the standard deviation
of the phase with respect to the estimated linear deformation model. Kampes et al. (2006)
included the signal-to-clutter ratio as a selection criterion and allowed for deformation
models other than a linear model. The StaMPS algorithm is a modification of the standard
PSI algorithms developed to maximize the selection of PS pixels in non-urban areas, where
approaches based on thresholding the amplitude dispersion index underperforms. The
algorithm selects pixels based on their phase characteristics and thus allows for the selec-
tion of pixels characterized by low-amplitude natural targets. Additionally, the algorithm
does not assume any specific deformation model, only spatial smoothness [14, 51, 52].
Perssini et al. (2011) introduced the concept of temporary PS with the quasi-PS technique.
In general, advanced DInSAR algorithms targeting PS pixels are referred to as PSI.

The above-listed algorithms all use a single-reference image configuration. Alternatively,
multiple reference images can be used to calculate differential interferograms with small
spatial and temporal baselines. This approach was first introduced by Berardino et
al. (2002). SBAS mainly targets DS pixels. The optimization for small baselines and
spectral filtering reduces the effects of decorrelation [15]. Spectral filtering is not advised
in PSI, since, due to the resulting coarse resolution, it may increase decorrelation [108].
Two other algorithms with similar approaches were presented by Mora et al. (2003) and
Schmidt and Biirgmann (2003). Both the original SBAS algorithm and the one presented
by Schmidt and Biirgman (2003) assume spatial smoothness of the observed surface
deformation. The latter additionally assumes a temporal smoothness of the surface defor-
mation. Mora et al. (2003) expect a linear surface model. Another noteworthy algorithm
is SqueeSAR™ [16], which processes PS and DS jointly. The algorithms and their key
features are summarized in Table 2.4.
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Algorithm Baseline Main Pixel Deformation
Configuration | Scattering Selection Model
Mechanism Criteria Assumptions
Ferretti et al. Single- PS Amplitude Linear model
(2002) Reference dispersion in time
Image
Werner et al. Single- PS Amplitude Linear model
(2003) Reference dispersion in time
Image & spectral
phase diversity
Kampes et al. Single- PS Amplitude Different types
(2006) Reference dispersion of models
Image & signal to
clutter ratio
Berardino et al. | Small DS Coherence Spatial
(2002) baselines smoothness
Mora et al. Small DS Coherence Linear model
(2003) baselines in time
Schmidt and Small DS Coherence Spatial and
Biirgmann baselines temporal
(2003) smoothness
Hooper et al. Single- DS Amplitude Spatial
(2004, Reference dispersion smoothness
2007,2007) Image and phase
characteristics
Perssini et al. Subset of Temporary PS | Quasi-PS Linear model
(2011) differential approach in time
interferograms
depending
on the target
Ferretti et al. Multi- PS and DS Statistical
(2011) Reference homogeneity
Image test

Table 2.4.: Key features of different advanced DInSAR algorithms [53].

Stanford Method for Persistent Scatterer (StaMPS)

The PSI algorithm StaMPS [14, 51, 52], which serves as the base framework for the
research presented in the following chapters, can be broken down into five steps:
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(1) Selection of PSC,

(2) Iterative estimation of phase noise,
(3) Selection of PS,

(4) Estimation of displacement and

(5) Estimation of phase correction terms.

Steps 4 and 5 are executed iteratively to ease phase unwrapping and improve the estimates
for the deformation rates.

In the first step, PSC selection, for each pixel, the amplitude values A, in the SAR image
time series are tested for zero entries. If a zero entry is detected, the corresponding pixel
is excluded from the PSC selection process. The PSC selection is based on the amplitude
dispersion index on a pixel-by-pixel basis using Equation 2.37. While Ferretti et al. (2002)
used a strict threshold of D4< 0.25 to select the initial subset of PSC pixels, StaMPS
uses a more relaxed approach to thresholding. The default value is 0.4, but depending
on the dataset, the threshold could also be set higher, or thresholding could be foregone
entirely. The actual PS selection is based on an analysis of the phase values of Q differential
interferograms, and selecting PSC is only performed to limit the need for computational
power.

For the second step of the StaMPS algorithm, the estimation of the phase noise, the
wrapped phase ¥pjf;; , Of the ith pixel in the qth differential interferogram is described as
follows:

lPDiff,i,q = W{QbDefo,i,q + 47Atmo,i,q + ACPOrbit,z',q + A(PG,i,q + (PNoise,i,q} (2-39)

The differential phase is the sum of five separate phase contributions:

(1) ¢pefo,i 4> induced by surface deformation,

(2) Patmo,iq> induced by varying atmospheric conditions between image acquisi-
tions,

(3) Adorbitiq> induced by orbit inaccuracies,
(4) Adg,ig, induced by the look angle error and

(5) $noise,i q> the phase noise.

In addition to the phase contributions listed in Equation 2.39, the differential phase is
influenced by environmental factors such as soil moisture [104]. However, they are
not listed Equation 2.39 because the StaMPS algorithm [13] does not consider them a
separate contribution. Also, the difference in labeling the phase contributions between
Equations 2.38 and 2.39 stems from Hooper et al. (2004, 2007, 2007) considering dif-
ferences in the positioning of the phase centers between SAR images as a source of error
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for any inaccuracies in the height above the reference surface, in addition to errors in the
DEM. Both error sources are accumulated in the term A¢y and according to Equation 2.10

can be estimated using:
47

APy ~ < b, (6)A6 (2.40)
The equation describes a linear relationship between A¢y and a difference in look angle
AP between reference and secondary images, hence the label look angle error. Pixels
deemed PS pixels are characterized by a small phase noise component |¢Pnoise |- In order to
estimate the phase noise, contributions to the differential phase other than noise need to be
estimated and subtracted. The first three phase contributions ¢pefyi 5> Patmo,ig> APorbit,i g
and part of the fourth A¢y,, are spatially correlated and can be estimated by using a
bandpass filter in the frequency domain. The filtered phase lpDiff’Z‘,q is then subtracted from
the original phase ¥pjf; 4, leaving only the spatially uncorrelated phase contributions and

small residues for ¢pefo,ig> PAtmo,iq a0d APorbit,i ¢, Which are represented as J; 4

W {titriq — Poitriq) = W{APGS 5 + PNoiseig T Oig ) (2.41)

The spatially uncorrelated part of the look-angle error can be estimated by fitting Equa-
tion 2.40 to the residual phase in a least-squares manner. Subtracting the estimated phase
Aﬁg(;q leaves:

W{IibDiff,i,q - IPDiff,i,q - AQ/BI(;E,q} = W{qbgl%ise,i,q + 5;,:;} (2.42)

Here, ¢/ . is the sum of any remaining phase contributions due to deformation, varying
atmospheric conditions, orbit, and look angle inaccuracies, which are expected to be small.
Based on the equations above, a measure for the variations of the residual phase is defined

as:
Q

1 . -
Yi = é\ Z‘i exp{j(Yittiq — Pbiftig — AflA’él,?,q)}\ (2.43)
q=
The measure of residual phase variability -y can be used to calculate the probability P(i €PS)
with which the PSC pixel in question is a PS pixel. Estimating the phase noise accurately is
an iterative step, weeding out the PSC pixels that are not a PS pixel. In the first iteration

the PSC pixels are weighted with DLA and in later iterations with . The process is

terminated when the difference Ay between the current and previous iterations is smaller
than 0.005. The selection of the final subset of PS pixels is based on P(i €PS) and Dy.
Following that, duplicates and PS pixels, which originate from scatterers in neighboring
pixels, are excluded.

In order to calculate the deformation rates, the differential phase needs to be unwrapped.
StaMPS employs a 3D optimization phase unwrapping algorithm [52, 111]. Delaunay
Triangulation is used to define arcs connecting PS pixels in each differential interferogram,
and the phase difference on each arc is calculated. The resulting phase difference time
series is then unwrapped in time by first filtering the time series with a Gaussian window in

the frequency domain, calculating the phase difference between timestamps of the filtered
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time series. Following that, the time series is wrapped so that its values range between
—r and 7t. The wrapped time series is then integrated. The original phase difference
time series for each arch is unwrapped on the basis that its absolute difference to the
filtered and wrapped time series must be less than 7r. After unwrapping the arch time
series, each interferogram is unwrapped in space. StaMPS uses the optimization routine of
the statistical-cost network-flow algorithm for phase unwrapping (SNAPHU) [112]. The
unwrapped phase still contains unwanted phase contributions induced by varying atmo-
spheric conditions, orbit, and look angle inaccuracies. These unwanted contributions to the
differential phase are estimated by filtering. The last two steps are executed iteratively, so
that estimates for the unwanted phase contributions can be subtracted from the wrapped
differential phase to ease phase unwrapping and improve the calculated deformation rates.
Independent of the specific algorithm, PSI is a well-established remote sensing technique
and has been used in the last two decades to map naturally occurring surface deformation
such as post-glacial uplift [21], aseismic creep alongside active faults [22, 23], slope insta-
bility [24, 113] and sinkholes [25, 26] as well as human induced surface deformation, e.g.,
varying uplift and subsidence due to seasonal groundwater usage [27] or gas storage [28,
29] and subsidence due to continuing urbanization [30]. Quickly, becoming an alternative
in the scientific community, for applications where documenting surface deformation with
ground-based geodetic methods is time- and labor-intensive [4, 5].

Additionally, PSI has been used to study the surface deformation of large infrastructure
elements such as bridges [31], dams [32], or levees [33], clearly showing its potential to
be incorporated into long-term monitoring of the structural health of large-scale human
infrastructure.

In the following chapters, adaptations to the above introduced StaMPS algorithm to ac-
commodate for a long-term continuous monitoring of large-scale human infrastructure
and the risk of human settlements due to geo-hazards, as well as a post-processing tool to
automatically asses the temporal development of the observed surface deformation are
presented and demonstrated on S1 and TSX SAR data covering the city of Patras and the
Parapeiros-Peiros Dam south-west of Patras, which is an embankment dam.

Overview on Dams

About 34 dam structures already existed worldwide around the time most ancient civ-
ilizations started to keep records [114]. The number increased to 300 by the end of
the 16th century. Those dams were mainly used for water storage [48], while today’s
purposes of dams additionally include flood control, energy generation, irrigation, and
recreation [115]. Until the turn of the 20™ century, dam construction followed intuition
rather than scientific rules. Only then engineers incorporated scientific considerations of
soil mechanics and construction techniques. Every building site has its unique regional
and local conditions, which need to be considered during the planning stage of a dam.
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Figure 2.7.: The cross-section and plan view of a non-overflow section of a typical gravity
dam [115, 1171].

The local geology, morphology, topography, and hydrology do play a role in the safety and
performance of a dam structure. Favorable conditions are, for example, adequate bearing
capacity and low permeability of the foundation, a smooth and symmetrical valley with
gentle slopes, high flanks around the reservoir with long seepage paths to neighboring
valleys, no existing faults and seismic activity. However, dam sites hardly ever meet all the
favorable conditions. Various dam construction types were developed to meet the unique
set of characteristics of each dam site [48]. Most construction types can be categorized
as either embankment (earth- and rockfill embankment dams) or concrete dams (gravity,
arch and buttress dams). Each of them has its own characteristic merits and disadvantages,
which need to be considered when choosing a construction type. Embankment dams, for
example, are generally considered to be able to accommodate substantial deformation,
while they have a weak resistance against overtopping. Concrete dams, on the other hand,
are capable of withstanding overtopping for hours [116].

Construction Types
Concrete Dams

In the case of concrete dams, a further distinction between gravity, arch and buttress
dams is made. Gravity dams are not only the most commonly used type of concrete dams,
but they are also the most straightforward in design and construction. The dam body is
designed to withstand the imposed pressure of the reservoir water purely by its weight.
The structure usually consists of non-overflow and overflow sections [117]. A cross-section
and plan view of a non-overflow section of a typical gravity dam is shown in Figure 2.7.
Both the non-overflow and overflow section consists of a crest, downstream and upstream
face. In the case of the non-overflow section, the downstream face is uniform and usually
inclines in the order of 1:0.7 to 1:0.8. Located between the downstream and upstream face
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near-maximum reservoir water level is the crest. The crest is the highest point of the dam
body and is designed to accommodate a road, withstand the impact of floating objects,
and provide the desired freeboard. The term freeboard denotes the vertical difference
between the maximum reservoir water level and the height of the dam body. The upstream
face is usually approximately vertical. The overflow section differs from the non-overflow
section in the sense that overflow is possible. The crest is lowered and curved, and the
slope of the downstream face is made tangent to the crest. The overflow section might be
overbuilt by a bridge to connect the roads on top of the non-overflow sections. The dam is
built in blocks separated by transverse contraction joints. The joints extend vertically from
the foundation to the crest and horizontally from the downstream to the upstream face.
During the design stage, engineers need to consider the following loads:

(1) the dead load of the dam body,

(2) the pressure of earth and silt building up at the heel of the dam,
(3) ice pressure,

(4) wind pressure,

(5) varying temperatures,

(6) sub-atmospheric pressure,

(7) reaction of the foundation,

(8) pressure of the head- and tailwater (water on the upstream and downstream
face) against the dam body;,

(9) internal water pressure causing differential uplift within the body and

(10) imposing forces due to earthquakes.

Furthermore, due to their immense weight, gravity dams require a solid rock founda-
tion [117]. A weak foundation may lead to differential settlement or sliding of the dam
body resulting in cracking and possibly failure [116]. However, if a gravity dam is built on
clay, shale, or other weak rock foundations, special treatment of the foundation to control
seepage and ensure sliding resistance are necessary [117]. The advantages of gravity dams
are their durability and their capability to withstand overtopping for several hours [116].
A buttress dam is similar to a gravity dam in the sense that it also utilizes its weight to
withstand the pressure of the reservoir water. Additionally, a buttress dam employs the
weight of the reservoir water over the upstream face to achieve stability. Figure 2.8 shows
the cross-section and plan view of a typical buttress dam. The dam body consists of two
main components: the sloping upstream deck and the buttresses. In comparison to a
solid gravity dam, a buttress dam requires less concrete. However, its construction is
complicated. In general, engineers have to consider the same loads while planning and
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Figure 2.8.: The cross-section and plan view of a typical buttress dam [115, 117].

building a buttress dam as they do for a gravity dam [117].

The third type of concrete dams is the arch dam. It is the most efficiently designed type
of concrete dam, but also the most complex one to plan and build [118]. Arch dams are
further categorized into single- and double-curved arch dams. A single-curved arch dam
is only curved horizontally, while a double-curved arch dam is curved horizontally and
vertically [119]. The cross-section and plan view of a typical double-curved arch dam
is shown in Figure 2.9. The hydrostatic load is transmitted to the valley walls and the
foundation due to the curvature of the dam body. Therefore, the dam site does not only
require a rock foundation, but also abutments with sufficient strength to support the arch
thrust. Furthermore, arch dams are designed to withstand the same loads as a gravity
dam. However, the expected temperature range of the dam needs special attention. A

varying temperature changes the stress distribution within the dam body and thus affects
its geometric form [119].
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Figure 2.9.: The cross-section and plan view of a typical two-curvature arch dam [119].
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Figure 2.10.: The cross-section and plan view of a typical embankment dam [115].

Embankment Dams

In contrast to concrete dam structures, embankment dams are constructed using naturally
occurring earth- or rockfill found at or near the dam site. They are the most commonly used
type of dams. Up to 75 % of all dams worldwide are embankment dams [120]. Since the
building materials are acquired locally, the exact choice of the material varies considerably,
resulting in a unique structure for each dam. The most basic design only incorporates
one type of cohesive soil with a low permeability. These types of embankment dams are
referred to as homogeneous dams. However, the term homogeneous does only refer to the
fact that a single type of soil is used. Characteristic soil parameters such as permeability are
not uniform within the dam body. The soil is laid out in different layers during construction,
which leads to zones of varying permeability. The usage of cohesive soils with a low shear
strength, such as clay or silt, restricts the maximum height of homogeneous dams to 35 m.
This type of dam has been built for millennia to secure the freshwater supply and for flood
control. A more modern type of embankment dam is the zoned earth-fill embankment dam.
This type of dam uses more than one type of soil arranged in horizontal zones consisting
of soils with varying permeability. Usually, the permeability increases from the inner zones
to the outer zones, while the deformability decreases in the same manner. This way of
constructing an embankment dam has two advantages. First, non-cohesive soils can be
used, which are easier to handle during construction. Second, non-cohesive soils develop a
higher shear strength making steeper slopes possible. Steeper slopes lead to a reduction in
the dam volume [48]. The cross-section of an embankment dam has a triangular shape, as
is illustrated in Figure 2.10. The two slopes of the dam body are referred to as the upstream
and downstream shoulder or slope. A protective layer made of tight, strong, and durable
material usually covers their surfaces to prevent erosion. Erosion of the upstream shoulder
occurs due to wave action. Therefore, the protective layer of the upstream slope needs to
extend from at least a few meters below the minimum headwater level to the crest. Suitable
materials to use are, for example, ingenious and metamorphic rock or strong limestone.
The upstream shoulder itself should be free-draining to improve stability during drawdown
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events and prevent soil liquefaction during an earthquake. Erosion of the downstream
slope is generally caused by rainfall or the local wildlife [121]. The downstream slope is
covered from at least a few meters below the minimum tailwater level to the crest. The
dam crest needs to be constructed so that it withstands the impact of floating objects, wave
action, ice and wind pressure, as well as traffic accidents. The width of the crest depends
on its usage. Just as concrete dams, most embankment dams accommodate a road on
top of their crest [48]. The necessary freeboard needs to be determined conservatively
because earth-fill dams, in particular, are vulnerable to overtopping. The core of a zoned
embankment dam serves as the seepage barrier. It is either located centrally or sloping
towards the upstream face [121]. Rockfill can also be used instead of earth-fill to construct
an embankment dam. The main characteristic that distinguishes rockfill from earth-fill is
the particle size. In the case of rockfill, the average particle size should be at least 5 cm.
The permeable and free-draining rockfill is only used to construct the shoulders. The core
is constructed with an impervious material such as clay. Alternatively, imperviousness can
be ensured using a concrete sealing of the upstream slope. In contrast to homogeneous
dams, rockfill dams can reach a height well over 300 m [122].

The advantage of an embankment dam, in general, is that it can withstand substantial
deformation triggered by either earthquakes or differential subsidence of the foundation.
For that reason, these dams do not require a solid rock foundation. However, a disadvantage
is that they can hardly withstand overtopping. Therefore, their freeboard and associated
spillway capacity need to be determined conservatively [121].

Expected Deformation of an Embankment Dam
In the same way as concrete dams, an embankment dam is subject to the following loads:

(1) the dead load of the dam body,

(2) the pressure of earth and silt building up at the heel of the dam,

(3) ice pressure,

(4) wind pressure,

(5) varying temperatures,

(6) sub-atmospheric pressure,

(7) reaction of the foundation,

(8) pressure of the head- and tailwater against the dam body,

(9) internal water pressure causing differential uplift within the body and

(10) imposing forces due to earthquakes [117].
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An embankment dam is constructed to accommodate substantial deformation due to these
loads. Nevertheless, to ensure dam safety, it is essential to understand the mechanisms
initiating the deformation of the dam body. Within the scope of this thesis, we differen-
tiate between three deformation patterns: (1) subsidence, (2) uplift, and (3) horizontal
displacement. The first deformation pattern is a downwards directed deformation. The
foundation and building material of the dam are subject to consolidation resulting in
subsidence. The dead load of each newly added layer of earth- or rockfill increases the
load acting on the layers below and the foundation. The imposed loads in the center and at
the edges of the dam differ from one another. The varying imposed loads and the usage of
different building materials lead to varying subsidence rates in the core and the shoulders.
The consolidation process is expected to start during the construction period and continue
during the first filling of the reservoir and long after [48]. Additional subsidence may be
observed during the first filling of the reservoir. The increasing dead load of the reservoir
water further compresses the foundation and construction material on the upstream face.
Differential subsidence rates alongside the upstream side of the crest and the upstream
shoulder are the consequences. Moreover, the possibility of collapse compression needs
to be considered [47]. Unsaturated soils compact upon wetting [123]. In the case of an
embankment dam, this phenomenon mainly affects the upstream shoulder and upstream
side of the crest. It leads to differential subsidence, crest spreading, and longitudinal
crest cracking. The magnitude of the subsidence rates depends on the type and placement
technique of the construction material [47]. For most dams, the total subsidence of the
crest amounts to less than 0.5 % of dam height three years after the construction ended
and less than 0.75 % of dam height after ten years. The subsidence in the upstream and
downstream shoulders can measure up to 2 % of the dam height, though higher values
have been observed in the case of dry placed, poorly compacted rockfill [47]. Spatially,
the maximum subsidence rate is usually located at 50 to 70 % of the height of the dam
body [48]. The subsidence rates typically exhibit a linear trend over the logarithm of time.
However, the long-term trend is significantly influenced by reservoir operations. Draw-
down events are usually associated with periods of rapid acceleration of the subsidence
rates [47]. The second deformation pattern is an upwards directed deformation. Buoyant
uplift is a consequence of a decrease in the effective stress due to the increasing water
load during the first filling of the reservoir. Only the upstream shoulder is affected by this
phenomenon. The effects of collapse compression might obscure the observation of the
buoyant uplift, since both phenomena coincide [47]. Thirdly, horizontal displacement
downstream of the entire dam body is caused by an increased lateral tension within the
dam body. The increase of the lateral tension inside the dam body originates from an
increase in the water pressure in the upstream side of the core during the first filling. Since
the displacement rate does not depend on the dam height, a range of absolute values can
be provided. On the downstream side of the crest, total typical horizontal displacements
range from 50 mm upstream to 200 mm downstream. On the upstream side of the crest
and in the upstream shoulder, the displacement varies between 200 mm upstream and
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200 mm downstream. The horizontal displacements on the downstream shoulder range
from 0 mm to 250 mm downstream. However, larger horizontal displacements have been
observed, for example, at the Suvartevann Dam. The dam experienced a downstream
displacement of the crest of 1120 mm during the first filling. The general trend is a
steady or slow displacement in a downstream direction, and the displacement rates usually
approach near zero over time [47]. Some loads can trigger a combination of subsidence,
uplift, and horizontal displacement. Seasonal variations of the reservoir water level can
result in alternating uplift and subsidence of the dam body [125]. An earthquake can
trigger abrupt short-term deformation in the form of subsidence or spreading of the dam
body [126, 127] the horizontal displacement of the dam slopes, failure of the crest, or
landslides sliding into the reservoir [48]. Soil liquefaction, also triggered by an earthquake,
may additionally change the geometric shape of the dam body [124]. Furthermore, the
stability of the slopes bordering the reservoir is of concern. A mass sliding into the reservoir
causes large waves, and depending on the wave height may result in overtopping [48].
The above described deformations are summarized in Table 2.5.

| Phenomena | Deformation Pattern | Location | Likelihood |
Consolidation of Subsidence Entire dam body | Expected
foundation and building
material
Deadweight of the Subsidence Upstream slope & | Expected
reservoir water Upstream side of
the crest
Decreasing Buoyant uplift Upstream slope Expected
effective stress
Lateral tension Horizontal displacement | Entire dam body | Expected
Collapse Compression Subsidence Upstream slope & | Maybe
Upstream side of
the crest
Drawdown Events Subsidence Entire dam body | Maybe
Seasonal varying Subsidence & uplift Entire dam body | Maybe
water level
Sliding Horizontal displacement | Enclosing slopes | Unlikely
& subsidence
Soil liquefaction Subsidence Entire or parts of | Unlikely
the dam body
Earthquake Subsidence & Entire or parts of | Unlikely
horizontal displacement | the dam body

Table 2.5.: Overview of the phenomena causing a deformation of a dam body [48, 47,
124].
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2.2.3 Methods for Monitoring the Surface Deformation of an

Embankment Dam

In order to control the safety and performance of a dam during its entire lifetime, a
monitoring system must be set up. Regular inspections of the dam body, the reservoir,
and the nearby environment for signs of subsidence, horizontal displacement, cracking,
erosion, seepage, and undesired growth of vegetation need to be conducted. These
inspections are supplemented by measurements recorded by several different instruments
that are distributed on the dam body and its vicinity. While the selection of the type of
instrument, its location, and a timely interpretation of the data is more important than the
sheer number of instruments installed, engineers need to keep in mind the vulnerability
of the instruments. Over time, the number of installed instruments, still working, will
decline [48, 121]. In the case of an embankment dam, the main features to monitor
are the deformation of the dam body and the quality and quantity of the seepage water.
Further, it is recommended to monitor the earth and pore-water pressure inside the dam
body using, for example, pressure cells and determine the phreatic line by analyzing
data. Furthermore, the fluctuation of the groundwater should be controlled by installing
groundwater observation holes along the toe of the dam. In seismically active areas, it is
recommended to install at least one seismograph in the crest and at the bottom of the dam
to register earthquakes. The water seeping through the dam is controlled for suspended
particles to detect erosion inside the dam body. Its chemical composition is analyzed for
the same reason. Therefore, a measuring weir is built at the deepest point along the toe of
the dam. It is usually a trough made of concrete with a v-shaped outlet calibrated for direct
readings [48]. The deformation of the dam body is usually only monitored on a limited
number of control points. The locations of the control points must be chosen so that the
behavior of the entire structure can be determined [125]. In the last century, geodetic
triangulation and optical leveling networks have both been widely used to determine
displacements. Geodetic triangulation provides 2D horizontal displacement, while optical
leveling supplies vertical displacements. Concrete pillars on the crest of the dam and in
stable areas in the vicinity are usually used as control points [128, 129, 130]. Optical
leveling is an exact method. Vertical displacements can be measured with a precision of up
to 2 1. The disadvantages of the method are that it is very time-consuming, and it cannot
be used continuously [125, 131]. Geodetic triangulation, in contrast to optical leveling, can
be included in a continuous monitoring system, if robotic total stations are used. Reflectors
are permanently installed on the dam, and a high-precision rangefinder measures their
3D coordinates [132, 133]. Both methods are usually complemented by measurements of
local deformations utilizing, for example, extensometers and inclinometers [125]. In more
recent years, the GNSS has been employed to determine the 3D coordinates of control
points. In terms of time and cost-effectiveness, it is the most efficient method. No visibility
between the control points and the reference point is needed, which allows the monitoring
of larger areas. Expert operators are only needed for the initial set-up of the network and
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the data interpretation [134]. Another well-established instrument to monitor horizontal
displacements is an optical collimator. The instrument measures the horizontal deviation
in LOS between a stand-point and a portable target. The portable target can be deployed
along the crest of the dam. The accuracy depends on the distance between the stand-point
and the portable target, as well as changes in the atmospheric refractive index [135].
A precision on the sub-millimeter level can be achieved. Normal optical collimators
need to be handled manually [136]. However, automatic collimators are used on some
dams to measure horizontal displacement continuously [135]. Employing the method
Terrestrial-Based Radio Frequency is a more innovative approach. The method provides
3D displacements of specific control points with an accuracy on centimeter-level vertically
and millimeter-level horizontally [144]. Another approach to map the deformation of
a dam is to not only measure the displacement of specific control points, but to use
methods for areal deformation monitoring. Terrestrial Laser Scanning (TLS), for example,
provides measurements of 3D distances with a high spatial density. The high density
of measuring points might be exploited for change detection algorithms. However, the
accuracy of the measurements is lower than the ones achieved using total stations.[145,
143]. Ground-based Synthetic Aperture Radar (GBSAR), on the other hand, provides
high precision (= 1 mm) measurements of relative displacements in LOS direction [137].
The radar sensor moves along a rail track while emitting and receiving microwaves. The

| Method | Measured Value | Accuracy | In Use \
Geodetic Triangu- | Horizontal 100/30 3= yes
lation Network displacements
Optical Leveling | Vertical displacements 2 yes
Network
Inclinometer Horizontal deformation | + 7 mm yes
along depth profile
Extensometer Changes in length of an | + 1 mm yes
object over time
Optical Horizontal Less then: yes
Collimator displacements 4+ 1 mm
Terrestrial-Based | 3D displacements Vertically: + 1 cm | experimentally
Radio Frequency Horizontally:
+ 1 mm
Terrestrial Laser | 3D distances + 2 mm to experimentally
Scanning 4 25 mm
GPS 3D Positions 4+ 15 mm yes
GBSAR Relative displacements | + 1 mm experimentally
in LOS
PSInSAR Relative displacements | + 1 mm experimentally
in LOS

Table 2.6.: Overview of methods used to monitor dam deformation [19, 20, 128, 129,

130, 131, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144].
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system can be installed permanently in front of any given structure, making it suitable
for carrying out near real-time deformation monitoring [146]. Another advantage is that
no instruments need to be installed on the dam, and the deformation can be monitored
from a safe distance. Furthermore, the system can be used under any weather and light
conditions. However, the accuracy of the results depends on variations of the relative
humidity between the sensor and the target. The fact that the relative displacements are
measured in the LOS direction is a further disadvantage. Moreover, measuring the relative
displacement in the LOS direction has the consequence that a movement perpendicular to
the LOS direction is not detectable [126, 146, 147, 148, 149]. Spaceborne InSAR is similar
to GBSAR. The difference is that the SAR sensor is installed on a satellite. In particular, the
technique PSI has been used in a few case studies to reconstruct dam failures or analyze
short periods of the lifetime of a dam [150, 151]. The technique itself and its advantages
are further discussed in Section 2.1.6. The above described techniques and instruments
to monitor the deformation of a dam body, the slopes enclosing the reservoir, and the
surrounding area are summarized in Table 2.6.
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3.1

Area-of-Interest, Datasets and
Software

Area-of-Interest. North-West Peloponnese

The AOI is located in the Achaea prefecture in the north-west of the Peloponnese Peninsula,
Greece. It covers about 2,100 km? of terrain. The AOI includes the cities of Patras and
Rio, at the coastline of the Gulf of Patras and the westernmost part of the Gulf of Corinth,
and more rural areas with small human settlements to the south and west. The terrain
is flat at the coastline, but it quickly becomes mountainous inland with the Erymanthos
and Panachaiko mountain chains in the south and east. The highest elevation in the
area is at 2,200 m above sea level. Prominent features in the AOI are the Rio-Andirrio
bridge and the newly built Parapeiros-Peiros Dam southwest of Patras. A map of the AOI
and the location of the Parapeiros-Peiros Dam are presented in Figure 3.1. The AOI was
selected because, due to its complexity, it provides many different examples of naturally
occurring and anthropogenic ground surface deformation. The AOI is located in one
of the most-seismically active areas of the world and is pervaded with various active
faults, along which ground surface deformation can be observed. Additionally, it is one
of Greece’s most landslide prone areas. As for examples of anthropogenic ground surface
deformation, the AQI features human settlements and infrastructure, which are affected
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Figure 3.1.: AOI located in the North-West of the Peloponnese Peninsula.
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Figure 3.2.: The Mediterranean with tectonic plate boundaries (black lines) [152], earth-
quake epicenters (colored points) [153] for the time span from 2000 to 2025
and the AOI (black rectangle).

by the local geo-hazards, subsidence due to the continuing urbanization of the area and
deformation due to environmental influences, e.g., expansion and shrinking due to a
varying temperature. Overall various surface deformation phenomena can be observed at
the same time in this area. This section provides a brief overview of the relevant causes
for naturally occurring and human-induced ground surface deformation within the AOI,
starting with seismotectonic setting of the area.

The first order seismotectonic model of the Mediterranean is defined by the relative motion
between the Eurasian, African, and Arabian tectonic plates. The plate boundary between
Eurasia and Africa starts at the Azores triple junction, i.e., where the Eurasian, African,
and North American tectonic plates meet, and stretches through the Mediterranean south
of Spain, mainland Italy, and Greece and lastly to Cyprus. If Eurasia is assumed to be
stable, the African plate moves northward in a counter-clockwise manner. The plate
boundary features a pure right-lateral strike-slip motion at the Gloria fault in the Atlantic
and oblique convergence eastwards through the Mediterranean. The plates converge with
a rate of 4. }% at the longitude of Algiers and 5. % at the longitude of Cyprus. The
tectonic plate boundaries [152] and earthquake epicenters [153] for the Mediterranean
are displayed in Figure 3.2. The eastern Mediterranean exhibits significantly more seismic
activity than the western Mediterranean, which is due to the more complex interaction of
the tectonic plates. The relative motion of the Eurasian and African plates is disturbed in
the eastern Mediterranean by two smaller rapidly moving tectonic plates, the Aegean and
Turkish plates. The Aegean plate includes Greece, Crete and the western part of Turkey,
while the Turkish plate consists of Cyprus and the remaining part of Turkey. The interaction
of the Eurasian and Aegean plates is characterized by a strike-slip motion and spreading.
With respect to Eurasia, the Aegean plate moves in a southwest direction towards the
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Figure 3.3.: The AOI with active fault traces (major faults in magenta and other faults in
black lines) [159] and the location of the Parapeiros-Peiros Dam (marked in
magenta).

African plate. At the Hellenic Trench, the oceanic lithosphere of the African plate is
subducting underneath the continental lithosphere of the Aegean plate with a rate close to
4 % [154, 155, 156]. The Aegean plate itself is undergoing extension, which concentrates
in several zones of graben development. Associated earthquake epicenters cluster in an
about 200 km long and 40 km wide belt that cuts across the Hellenides from the Aegean
to the Ionian Sea. The Gulf of Patras and the Gulf of Corinth are located at the center of
this belt. Both are asymmetric grabens that form an about 140 km long rift belt separating
the pre-Neogene folded basement of mainland Greece and the Peloponnese Peninsula.
They intersect at a strait between Rio, on the northern coastline of the Peloponnese, and
Nafpaktos, on the southern coastline of mainland Greece. It is one of the most rapidly
extending regions of the world. About 500 active faults associated with this graben system
cut across the North-West Peloponnese [157, 158]. The trace of major faults relevant for
the AOI are presented in Figure 3.3. The Psathopyrgos fault (PPF) and the Rion-Patras
fault (RPF) trace through the north-eastern part of the AOI along the coastline of the
westernmost part of the Gulf of Corinth and eastern part of the Gulf of Patras. The Aigia
Triada fault zone (ATFZ) cuts right through downtown Patras from the coastline eastwards
inland. The Patras fault (PF) is located in the southern outskirts of Patras and traces from
the coastline east-southwards inland. All traces were extracted from the 5% release of
the NOAFAULTs database [159], which provides information on the fault geometry of
2,916 faults located in Greece based on 140 peer-reviewed publications. Studies such
as [160], [161], and [162] have shown that the cities of Patras and Rio and surrounding
areas are subject to ground surface deformation, possibly related to active faults. Together,
the studies analyzed the ground surface deformation of the area between 1992 and 2017
using different SAR Sensors (ERS-1/2, ENVISAT, and Sentinel-1) and different advanced
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DInSAR processing techniques (PSI [13, 14], SBAS [15], and SqueeSAR™T/16]). All three
studies observed contrasting zones of uplift and subsidence in Patras, subsidence in Rio,
and near the Psathopyrgos Fault. Additionally, Elias and Briole (2018) observed subsidence
in Selienitika and uplift in Aigion. Sakkas et al. (2018) documented an eastwards motion
south of the Patras city.

In Addition to ground surface deformation due to tectonic faulting, most of the mountain-
ous areas in the Achaia prefecture experience slope instability, which results in various
degrees of ground surface displacement down slope [163]. In other words, the area is
prone to landslides. Sabatakakis et al. (2013) established a landslide susceptibility map
for Greece based 10 predisposing factors for landslides: (1) lithology, (2) slope angle,
(3) elevation, (4) hydrographic network-drainage density, (5) rainfall, (6)climate, (7)
seismicity, (8) land use, (9) road network density and (10) population density. Based on
these predisposing factors, the Achaia prefecture features a moderate susceptibility for
landslides at the coastlines and a very high susceptibility in the mountainous areas. About
600 landslides in the mountainous areas of the north-western Peloponnese have been
detected based on advanced DInSAR data for the time from 1993 to 2017 [165]. Along
with the cities of Patras and Rio and the mountainous areas affected by landslides, the AOI
features large and important infrastructure elements such as the Parapeiros-Peiros Dam
and the Rio-Andirrio bridge. Various studies have shown that large infrastructure elements
are subject to deformation due to changing environmental temperature, compaction of
their foundation, or as a consequence of internal damage [31, 32, 166].

Within the scope of this research, a focus will be on the Parapeiros-Peiros Dam. The
dam is located south-west of Patras and features a 75 m high and 760 m long earth-fill
embankment dam built between 2008 and 2017. The dam body impounds the water of
the Parapeiros and Peiros Rivers, starting in September 2019. The associated freshwater
reservoir was designed to hold 44-10° m? of water, to supply the surrounding region with
fresh water. After construction, the dam body was expected to settle due to its foundation
and building material consolidating. Additional settlement was expected to be triggered
by the foundation and building material being exposed to the increasing load of the stored
water during the first filling of the reservoir [167].

Datasets

Within the scope of this thesis, three distinct datasets are used to demonstrate the presented
research. In this section, the SAR missions that provided the used data and the composition
of the three distinct datasets are briefly outlined.

SAR images recorded with the S1-A and -B sensors, as well as images recorded with
the TSX sensors, are used. Additionally, a TanDEM-X DEM was acquired to remove the
topography-induced phase during advanced DInSAR processing. The S1 SAR mission is
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part of the European Copernicus program led by the European Union. The European Space
Agency (ESA) is in charge of the space component of the mission. The mission objective
is to systematically and regularly record SAR data for European land and coastal areas,
tectonic and volcanic areas worldwide, and other areas of interest for the Copernicus
services. The observation plan stipulates regular mapping of all land areas worldwide, with
a few exceptions, with a repeat-pass time of 12 days worldwide and 6 days over Europe.
The observation plan is based on employing two SAR satellites. S1-A was launched in
October 2014 and S1-B in October 2016. On the 23rd December 2021, S1-B experienced
an anomaly on its sub-power system, which resulted in a permanent loss of the satellite for
the mission. The loss of S1-B led to an increase in repeat-pass time over Europe from 6
to 12 days, similar to the time before S1-B was launched. However, from October 2016 to
December 2021, the satellites recorded all land and coastal areas of Europe with a 6-day
repeat-pass in ascending and descending orbits with dual polarization (VV and VH) in
C-Band (5.6 cm). The main acquisition mode of the S1 satellites is referred to as IW swath.
A 250 km wide swath is recorded with 5 m resolution in range and 20 m resolution in
azimuth [34, 35, 36]. An imaging mode referred to as Terrain Observation by Progressive
Scans (TOPSAR) is employed for the wide swath coverage. This wide swath is achieved by
periodically steering the SAR antenna to adjacent sub-swath parallel in range. The steering
of the antenna has the consequence that only a finite number of radar echoes are emitted
and recorded to image a specific patch on the surface, i.e., the SAR image consists of a
number of bursts [168]. The S1 satellites record three parallel sub-swaths with nine bursts
each. In order to map and analyze ground surface deformation of the entire described AOI,
S1 SAR images with a descending acquisition geometry were acquired from the Copernicus
Dataspace (https://browser.dataspace.copernicus.eu/).

The TSX twin satellites are Germany’s first national remote sensing satellite mission, which
was implemented in a private-public partnership between the German Aerospace Center
(DLR) and EADS Astrium GmbH. The satellites were launched in June 2007 and 2010.
The TSX mission had two objectives. The first is providing high-quality SAR data with
various acquisition modes for commercial and scientific purposes. Different acquisition
modes can be used, providing a high variability in spatial coverage and resolution. The
different acquisition modes and their spatial coverage and resolution are listed in Table 3.1.
Additionally, the satellites can operate in different polarizations, namely: (1) HH, (2) VV,
(3) HV, and (4) VH. The second objective of the TSX satellites, the TanDEM-X mission,
is to create a global DEM. To generate high-quality interferograms as input for the DEM
generation, the SAR images are recorded in a bi-static manner, meaning one satellite
transmits the radar signal but both satellites receive the backscattered signal. To achieve
this, the twin satellites orbit the Earth in a Helix formation. Both satellites operate in
X-band (3.1 cm) and have a repeat-pass time of 11 days. In contrast to the S1 satellites, the
TSX satellites do not continuously record the Earth’s surface. They need to be tasked [49,
50, 169].

Since one focus of this research was the newly built Parapeiros-Peiros Dam south of Patras,
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Mode Scene Coverage Resolution Class

az x rg [km?] [m]
Wide ScanSAR 200 x (194 - 266) 40
ScanSAR 150 x 100 18
StripMap 50x 30 3
Spotlight 10x 10 1.7-35
High-Resolution Spotlight 5x10 1.4-3.5
300 MHz High-Resolution Spotlight 5x(5-10) 1.1-1.8
Staring Spotlight (2.5-28)-~6 0.24 az

Table 3.1.: Overview of TSX acquisition modes [49].

a time series of high-resolution spotlight (300 MHz) TSX SAR images was acquired from the
DLR within the scope of a research proposal. The images were recorded with a descending
acquisition geometry and a spatial resolution of 0.6 m in slant range and 1.1 m in azimuth
direction. The DEM used for the advanced DInSAR processing of the SAR images was
created within the scope of the TanDEM-X mission based on TSX data from 2011 to 2013.
The DEM has a 30 m spatial resolution and a relative height accuracy of 2 m at flat and
4 m at steep terrain. Furthermore, the global change map for the AOI, based on SAR
images recorded between September 2017 and mid-2020 [169], was acquired and added
to the TanDEM-X 30 m DEM to consider the changed topography due to the 2017 finished
Parapeiros-Peiros Dam.

Within the scope of this thesis, three distinct datasets are used to demonstrate the research
presented. The datasets are different combinations of the data presented above. An
overview is provided in Table 3.2. Dataset A consists of a S1 SAR images time series
with 138 images. The images were recorded with the acquisition mode IW swath and
a descending image geometry. The time series covers the North-West corner of the
Peloponnese Peninsula in Greece for the time span from September 2019 to September
2022. The dataset is used in Chapter 4 to demonstrate the capabilities of the post-processing
tool PSDefoPAT® and in Chapter 5 to discuss the presented approach to use extracted
information concerning temporal and spatial deformation patterns from Dataset A to
support the processing of Dataset B. Dataset B consists of 84 high-resolution (HS-300) TSX
SAR images covering the area around the Parapeiros-Peiros Dam for the time span from
September 2019 to September 2022. The images were also recorded with a descending
imaging geometry. The dataset is used in Chapter 5. The final dataset, Dataset C, is

Dataset Chapter | Satellite | Acquisition Nr. SAR Time Span
Mission Mode Images

Dataset A | 4& 5 S1 W 138 | 09/2019 - 09/2022

Dataset B | 5 TSX HS-300 84 | 09/2019 - 09/2022

Dataset C | 6 S1 Iw 300 | 11/2016-12/2021

Table 3.2.: Overview of the datasets used within the scope of this thesis.
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Figure 3.4.: Complete advanced DInSAR processing chain, where the interferometric
processing was realized with SNAP and StaMPS serves as the PSI algorithm.

used in Chapter 6 to evaluate three different strategies for processing a steady stream
of SAR images. The dataset consists of 300 S1 SAR images, which were recorded with
the acquisition mode IW swath and a descending image geometry. The images record
the North-West corner of the Peloponnese Peninsula in Greece for the time span from
November 2016 to December 2021.

Even though Dataset C and Dataset A both use S1 images, they differ from one another for
two reasons. Firstly, the surface deformation of the Parapeiros-Peiros Dam needed to be
captured with TSX and S1 images for the same time span. Thus, the time span covered
by Dataset A was selected to match that of Dataset B. In the case of Dataset C, the time
series needed to cover a longer time span. Secondly, to avoid the influence of a switch in
the temporal sampling of the S1 images, Dataset C was restricted to the time during which
both S1-A and S1-B recorded images.

Software

The complete advanced DInSAR processing chain, used within the scope of this thesis
and referred to as the conventional processing chain, is presented in Figure 3.4. It can

be divided into two parts, (1) the interferometric pre-processing and the PSI processing.

Within the scope of this thesis, the interferometric pre-processing is realized with the
SeNtinel Application Plattform (SNAP) [170] provided free of charge by the ESA (https://
step.esa.int/main/download/snap-download/). The needed steps and their sequence
for processing S1 SAR images are presented in Figure 3.4. In the case TSX SAR images
are processed, the steps: (1) Apply Orbit File, (2) S1 TOPS Split and (3) S1 TOPS Deburst
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are skipped and the co-registration is carried out with a more general cross-correlation
technique implemented in SNAP. In order to facilitate the automatized processing of large
dataset the SNAP Graph Processing Tool (gpt) is operated using the python scripts.

The StaMPS [14, 51, 52] is used for the PSI processing, since it as commonly used
and is freely available (https://homepages.see.leeds.ac.uk/~earahoo/stamps/). The
general operating principle of the algorithm is presented in Sub-section 2.1.6. In order
to take full advantage of the available hardware, parts of the StaMPS algorithm were
re-implemented so that the entire algorithm can be executed within a Microsoft Windows
based framework. To facilitate an easy reading of this thesis, the Microsoft Windows-
adapted version of the StaMPS algorithm will simply be referred to as StaMPS, since
the general operating principle was not changed. Adaptations to the StaMPS algorithm
presented in Chapter 5 and Chapter 6 were implemented using the Microsoft Windows-
adapted version of the StaMPS algorithm and necessary tests to verify their functionality
are presented in the Appendix A.2.
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4.1

Persistent Scatterer
Deformation Pattern Analysis
Tool

The following chapter includes text passages extracted from [55] M. Evers, A. Thiele,
H. Hammer, and S. Hinz. “PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis
Tool”. In: Remote Sensing 15 (2023), 1-26, paper no. 4646, which are marked with a blue
line

Problem Statement and State-of-the-Art

Earlier in this thesis, it was stressed that advanced DInSAR results are often evaluated and
analyzed based on mean deformation velocity maps, which can be misleading because
they are generated with the assumption of a constant velocity deformation model. While
actively deforming areas and their spatial deformation patterns can be assessed at a glance,
relying solely on them can lead to an underestimation or misinterpretation of the ground
surface deformation. Many geophysical processes are often not sufficiently described by
a linear trend. Ground surface deformation due to underground gas storage [28, 29],
groundwater extraction [27] or the thermal expansion of large buildings [166] are periodic,
while displacement rates of aseismic creep [22, 23] alongside tectonic faults or subsidence
rates due to urbanization [30] can change over time and may result in a piecewise linear
or quadratic trend.

To support civil protection authorities in assessing the risk to human settlements and
infrastructure networks due to geohazards, identifying suitable mitigation measures, and
implementing effective urban planning, it is essential to analyze the spatial patterns of
ground surface deformation in conjunction with their temporal patterns. Changes in the
temporal deformation pattern can act as a precursor to geohazard events or structural
health failures of infrastructure elements. Thus, identifying the underlying temporal
pattern of the ground surface deformation and any recent changes, e.g., acceleration,
deceleration, or a varying amplitude of a periodic pattern, is a highly relevant task [39,
42, 171, 172]. With the launch of the S1 SAR satellites in 2014, 2016, and 2024, and
the subsequent development of Ground Motion Services such as the European Ground
Motion Service (EGMS), the door was opened to perform such analysis at a regional
scale [40, 42, 173]. Manual inspection of the amount of accessible data is not feasible and
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poses a bottleneck for the operational use of advanced DInSAR products in monitoring
tasks [174]. Thus, as emphasized in Section 1.1 automatic post-processing procedures to
extract relevant information from the datasets are required to aid in the interpretation
of ground motion datasets at a regional scale, providing a comprehensive picture of the
evolution of movement [175]. Hence, the research question of how the results of advanced
DInSAR processing can be utilized to provide information on the dynamic evolution of the
deformation process.

A first attempt was presented by Cigna et al. (2011). They presented a semi-automated
approach to identify potential changes in the underlying temporal pattern of displacement
time series derived from advanced DInSAR processing. The proposed algorithm labels the
individual displacement time series as either unaffected or affected. Unaffected in this
context means that the MP is either stable and not moving or following an uninterrupted
linear trend. Affected, on the other hand, is the label for MPs that undergo a change in
their temporal deformation pattern. The approach was demonstrated using ERS-1/2 and
RADARSAT-1 datasets, covering Naro in Italy from 1992 to 2000 and 2003 to 2007, which
was affected by a seismic event in February 2005, reactivating ground instabilities. The
systematic evaluation of advanced DInSAR enabled the mapping of areas where the tem-
poral deformation pattern of MPs was affected by the event and those where it remained
unaffected, thereby supporting civil protection authorities in identifying appropriate hazard
mitigation measures. Berti et al. (2013) presented the first fully automatic algorithm to
categorize advanced DInSAR displacement time series. The presented algorithm is based
on a conditional sequence of statistical tests for six predefined time series models: (1) un-
correlated, (2) linear, (3) quadratic, (4) bilinear, (5) discontinuous with constant velocity,
and (6) discontinuous with varying velocity. Although Berti et al. (2013) also acknowledge
the possibility of periodicities in ground surface deformation, their algorithm does not
incorporate time series models with a periodic component. The algorithm was developed
and tested primarily to investigate slope instabilities. However, it is also noted that it
could be used to analyze ground surface deformation caused by subsidence, soil swelling
or shrinkage, or uplift due to deep injections. Chang and Hansen (2015) introduced an
approach to systematically estimating kinematic models from interferometric displacement
time series data based on multiple hypothesis testing. The developed algorithm utilizes hy-
pothesis testing to estimate a mathematical model that describes the temporal deformation
patterns. They consider the following set of time series models: (1) linear, (2) thermal
expansion, (3) periodic with a fixed period of one year, (4) exponential, (5) the Kronecker
delta function, and (6) the Heaviside step function or any combination of these time series
models.

Contrary to the previously described algorithms, Boni et al. (2016) presented an approach
for automatically categorizing the vertical and East-West components of advanced DInSAR
displacement time series. Additionally, they analyze the average displacement time series
of clusters rather than individual MPs. The algorithm considers linear, non-linear, and
periodic deformation and consists of three steps. First, ascending and descending dis-
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placement time series are combined to decompose them into their vertical and East-West
components. The second step aims to identify areas affected by the same type of defor-
mation through statistical analysis. A cluster must have a minimum of three MPs with
similar temporal deformation patterns. The average temporal pattern of the cluster is
combined with geological, land-use, and hydrogeological data of the affected area to
determine the underlying geological processes and triggering mechanisms or driving forces
of the deformation. Bordoni et al. (2018) presented an automated approach to detect
areas affected by ground surface deformation along slopes. The presented approach builds
on previously published work by Boni et al. (2016). They added three steps. First, the
MPs are divided into those located on slopes and those on plain areas. Secondly, MPs
with uncorrelated trends are excluded from the analysis. Thirdly, the step to identify the
underlying geological processes is tailored to slope instabilities, which allows them to
categorize different portions of the same landslide into different types of slope movement
related to landslide [177].

In contrast to the algorithms described above, the advanced DInSAR post-processing ap-
proach presented by Costantini et al. (2018) was developed for MPs identified on buildings.
Similar to the approach presented by Boni et al. (2016) and Bordoni et al. (2018), the MPs
are analyzed in clusters. The displacement time series of MPs in a cluster are averaged.
The average displacement time series is labeled as either piecewise linear or a combined
seasonal and linear displacement time series. MPs not included in one of the clusters
are considered outliers and excluded from the analysis. The algorithm assumes that the
AOI is an urban area with a dense MP grid. Mirmazloumi et al. (2022) presented an
algorithm to automatically categorize advanced DInSAR displacement time series that
builds on the algorithm presented by Berti et al. (2013). They consider the following
seven categories: (1) stable, (2) linear, (3) quadratic, (4) bilinear, (5) discontinuous with
constant velocity, (6) discontinuous with varying velocity, and (7) affected by unwrapping
errors. The algorithm consists of five steps. First, MPs affected by phase unwrapping errors
are excluded from the dataset. Secondly, the remaining MPs are tested to see whether they
are stable or not, i.e., if they are affected by deformation. Their stability is determined by
evaluating the significance of a linear regression fitted to the individual displacement time
series. Thirdly, unstable MPs are examined for abrupt changes, i.e., a change point (CP).
For MPs with no CP, a quadratic regression is carried out in the fourth step. MPs with a CP
are tested for bilinearity, and subsequently, a test for equality of the slopes is conducted.
Once the displacement time series are categorized, the fifth step is to recheck the time
series for phase unwrapping errors. A test for underlying periodicity is conducted after
the displacement time series are categorized according to their long-term trend. With this
approach, they were able to categorize 77.8 % correctly. Festa et al. (2023) presented an
automated approach to detect patterns of anthropogenic ground surface deformation in
advanced DInSAR datasets to support risk assessment. They employ Principal Component
Analysis and k-Means clustering. They first decompose the LOS displacement into its verti-
cal and horizontal components and then perform a Principal Component Analysis, which
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serves as input for the k-Means clustering algorithm. The k-Means algorithm identifies
clusters based on the temporal displacement patterns. Based on these clusters, the trend
and periodic component of the average displacement time series are retrieved.

Most of the algorithms described above focus on a specific type of ground surface defor-
mation, such as slope instabilities or subsidence. Even the most general ones focus on
deformation, either driven by geophysical or anthropogenic processes. However, in order
to integrate time series analysis of the displacement time series into broader monitoring
systems, it should consider both geophysical and anthropogenically driven ground surface
deformation. For example, Chang and Hansen (2015) consider periodic temporal defor-
mation patterns but only with a fixed cycle length of one year, which is generally suitable
for most natural ground surface deformation phenomena occurring in non-urbanized
areas. However, it is not necessarily suitable for deformation processes in anthropogenic
environments. Embankment dams, for example, deform in response to the water level
of their reservoir [47], which can change due to water consumption or periods of heavy
rainfall. Both phenomena often have a cycle length of one year, but can also have cycle
lengths longer than a year, depending on the regional climate. Additionally, the water
level changes in accordance with hydropower production, which depends on the power
demand of the surrounding region and may not correspond to any naturally occurring
processes. Another example of anthropogenic causes for ground surface deformation is
the underground storage of gas [28, 29]. The ground surface deformation is influenced
by the amount of gas either extracted from or pressed into the underground cavity, which
depends on gas consumption and does not necessarily correspond to a periodicity of one
year.

Another aspect to consider is that, in the case of continuous monitoring, the displacement
time series continues to lengthen and may encompass more than two stages of the observed
ground surface deformation. Therefore, time series analysis should allow for more than
one change point. Also, when analyzing both geophysical and anthropogenically driven
ground surface deformation, no assumption should be made concerning the spatial extent
of the deformation phenomena. Especially, the deformation of an infrastructure element
can be quite local.

In a nutshell, a post-processing procedure to identify the temporal pattern of actively
deforming areas should function fully automatically, not assume the spatial extend of
the observed surface deformation, include time series models that explain the temporal
patterns of both geophysical and anthropogenically driven ground surface deformation,
including time series models with multiple CPs and flexible cycle lengths, to integrate time
series analysis of the displacement time series into broader monitoring systems. Subse-
quently, in this chapter, a fully automated algorithm for post-processing advanced DInSAR
displacement time series is described. Its capabilities are demonstrated through two use
cases. The first use case is the city of Patras and its surrounding region, and the second
is the newly filled Parapeiros-Peiros Dam, located southwest of the city. The presented
algorithm, the PSDefoPAT®, assigns each MP of an advanced DInSAR dataset a best-fitting
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time series model based on a series of statistical tests. This algorithm decomposes the
displacement time series into its trend, periodic, and noise components. The periodic
component can have cycle lengths other than one year, and the trend can be divided into
multiple segments.

PSDefoPAT®—Time Series Analysis Approach

The Matlab-based tool PSDefoPAT® assigns each MP resulting from an advanced DInSAR
algorithm a best-fitting time series model based on its associated displacement time series.
The model provides information on the evolution of the deformation instead of only a
snapshot as the mean velocity does [57, 56].
A time series is commonly defined as a sequence of measurements y; of a specific variable,
here the displacement of an MP between SAR image acquisitions, in chronological order but
not necessarily equidistantly spaced. Time series analysis aims to determine a mathematical
model that describes the evolution of the variable over time. A time series is often split
into its trend, seasonal, cyclic, and residual components. The trend component describes
the long-term evolution of a variable, while the seasonal and cyclic components describe
behavior that repeats regularly. In the literature, the periodic behavior of a variable is
referred to as seasonal if it is linked to seasonal effects, such as varying weather conditions
over the course of a year. Periodicities linked to other causes are subsumed under the term
cyclic [181, 182]. Here, we will refer to both components as periodic. The tool determines
the trend §t and periodic fjp components of a given time series separately from one another.
The resulting deformation model 7 is the sum of the trend and periodic components, while
the residual component g represents the part of the time series that the model cannot
explain.

J=9r+9pr+Jr 4.1)

The tool can be used either manually or in an automated fashion. The main difference is
that if the tool is used manually, the user must provide input during each processing step,
and only selected MPs are processed. In contrast, if the tool is used in an automatized
fashion, all MPs in the dataset are processed, and the user only has to provide input at the
beginning of the process. The sequence of the processing steps for the automatized version
of PSDefoPAT® is presented in Figure 4.1.

4.2 PSDefoPAT®—Time Series Analysis Approach
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The processing chain given in Figure 4.1 can be divided into three topics:
(1) Time series de-noising,
(2) Estimating the periodic component,
(3) Estimating the trend component.

The thrid step, estimating the trend component, includes examining the displacement time
series for CPs. The theoretical background of each topic is outlined in the next sub-section.
Within the scope of this thesis, the focus will be on the automatized version of the
post-processing tool, and an overview of the manual usage of the tool is provided in
Evers et al. (2021). The approach used for the automatized version of the tool is demon-
strated using two MPs selected from the PSI results of Dataset A, which is described in
detail in Chapter 3. The MPs were selected so each processing step can be demonstrated
and discussed based on an example. The first MP is referred to as MP I and is located
at top of the dam body of Parapeiros-Peiros Dam in Greece. It was selected due to the
piecewise linear trend of its time series. The second MP is called MP II and is located on
the Rio-Antirio Bridge connecting the Peloponnese Peninsula to mainland Greece. This MP
was selected because its displacement time series features a periodic component.

The relevant theoretical background on time series analysis and its realization in PSDe-
foPAT® are outlined in the next sub-section.
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Theoretical Background on Time Series Analysis
Time Series De-Noising

A time series can also be viewed as a combination of noise and a wanted signal. The
wanted signal represents any pattern caused by the intrinsic dynamics of the observed
process. The time series may additionally be affected by outliers. Outliers are unusual data
points in the time series representing possible recording or processing errors. They can
have a disruptive effect on time series model selection. PSDefoPAT® considers any data
point y; that deviates more than three times the scaled median absolute deviation from the
median of the time series to be an extreme outlier. Extreme outliers are replaced using
linear interpolation.

Smoothing or de-noising refers to the process of separating the wanted signal in the given
time series from noise to reveal patterns previously obscured. An option to smooth the
time series is the simple moving average, which replaces the data point y7 recorded at
time point T with an average of yr and | previous data points yr_1,...yT—; or an average
of yr and % previous and subsequent data points v, Ly YT-1,YT+1, Y7y ) - Similarly, the
median could also be used instead of the average. However, a crucial point is to select the
right size | of the window, in which the average or median is calculated. The size of the
window determines how sensitively the moving average or median reacts to changes in the
wanted signal. If the underlying pattern of the wanted signal remains unchanged, a large
window is preferred, while a small window is preferable if the underlying pattern changes
rapidly over time [181]. Thus, | would need to be selected with a priori knowledge of the
time series. An alternative approach to extracting the wanted signal from the provided
time series is de-noising using wavelet transformation (WT).

The key factor is that WT can be used to represent any signal. As with any transformation,
WT shifts the time series from its original domain into another, possibly making operations
such as signal compression or noise reduction easier to conduct [183]. The basic concept of
WT is that piecewise regular signals can be described by base wavelet functions, similarly
to how Fourier transformation is used to describe a periodic signal as a sum of sine and
cosine functions [184].

The basic building block, also referred to as the mother wavelet {(t), of a wavelet basis is
a wave-like function that oscillates around zero for a limited time. All other wavelets are
generated by dilating or translating the mother wavelet.

Cso(t) = \1@ (?) (4.2)

The width of the wavelet non-zero part and its position in time are determined by the
scaling parameter s and the translation parameter o [183, 185].
Noise reduction with WT requires wavelet coefficients derived with discrete wavelet
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transformation (DWT). The wavelet transform of signal y(¢) with N data points can be

written in vector-matrix form as
X =TTy(t) (4.3)

where X is a vector consisting of N wavelet coefficients x; and I' is an N x N orthogonal
matrix containing the wavelet-base vectors. The wavelet base is defined by wavelet filtering
coefficients e;. The number of coefficients varies depending on the wavelet base used. The
Daubechies wavelet family, for example, is defined by 2n coefficients. In the case of the
second-order Daubechies wavelet, n is 2. The coefficients are used to generate two filters:
(1) a scaling filter S, which resembles a low-pass filter, and (2) a wavelet filter G, which is
similar to a high-pass filter. The same coefficients define the filters, only in reversed order
and with alternating signs. The filter matrices for a signal containing eight data points and
n=2 can be written as follows [183]:

o

ey €1 e 630 0 0

=]

0 0 e e e ez O
0 0 0 0 e e e e3
€ €3 0 0 0 0 ep €1

4.4

and
e3 —ey e1 —ey O 0O O 0
0 O — — 0 0
S— G Ta a T« . (4.5)
0O 0 0 0 e3 —e e1 —e

e1 —ey O 0 0 0 es —e

The filters are used like a recursive pyramid decomposition algorithm, which provides a
hierarchical multi-resolution representation of the analyzed signal [186].

At level 1, the scaling and wavelet filters are applied to a signal y(¢) with N data points,
producing % detail coefficients ujl and % approximation coefficients aj-l. The application
of the filters at resolution level m can be written as

a" = Ga" ! (4.6)

and
u™ = Gg" 1 “4.7)

where a]-m*1 denotes the approximation coefficients at a previous resolution level. The
original signal y(t) can be considered a,°.

At level 2, the filters are applied to the approximation coefficients from level 1, resulting
in % detail coefficients and % approximation coefficients. The process is repeated until
the desired level is reached. The wavelet coefficients x; consist of both the approximation
and detail coefficients at each resolution level. Thresholding is carried out after applying
the filters to the desired resolution level. Since approximation coefficients ;" contain the
low-frequency part of the signal, which is usually less affected by noise, thresholding is
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only applied to detail coefficients ;" at each level [183, 187].
For this purpose, Donoho et al. (1995) introduced the universal threshold x.

kK =4/2log, N 4.8)

There are two approaches: (1) hard and (2) soft thresholding. Coefficient u; is dismissed if its
absolute value is less than x and kept if it surpasses the threshold in case of hard thresholding.

uhard — 0’ |M]| <K

]
wj,  |uj| = x

If soft thresholding is applied, the coefficient is also dismissed if its absolute value is
smaller than k. However, if the absolute value is larger than «, it is shifted towards zero by
subtracting .

0, ‘M]‘ < K

sign(up)(Ju;| —x), |uj| >«

Following thresholding, the remaining coefficients are used to reconstruct the signal [183,
1871].
a1 = G*a" + H u™ (4.9)

PSDefoPAT® applies DWT to the entire times series, employing Daubechies wavelets, after
extreme outliers have been detected and replaced. The Daubechies wavelets are the
most commonly used orthogonal wavelets for WT because, compared to other orthogonal
wavelets, they have a short, compactly supported scaling function given an exponent
number of vanishing moments. Additionally, examining the mean squared error between
the original and reconstructed signals, as well as maximizing the SNR, Daubechies wavelets
yield the best performance [189]. For the noise reduction step, soft thresholding is used
because it provides a smooth and continuous time series after signal reconstruction [188].
The original displacement time series (black dots) of MP I and MP II, and the effective
noise reduction can be observed in Figure 4.2.

Estimating the Periodic Component

After reducing the noise level of the time series, the next step to establish a best-fitting
time series model is to estimate the periodic component fjp. Displacement time series with
a periodic component are often related to the varying water content or temperature of a
material. Sine functions are typically used to approximate such phenomena.

yAp = ,BO -Sil’l(zT[ . ‘51(1' — ﬁz)) (4.10)
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Figure 4.2.: Original (black) and de-noised displacement time series (blue) for (a) MP I
and (b) MP II.

where t is the predictor variable, and By, 81, and ; are the regression coefficients. They
represent the amplitude By, frequency f;, and temporal offset B, with respect to a usual
sine function of the modeled time series. PSDefoPAT® uses a non-linear least squares
approach to fit a sine function to the data points of a given time series. However, this
approach requires an initial value for the frequency of the time series.
Fisher’s test [190] is a well-known significance test designed to detect periodicities of
unknown frequency in a given time series. The null hypothesis Hj of Fisher’s test as-
sumes that the amplitude By of the time series is zero and the signal y; only consists of
Gaussian noise.

HQ : ‘30 =0 (4-11)

The alternative hypothesis H; assumes that the time series contains a deterministic periodic
component with an unknown frequency.

H1 : ﬁo 7& 0 (412)

The g-statistic is used as a test statistic for this hypothesis. The statistic is defined by the
spectral estimate I(w) evaluated at Fourier frequencies w; [191].

:maxlgigvl(wi)
=1 1(wi) (4.13)
N-1

itho =———
with v 5

The P-value represents the probability of obtaining a value from the test statistic at least
as extreme or more extreme than the one derived from the data, assuming that the null
hypothesis is true. In other words, the P-value provides a measure of evidence against
accepting the null hypothesis. The lower the P-value is, the less likely it is that the null
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hypothesis is true. In general, if the P-value is between 0.1 and 0.9, it is safe to assume
that the null hypothesis is true. If the value is less than 0.02, there is strong evidence that
the null hypothesis does not hold true. The threshold indicating whether or not to reject
the null hypothesis is referred to as the level of significance «. If the P-value surpasses «,
the null hypothesis is accepted, and if it is smaller, the null hypothesis is rejected. Typical
values for « are 0.1, 0.05, and 0.01. A significance level of 0.05 is considered acceptable
for falsely rejecting the null hypothesis [192, 193]. For PSDefoPAT®, the significance level
is set to 0.05, meaning that the likelihood of the data supporting the null hypothesis is
less than 5 %. The probability resulting from a g-statistic g* for a specific peak can be
calculated as follows [191]:
d .ol
Plg>g") =1-Y (-1) = (1—i-g")" (4.14)
= i'(v—1i)!

Before Fisher’s test is performed on the periodogram of a given time series, the time
series is de-trended, i.e., a linear regression model is subtracted from the time series.
This step eliminates the presence of the trend component in the periodogram. Afterward,
if Fisher’s test identifies a peak in the periodogram with a P-value lower than 0.05,
and the associated period is larger than the smallest possible period and smaller than
the time interval the time series covers, a sine function is fitted to the de-trended time
series. An additional hypothesis test is performed to evaluate if model {/p explains the
de-trended time series sufficiently.
The null hypothesis Hy, in this case, assumes that regression model {jp does not sufficiently
describe the relationship between the data points of the de-trended time series and
predictor variable ¢.

Ho:po=p1=p2=0
Hj : at least one B; # 0

(4.15)

The test statistic Fy is calculated to determine whether the null hypothesis is rejected or
not. The sum of squares due to the regression model SSR, the sum of squares due to the
residual error SSE, the number of data points N, the number of predictor variables 7, and
the degree of freedom for the regression model T define the Fj-statistic.

_ SSR(N —1)

Fo="gep (4.16)

The Fy-statistic is used to determine the P-value, which equals the area under the curve
of the F-distribution between value Fy and infinity. If the P-value does not exceed the
specified level of significance «, the null hypothesis is rejected [192]. The threshold is set
to 0.05 for PSDefoPAT®. In the case of MP I and MP II, the significance test only confirmed
a periodic component for MP II. The fitted sine function and the de-trended time series of
MP II are presented in Figure 4.3 (b).

If Fisher’s test identifies a significant period and the subsequent hypothesis test on the
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Figure 4.3.: (a) De-noised time series (black) and the identified segments (blue) for MP I,
and (b) de-noised displacement time series (black) and fitted sine function
(blue) for MP II.

fitted sine function results in a P-value lower than 0.05, the predicted values of the periodic
component are subtracted from the de-noised time series. The resulting time series is
referred to as de-seasonalized.

Estimating the Trend Component

The last step in determining the best-fitting model for any time series in PSDefoPAT® is
estimating the trend component. This component describes the long-term evolution of a
time series. Three different regression models are considered: (1) linear, (2) quadratic,
and (3) piecewise linear trend models.
Linear or quadratic regression models can also be referred to as first- and second-degree
polynomial regression models. In general, a k-degree polynomial model can be written as
follows:

g1 = Bo+ Pit + Bot? + .. + Bit* (4.17)

where 8 denote the regression coefficients; ¢, the predictor variable; and {1 ;, the predicted
data points. The number of regression coefficients is set to two for a linear regression
model. Thus, the equation can be written as follows:

gr = Bo + Pt (4.18)

The first- and second-degree polynomial regression models are fitted to the presented data

points using ordinary least squares (OLS). The idea is to minimize the squared difference
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between the measured data points y; and the data points {1, predicted by the regression

model [192].
N N

Y (Wi—91)* =Y (vi— (Bo+B1-t:)* (4.19)

i i

The procedure is to first estimate a linear regression model, test for its significance, and
only estimate the other regression models if a linear relationship between the data points
and the predictor variable ¢ could be established. The significance test is performed with
an Fy-statistic. The level of significance « is set to 0.05, meaning that the likelihood for the
data to support the null hypothesis is less than 5 %.

A quadratic regression model is fitted to the collected data points only if the linear
regression significantly explains the relationship between the data points and the predictor
variable. In order to determine if the additional term of the quadratic regression model
contributes significantly to the explanation of the collected data points, another hypothesis
test is performed. In this case, the null hypothesis Hy assumes that the contribution of the
term in question is not significant and can be removed from the regression model.

HO ‘BJZO
H1 ﬁ] 750

(4.20)

Student’s t-statistic is used as the test statistic for this hypothesis test instead of the
Fo-statistic. The t-statistic is defined by the ratio of the regression coefficient § and the
associated diagonal element of the variance-covariance matrix Cj;.

B

b=
) ..
C]

(4.21)
The contribution of the term in question is considered significant if the associated P-value
of the t;-test statistic is lower than a predefined level of significance a. Here, the P-value
is defined as the sum of the area underneath the curve of the t-distribution between |t;|
and infinity, and —|t;| and negative infinity [181]. The quadratic regression model is
accepted as the preliminary trend model if the P-value is less than 0.01. If not, the linear
regression model is accepted as the preliminary trend model. In this case, a stricter level
of significance a was chosen to avoid over-fitting.

The last regression model to be estimated is a piecewise linear model, also referred to
as piecewise linear representation (PLR). A PLR represents a given time series with N
data points as a sequence of M straight lines [194]. The transition point between the
two segments is referred to as a CP. A PLR with only one CP cp; can be written as
follows [195]:

§i =Po + B1t + Ba(t — cp1)d
0, t<cp (4.22)
1, t>cpr

with § =
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In order to estimate the PLR of a given time series using a non-linear least squares approach,
the number of segments and the location of the associated CPs need to be determined
beforehand. Both can be determined using a time series segmentation algorithm. In the
literature, a distinction is made between online and offline algorithms. Online algorithms
do not have access to the entire time series to produce the best PLR, because they allow
data points to be added to the time series in parallel to the execution of the algorithm.
On the other hand, for offline algorithms, the time series remains unchanged during the
execution of the algorithm, and all data points are taken into consideration to find the best
PLR [196].

Keogh et al. (2004) sorts online and offline algorithms in three categories: (1) sliding-
window, (2) top-down, and (3) bottom-up algorithms. Algorithms that fall in the category
sliding-window are considered online algorithms because they do not factor in all the data
points of the time series while determining the boundaries of the segments of the PLR.
sliding-window algorithms start with the first couple of data points of the time series as
the first segment and keep adding data points until the deviation of the approximated
segment from the time series exceeds a user-specified threshold. The last added data point
is removed and used to form a new segment.

In contrast, top-down and bottom-up algorithms are offline algorithms. Both require the
entire time series to determine the boundaries of the segments. A top-down algorithm
starts with the assumption that the entire time series is one segment. If the linear approx-
imation of the segments deviates more than the user-specified threshold from the time
series, the time series is divided into two segments. Afterward, each segment is recursively
tested and further divided until the PLR fulfills the user-specified criterion. bottom-up
algorithms, on the other hand, start with the finest possible segmentation of the time
series and then merge adjacent segments as long as the resulting PLR does not surpass a
user-specified criterion.

Further, there are three different ways to formulate the concrete task of all segmentation al-
gorithms:

(1) Generating the best PLR for the given time series with K segments.

(2) Generating the best PLR of the given time series so that the maximum error
of each approximated segment does not exceed a user-specified threshold.

(3) Generating the best PLR of the given time series so that the maximum com-
bined error of all approximated segments does not exceed a user-specified
threshold.

All three types of time series segmentation algorithms were implemented with a combi-
nation of the first and third formulations of the problem in mind. The first formulation
of the task was used so that the number of segments used for the PLR could be limited.
Additionally, the choice to use the third instead of the second formulation of the problem
in combination with the first one was derived from the goal of PSDefoPAT® to find the
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best-fitting model of the entire time series and not individual segments. The tool uses the
mean squared error to evaluate the segmentation. In Figure 4.3 (a), the estimated seg-
ments of the time series of MP I are marked with blue lines. The procedure for PSDefoPAT®
is to compare the PLR of the given time series to the previously estimated preliminary
trend model. For this reason, the Schwarz-Bayesian Information Criterion (BIC), which
is a parameter that evaluates the goodness-of-fit of the regression model in question, is
calculated. It is based on the sum of squared residuals or errors, which tends to minimize
for more complex models. However, in contrast to criteria such as the adjusted coefficient
of determination Ridj or the Akaike Information Criterion, it penalizes severely for adding
complexity to the regression model and thus avoids over-fitting. The BIC can be calculated
as follows [181]:

(4.23)

BIC = In [SSE] ALLLC)

N N
where N is the number of data points and # is the number of predictor variables. The
regression model with the lowest value for the BIC is selected as the final trend model.

Evaluation of the Best-Fitting Model and the Residual Component

After estimating the best-fitting model, the sum of the trend and periodic components, it is
necessary to evaluate the quality of the selected model. How well the model reproduces
the data points of the given time series is referred to as the goodness-of-fit. Two common
parameters for the goodness-of-fit are the RMSE and the mean absolute error (MAE). The
parameters can be calculated as follows:

1

N
RMSE = N Z (yi — y%)z (4.24)
i=1
1 N
MAE = < ) [yi — 3 (4.25)
i=1

where N is the number of data points y; of the given time series and §; represents the
data points predicted by the selected model. Minimizing either parameter yields the
best-fitting model in case of normally distributed errors. In the case of a Laplacian-like
error, minimizing the MAE provides the best results. Thus, both parameters are reasonable
first choices to evaluate the selected model [197].

Another parameter that describes the goodness-of-fit of a time series model is the already
mentioned parameter adjusted coefficient of determination Ridj. Earlier in this section, it
was stated that using Ridj leads to over-fitting, which is why it is not used in the context of
model selection within PSDefoPAT®. However, its typical range, between 0 and 1, caters
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Figure 4.4.: De-noised time series (black), estimated best-fitting model (green), and
associated error margins (blue) for (a) MP I and (b) MP II.

to an intuitive analysis of the goodness-of-fit of the estimated models in a spatial context.
The closer the value is to 1, the better the fit. The parameter is calculated as follows:

SSR(N —1)
 SST(N—y—1)

Rig =1 (4.26)
where # denotes the number of predictor variables in the time series model, N is the
number of data points, and SST is the total sum of squares [198]. The estimated best-fitting
displacement time series models of MP I and MP II are displayed in Figure 4.4 with the
associated RMSE as upper and lower error margins. Their respective Rgdj values are 0.99
and 0.90, which indicates a very good fit.

In order to facilitate an easy analysis of the extracted temporal patterns of the MPs, an
intuitive standardized visualization is needed. Therefore, a graphic interface to review the
fitted time series models of individual MPs and four standardized figures were designed.
They are introduced using the example of Campi Flegrei in the next sub-section and applied
to the PSDefoPAT® results of Dataset A in the next section.

User Interface and Visualization of the Resulis

Figure 4.5 shows the user interface of PSDefoPAT®. Both the manual and automated
versions of the tool can be operated with the interface. It is structured into three areas,
which are marked in red in Figure 4.5. Area I is located in the upper left corner of the
interface. The output area is used to display the mean deformation velocity of the MPs in
the dataset, here the PSI results of Dataset A for the Parapeiros-Peiros Dam. Area II, in the
lower left corner, provides the user with a number of different functions, e.g., selecting
an MP to analyze or starting the automated processing of the entire dataset. The user
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Figure 4.5.: The user interface of PSDefoPAT® showing the components of a fully pro-
cessed displacement time series.

has the opportunity to conduct the time series analysis of selected MPs themselves in the
area of the interface located on its right side (Area III). Input on, e.g., outlier detection
or change point detection for a PLR of the time series can be provided. More information
on the manual processing of selected MPs can be found in Evers et al. (2021). In case the
automated processing of the entire dataset is selected, the user has to provide initial input
on the following:

(1) The maximum number of segments to be used in the PLR of the time series.

(2) The maximum error used to estimate the segments of a PLR.

(3) The type of segmentation algorithm to be used.

Once the parameters are set, they are valid for the entire dataset.

In addition to the user interface, presented in Figure 4.5, a standardized visualization of
the PSDefoPAT® results has been developed. There are four standardized PSDefoPAT®
figures that show selected features of the estimated time series model.

4.2 PSDefoPAT®—Time Series Analysis Approach
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The plots display:
(a) The type of time series model selected for the trend component,
(b) The goodness-of-fit of complete time series model,
(c) Whether or not the time series features a periodic component and
(d) The amplitude of the periodic component.

The selected features are displayed for each PS in the dataset, even if the feature is not
relevant to the respective time series model. For example, if a fitted time series model does
not include a periodic component, the component’s amplitude is set to zero and visualized
in white. This is done so that the four standardized PSDefoPAT® figures show the same
amount and distribution of scatterers, and thus a lack of scatterers or a deviation in their
distribution does not irritate the analyst.

The area surrounding Campi Flegrei in South Italy was chosen as an example to illus-
trate the poignancy of the standardized PSDefoPAT® figures for the interpretation of
the estimated time series models in a spatial context. The ground surface deformation
phenomenon is well documented and not to complex. Campi Flegrei is an active volcanic
caldera in South Italy, west of Naples. Historical evidence indicates volcanic activity in the
area for the past 50,000 years, with the last eruption in 1538. Geodetic measurements,
however, to monitor ground surface deformation associated with volcanic activity have
only been conducted since 1905. The measurements document a period of deflation
until 1950, followed by three episodes of uplift: (1) 1950-1952, (2) 1969-1972, and (3)
1982-1985. GNSS and DInSAR campaigns in recent years revealed that after a period
of no significant ground surface deformation, the area has been subject to uplift again
since 2011. In the 1950s, the period of unrest was not accompanied by felt seismicity.
However, in more recent episodes, the magnitude of seismic events has progressively
increased. The ground surface deformation and seismic events were also accompanied by
other indicators of volcanic activity, such as degassing. It is unclear if the current unrest
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(a) Optical Satellite Image (b) Mean Deformation Velocity

Figure 4.6.: Area of Campi Flegrei as (a) an optical image obtained from Google Earth
and with (b) its mean deformation velocity in the LOS provided by the EGMS.
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Figure 4.7.: Selected features of the best-fitting time series models derived by PSDefoPAT®
for MPs in the area of Campi Flegrei in South Italy.

is a precursor for an eruption and, if so, when the eruption will take place [199, 200].
Figure 4.6 shows (a) an optical satellite image provided by Google Earth of the area and
(b) the mean deformation velocity in LOS of the sensor extracted from a fully processed
PSI dataset provided by the EGMS (Product: Basic Descending) for the area for the time
span of 2015 to 2021. The figure clearly shows a large actively deforming area colored
in red and orange. However, the mean deformation velocity map shows no information
concerning the temporal pattern of the deformation. Figure 4.7 shows the key features
of time series models estimated with PSDefoPAT® for the area. Most MPs in the areas of
Campi Flegrei possess time series models that include a periodic component, as can be
seen in Figure 4.7 (c), and Figure 4.7 (d) that the amplitude of the periodic component
decreases from the coastline inland. The type of regression model selected for the trend
component is displayed in Figure 4.7 (a). A distinction is made between linear (cyan),
quadratic (yellow), and piecewise linear (red) regression models. MPs with no trend are
colored in dark blue. Figure 4.7 (a) indicates that the overall deformation pattern of Campi
Flegrei can be split into two distinct clusters. The first cluster concentrates on the coastline
and exhibits a piecewise linear long-term trend. The second cluster forms a semi-circle
around the first cluster and extends more inland. Most MPs located in the area of the
second cluster follow a quadratic long-term trend. For MPs outside the active deformation
area (see Figure 4.6 (b), the choice of the regression model for the trend component varies
with no apparent pattern. A look at the adjusted R? value depicted in Figure 4.7 (b) shows

4.2 PSDefoPAT®—Time Series Analysis Approach
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that this area is associated with lower adjusted R? values, indicating a not sufficiently
good fit of the model to the data. The example shows that using the four standardized
PSDefoPAT® figures, clusters with similar temporal patterns become immediately evident
to the analyst. In order to allow further exploration of the temporal deformation patterns
of individual MPs another user Interface was designed. The user interface is presented in
Figure 4.8. On the left side different function, such as selecting a specific MP to plot its
displacement time series model, are available. The user interface features two maps next
to each other. The map on the right side displays the goodness-of-fit of the estimated time
series models and the map on the left side shows one of the four standardized PSDefoPAT®
figures. The user can switch between the four figures by selecting a different tab. A more
detailed description of the user interface is given in [58].

To demonstrate the capabilities of PSDefoPAT®, the tool is tested on synthetic and real-life
displacement time series in the next two sections.

Test on Simulated Displacement Time Series

In order to test the capabilities of PSDefoPAT® a dataset with 16,000 simulated displace-
ment time series was generated. The test dataset includes time series generated with one
of the following time series models: (1) a linear trend, (2) quadratic trend, (3) piecewise
linear trend, (4) purely periodic model, (5) a linear trend with a periodic component,
(6) a quadratic trend with a periodic component, (7) a piecewise linear trend with a
periodic component or (8) no model at all. For each model the test dataset features
2,000 time series. The simulated displacement time series were generated with regard
to the two case studies, the city of Patras and the Parapeiros-Peiros Dam, presented in
Section 4.4, for a time span of three years. The dataset includes displacement time series

& Visualizaton of PSDefoPAT Results

Visualization of PSDefoPAT

Trend Model

titude

Latitude

L
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Adusted R
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Figure 4.8.: User interface to explore and visualize the PSDefoPAT® results.
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Figure 4.9.: Synthetic displacement time series (black) for each time series model consid-
ered by PSDefoPAT® superimposed with noise following a Gaussian distribu-
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tion with 0 = 1 (red), o = 2 (purple), 0 = 4 (blue) and o = 8 (green).
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with an accumulated displacements between -300 mm and 300 mm over the time span
and estimated mean deformation velocities between -9 ;,ne—f; and 96 }% The absolute
maximum mean deformation velocity, taken into consideration, is roughly a fourth of
the maximum displacement rate of 426 % that can theoretically be captured using S1
SAR sensor [53]. The maximum absolute mean deformation velocity observed in the two
case studies presented in Section 4.4 is 40 % Thus, the mean deformation velocity
of the simulated displacement time series is well within the bounds of what can be ex-
pected. Figure 4.9 shows exemplary time series for each model type, including no model
(Figure 4.9 (a)). The simulated displacement time series without noise is displayed in
black in Figure 4.9 (b) to Figure 4.9 (h). To test the limits of PSDefoPAT® the simulated

displacement time series were superimposed with noise following a Gaussian distribution
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Figure 4.10.: Type of time series models (a) set and estimated with PSDefoPAT® for
16,000 synthetic displacement time series superimposed noise following a
Gaussian distribution with (b) c =1, (¢) c =2, (d) ¢ = 4 and (e) ¢ = 8.
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with o =1 (red), o = 2 (purple), o = 4 (blue) and ¢ = 8 (green). Naturally, displacement
time series with a small deformation velocity are already quite noisy in the case of o = 1
(red), while displacement time series with a high deformation velocity are still quite crisp
in the case of ¢ = 8 (green), as can be observed in Figure 4.9 (a) and Figure 4.9 (h).
Figure 4.10 (a) shows the type of time series model set for each time series. The fig-
ure presents an easily recognizable striped pattern. Figure 4.10 (b) shows the type of
time series model estimated with PSDefoPAT® in case the time series is superimposed
noise following a Gaussian distribution with ¢ = 1. The striped pattern can be observed
again. However, it is noticeable that some displacement time series are mislabeled. For
Figure 4.10 (b) to Figure 4.10 (e) the noise level increases. As expected the number of mis-
labeled displacement time series increases as well. In total 2,465 time series are mislabeled,
in the case the displacement time series are superimposed with noise following a Gaussian
distribution with ¢ = 1, which is 15 % of the generated 16,000 displacement time series.
For the case of noise following a Gaussian distribution with ¢ = 8 the number of mislabeled
time series increases to 10,973 time series, which is 69 % of the generated displacement
time series. However, the effect the noise has on estimating the time series model varies
with the type of time series model. While the combination of a piecewise linear trend and a
periodic component is already mislabeled 37 % of the time for noise following a Gaussian
distribution with ¢ = 1, displacement time series that feature a quadratic or piecewise
linear trend or a periodic component are mislabeled less than 10 % of the time. In the
case of noise that follows a Gaussian distribution with ¢ = 8, displacement time series that
feature piecewise linear trend and a periodic component is mislabeled 86 % of the time
and displacement time series that follow a quadratic, piecewise linear trend or periodic
pattern are mislabeled 45 %, 4 % and 72 % of the time. Further, in the case of higher noise
levels and time series models that feature a change in their slope, such as piecewise linear
or quadratic trend models, PSDefoPAT® tends to favour a piecewise linear trend. This is
also valid for time series models combining a trend and periodic component. Also, in the
case of time series models combining a trend and periodic component, the estimation of
the periodic component is hampered by higher noise levels. This can also be observed
in the table presented in Figure 4.11 (enlarged in the Appendix A.1). The table presents
the set and estimated coefficients for exemplary displacement time series. The respective
time series are presented in Figure 4.9 (d), Figure 4.9 (e) and Figure 4.9(f). In the case of
the second time series (linear trend with periodic component) superimposed with noise
following a Gaussian distribution with o = 8, only the trend component of the time series
is estimated. In this case PSDefoPAT® failed to estimate the periodic component. The time
series also has the highest value for the RMSE. However, the value for Ridj is still quite
good, probably a reflection of the good estimation of the trend component. Generally, as
expected with an increase in noise the estimation of the coefficients worsens.

After testing the capabilities of PSDefoPAT® on simulated displacement time series, they
are tested on two AOIs: (1) the city of Patras and (2) the Parapeiros-Peiros Dam. The
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Figure 4.11.: Estimated coefficients for three selected displacement time series.

city of Patras is affected by natural and anthropologically induced deformation, while the
Parapeiros-Peiros Dam is only affected by anthropologically induced deformation.

Demonstration Case

In this section, the capabilities and applicability of PSDefoPAT® are demonstrated on
Dataset A, which incorporates natural and anthropologically induced deformation and
is described in detail in Chapter 3. The focus, in this chapter, is on two smaller areas,
surrounding (a) the city of Patras and (b) the Parapeiros-Peiros Dam. The mean defor-
mation maps are presented in Figure 4.12. In order to extract relevant information on
their temporal and spatial deformation patterns, they were subjected to post-processing
with PSDefoPAT®. For both case studies, it was decided to use the top-down segmentation
algorithm and a maximum number of three segments to estimate the PLR of the displace-
ment time series. The decision was made because out of the three implemented time
series segmentation approaches the sliding-window approach performs the worst and the
top-down approach out performs the bottom-up approach in case of longer segments [194].
However, the user can decide this for each dataset individually. The user can also specify
the maximum allowed error for the PLR. Since PSDefoPAT® operates entirely automatically,
the value cannot be set for each displacement time series individually. Here, the standard
deviation of the de-seasonalized time series, i.e., the de-noised time series minus the
estimated periodic component, was used as an adaptive measure that adjusts to each time
series. It measures the range of deviations expected for the individual displacement time
series. Its physical unit is mm, since the displacements are measured in mm. Its value is
higher for a noisy displacement time series than for a crisp one. For the examples below,
the error threshold for time series segmentation was set to % the standard deviation of the
de-seasonalized time series.

Figure 4.12 shows the mean deformation velocity for MPs identified in the coastal city
Patras and its suburbs (see Figure 4.12 (a)), as well as for MPs identified on the dam
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Figure 4.12.: Mean deformation velocity of (a) City and suburbs of Patras overlaid with
traces of active faults (red) extracted from NOAFAULTs database [159] and
(b) the Parapeiros-Peiros Dam southwest of Patras.

body of the Parapeiros-Peiros Dam southwest of Patras (see Figure 4.12 (b)). The PSI
analysis identified 156,767 MPs in Patras and its suburbs and 1,159 MPs on the dam body
of the Parapeiros-Peiros Dam. The colormap in Figure 4.12 extends from 15 % (dark
red) to -15 % (dark blue). The mean deformation velocities are measured in the LOS of
the sensor. Thus, a negative velocity indicates a movement away from the sensor, and a
positive velocity indicates a movement towards the sensor.

Most MPs in Figure 4.12 (a) are colored in green. The color green indicates that no ground
surface deformation occurred during the observation period, which might be misleading.
The mean deformation velocities are calculated with a linear fit, neglecting any changes or

periodicity in the temporal deformation pattern. A purely periodic deformation pattern

mm
year*

of the chapter, changes in the deformation pattern are highly relevant for assessing geo-

would be represented by a mean deformation velocity of 0 As stressed in the beginning
hazard risks or the structural health of infrastructure elements. In Figure 4.12 (a) clusters
of blue MPs noticeable in the south-east of the AOI. They are located in the mountainous
regions of the AOI, which are known for landslides [164, 165]. Thus, it stands to reason to
assume that the blue clusters are the result of actively moving landslides. Changes in their
deformation pattern, can indicate an acceleration or deceleration of the movement due
to heavy rain fall or snow melt [201] and may pose a threat to infrastructure or human
settlements [202]. Thus, their temporal pattern is an important information.

Another blue colored area is located in the North of the AOI, east of the Rio-Antirio Bridge,
directly at the coastline. The border of the cluster coincides with the trace of the western-
most part of the PPF (marked in red in Figure 4.12 (a)). Additional clusters of blue colored
MPs can be observed within the city of Patras and its suburbs. Following the coastline
from North to South, a slight alternation between blueish and green colored areas can be
observed. The pattern coincides with the traces of the RPF and the ATFZ (marked in red in
Figure 4.12 (a)).

4.4 Demonstration Case
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Figure 4.13.: Selected features of the best-fitting time series models derived by PSDe-
foPAT® for MPs in the area of the city of Patras at the North-West coastline
of the Peloponnese Peninsula, Greece. The features are overlaid with traces
of active faults extracted from NOAFAULTs database [159].

The surface deformation of the Parapeiros-Peiros Dam is displayed in Figure 4.12 (b). A
movement away from the sensor can be observed with the highest mean deformation
velocity of - 37 % at the center of the crown of the dam body. From the center of the
crown, the magnitude of the surface deformation decreases towards the edges of the dam
body. The observed spatial deformation pattern fits the pattern described in literature for
embankment dams. Concerning the temporal pattern of the dam body, it is likely that
the body does not deform evenly over time. The deformation of the dam body is mainly
influenced by the consolidation of the foundation and building material, as well as their
reaction to the rising pressure from the stored fresh water [48, 47].

As already stated, most MPs in Figure 4.12 (a) are colored in green, indicating no move-
ment is taking place, but this can of course be misleading. However, many natural or
anthropogenic deformation phenomena do exhibit a more complex temporal pattern and
therefore do not follow the assumption of a constant velocity model. For example, ground
surface deformation due to underground gas storage [28, 29], groundwater extraction [27]
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or the thermal expansion of large buildings [166] are periodic, while displacement rates
of aseismic creep [22, 23] alongside tectonic faults or subsidence rates due to urbaniza-
tion [30] can change over time and may result in a piecewise linear or quadratic trend.
Consequently, the PSI results were further processed using PSDefoPAT®. The key features
of the estimated time series models are visualized in Figure 4.13 and Figure 4.15, as
described in Sub-section 4.2.2. The results for MPs identified in the city of Patras and
its suburbs are presented in Figure 4.13. Figure 4.13 (a), presenting the city of Patras
and its suburbs, shows distinct areas in which either a quadratic (yellow), piecewise
linear (red), or no time series model (blue) was predominantly selected for the trend
component. The areas alternate along the coastline. The transition from an area mainly
experiencing a quadratic trend to an area where no trend could be identified in the center
of Patras coincides with the ATFZ (marked in black). Further north, most MPs exhibit a
quadratic trend component again. Here, the transition line is less sharply defined than
at the ATFZ. The transition roughly matches an alternative trace of the RPF [160] to
the one marked in black in Figure 4.13 (a). The area around the Rio-Antirio Bridge is
divided into two parts. The MPs closer to the shore line follow a piecewise linear and
more inland a quadratic trend. The MPs on the bridge itself are also divided in to clusters
between no trend and a piecewise linear trend. Figure 4.13 (c) reveals those MPs that are
additionally affected by thermal expansion. Hence, the periodic component. Figure 4.13
(a) also shows that the border of a cluster of MPs in the easternmost part of the AOI
exhibiting a quadratic temporal pattern matches the trace of the PPF (marked in black).
The overall goodness-of-fit presented in Figure 4.13 (b) exhibits a similar spatial pattern.
Areas in which a quadratic trend was selected predominantly feature a high goodness-of-fit.
Figures 4.13 (c) and (d) show whether or not the estimated time series model features a
periodic component and the corresponding amplitude of the periodic component. MPs with
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Figure 4.14.: De-noised time series (black), estimated best-fitting model (green), and asso-
ciated error margins (blue) for (a) MP II, located on the Rio-Antirio Bridge,
and (b) MP III, located in the mountainous area east of Patras.
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a periodic component can mostly be found near and on the Rio-Andirrio bridge, close to
the circular deformation pattern near the PF (see Figure 4.12 (a)) and in the mountainous
areas to the south and east. Processing the displacement time series MPs in Patras and
its suburbs shows that temporal deformation patterns along geophysical features such as
active faults changes. Additionally, periodic deformation patterns such as can be observed
on the Rio-Antirio Bridge, identifying which sections of the bridge are affected by thermal
expansion.

Figure 4.14 shows the displacement time series (black) and the corresponding fitted time
series model (green) for two exemplary MPs in the area of and surrounding Patras. MP II
is located on the Rio-Antirio Bridge and exhibits a periodic pattern. The estimated time
series model (green) clearly captures the periodic pattern, which would not have been
apparent in the mean deformation velocity map shown in Figure 4.12 (a). MP III is located
in the mountainous area east of Patras and thus, most likely related to a landslide. The
displacement time series (black) follows a quadratic trend, i.e., the deformation velocity
increases over time. Again, the increase in deformation velocity is information not provided
by the mean deformation velocity map presented in Figure 4.12 (a).

While first example features a city, its suburbs and adjacent rural areas, the second example
focuses on the area surrounding the Parapeiros-Peiros Dam. The PSDefoPAT® results for
MPs identified on the dam body and adjacent are presented in Figure 4.15. Figure 4.15 (a)
shows that a quadratic model (yellow) was predominantly selected for the trend compo-
nent of MPs at the center of the dam body of the Parapeiros-Peiros Dam, while a piecewise

o o
»~ o
Adjusted R?

No Trend Linear Quadratic Piecewise

e
21°426'E 21°429E 21°426'E
Longitude Longitude

(a) Model type of the trend component (b) Goodness-of-fit

Periodic

Not Periodic
l‘\) o
Amplitude [mm]

A

21°426'E 21°42.9E 21°42.6'E 21°429E
Longitude Longitude

(c) Indication of a periodic component (d) Amplitude of periodic component

Figure 4.15.: Selected features of the best-fitting time series models derived by PSDe-
foPAT® for MPs in the area of the Parapeiros-Peiros Dam southwest of Patras.
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Figure 4.16.: De-noised time series (black), estimated best-fitting model (green), and
associated error margins (blue) for (a) MP I located on the crown and (b)
MP 1V located at the center of the dam body of the Parapeiros-Peiros Dam.

linear (red) model was selected for MPs towards the edges of the dam body. Areas with a
high value for the goodness-of-fit in Figure 4.15 (b) match areas where a quadratic time
series model was selected. Figures 4.15 (c) and (d) showed that only a few MPs feature a
periodic component (magenta). Processing the displacement time series of MPs on the
dam body of the Parapeiros-Peiros Dam reveals that the dam does not deform uniformly
in time. The predominantly selected quadratic model shows that the mean deformation
velocity changes over time. In the case of the dam, the velocity first increases, which
matches the expectation. The water reservoir of the dam is flooded for the first time during
the observation period of Dataset A and thus, the pressure and dead load on the dam body
increases. Figure 4.16 shows the displacement time series (black) and the corresponding
fitted time series model (green) for two exemplary MPs located on the dam body of the
Parapeiros-Peiros Dam. MP I is located at the crown and MP IV is located at the center of
the dam body. Both displacement time series (black) follow a piecewise linear trend and
the second segment has a higher deformation velocity than the first. The displacement
time series differ in the magnitude of the deformation. The MP located at the center of the
dam body exhibits a slower deformation than the one on the crown, which is a deformation
pattern expected for embankment dams [47, 48].

Discussion

Reflecting on the introduction to this thesis, a need for automatic post-processing proce-
dures to extract relevant information on the temporal pattern of ground surface defor-
mation datasets was identified. Advanced DInSAR results are often evaluated using their
mean deformation velocity maps, which can be misleading because the mean deformation

4.5 Discussion
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velocity is estimated with the assumption of a constant velocity deformation model. Thus,
an acceleration, deceleration, or periodic pattern in the deformation processes is neglected.
However, in Sub-section 4.1 it was stated that this kind of information is of special interest
for local authorities to assess and mitigate any threat due to surface deformation. Addition-
ally, in the case of a continuous processing of a steady stream of SAR images, analyzing
the amount of produced advanced DInSAR results poses a bottleneck. The presented
post-processing tool PSDefoPAT® addresses both issues. The tool assigns each MP in the
dataset a best-fitting time series model, which provides the desired information on the
dynamics of the observed ground surface deformation. Additionally, PSDefoPAT® is fully
automated. The four standardized PSDefoPAT® figures presented in Section 4.2.2 show
key features of the estimated time series models in a spatial context and facilitate an easy
analysis of both the spatial and temporal pattern of the ground surface deformation in
conjunction.

Testing PSDefoPAT® on synthetic displacement time series in Section 4.3 showed that, as
could be expected, the reliability of PSDefoPAT® depends on the noise in the displacement
time series. In the case of a low noise level, PSDefoPAT® correctly labeled 85 % of the
synthetic displacement time series, with the exception of those that featured a trend in
combination with a periodic component. About 30 % of them were mislabeled even in the
case of low noise level. In the case of a high noise level, PSDefoPAT® only labeled 14%
of the synthetic displacement time series correctly. As already stated it was expected to
observe a decline in the accuracy of labeling the displacement time series with an increase
in the noise present in the dataset. The application of PSDefoPAT® on the simulated
displacement time series showcased this. It also stresses the importance of evaluating if
the displacement time series in the dataset are crisp or noisy before applying PSDefoPAT®
and to keep it in mind while interpenetrating the estimated time series models.
Nevertheless, the two case studies presented in Section 4.4 show that clusters of MPs
that follow a specific time series model do roughly match known geological features such
as active faults. Additionally, the case study of the Parapeiros-Peiros Dam showed that
PSDefoPAT® provides relevant information on the dynamics of its surface deformation,
which are mainly anthropogenically driven. Most MP on the dam body feature a quadratic
trend, i.e., their deformation velocity changes during the observation period as a reaction
to the flooding of its reservoir. Both case studies highlight the significance of moving
on from mainly using the mean deformation velocity maps to interpret the results from
advanced DInSAR results.

Chapter 4 Persistent Scatterer Deformation Pattern Analysis Tool



5.1

Processing Complex
High-Resolution DINSAR Data

Problem Statement & State-of-the-Art

At the beginning of this thesis, it was stressed that tailoring a continuous advanced DInSAR
processing chain to a specific large infrastructure element, such as a dam, for SHM can
pose challenges. Dams often play a vital role in their region’s socio-economic develop-
ment [203] and, in the case of dam failure, pose a catastrophic threat to human settlements
and the environment [204, 205]. Hence, implementing a SHM system to ensure their
functionality and stability is important. Part of a SHM system is monitoring their surface
deformation [125, 206]. Studies such as Tomas et al. (2013), Martire et al. (2014),
Milillo et al. (2016a), Milillo et al. (2016b), and Ullo et al. (2019) have shown that ad-
vanced DInSAR techniques such as PSI are well suited to monitor the surface deformation
of dams and provide vital information for SHM. Especially the study on the Mosul dam,
conducted by Milillo et al. (2016b), showcased the advantages of advanced DInSAR and its
potential contribution to the SHM of large infrastructure elements. In this study, ENVISAT,
S1, and COSMO-SkyMed SAR data for the time spans from 2004 to 2010 and 2014 to
2016 were used to map the surface deformation of the Mosul dam, which is the largest
hydraulic structure in Iraq and was built in an unfavorable geological setting, character-
ized by highly soluble materials. Grouting was necessary to close pathways opened by
water infiltrating the foundation material. Limiting the water level in the reservoir and
intervention by the US Army Corps of Engineers resulted in lower hydrostatic pressure on
the foundation and a reduction in surface deformation. PSI analysis of the data revealed
that the previously slowed-down deformation of the Mosul dam increased again after the
Islamic State captured the structure, and grouting operations came to a stop. The study
showcased one major advantage of using advanced DInSAR for SHM: no personnel or
sensors are needed on site, making the technique well-suited for the SHM of remotely
situated or hard-to-reach infrastructure elements. This is especially interesting for dams
located in regions of geopolitical conflict, such as the Mosul Dam in Iraq, the Grand
Ethiopian Renaissance Dam in Ethiopia [210] or the Enguri Dam in Georgia [211].

The dam that serves as an example within the scope of this thesis is the Parapeiros-Peiros
Dam in Greece, which is introduced in detail in Chapter 3. The dam is of particular
interest because it was only recently built and experienced the first filling of its reservoir.
Hence, it was expected to undergo significant surface deformation. Dams are subject to
various surface deformations that can either be localized, such as varying subsidence rates
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alongside the crest of the dam body, or occur on a larger scale, such as slope instabilities
along the shoreline of the water reservoir [47, 48]. Hence, a wide coverage is needed
to monitor large-scale deformation and a high spatial resolution to monitor vulnerable
areas. This requirement can only be fulfilled by two sets of SAR images. For example,
S1 SAR images fulfill the requirement of wide coverage, while high-resolution TSX SAR
images fulfill the requirement of high spatial resolution. Due to the higher resolution
(0.6 m in slant range and 1.1 m in azimuth direction [49, 50]) of high-resolution TSX data
compared to S1 data, the spatial variability of the deformation pattern can be captured in
greater detail and better localized, an important aspect for SHM. However, the different
spatial resolution and wavelengths used by the S1 and TSX sensors, can result in SAR
image time series that are unequally complex to process. The downside of a high spatial
resolution is that a high spatial variability of the deformation pattern can lead to challenges
during processing, since most PSI algorithms either use a predefined deformation model
or enforce spatial smoothness of the deformation pattern during PS selection. Potential
PS deviating from either option are not considered PS. The PSI algorithm used within the
scope of this thesis, the StaMPS algorithm, requires spatial smoothness of the deformation
pattern during PS selection.

Another challenge is the shorter wavelength A of the TSX sensors (Arsx =3.1 cm [50])
compared to S1 (As; =5.6 cm [34]). PSI exploits the difference in phase between two
consecutive SAR images to measure displacements, which corresponds to a fraction of A.
Due to the ambiguous nature of the observed wrapped phase, a requirement to unwrap
the observed phase is that the phase difference between two neighboring PS over two

(a) 11/11/2020 & 09/09/2019 (b) 11/11/2020 & 01/30/2020

(c) 11/11/2020 & 01/27/2021 (d) 11/11/2020 & 09/02/2022

Figure 5.1.: Selected differential TSX interferograms mapping the ground surface
deformation between September 2019 and September 2022 of the
Parapeiros-Peiros Dam southwest of Patras.
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consecutive differential interferograms is less than 7t [53]. The displacement resulting
in a shift of 7t can be estimated using %. Hence, the phase difference captured with
TSX exceeds the threshold of 7t quicker than the ones captured with S1. This can result
in multiple tightly arranged fringes, as can be seen in the differential interferograms
presented in Figure 5.1. The figure shows the fringes, i.e., a phase shift of 27, typically
associated with DInSAR in the commonly used rainbow color scheme on the dam body
of the Parapeiros-Peiros Dam during the filling of its reservoir. The displayed differential
interferograms feature multiple deformation centers surrounded by multiple fringes. Since
a displacement of % in LOS results in a full 27t phase shift [79], the displacement between
the 11/11/2020 and 09/09/2019 on the dam body is about 4.7 cm (see Figure 5.1 (a))
and the displacement between the 11/11/2020 and 09/02/2022 on the dam body is about
7.8 cm (see Figure 5.1 (d)). It is also worth mentioning that the dam body is roughly
100,000 m? large and the differential interferogram for the 11/11/2020 and 01/30/2020
shows about four deformation centers in that relatively small area (see Figure 5.1 (b)).
Thus, the spatial deformation pattern on the dam body is highly variable. Also, a mean
deformation velocity of roughly - 40 % can be considered rather quick in the context of
PSI processing. As already stated, both the spatial variability of the deformation pattern
and the relatively quick movement, i.e. phase differences surpassing 7r, can cause issues
during PSI processing. Thus, potentially making the high-resolution SAR dataset with the
shorter A more complex to process. The two vital processing steps mostly affected by this
are: (1) PS selection and (2) Phase unwrapping.

As for the PS selection, Evers et. al (2022) reviewed the success different PS selection
criteria had in selecting PS on Parapeiros-Peiros Dam for monitoring the surface defor-
mation of embankment dams. The study concluded that the selection criteria defined by
Ferretti et al. (2002) and Hooper et al. (2004) have the potential to complement each other
in the case of monitoring highly spatially variable deformation of a large infrastructure
element, such as dams. Additionally, Piter et al. (2024) faced a similar challenge while
monitoring infrastructure for transportation using S1 SAR images. Here, the medium
resolution of the sensor led to a low PS coverage. Piter et al. (2024) also proposed to
improve the coverage by combining multiple pixel selection criteria.

In the case of phase unwrapping, unwrapping errors due to large phase differences in
adjacent pixels are a known challenge in DEM reconstruction. The elevation difference
that results in a 27t phase shift is referred to as the height of ambiguity (Equation 2.16 in
Section 2.1.1) and is affected significantly by the spatial baseline. Larger spatial baselines
result in a smaller height of ambiguity and thus, in larger phase differences between pixels
and possibly unwrapping errors. Nevertheless, larger spatial baselines are still desired
since they provide better height accuracy in DEM reconstruction. This issue was resolved
for the TanDEM-X mission, whose objective it was to create a high-quality global DEM,
through a multi-baseline acquisition plan. Interferograms with smaller baselines were
recorded and unwrapped first. In a second step, interferograms with larger baselines were
acquired and processed jointly with the small baseline interferograms. The small baseline

5.1 Problem Statement & State-of-the-Art
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interferograms were used to obtain the correct ambiguity number, i.e., multiplier needed
to obtain the absolute phase (see Sub-Section 2.1.4) [213, 214]. In other examples, the
phase difference was simply reduced by reconstructing the wrapped topography-induced
phase from an already existing DEM of the area, often with low resolution, and subtracting
the wrapped topography-induced phase from the interferometric phase, so that only the
residual phase needs to be unwrapped [215, 216]. A similar approach, as was suggested by
Evers et al. (2024), can be realized for advanced DInSAR datasets using the post-processing
tool PSDefoPAT®, which is presented in Chapter 4. The tool extracts temporal and spatial
deformation patterns from advanced DInSAR datasets by estimating a best-fitting time
series for each displacement time series. The proposal to improve or ease the unwrapping
process of a complex-to-process dataset is to extract displacement time series models from a
simpler-to-process dataset, which records the surface deformation of the same area and for
the same time span as the complex-to-process dataset, but with a different SAR sensor and
a different acquisition mode. The time series models, extracted from a simpler-to-process
dataset, can be used to reconstruct an idealized wrapped deformation-induced phase and
subtract it from the differential phase of the more complex to process dataset prior to phase
unwrapping. Thus, reducing the phase differences between adjacent PS over consecutive
differential interferograms.

In this chapter, first, an approach for combining the selection criteria defined by Fer-
retti et al. (2002) and Hooper et al. (2004), so that they complement each other, is
presented and demonstrated. Following that, an approach to support the unwrapping step
of a complex-to-process dataset with a reconstructed idealized deformation-induced phase
generated based on displacement time series models extracted from a simpler-to-process
dataset is presented and demonstrated. Within the scope of this thesis, the complex-to-
process dataset is Dataset B and the simpler-to-process dataset is Dataset A. Both datasets
cover the area of the Parapeiros-Peiros Dam from September 2019 to September 2022 and
are introduced in Chapter 3.

Adaptations to PSI Processing

In this section, the adaptation to the conventional advanced DInSAR processing chain,
presented in Figure 3.4 in Chapter 3, needed for combining different PS selection criteria
to support PS selection and the use of a reconstructed idealized deformation-induced phase
to support the unwrapping process, are outlined and demonstrated.

The section is divided into two sub-sections. The first sub-section outlines the approach
to combine different pixel selection criteria [59]. The second sub-section addresses the
reconstruction of the idealized unwrapped deformation-induced phase ¢4, from the
simpler-to-process dataset (Dataset A) based on the displacement time series models
dimodel Provided by PSDefoPAT® [60]. This reconstructed ¢gef, is then wrapped and used

Chapter 5 Processing Complex High-Resolution DINSAR Data
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Figure 5.2.: Scatterer plot of D4 and <y for PSC.

as a correction term during the phase unwrapping of the complex-to-process dataset
(Dataset B).

PS Selection Supported by Combining PS Selection Criteria

As already stated, a solution to increasing the number of PS, is to combine different selec-
tion criteria. Two commonly used PS selection criteria are the amplitude dispersion index
Dy, first used by Ferretti et al. (2002), and the residual phase variability <, introduced
by Hooper et al. (2004). Ferretti et al. (2002) considers all pixels with D4 < 0.25 as
PS pixels. while Hooper et al. (2004) considers all pixels with D4 < 0.4 as PSC pixels,
whose 7 is calculated in a second step. The threshold for - is calculated for every dataset
individually. It is estimated to be 0.3 for Dataset A and Dataset B. Pixels with v < Y1nreshold
are not considered PS. Figure 5.2 (a) shows a scatterer plot between y and D 4 for PSC
identified in Dataset B. The scatterers are colored based on which PS selection criteria
they meet. The black colored PSC were not selected as PS, the dark blue colored PSC
were selected as PS based on their v, the light blue PSC were selected based on their
Dy, and the purple PSC fulfill both criteria. Noticeably, there are PSC with a low D4
and < beneath the threshold (light blue). Thus, they are not selected as PS by the PSI
algorithm StaMPS. As stated in Section 5.1 the PSI algorithm StaMPS requires spatial
smoothness of the spatial deformation pattern to accurately estimate the noise of the
PSC. Figure 5.1 showed that this is likely not the case for Dataset B. Hence, negatively

5.2 Adaptations to PSI Processing
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influencing the 7 values for the PSC on the dam body. Assuming that the high spatially
variable deformation pattern is the cause for the PSC being excluded, it stands to reason
to re-integrate them after the PS selection process in StaMPS and processes both sets
of PS pixels together without further altering the algorithm. Figure 5.3 (b) shows the
mean deformation velocities in LOS of the sensor for pixels selected as PS by combining
the selection criteria defined by Ferretti et al. (2002) and by Hooper et al. (2004). The
coverage on the dam body is significantly better than only using the selection criteria by
Hooper et al. (2004), which can be seen in Figure 5.3 (a). Combining the selection criteria
resulted in an increase of PS form 50,608 to 60,346 on and around the dam body. The dam
body is now sufficiently covered to observe its surface deformation. The mean deformation
velocity map in Figure 5.3 (b) depicts a displacement of the dam body away from the
sensor, which is in agreement with the surface deformation observed in the S1 dataset
(results are presented in Chapter 4). However, inspecting the mean deformation velocity
map in Figure 5.3 (b) reveals sharp transitions in the color gradient, which indicate phase
unwrapping errors. Resolving these is addressed in the next sub-section.

Phase Unwrapping Supported by an Idealized
Deformation-Induced Phase

Reconstructing the Idealized Deformation-Induced Phase

Reconstructing an idealized unwrapped deformation-induced phase ¢gcf, consists of seven
steps, which are visualized in Figure 5.4. The first step is to use the time series model
dmodel €stimated by PSDefoPAT® of each MP in Dataset A to estimate the displacement
rates for the time stamps of Dataset B. Once the displacement rates for the new time stamps
are acquired, the displacement rates need to be adjusted for the difference in the LOS of

1
21°42.6'E 2 E
Longitude Longitude

(a) Before (b) After

21°42.6'E

Figure 5.3.: Mean deformation velocity map for the Parapeiros-Peiros Dam derived from
the TSX SAR image time series (a) before and (b) after combining different
selection criteria so that they complement each other.
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the sensors and the date of the reference image between Dataset A (11/08/2020) and
Dataset B (11/11/2020). If the dates of the reference images deviate from one another, the
displacement time series needs to be shifted so that on the date of the reference image of
Dataset B, the displacement is 0 mm. As for the adjustment, which needs to be made due to
a difference in LOS between Dataset A and Dataset B. The following equation describes the
relationship between the displacement d; s in LOS direction and the 3D displacement:

[

u

dsp = | de |, (5.1)

n

[

i.e., vertical displacement d, and displacement in the north-south d, and east-west d.
direction [10]:
3 3

dLOS = du : COS(@) - Sii’l((:) ’ (dn ’ Cos(wheading - 7) +de - Sin(wheading - 7)) (5.2)

The equation can also be used to estimate the sensitivity of a SAR sensor, capable of
interferometry, to map ground surface displacement in each direction. A heading of
(Dheading = 190.28° and a mean incidence angle of {mean = 33.74° for the S1 images of
Dataset A results in a sensitivity of 0.83 for vertical displacement and -0.10 and 0.55 for
displacement in the north-south and east-west direction. For the TSX images of Dataset B
with a heading of 189.08° and a mean incidence angle of 42.2°, the sensitivity is 0.74 for
vertical displacement and -0.11 and 0.66 for displacement in the north-south and east-west
direction. In addition, measurements with surface monuments on the dam body have
shown that in the examined time span, the total horizontal displacement downstream
of the dam body of the Parapeiros-Peiros Dam amounts to 1 cm, and the total vertical
displacement amounts to 11 cm [167]. Since the horizontal displacement is less than
one f—oth of the vertical displacement, and both datasets are most sensitive to the vertical
component of the displacement, it stands to reason to only consider vertical displacement

i Acquire Knowledge Concerning Deformation Pattern { Phase Reconstruction!

Acquire processed Tailor Displacement Process Dataset with New Time Sampling &
DInSAR Dataset Time Series as needed PSDefoPAT New Coordinates
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_______________________________________________

Figure 5.4.: Proposed workflow to reconstructing an idealized unwrapped
deformation-induced phase ¢gefo-
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Figure 5.5.: Exemplary displacements for one differential interferogram at the coordinates
of PS identified in (a) Dataset A and (b) Dataset B.

when adjusting the displacements derived from the displacement time series model for
the LOS of Dataset B. Similar assumption have been made by Milillo et al. (2016a) and
Ziemer et al. (2025) in order to compare displacement rates of dam bodies acquired with
different sensors. Based on Equation 5.2, the following equations can be used to project
the displacement d; g in LOS direction of S1 and TSX in their vertical component d:

dros, s, = du - cos(Cs,) (5.3)

and
dros, Tsx = dy - cos(&rsx)- (5.4)

Combining both equations allows to project the vertical component of dios, s, t0 dios, Tsx:

COS((?Tsx)

c0s(Zs,) -2

dros,Tsx = dros, s; -

The next step is to estimate the displacements at the coordinates of the PS found in
Dataset B for each differential interferogram. This is done by fitting a surface to the
displacements at the coordinates of the PS in Dataset A using thin-plate spline interpolation,
which is an algorithm designed for the interpolation of scattered data. The interpolation
is based on a weighted sum of locally defined thin-plate splines [218]. The regression
surface of each differential interferogram is used to retrieve the displacement at the
coordinates of Dataset B. An example of the original displacements at the coordinates of
Dataset A and an estimation of the displacements at the coordinates of Dataset B using
thin-plate spline interpolation is displayed in Figure 5.5. Making all the adjustments to the
idealized displacement time series and estimating the displacements at the coordinates of
PS in Dataset B, yields a set of idealized displacement maps that match the differential
interferograms of Dataset B.
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The next step is to generate the idealized ¢g4.f, based on the displacement maps. The
relationship between dios and ¢gef, is [10]:

47t
Pdefo = TdLOS- (5.6)

Using Equation 5.6 yields a set of maps containing the idealized ¢qef,, Which is then
wrapped. ¢qef, and the wrapped idealized deformation induced phase 14, resulting from
the displacements presented in Figure 5.5 are presented in Figure 5.6. Once the phase
is wrapped to an interval of [—7t, 77), it can be incorporated into the phase unwrapping
step of the advanced DInSAR processing chain, presented in Figure 3.4 in Chapter 3.
Figure 5.7 shows an exemplary differential interferogram of Dataset B (a) before and (b)
after 4ef, Was subtracted. It shows that this approach compensates for a significant part
of the deformation pattern. The next paragraph outlines how the approach can be used to
support the steps of phase unwrapping.
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Figure 5.7.: The differential phase of an exemplary interferogram (a) before and (b) after
subtracting the gef,.
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Phase Unwrapping with an Idealized Deformation-Induced Phase

Similarly, as it is done DEM reconstruction [215, 216], an already known deformation-
induced phase can be used to aid the phase unwrapping step in a PSI analysis. As outlined
in Sub-section 5.2.2, the idealized ¢4.f, is reconstructed using displacement rates based
on time series models obtained from Dataset A, here a S1 SAR image time series. Once
Paefo is estimated and wrapped, it can be subtracted from differential interferograms of
Dataset B, here a TSX SAR image time series. This step reduces the phase difference of MPs
connected by the same arc and the difference of phase of an arc in subsequent differential
interferograms. For successful unwrapping, the phase difference should be less than 7 [53,
82]. Since, the StaMPS PSI algorithm offers the option to subtract phase contributions
resulting from changes in atmospheric conditions and the spatially correlated look angle
error, the option to also subtract an idealized 4.5, was added.

After subtracting the idealized 1 4ef,, the established StaMPS phase unwrapping procedure
is carried out, and the residual phase of the differential interferograms of Dataset B is
unwrapped. Afterwards, the idealized ¢qef, is added back to the now unwrapped residual
phase, yielding a set of unwrapped differential interferograms for Dataset B. The mean
deformation velocity map resulting from this approach is presented in Figure 5.8 (b).
In comparison the mean deformation velocity map resulting not using this approach is
presented in Figure 5.8 (a). Areas, in which the mean deformation map changed are
marked in black. In those areas in Figure 5.8 (a) unwrapping errors in space can be
observed. They are visible in form of sharp transition lines between colors (here green-
yellow to red). In Figure 5.8 (b) these transition lines are more smooth. To show this
in more detail, exemplary displacement time series of individual PS are presented in
Figure 5.9. In this figure, unwrapping errors in time can be observed. They manifest in
form of significant jumps in the displacement time series. Time windows, in which the
displacement time series deviate significantly, are marked in black. It can be observed that

JEsn. To Garmin, GeoTechaologies. Inc, METUNASA, USGS| 40 - T
21°42.6'E 21°42.8'E 21°43E 21°43.2'E 21°42.6'E 21°42.8'E
Longitude Longitude

s, Tomtorm, Gar e, METINASA, USGS]

" -40
21°43.2E

(a) Without subtracting 1 4ef, (b) With subtracting 1 4ef,

Figure 5.8.: Mean deformation velocity maps for PS identified on the dam body after com-
bining different PS selection criteria to complement each other (a) without
and (b) with subtracting 1 4ef, prioir to phase unwrapping
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the phase unwrapping procedure was improved by the above presented approach resulting
in far smoother displacement time series in some of the marked time windows. However,
it is also noticeable that there is an artifact appearing in all magenta colored displacement
time series in the middle of the time series, which is most likely an effect transferred from
Dataset A.
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Figure 5.9.: Displacement time series of exemplary PS in Dataset B (a) on top of the
crown, (b) at the center and (c) on the right and (d) left side of the down-
stream shoulder before (dark blue) and after (magenta) incorporating the
deformation-induced phase. Time windows, in which the displacement time
series deviate significantly are marked in black.
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Discussion

At the beginning of the chapter, the parameters spatial resolution and wavelength of the
used sensor are discussed as aspects that can determine the complexity of processing
a dataset in the context of SHM, where the object of interest is expected to undergo
significant deformation. Hence, SAR image time series recording the same deformation
over the same time span with different sensors, e.g., S1 and TSX, are unequally complex
to process.

A higher resolution allows for capturing spatial deformation patterns in greater detail
and better localization, both important aspects for SHM. The downside is that a high
spatial variability of the deformation pattern can lead to challenges during processing.
This affects mostly the steos of PS selection and phase unwrapping. In this chapter, two
approaches to support these steps are presented. In the case of PS selection, it is suggested
to combine the criteria defined by Ferretti et al. (2002) and Hooper et al. (2004) so that
the resulting set of PS complement each other. The approach is demonstrated on a TSX
SAR image time series that maps the deformation process of the Parapeiros-Peiros Dam
during the filling of its reservoir, a time in which the dam is expected to undergo significant
deformation. Figure 5.3 shows that this approach increases the PS coverage on the dam
body significantly. The number of PS increased form 50,608 to 60,346 on and around
the dam body. This did not just simply lead to a densification of the PS, the approach
effectively closed significant gaps in the coverage. Those gaps prevented the analysis of the
surface deformation, the Parapeiros-Peiros Dam experienced, entirely. Hence, combining
PS criteria is an effective approach to PS in complex-to-process datasets.

The second parameter, the wavelength, determines the displacement that results in a
complete 27t phase shift, i.e., a fringe in a differential interferogram, and can be estimated
by % Hence, shorter wavelengths result in more fringes that are tightly spaced than
longer wavelengths. This can negatively influence the unwrapping process if it results
in the phase difference between adjacent PS over consecutive differential interferograms
exceeding 7t. Figure 5.1 shows that for the TSX SAR image time series, mapping the
deformation of the Parapeiros-Peiros Dam during its filling process, this is likely the
case. In this chapter, an approach to reduce these phase differences by incorporating the
idealized deformation-induced phase reconstructed from the displacement time series
model extracted with PSDefoPAT from the simpler-to-process dataset, here a S1 SAR image
time series (Dataset A) is presented and demonstrated. The presented approach does result
in improvements in the phase unwrapping step in and thus, smoother displacements in
space and time, which is clearly shown in Figure 5.8 and Figure 5.9. However, Figure 5.9
also shows that unwanted effects can be transferred from the simpler-to-process dataset to
the complex-to-process dataset. Hence, it is important that the time series models extracted
from simpler-to-process dataset are smooth and without artifacts themselves. This also
underlines the importance of noise reduction in PSDefoPAT®. Alternatively, displacement
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time series acquired with, e.g., GNSS, could be used instead of a simpler-to-process DInSAR
dataset to avoid transferring any unwanted effects related to PSI processing.

5.3 Discussion
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6.1

Strategies to Process a Steady
Stream of SAR Images

Problem Statement & State-of-the-Art

As stressed in Section 1.1, continuously analyzing a steady stream of SAR images for moni-
toring tasks entails frequent processing, which raises questions concerning an adequate
processing strategy. In general, three different strategies are imaginable. The first strategy
is to always process all available SAR images W, i.€. a growing dataset. This strategy
will be referred to as Strategy A. The second strategy is to process the steady stream of SAR
images in consecutive non-overlapping subsets, which will be referred to as Strategy B. The
third strategy is to use overlapping consecutive subsets, similar to a sliding-window. This
strategy will be referred to as Strategy C. All three strategies are visualized in Figure 6.1.
In literature, there are already several examples of monitoring systems or services that
process the steady stream of SAR images provided by the S1 mission continuously. The
first example ever presented is the ground surface deformation monitoring system set
up for the Tuscany region, presented by Raspini et al. (2018). The monitoring system
utilizes a parallelized version of SqueeSAR™ [16] and generates updates of the ground
surface deformation dataset of Tuscany with each newly available SAR image. After each
analysis, local authorities are provided with a monitoring bulletin highlighting areas with
deformation anomalies, making it one of the first Ground Motion Services (GMS) to be
introduced. Regarding the proposed processing strategies above, the monitoring system of
the Tuscany region falls under Strategy A.

s Strategy A

— 30

— 30 Strategy B

— 0 Strategy C

J | |
2017 2018 2019 2020 2021 Time

Figure 6.1.: Visualization of the three proposed processing strategies for PSI.
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The first nationwide GMS presented was InSAR Norway (https://insar.ngu.no/). The
primary objective of the service is to detect and map landslides. The baseline prod-
uct was launched in November 2018. It was generated by the Norwegian Research
Center (NORCE) utilizing S1 SAR images from 2015 to 2018. The German GMS, re-
ferred to as BodenBewegungsdienst Deutschland (https://bodenbewegungsdienst.bgr.
de/mapapps/resources/apps/bbd/), was launched a year after the Norwegian GMS.
The Federal Institute for Geosciences and Natural Resources (BGR) led the initiative,
while the DLR carried out the processing of the S1 images covering Germany with a
wide-area PSI approach. The baseline product was generated using the available S1 data
from November 2014 to March 2019. The GMS on a continental scale is the EGMS
(https://egnms.land.copernicus.eu/). The service provides ground motion data for all
European countries that support the Copernicus initiative, as well as the United Kingdom.
The EGMS publishes an update of the ground motion data once a year, covering the
past five years [173, 219]. While the EGMS falls under Strategy C, the exact processing
strategy of InNSAR Norway and the BodenBewegungsdienst Deutschland is unknown. Based
on the products available online, it can be deduced that InSAR Norway also falls under
Strategy C. It is currently possible to download the data from four distinct time spans
(2015-2019, 2018-2022, 2019-2023, and 2020-2024), which overlap. In the case of the
BodenBewegungsdienst Deutschland, only one time span (2019-2023) is available, making
it difficult to deduce its processing strategies. Examples for Strategy B cannot be found in
the literature.

Regarding the question of which processing strategy is the most suitable for continuous
monitoring tasks, some considerations have to be made. A drawback of the PSI technique
is that it only extracts ground surface displacement rates from pixels behaving coherently
for the entire observation time [43, 44]. This restriction leads to a loss in PS density,
the longer the examined SAR image time series gets [61]. Thus, a continuously growing
dataset with an expanding observation period is likely to result in a continuous loss of PS.
A lower PS density impedes an accurate assessment of the spatial pattern of the ground
surface deformation and the extent of the affected area. This limitation mainly concerns
Strategy A.

Raspini et al. (2018) counteracts this by employing SqueeSAR™ [16], a PS and DS
algorithm, which increases the number of MPs.

Another option to prevent the decline of this PS density is to include temporary coherent
PS pixels. Perissin and Wang (2012) and Dorr et al. (2022) presented advanced DInSAR
algorithms that include temporary coherent PS pixels. The basic idea of the algorithm
presented by Perissin and Wang (2012) is to loosen the restrictive conditions imposed by
PSI techniques to identify PS. The approach is referred to as quasi-PS technique. Three key
changes were made: (1) The SAR images are not required to be correlated with a unique
common reference image, (2) the estimation of height and displacement of quasi PS is
based on a pixel-specific subset of interferograms, and (3) spatial filtering is applied to
improve the SNR. The algorithm presented by Dorr et al. (2022) builds upon the approach
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proposed by Hu et al. (2019), which leverages the distinct distributions of amplitude
values for PS, coherent and incoherent DS. The amplitude value distribution for incoherent
scatterers follows a Rayleigh distribution. The amplitude value distribution of PS, on the
other hand, can be described by a Rice distribution with high SNR. Coherent DS have
an amplitude value distribution fitting a Rice distribution with low SNR. In the case of
temporary coherent scatterers, it is assumed that the distribution of amplitude values
changes over the observation time. They employ hypothesis testing to identify scatterers
that undergo a change in their amplitude dispersion. Dérr et al. (2022) introduce an
additional phase-based change point detection algorithm, based on a likelihood ratio test,
to iteratively refine the change date of the scatterers. For phase unwrapping, they adapted
the algorithm implemented in StaMPS, allowing them to jointly unwrap the phase of PS
and temporary PS. Applying their approach to a time series of S1 SAR images covering the
Vietnamese city Ca Mau between November 2016 and November 2020 allowed them to
increase the number of PS from 46,553 to 121,032.

Other aspects to consider, while processing a steady stream of SAR images, are the process-
ing time, computational load and hard disk space. Concerning processing time, Raspini et
al. (2018) attempts to reduce the processing time by parallelizing the SqueeSAR™ [16]
algorithm. In contrast, a characteristic of Strategy B and Strategy C is to limit the number
processed SAR images and thus, limit the processing time. Additionally, limiting the
number processed SAR images will also reduce hard disk space. Another algorithm, which
needs to mentioned in this context is the Sequential Estimator [221]. The algorithm recur-
sively estimates and analyzes covariance matrix of wide-swath and long-term DInSAR time
series to identify DS by dividing the dataset into small batches. The batch is compressed
after processing and from each compressed batch an artificial interferogram is formed to
link already processed data batches to the most recently acquired SAR acquisitions. Both,
the computational load and hard disk space are reduced with this approach.
Additionally, the comparability of the ground surface deformation data generated with
each update of the dataset is a concern. This mainly affects Strategy B and Strategy C. If
processing is carried out independently for each subset, it is unlikely to observe the same
PS in consecutive subsets. However, it stands to reason that being able to observe the
same PS would be preferable for a monitoring system. In a previously conducted study,
Evers et al. (2020) proposed to solve this by introducing two distinct reference images for
co-registration and interferogram formation.

Further, concomitant with independent processing is the question of inefficiency. Since the
majority of the SAR images in the dataset are reprocessed each time the dataset is updated,
in the case of Strategy A and Strategy C. Implementing the PSI processing using two
distinct reference images, as proposed by Evers et al. (2020), opens the door to re-using
intermediate results. This potentially reduces processing time, required hard disk space,
and performs more efficiently.

A final aspect is the pace in which updates are provided. Raspini et al. (2018) provides an
update with each newly available SAR image, while most nation- or continental wide GMS
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offer a yearly update [173, 219]. The pace of updates is mainly an issue for Strategy B.
Since the subsets in Strategy B do not overlap, the user needs to wait until enough new
SAR images have been recorded to conduct a PSI analysis. Strategy A and Strategy C allow
for faster paced updates, as seen by Raspini et al. (2018).

In this chapter, the three proposed processing strategies are evaluated concerning their per-
formance. Therefore, Dataset C, described in Chapter 3, is divided into subsets to simulate
a steady stream of SAR images and processed according to each processing strategy, see
Figure 6.1. In order to take full advantage of Strategy C, an adaptation of the advanced
DInSAR processing chain, displayed in Figure 3.4, is presented. The adapted processing
chain:

(1) uses two distinct reference images for co-registration and interferogram
formation and

(2) re-uses intermediate results.

This processing chain is referred to as the PSISlider processing chain and will be presented
in Sub-section 6.2.1.

Different Processing Strategies for PSI

In this section, the three different processing strategies to continuously process a steady
stream of SAR images based on the advanced DInSAR processing chain, presented in
Figure 3.4, are introduced. The processing strategies are:

(A) Growing dataset,

(B) Non-overlapping subsets and

(C) Overlapping subsets.

All three processing strategies are visualized in Figure 6.1. Additionally, in this section,
changes made to the advanced DInSAR processing chain are outlined.

Strategy A: Growing Dataset

The first strategy represents the typically applied approach to processing SAR image time
series. All W, available SAR images are processed at once. To facilitate continuous
monitoring, the dataset is regularly updated once a user-specified number W, 44 of new
SAR images are available. The entire SAR time series is reprocessed with each update
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(following the processing chain presented in Section 3). In the case of Strategy A, the
number of SAR images considered in each update Wpeer is equal to Wigia. Thus, Weypset
continuously increases, likely leading to a loss in the number of PS Nps.

Strategy B: Non-Overlapping Subsets

The second strategy is to process consecutive but temporally non-overlapping subsets.
Wubser i €ach subset is kept constant. Since the consecutive subsets do not overlap
temporally, the ground surface displacement maps and displacement time series are only
updated once W pser New SAR images have been recorded. The new subset is processed
completely independently of all previous subsets (following the processing chain presented
in Section 3). Therefore, each subset features a distinct reference image, making it
challenging to compare results from the different subsets. Since Wt is kept constant, it
is likely that Npg remains steady.

Strategy C: Overlapping Subsets

The third strategy is to process the steady stream of SAR images with temporally over-
lapping subsets, similar to a sliding-window approach. Wg,s: remains constant for all
processed subsets. Each time a user-specified number Wang. Oof new SAR images are
available, W pange 0ld SAR images are removed from and Wpange new SAR images are
added to the time series. The new subset is processed to update the ground surface
deformation dataset. Since the consecutive subsets overlap, Wieep = Wsybser — Wehange
SAR images are taken on from the previous subset. This allows for the reference image to
remain unchanged for a while and opens the door to re-using intermediate results. The
processing chain corresponding to Strategy C is referred to as the PSISlider processing
chain.

Interferometric

Wait for Wenange Remove Wenange Pre-Processing

new SAR Images old SAR Images (with Co-registration
Master)

Calculate Spatial
Baselines with
Local Master

Interferometric Calculate

Pre-Processing Subset A Differential

(with Co-registration Results P etz Interferograms
Master) with Local Master

Figure 6.2.: Workflow for the PSISlider processing chain.
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Advantages and Disadvantages of the Three Processing Strategies

Each strategy has its pros and cons. In case of the Strategy A, Wgpser and the time span the
dataset covers increases continuously, likely resulting in a decrease in Nps. Since a pixel
needs to be coherent over the majority of the time series to be considered a PS [43, 44].
The longer the time series gets, the less likely it is for this to occur. Another factor to keep
in mind is that the results of a PSI analysis are typically presented in a mean deformation
velocity map. In the case of a long time series, short-term deformation or changes in the
deformation velocity are smothered in the mean deformation velocity map.

Strategy B and Strategy C exploit consecutive temporal subsets of W, available SAR
images, keeping Wgupser and the time span the subsets cover roughly constant. Thus, it
stands to reason that both strategies will potentially result in a relatively consistent Nps.
In addition, the shorter time span allows short-term deformation or deformation velocity
changes to become recognizable in the mean deformation velocity maps.

A disadvantage of Strategy B is that each subset is processed independently, making it
difficult to compare the results or possibly re-use intermediate results. Additionally, the
absence of overlap between subsets results in users having to wait longer for updates of the
mean deformation velocity map and its corresponding displacement time series. Before a
new subset can be processed, Wgpser NeEW SAR images need to be recorded. Strategy A and
Strategy C allow for a quicker pace in updating the ground surface deformation dataset,
since Waqq and W pange are generally smaller than Wpge-

In a nutshell, Strategy C is the most promising one, combining the advantages of Strategy A
and Strategy B. The shorter time span and constant W Will potentially result in a
relatively steady Nps. The temporal overlap allows for a quicker pace in updating the
results and potentially opens the door to re-using intermediate results from previous
subsets.

The next section outlines the possibilities to re-use intermediate results and the adaptation
made to the StaMPS PSI algorithm to facilitate the re-use in the PSISlider processing
chain.

PSISlider - A Sliding-Window Approach for Persistent Scatterer
Interferometry

As stated in the previous sub-section Strategy C is the most promising one out of the three
strategies discussed. However, to take full advantage of re-using intermediate results,
some adaptations to the conventional advanced DInSAR processing chain, presented
in Figure 3.4, need to made. While processing a steady stream of SAR images with
Strategy C, the first subset with W pse: SAR images is processed with the conventional
advanced DInSAR processing chain. All subsequent subsets are processed according to
the PSISlider processing chain, presented in Figure 6.2. One major difference in the
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two processing chains is the use of different reference images for co-registration and
interferogram formation. All secondary images need to be co-registered to the same
reference image independently of which image is used as the reference for interferogram
formation. The reference image for co-registration will hereafter be referred to as the
co-registration reference image, and the reference image for interferogram formation as
the local reference image. Employing two different reference images has the consequence
that:

(1) For new subsets only the Wpange Nnew SAR images are subjected to interfer-
ometric pre-processing with the co-registration reference image,

(2) Spatial baselines between secondary images and the local reference image
need to be calculated and

(3) Differential Interferograms between secondary images and the local refer-

ence image need to be calculated.

However, using the same co-registration reference image for all subsets has the advantage,
that the following intermediate results from previous subsets can be re-used during the
PSI processing:

(1) D4 for PSC selection,
(2) The probability of a PSC being a PS P(i €PS) for PS selection and

(3) The spatially uncorrelated look angle error A@;Cilq.

Calculation of the Differential Interferograms and Spatial Baseline Between the
Local Reference and Secondary SAR Images

As state previously, all SAR images in each subset are subject to interferometric pre-
processing (following the processing chain presented in Figure 3.4) with the same co-
registration reference image. Thus, before the PSI processing is carried out, spatial baselines
and differential interferograms with the local reference image need to be calculated. The
spatial baselines are estimated using a re-implementation of the process to estimate the
vertical and horizontal baselines used by SNAP. A test to verify its functionality is presented
in Appendix A.2.

The number of differential interferograms in a subset, generated with the co-registration
reference image, is Q = Wgypser — 1. The Q differential interferograms uyy s between the
local reference and the secondary SAR images are generated by complex multiplication of
the differential interferograms uy; s between the co-registration reference and the secondary
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SAR images with the differential interferogram uy; 1 between the co-registration reference
and the local reference image. The operation can be expressed as follows:

*
UM, - Uy im

(6.1)
|2l

Urm,s =

Here, |z2;| denotes the squared amplitude of the co-registration reference image. This
approach results in Q-1 upy s. A test to verify the functionality of this approach is presented
in Appendix A.2.

Re-using the Amplitude Dispersion Index for PSC Selection

Since consecutive subsets have Wy.e, SAR images in common, it is not necessary to
recalculate D, entirely for each subset. D from the previous subsets only needs to be
corrected for the removed and added SAR images. StaMPS uses the following equation to
calculate D 4:

W,
W b . Z ilbsetAZ
DA = " Seli\t]subsetw_1 2 c - 1 (62)
(Z 1 AW)

w=

To facilitate the adjustment of D4, the intermediate result from the sum of the amplitude
values A, and their square A, for each pixel are saved during the processing of the
previous subset and edited for the removed and added SAR images. A test to ensure the
functionality of this approach is presented in Appendix A.2.

Re-use of the Probability of a PSC Being a PS for PS Selection

The selection of the final subset of PS pixels is based on D4 and P(i €PS) (Step 3 in
Sub-section 2.1.6), which is calculated based on «.This -y is a measure for the phase noise
of PSC pixels and is calculated iteratively (Step 2 in Sub-section 2.1.6). The influence
of PSC pixels, which have a low probability of being a PS, decreases with each iteration
of estimating P(i €PS). The value for P(i €PS) from the previous iteration is used to
weigh the PSC pixels in each iteration, except for the first iteration. In the case of the first
iteration, DLA is used to weigh the PSC pixels. In the context of Strategy C, it is highly likely
that consecutive overlapping subsets have many PS pixels in common. Therefore, instead
of DLA, m with P(i €PS) from the previous subset is used to weigh the pixels during
the first iteration of estimating the phase noise for PSC pixels in common for consecutive
subsets. PSC pixels not present in the previous subset are weighed based on the mean
P(i €PS) calculated over the closest neighboring PSC pixels.

This approach potentially lowers the number of iterations needed to fulfill the criterion,
defined in Sub-section 2.1.6 to terminate the iteration process. On average, with the
conventional processing chain, three iterations are needed to fulfill this criterion and with
the PSISlider processing chain two iterations are needed on average.
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Re-use of the Spatially Uncorrelated Look Angle Error

Another intermediate result that can be re-used from the previous subset is A@S;,q, which
is relevant for the estimation of displacement and is calculated during the estimation of
the phase correction terms (Step 4 and Step 5 in Sub-section 2.1.6). Both steps are carried
out iteratively in succession. The goal is to improve phase unwrapping by subtracting
A@Eiq prior to phase unwrapping and then estimating A@S;,q more accurately due to fewer
unwrapping errors. A%l’cilq is estimated for each differential interferogram separately. Thus,
in the context of Strategy C, it stands to reason to re-use the A%};’q estimated previously for
those differential interferograms that consecutive subsets have in common. This approach
lowers the number of iterations needed for the estimation of displacements and phase
correction terms. On average, with the conventional processing chain, five iterations are
needed to estimate all the phase correction terms, such as phase contribution induced
by the atmosphere in the reference and secondary images or the spatially uncorrelated
look angle error. In contrast with the PSISlider processing chain only needs three iterations.

Re-using intermediate results in the context of Strategy C had the purpose of reduc-
ing processing time, which all the presented adaptations effectively do. The processing
time is one of the key parameters used in the next sub-section to evaluate the presented
processing strategies.

Evaluation of the Processing Strategies

In the beginning of this chapter concerns regarding the processing time, PS density, process-
ing efficiency and the compatibility of intermediate results in the context of continuously
processing a steady stream of SAR images were raised. In order to identify a processing
strategy most suited for the task, all three processing strategies were applied to Dataset C,
which is described in detail in Chapter 3. The time span of Dataset C was set to the
time between October 2016 and December 2021, resulting in W, = 300 SAR images.
Dataset C was restricted to the period where S1-A and S1-B provided SAR images with a
6-day repeat-pass time to avoid any influence on the results due to an irregular temporal
sampling. The dataset was divided into subsets to simulate a continuous stream of SAR
images (see Figure 6.1). The first subset for all three strategies consists of Wgypser = 30
SAR images. In the case of Strategy A, a growing dataset, W,4q = 15 SAR images were
added to the time series for each subset. In total 19 subsets were needed. In the case of
Strategy B, the consecutive non-overlapping subsets, each subset consists of W pser = 30
SAR images. Thus, 10 subsets were needed. In the case of Strategy C, the consecutive
overlapping subsets, each subset also consists of W, pser = 30 SAR images. For each subset,
Whange = 15 new SAR images were exchanged for Wpange = 15 old SAR images, resulting
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Wieep = 15 SAR images remaining in the subset. In total 19 subsets were needed. The
processing was carried out on a server with the following features:

Operating system: Micrososft Windows Server 2019 Standard
Processors: 4 x Intel(R) Xeon(R) CPU E7-8867 v3 @ 2.5 GHz
Random-Access Memory (RAM): 384 GB

In this section the processing strategies are evaluated concerning their performance.
Therefore, the following key parameters were recorded during processing:

(1) Total processing time a1,

(2) PSI processing time tpg;,

(3) Number of PSC Npsc,

(4) Number of PS Nps and

(5) Needed hard disk space Mgpace.

The parameters fo,), fps1 and Msgpace Were selected to evaluate the efficiency and processing
time of the processing strategies. A distinguishing is made between t,,,, which covers
the entire processing chain presented in Figure 3.4, and tpg;, which only considers the PSI
processing. The distinguishing is made to evaluate the influence of W st better. The
parameters Npgc and Npg were selected to draw conclusions concerning the development
of the PS density. The resulting values for each parameter are presented separately for
each processing strategy in the following three paragraphs.

Strategy A: Growing Dataset

The key processing parameters of Strategy A, which is to always process all the available
SAR images, are presented in Table 6.1. In addition to the above-listed key parameters,
the table does also include Wy,;,; and the time span, the time series covers. Table 6.1
and Figure 6.3 show that the needed hard disk space (green) increases steadily, as was
expected, from 242 GB to 2,446 GB with an increase of the number of SAR images (top
x-axis) in each subset (bottom x-axis).

As for the processing time, t,., increases linearly with W - The interferometric pre-
processing of one single interferometric SAR image pair takes about 14 minutes. If only
tpsr is considered, it can be observed that the processing time decreases significantly from
9.3 hto 7.3 h between Subset 1 and Subset 2, remains steady between 7 h and 8 h between
Subset 2 and Subset 4 and then increases again up to 15.7 h (Subset 19). This trend
can be observed in Figure 6.3. The figure also shows that the part of t,, needed for
the interferometric pre-processing increases significantly with W ps.c. While for the first
subset 58 % of the total processing time was needed for the execution of the PSI algorithm
and 42 % for the interferometric pre-processing, for the last subset only 19 % of t.
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was needed for the PSI processing and 81 % for the interferometric pre-processing. It is
important to keep in mind, that in the case of Strategy A, the entire dataset is re-processed
for each subset and no intermediate results are re-used.

Both Npsc and Npg decreases with an increase W set, a5 can bee seen in Table 6.1.
However, the decrease is not linear. Between Subset 1 and Subset 2, Npsc drops from
331,542 to 209,654 PSC. Following the initial drop of 121,888 PSC, the amount of PSC lost
with each batch of new SAR images decreases. The difference between Subset 2 and Subset
3 is only 37,302 PSC, and between Subset 18 and Subset 19, only 1,868 PSC. The slower
decrease in the number of PSC for larger datasets might be influenced by the makeup of
the AOI, which mainly covers the city of Patras and its suburbs. For a mainly rural area,
the number of PSC might continue to decrease more rapidly. Similar observations can be
made for Nps. Figure 6.4 displays Npsc (blue) and Npg (purple) for each subset (bottom
x-axis) depending on W (top x-axis). The figure also shows that, the percentage of
PSC that are selected as PS. This ratio increases significantly with an increase in W;per at
first and then hits a plateau around Subset 5.

Comparing the trend of Npsc and Nps to the trend of tpg;, indicates that fpg; is mainly
influenced by Npsc and Nps in the first phase and by Wpser in the third phase.

In a nutshell, as expected Strategy A results in a decrease in Npgc and Nps with an increase
in Wgypset- BOth tioa and Mgpace increase linearly with Wypeer. As for tpg; it briefly

Subset | Time Span Wsubset MSpace Frotal tpsi NPSC NPS
[GB] [h] [h]
1| 11/2016 - 05/2017 30 242 16.0 9.3 | 331,542 | 246,857
2| 11/2016 - 08/2017 45 364 17.5 7.3 | 209,654 | 173,226
3| 11/2016-11/2017 60 487 21.3 7.7 | 172,352 | 152,986
4| 11/2016 - 02/2018 75 609 24.7 7.6 | 142,796 | 133,340
51 11/2016 - 05/2018 90 732 28.7 8.1 | 127,559 | 122,436
6 | 11/2016 - 08/2018 105 853 32.6 8.6 | 117,362 | 114,064
7 | 11/2016 - 12/2018 120 976 36.6 9.1 | 111,862 | 109,047
8 | 11/2016 - 03/2019 135 1,097 | 40.6 9.5 | 105,726 | 103,359

9 | 11/2016 - 06/2019 | 150 | 1,221 | 44.6| 10.2 | 100,931 | 98,959
10 | 11/2016 - 09/2019 | 165 | 1,344 | 48.7 | 10.8 | 97,420 | 95,604
11 [ 11/2016- 12/2019 | 180 | 1,466 | 52.7 | 11.3 | 93,712 | 92,078
12 [ 11/2016 - 03/2020 | 195 | 1,588 | 56.7 | 11.9 | 91,588 | 90,016
13 | 11/2016 - 06/2020 | 210 | 1,711 | 60.8 | 12.5| 90,335 | 88,806
14 [ 11/2016 - 09/2020 | 225 | 1,833 | 64.8 | 13.1 | 88,524 | 86,993
15 | 11/2016 - 12/2020 | 240 | 1,956 | 68.9 | 13.6 | 87,060 | 85,546
16 | 11/2016 - 03/2021 | 255 | 2,078 | 72.8 | 14.1 | 84,631 | 83,129
17 | 11/2016 - 06/2021 | 270 | 2,203 | 76.8 | 14.7 | 83,411 | 81,874
18 | 11/2016 - 09/2021 | 285 | 2,324 | 81.0 | 15.4 | 82,293 | 80,740
19 | 11/2016 - 12/2021 | 300 | 2,446 | 84.9 | 15.7 | 80,425 | 78,932

Table 6.1.: Key parameters of Strategy A.

6.2 Different Processing Strategies for PSI
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Figure 6.3.: The total processing time (purple), the PSI processing time (blue) and used
hard disk space (green) depending on the processed subset (bottom x-axis)
and the number of SAR images (top x-axis) in the subset for Strategy A.

Subset | Time Span Wiupset|  Mspace | trotal tps Npsc Nps
[GB] [h] [h]

1| 11/2016 -05/2017 30 242 16.2 9.5 | 331,542 | 246,857
2 | 05/2017 -11/2017 30 222 20.8 14.1 | 394,029 | 309,328
31 11/2017 -05/2018 30 239 14.6 7.9 | 307,034 | 219,033
4 | 06/2018 - 12/2018 30 218 18.4 11.7 | 365,698 | 284,159
51| 12/2018 - 06/2019 30 241 13.9 7.2 | 298,916 | 207,838
6 | 06/2019 - 12/2019 30 218 17.4 10.7 | 354,235 | 268,144
7 | 12/2019 - 06/2020 30 220 17.5 10.8 | 354,204 | 271,103
8 | 06/2020 - 12/2020 30 220 25.1 18.4 | 433,800 | 352,838
9| 12/2020 - 06/2021 30 243 14.5 7.8 | 310,806 | 220,270
10 | 06/2021 - 12/2021 30 224 18.4 11.7 | 378,623 | 284,155

Table 6.2.: Key parameters of Strategy B.

decreases and then increases with Wgpee. In total 25,531 GB hard disk space and 930 h
are needed to process Dataset C with Strategy A.
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Figure 6.4.: Number of identified PSC (blue), PS (purple) and their ratio (green) depend-
ing on the processed subset (bottom x-axis) and the number of SAR images
(top x-axis) in the subset for Strategy A.

Strategy B: Non-Overlapping Subsets

The key processing parameters of Strategy B, which is to process the steady stream of
SAR images in consecutive non-overlapping subsets, are presented in Table 6.2. As for
Table 6.1, Table 6.2 lists the number of SAR images and the time span the subsets cover,
in addition to the above-listed key parameters. The used hard disk space stays relatively
steady between 218 GB (Subset 6) and 243 GB (Subset 9), which is additionally shown in
Figure 6.5 (green). This was expected, since W pser Was kept constant for all subsets.
Figure 6.5 also presents t,., (purple) and tpg; (blue) with regard to the processed subset
(bottom x-axis) and the temporal center point of the subset (top x-axis). Both follow the
same trend, but with a constant offset between them. The offset is 6.7 hours, which is the
amount of time needed for pre-processing 30 SAR images. The tpg; varies between 7.2 h
(Subset 5) and 18.4 h (Subset 8) and features a periodic pattern.

Figure 6.6 reveals a similar pattern for Npsc (blue) and Nps (purple) as was observed
in t,a and tps;. The difference between Npsc and Npg is on average 86,651 pixels. The
ratio between PS and PSC ranges between 70 % (Subset 5) and 81 % (Subset 8). The
observed periodic pattern in Npsc, Nps, fps; and toq i likely due to the time span the
subsets cover. As stated above, Dataset C was restricted to the time period where a 6-day

6.2 Different Processing Strategies for PSI
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repeat pass time could be abided. Thus, the SAR image from the 215 December 2021 is the
last image in the dataset. The size of the subsets was set to Wpser = 30 to allow for the
observation of short-term effects. Both considerations lead to subsets for Strategy B that
always cover either the winter half (November/December) or the summer half (May/June)
of the year. In order to verify this assumption, a small number of additional subsets, which
divide the year between spring (March) and autumn (September), were processed. The
results are summarized in Table 6.3. Here, the difference between the number of Npgc
and Nps identified in the subsets is steadier. In accordance, the ratio between PS and
PSC is also more consistent and ranges around 72 %. Overall, the number of PS ranges
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Figure 6.5.: The total processing time (purple), the PSI processing time (blue) and used
hard disk space (green) with regard to the processed subset (bottom x-axis)
and the temporal center point of the subset (top x-axis) for Strategy B.

Subset | Time Span Wsubset MSpace frotal tps1 Npsc Nps
[GB] [h] [h]

1| 03/2017 -09/2017 30 249 15.8 9.0 | 312,729 | 226,342

21 09/2017 - 03/2018 30 241 17.2 10.4 | 341,493 | 248,011

3| 03/2018 - 09/2018 30 218 17.6 10.9 | 344,768 | 254,380

4 | 09/2018 - 03/2019 30 209 15.7 9.0 | 328,200 | 233,226

Table 6.3.: Key parameters of processing a growing dataset in sequential non-overlapping
subsets (Strategy B) with slightly shifted time spans compared to Table 6.2.
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Figure 6.6.: Number of identified PSC (blue), PS (purple) and their ratio (green) with
regard to the processed subset (bottom x-axis) and the temporal center point
of the subset (top x-axis) for Strategy B.

between 226,342 (Subset 1) and 254,380 (Subset 3) and the difference between subsets
ranges between 6,000 to 22,000 PS. The difference in Npg between subsets in the original
set-up, as can be seen in Table 6.2, is about 70,000 PS. Shifting the time spans lessened
any periodic effect on the number of identified PS in each subset significantly.

Boiled down, it can be stated that Strategy B also behaved as expected. Neglecting any
periodic effect, Npsc, Nps, tiotal, tpst and Mspace remain relatively steady. In total 2,287 GB
hard disk space and 176 h are needed to process Dataset C with Strategy B.

Strategy C: Overlapping Subsets

The key processing parameters of Strategy C, which is to process the steady stream of SAR
images with a sliding-window approach, are presented in Table 6.4. As in the previous
tables, Table 6.4 lists the number of SAR images and the time span the subsets cover, in
addition to the key parameters listed at the beginning of Section 6.2.2. The used hard disk
space increases slightly between Subset 1 and Subset 2, from 278 GB to 330 GB, and then
varies between 300 GB and 360 GB. This trend is displayed in Figure 6.7 (green). This
figure also shows .y, (purple) and tps; (blue). Similar to the case of Strategy B, there is
an offset between the t,,; (purple) and fps; (blue). In this case, the offset is constant at

6.2 Different Processing Strategies for PSI
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3.7 h with the exception of Subset 1, where it is 6.7 h. This is due to the key feature of
the PSISlider strategy, which is to re-use intermediate results, which plays a role starting
from Subset 2. All secondary SAR images are co-registered to the same co-registration
reference image. Thus, only the 15 new SAR images are subjected to interferometric
pre-processing. The intermediate products from the remaining 15 SAR images are taken
on from the previous subset. The differential interferograms are calculated with a local
reference image, which can be switched between subsets. However, this local reference
image is not exchanged as long as this local reference image is still in the current subset.
Allowing again for re-using intermediate products, where possible. This results in the
significantly varying PSI processing time, as evident in Figure 6.7. For example, the PSI
processing time of Subset 2 is about half the PSI processing time of Subset 1. The same
applies to Subset 3 and Subset 4, Subset 5 and Subset 6, and so on. Additionally, the
same periodic effect that can be observed in the results of Strategy B plays a role in the
results of Strategy C. About every 5th subset has a significantly higher PSI processing time
than the other subsets. A similar pattern can be observed in the number of PS identified
in each subset. For subsets with a higher processing time, the number of identified PS is
over 280,000 (Subset 7, Subset 13 and Subset 19), while for the other subsets it ranges
between 201,623 PS (Subset 10) and 274,332 PS (Subset 11). The pattern is presented
in Figure 6.8. The ratio of PSC that are selected as PS also varies. It ranges from 57 %
(Subset 10) to 76 % (Subset 3).

Subset | Time Span Wsuhset MSpace trotal tpsi NPSC NPS
[GB] [h] [h]

1| 11/2016 - 05/2017 30 278 16.2 9.4 | 331,542 | 246,857
21 02/2017 - 08/2017 30 330 8.4 4.7 | 317,850 | 220,197
3| 05/2017 - 12/2017 30 349 17.7 14.1 | 398,858 | 301,630
4 | 08/2017 - 02/2018 30 335 9.7 6.1 | 368,755 | 245,861
5| 11/2017 - 05/2018 30 334 12.1 8.5 | 339,561 | 221,089
6 | 02/2018 - 08/2018 30 334 8.3 4.7 | 343,769 | 201,781
7 | 06/2018 - 02/2018 30 334 16.3 12.7 | 402,752 | 285,648
8 | 09/2018 - 03/2019 30 345 9.3 5.6 | 363,091 | 233,251
9 | 12/2019 - 05/2019 30 347 11.5 7.9 | 335,071 | 209,818
10 | 03/2019 - 09/2019 30 301 8.5 4.8 | 355,342 | 201,623
11 | 06/2019 - 12/2019 30 359 15.5 11.9 | 394,256 | 274,332
12 | 09/2019 - 03/2020 30 349 9.3 5.7 | 373,385 | 232,489
13 | 12/2019 - 06/2020 30 354 16.0 12.3 | 398,768 | 280,538
14 | 03/2020 - 09/2020 30 334 10.6 7.0 | 432,374 | 271,769
15 | 06/2020 - 12/2020 30 335 24.5 20.8 | 477,553 | 360,078
16 | 09/2020 - 03/2021 30 353 9.8 6.2 | 363,663 | 246,700
17 | 12/2020 - 06/2021 30 355 12.6 8.9 | 350,977 | 226,495
18 | 03/2021 - 09/2021 30 359 10.2 6.6 | 438,927 | 251,658
19 | 06/2021 - 12/2021 30 357 17.0 13.3 | 421,596 | 287,638

Table 6.4.: Key parameters of Strategy C.
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6.3

To sum it up, Strategy C reduces both t,,, and tps; significantly, while Npsc, Nps and
Mspace remain relatively steady, as was expected. In total 6,440 GB hard disk space and
244 h are needed to process Dataset C with Strategy C.

Discussion

Reflecting on the beginning of this chapter, questions were raised about what a suitable PSI
processing strategy could be for processing a steady stream of SAR images in the context
of a monitoring task. One concern was the PS density. For this reason Npsc and Nps were
recorded. As expected, evaluating the recorded values for Npsc and Npg for Strategy A
showed that the expanding time span considered and the increase in Wpee: results in a
significant decrease in Npgc and Nps. In the case of Strategy B and Strategy C keeping
Waser constant, resulted in a relatively steady Npsc and Nps, neglecting any periodic
effects.

Further, Strategy A also shows that t,), tps1 and Msgpace increase with Wypeer. In contrast,
the hard disk space needed for Strategy B and Strategy C remains relatively steady.

Date

Jan 2018 Jan 2019 Jan 2020 Jan 2021
30 \ \ \ I \ 500

PSI Processing Time
—Total Processing Time
——Used Hard Disk Space

450

25

400

350

300

250

200

Hard Disk Space [GB]

150

1100

150

O 1 1 1 1 1 1 1 1 O
1 3 5 7 9 11 13 15 17 19

Subset Number

Figure 6.7.: The total processing time (purple), the PSI processing time (blue) and used
hard disk space (green) with regard to the processed subset (bottom x-axis)
and the temporal center point of the subset (top x-axis) for Strategy C.
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This is again achieved by keeping Wpser constant. In the case of Strategy B, f, and
tpsr also remain relatively steady, again neglecting any periodic effects. However, the
implementation of the PSISlider processing chain for Strategy C resulted in a significant
reduction of t,,,; and tps;. Additionally, Strategy C allows for a quicker pace in updates
than Strategy B.

The most concerning issue of Strategy B is that the comparability of results in between
subsets is not given. Contrary, implementing the PSISlider processing chain for Strategy C,
ensures the comparability of results in between subsets by using two different reference
images for co-registration and interferogram formation. The last concern raised at the
beginning of the chapter was inefficiency during processing. As Strategy C allows for the
re-use of intermediate results, it stands to reason that it operates more efficiently. However,
this is also reflected in the values for the total processing time and total hard disk space. In
the case of Strategy A, processing the steady stream 300 SAR images with regular updates
took 930 h and needed 25,531 GB hard disk space. For Strategy B, 176 h and 2,287 GB
were required, while for Strategy C, 244 h and 6,440 GB are needed. However, it needs to
be taken into consideration that Strategy B only used 10 subsets, while Strategy C used 19
subsets. Assuming that Strategy B, neglecting periodic effects, needs 17 h to process one
subset with W pset = 30, processing 19 subsets would take roughly 323 h. Similarly, the
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Figure 6.8.: Number of identified PSC (blue), PS (purple) and their ratio (green) with
regard to the processed subset (bottom x-axis) and the temporal center point
of the subset (top x-axis) for Strategy C.
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total hard disk space for 19 subsets processed with Strategy B would be 4,345 GB. The
larger amount of hard disk space needed for Strategy C is due to the intermediate results
that need to be saved for later re-use.

To boil it down, Strategy C provides a relatively steady Npsc and Nps, while keeping ttal,
tps and Mgpace limited. Additionally, the strategy allows for quickly paced updates and
ensures comparability of intermediate results. All aspects, desirable for processing a steady
stream of SAR images in the context of a monitoring task.

However, while employing Strategy C for a long-term monitoring task, it is important to
consider the number of SAR images in each subset. In literature, typically around 20 SAR
images are considered the minimum necessary number of images for ¢, and the larger the
number, the more reliable the displacement estimates are [19, 51, 53, 222].

6.3 Discussion
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Synopsis and Outlook

Reflecting on the beginning of this thesis, the question arose as to how the PSI technique
can contribute to the continuous monitoring of human settlements and large infrastructure
elements. From this overriding topic, three sub-question emerged, which were addressed
in Chapter 4, Chapter 5 and Chapter 6. Those research questions are the following:

(1) How can the results of advanced DInSAR processing be utilized to provide
information on the dynamic evolution of the deformation process?

(2) How can advanced DInSAR datasets that are complex to process due to
their high-resolution and shorter wavelength still be used to map highly
spatially variable and rather quick deformation?

(3) What processing approach for PSI would allow for a continuous long-term
monitoring of an area or object of interest, taking into account MP density
and comparability with historic data?

Concerning the first question, in Chapter 4, a need for automatic post-processing procedures
to extract relevant information on the temporal pattern of ground surface deformation
datasets was identified. Advanced DInSAR processing results are often evaluated and inter-
preted based on their mean deformation velocity. The advantage is that the spatial pattern
and extent of actively deforming areas can be easily assessed [38, 45]. The downside is
that any information concerning an acceleration, deceleration or periodic behavior of the
monitored deformation phenomena is neglected. However, in Sub-section 4.1 this type of
information was identified as highly relevant for local authorities to assess and mitigate
any threat due to surface deformation. Many geophysical or anthropogenically induced
ground surface deformation phenomena do not follow a constant velocity deformation
model. Ground surface deformation due to underground gas storage [28, 29], groundwater
extraction [27], or the thermal expansion of large buildings [166] are periodic. At the same
time, displacement rates of aseismic creep [22, 23] alongside tectonic faults or subsidence
rates due to urbanization [30] can change over time and may result in a piecewise linear
or quadratic trend. The post-processing tool PSDefoPAT®, presented in Chapter 4, was
designed to identify the underlying time series model in the displacement time series
resulting from advanced DInSAR processing. The tool assigns each displacement time
series a best-fitting time series model using a sequence of statistical tests. Additionally, a
standardized visualization of the PSDefoPAT® results was designed to facilitate an easy
interpretation of the results.
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The two case studies presented in Section 4.4 illustrate the additional information gen-
erated using PSDefoPAT®. In the case of the city of Patras, clusters of MPs that follow a
specific time series model do roughly match known geological features such as active faults
and thus, may help correct their recorded traces. Further, clusters of time series with a
periodic component on the Rio-Antirio Bridge show which bridge components are affected
by thermal expansion. The second case study, the Parapeiros-Peiros Dam, showed that
PSDefoPAT® provides relevant information on the dynamics of its surface deformation,
which are mainly anthropogenically driven. Most MP on the dam body feature a quadratic
trend, i.e., their deformation velocity changes during the observation period as a reaction
to the flooding of its reservoir. Both case studies highlight the significance of moving
on from mainly using the mean deformation velocity maps to interpret the results from
advanced DInSAR results.

Another concern, raised in Chapter 4, was that in the case of a continuous processing
of a steady stream of SAR images, analyzing the amount of produced advanced DInSAR
results would pose a bottleneck. Therefore, PSDefoPAT® was designed to operate fully
automatically. The standardized visualization of the results is also automated.

The second question was addressed in Chapter 5. Challenges that can arise from tailoring
a monitoring system for a specific large infrastructure element, such as an embankment
dam, were addressed. Dams are subject to various surface deformations that can either be
localized, such as varying subsidence rates alongside the crest of the dam body, or occur on
a larger scale, such as slope instabilities along the shoreline of the water reservoir [47, 48].
Hence, a wide coverage is needed to monitor large-scale deformation and a high spatial
resolution to monitor vulnerable areas. This demand can only be met using two sets of
SAR images. For example, S1 SAR images that fulfill the requirement of wide coverage
and high-resolution TSX SAR images that fulfill the requirement of high spatial resolution.
However, their different spatial resolution and wavelengths make the datasets unequally
complex to process in the case of mapping a spatially highly variable and rather quick
deformation, in the context of PSI. The two processing steps affected the most by this are:
(1) the PS selection and (2) the phase unwrapping process. In Chapter 5, it is suggested
to combine the selection criteria defined by Ferretti et al. (2002) and by Hooper et al.
(2004) so that they complement each other. The combined sets of PS are then processed
jointly. Applying this approach to a TSX SAR time series, mapping the deformation of the
Parapeiros-Peiros Dam during the filling of its reservoir, increased the number of PS on
and near the dam body from 50,608 to 60,346. This effectively closed significant gaps on
the dam body, which prevented the mapping of its surface deformation.

The second challenge, phase unwrapping, was met by reconstructing an idealized deforma-
tion induced phase based on displacement time series models extracted with PSDefoPAT®
from a simpler-to-process dataset, in this case a S1 SAR image time series. Applying the
approach to the TSX SAR image time series improved the phase unwrapping step in space
and time and thus, resulted in improved displacement time series and smoother transition
lines in the mean deformation velocity map.
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Chapter 6 addresses the third question. Concerns regarding Npsc, Nps, fioral, tpsi and
Mspace in the case of the frequent processing of a continuously expanding time series
were stressed and led to the question of an adequate processing strategy to allow for a
continuous long-term monitoring of an area or object of interest. Three different strategies
were presented and evaluated. The first strategy is to always process all available SAR
images W1, i-€., a growing dataset (Strategy A). The second strategy is to process the
steady stream of SAR images in consecutive non-overlapping subsets (Strategy B), and
the third strategy is to use overlapping consecutive subsets, similar to a sliding-window
(Strategy C). In order to evaluate the different strategies, a steady stream of SAR images
was simulated by dividing 300 S1 SAR images into subsets and processing them according
to the three strategies. However, before that, the PSISlider processing chain, presented in
Figure 6.2, was implemented to take full advantage of the possibility to re-use intermediate
results given by Strategy C. Comparing the recorded values of Npsc, Nps, tiotal, tpsi and
Mspace, showed that for Strategy A tiq,), tps1 and Mgpace increase with Wypger, while Npsc
and Nps decrease. Strategy B and Strategy C counter this by limiting Wgypse: and keeping
it constant, which results in relatively steady values for Npsc, Nps, total, tpst and Mspace,
neglecting any periodic effects. The most concerning issue of Strategy B was that the
comparability of results in between subsets is not given. In contrast, the implementation of
the PSISlider processing chain for Strategy C ensures the comparability of results between
subsets by using two different reference images, one for the co-registration of all secondary
images and one for the interferogram formation. The PSISlider processing chain also
tackles the last concern presented in Chapter 6, which was inefficiency during processing.
Since, with implementation of the PSISlider processing chain, Strategy C allows for the
re-use of intermediate results, it stands to reason that it operates more efficiently than
Strategy A and Strategy B. This is also reflected in the values for the total processing
time and total hard disk space. In the case of Strategy A, processing the steady stream
300 SAR images with regular updates took 930 h. For Strategy B, 176 h were required,
while for Strategy C, 244 h are needed. However, it needs to be taken into consideration
that Strategy B only used 10 subsets, while Strategy C used 19 subsets. Assuming that
Strategy B needs 17 h to process one subset with W ser = 30, processing 19 subsets
would take roughly 323 h. To boil it down, it could be shown that, as was expected,
Strategy C is the most suitable strategy for continuous monitoring tasks. It provides a
relatively steady Npsc and Nps, while keeping tta1, tpst and Mgpace limited. Additionally,
the strategy allows for quickly paced updates and ensures comparability of intermediate
results. All aspects, desirable for processing a steady stream of SAR images in the context
of a monitoring task.

Returning to the overarching question of how the PSI technique can contribute to the
continuous monitoring of human settlements and large infrastructure elements. Chap-
ter 4 showed that information on the temporal deformation pattern of larger areas,
such as the city of Patras and its suburbs, and individual infrastructure elements, such
as the Parapeiros-Peiros Dam, can be extracted from PSI processing results employing
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PSDefoPAT®.

Chapter 6 showed with the implementation of the PSISlider processing chain that con-
tinuous processing can be set up without suffering from a continuous loss of PS, and an
increase in processing time and in needed hard disk space, while also not losing the ability
to compare current results to historic ones. All aspects are desirable for processing a steady
stream of SAR images in the context of a monitoring task, such as SHM.

Chapter 5 showed how the conventional processing chain, presented in Figure 3.4, can be
adapted to allow the mapping of spatially highly variable and rather quick deformation,
which can occur in the context of SHM, with high-resolution SAR images. High-resolution
data may be needed in addition to SAR data, which has a wider coverage, in the context of
SHM to monitor vulnerable areas in greater detail.

Nonetheless, this leaves the question of how these three different aspects can be brought
together, especially the usage of PSDefoPAT® in combination with the PSISlider processing
chain. In Chapter 6, the PSISlider processing chain is used with 30 SAR images spread
over half a year. However, such a time series would probably be too short to estimate most
of the time series models implemented in PSDefoPAT®. Therefore, instead of applying
PSDefoPAT® to the results of each subset, it could also be applied to the joint time series
of all previous subsets. The resulting time series model could be used in a predictive
manner. The displacement time series from the new subset could then be compared to
the predicted time series course. This approach would enable the generation of alerts if a
cluster of PS diverges significantly from the predicted time series course. In this context, it
would be necessary to evaluate how long a time series needs to be to reliably estimate the
implemented time series models and how the time series from the individual subsets can
be effectively merged.

Another aspect is the incorporation of SAR sensors with wavelengths other than 3.1 cm
(X-band) and 5.6 cm (C-band). The Argentinian L-band (23 cm) satellites SAOCOM [223]
or the Japanese ALOS PALSAR satellites [224] come to mind. Chapter 5 showed that it
can be beneficial to map surface deformation with more than one sensor, since the sensors
are affected differently by the spatial variability and velocity of the observed deformation
phenomenon. Studies have shown that L-band sensors outperform C-band sensors in
vegetated areas and deformation phenomena with high deformation velocities [225, 226].
A higher PS density could be especially interesting for infrastructure elements situated in
rural areas, as dams often are, or that are vegetated on purpose, such as levees. A higher
tolerance to high deformation velocities could be beneficial for newly built infrastructure
elements, such as the Parapeiros-Peiros Dam, or areas affected by mining [226].

Chapter 7 Synopsis and Outlook
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Appendix

A.1 Persistent Scatterer Deformation Pattern Analysis Tool
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A.2 PSISlider Processing Chain

To facilitate the re-use of intermediate results within the scope of the PSISlider processing
chain, adaptations to parts of the conventional advanced DInSAR processing chain, pre-
sented in Figure 3.4 in Section 3.3, were necessary. Tests to verify that they function as
indented are presented in the subsequent sections.
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Figure A.1.: Amplitude dispersion index D4 calculated with (a) the conventional process-
ing chain, (b) the PSISlider processing chain and (c) their difference.
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Re-Use and Adjustment of the Amplitude Dispersion
Index

Calculating the Amplitude Dispersion Index D 4 is part of the first step of StaMPS, the PSC
Selection (outlined in detail in Sub-section 2.1.6). As presented in Sub-section 6.2.1, D4
is not completely re-calculated for each subset in the PSISlider processing chain. Instead,
to calculate D4 for the current subset, D 4 of the previous subset is corrected for the SAR
images excluded and added to current subset. Figure A.1 shows D4 calculated with (a) the
conventional processing chain, (b) the PSISlider processing chain and (c) their difference.
The difference between the calculated D, is in the range of 10~7 (dark blue) in the entire
map presented in Figure A.1 (c), i.e., nearly identical. This verifies that calculating D 4 with
the conventional processing chain and the PSISlider processing chain yields comparable
results.

Calculating the Differential Interferogram between Local
Master and Slave SAR Images

As presented in Sub-section 6.2.1, to ensure comparability of the different subsets pro-
cessed with the PSISlider processing chain, two different master SAR images need to be
used for co-registration and calculating the differential interferograms. The master SAR
images are referred to as the co-registration and local master. During interferometric
pre-processing the slave SAR images and the local master SAR image are co-registered
to the co-registration master image and their differential interferograms are calculated
as presented in Figure 3.4 in Section 3.3. The differential interferogram between a slave
SAR image and the local master SAR image is calculated by complex multiplication of the
differential interferogram between local and co-registration master and the differential
interferogram between slave and co-registration master. To verify the functionality of this
concept, differential interferograms were calculated using:

1. only the SAR image from 04/22/2017 for co-registration and calculating the differ-
ential interferogram, and

2. the SAR image from 02/15/2017 for co-registration and the SAR image from
04/22/2017 as the local master to calculate the differential interferogram.

Exemplary resulting differential interferograms are displayed in Figure A.2. Visual inspec-
tion of corresponding differential interferograms shows that the differential interferograms
are similar, which leads to the conclusion that the concept works as indented. Differ-
ential interferograms between slave SAR images and the local master SAR image can
be calculated by complex multiplication of the differential interferogram between local
and co-registration master and the differential interferograms between slaves and the
co-registration master.

A.2 PSISlider Processing Chain
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Figure A.2.: Exemplary resulting differential interferograms calculated with the conven-
tional processing chain ((a) and (c)) and the PSISlider processing chain ((b)
and (d))

Calculating the Spatial Baselines between Local Master
and Slave SAR Images

Since vertical by and horizontal baselines b, are needed for StaMPS, they need to be
calculated for the slave SAR images and the local master SAR image within the scope
of the PSISlider processing chain. This is achieved using java scripts that calculate the
spatial baselines in accordance to the approach used in SNAP. Tests to verify that the
implemented scripts provide the same spatial baseline values as the conventional advanced
DInSAR processing chain, presented in Section 3.3, were carried out. Horizontal and
vertical baselines calculated with:
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1. the conventional advanced DInSAR processing chain with the SAR image from the
04/22/2017 as the only master image, and

2. the PSISlider processing chain with the SAR image from the 02/15/2017 as the
co-registration master and the SAR image from the 04/22/2017 as the local master

are presented in Table A.1.

The differences in vertical Ab, and horizontal baselines Ab;, presented in columns six and
seven of Table A.1 are all zero. This shows that the implemented scripts provide the same
spatial baseline values as the conventional advanced DInSAR processing chain, presented
in Section 3.3.

Slave Date Conventional PSI PSISlider Strategy Difference

bylm] [ by[m]|[ by[m]|  by[m] | Aby, [m] | Aby [m]
11/17/2016 | 51.9235 4.1809 | 51.9235 4.1809 0 0
11/23/2016 | 57.7783 | -113.6686 | 57.7783 | -113.6686 0 0
11/29/2016 | 55.5019 51.5592 | 55.5019 51.5592 0 0
12/05/2016 | 67.0295 14.5740 | 67.0295 14.5740 0 0
12/11/2016 | 56.5211 -9.2225 | 56.5211 -9.2225 0 0
12/17/2016 | 65.2071 59.6492 | 65.2071 59.6492 0 0
12/23/2016 | 52.3344 | -43.0037 | 52.3344 | -43.0037 0 0
12/29/2016 | 61.9399 85.7096 | 61.9399 85.7096 0 0
01/04/2017 | 57.9828 -66.5863 | 57.9828 -66.5863 0 0
01/10/2017 | 56.1179 29.2224 | 56.1179 29.2224 0 0
01/16/2017 | 55.4488 | -13.9656 | 55.4488 | -13.9656 0 0
01/22/2017 | 49.4124 | -90.1074 | 49.4124 | -90.1074 0 0
01/28/2017 | 48.9099 60.2863 | 48.9099 60.2863 0 0
02/09/2017 | 45.3869 70.8973 | 45.3869 70.8973 0 0
02/21/2017 | 30.8028 | -70.4519 | 30.8028 | -70.4519 0 0
02/27/2017 | 24.8424 29.1412 | 24.8424 29.1412 0 0
03/05/2017 | 21.0552 | -162.0064 | 21.0552 | -162.0064 0 0
03/11/2017 | 10.4320 41.1241 | 10.4320 41.1241 0 0
03/17/2017 5.5802 -30.0193 5.5802 -30.0193 0 0
03/23/2017 | -0.0272 | -93.5874 | -0.0272 | -93.5874 0 0
03/29/2017 | -8.0400 45.2587 | -8.0400 45.2587 0 0
04/04/2017 | -14.279 | -51.0346 | -14.2791 | -51.0346 0 0
04/10/2017 | -0.0356 52.4516 | -0.0356 52.4516 0 0
04/16/2017 4.2720 | -38.3496 4.2720 | -38.3496 0 0
04/28/2017 0.2575 36.3931 0.2575 36.3931 0 0
05/04/2017 | 12.7199 -27.9786 | 12.7199 -27.9786 0 0
05/10/2017 6.0971 53.6427 6.0971 53.6427 0 0

Table A.1.: Horizontal and vertical baselines calculated with SNAP in a conventional PSI
processing chain and the processing chain of the PSISlider strategy.
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