KIT | KIT-Bibliothek | Impressum | Datenschutz

Active Partial Label Learning for Parallel Benchmarking

Brandt, Moritz

Abstract:

Benchmarking is an essential part of algorithm development. This also applies to solvers for the SAT (propositional satisfiability) problem. Comparing a new solver to an established portfolio of solvers often requires benchmarking it on large amounts of difficult instances. Dynamic benchmark selection strategies utilizing AL (active learning) can reduce the number of benchmark instances required to accurately estimate the rank of a new solver. However, these strategies do not run benchmark experiments in parallel, which limits their real world applicability. In this thesis, we present a parallelizable AL strategy for dynamic benchmark selection. We evaluate our approach on the Anniversary Track dataset from the 2022 SAT Competition. Our approach can determine a new solver’s PAR-2 ranking with about 91% accuracy while only needing 13.5% of the CPU-runtime of a full evaluation and running up to 64 benchmark experiments in parallel


Volltext §
DOI: 10.5445/IR/1000187798
Veröffentlicht am 01.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Hochschulschrift
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000187798
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 41 S.
Art der Arbeit Abschlussarbeit - Bachelor
Nachgewiesen in OpenAlex
Referent/Betreuer Sanders, Peter
Iser, Markus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page