KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Counterfactual Truthfulness for Molecular Property Prediction Through Uncertainty Quantification

Teufel, Jonas ORCID iD icon 1; Leinweber, Annika 1; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Explainable AI (xAI) interventions aim to improve interpretability for complex black-box models, not only to improve user trust but also as a means to extract scientific insights from high-performing predictive systems. In molecular property prediction, counterfactual explanations offer a way to understand predictive behavior by highlighting which minimal perturbations in the input molecular structure cause the greatest deviation in the predicted property. However, such explanations only allow for meaningful scientific insights if they reflect the distribution of the true underlying property—a feature we define as counterfactual truthfulness. To increase this truthfulness, we propose the integration of uncertainty estimation techniques to filter counterfactual candidates with high predicted uncertainty. Through computational experiments with synthetic and real-world datasets, we demonstrate that traditional uncertainty estimation methods, such as ensembles and mean-variance estimation, can already substantially reduce the average prediction error and increase counterfactual truthfulness, especially for out-of-distribution settings. Our results highlight the importance and potential impact of incorporating uncertainty estimation into explainability methods, especially considering the relatively high effectiveness of low-effort interventions like model ensembles.


Verlagsausgabe §
DOI: 10.5445/IR/1000187796
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.1007/978-3-032-08333-3_15
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-08333-3
ISSN: 1865-0929
KITopen-ID: 1000187796
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Explainable Artificial Intelligence – Third World Conference, xAI 2025, Istanbul, Turkey, July 9–11, 2025, Proceedings, Part V. Ed.: R. Guidotti
Veranstaltung 3rd World Conference On eXplainable Artificial Intelligence (xAI 2025), Istanbul, Türkei, 09.07.2025 – 11.07.2025
Verlag Springer Nature Switzerland
Seiten 317–339
Serie Communications in Computer and Information Science ; 2580
Vorab online veröffentlicht am 19.10.2025
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page