A{]]

Karlsruher Institut fur Technologie

Bachelor thesis

Evaluating Embedding-Based
Coarsening for Multilevel Graph
Partitioning
Matthias Hilgers

Date: 1. Dezember 2024

Supervisors: Prof. Dr. Peter Sanders
Dr. Lars Gottesbiiren
M.Sc. Nikolai Maas
M.Sc. Daniel Seemaier

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics
Karlsruhe Institute of Technology

Abstract

Multilevel-Graphpartitionierer sind ein Standardwerkzeug fiir die Graphpartitionierung.
Gleichzeitig finden Graph-Embeddings Anwendung in der Graphenanalyse, um niedrig-
dimensionale Reprisentationen von Graphen zu erhalten, die die Struktur der Graphen er-
halten. Die Losungsqualitdt von Multilevel-Graphpartitionierern ist direkt abhéngig von
der Fihigkeit der verwendeten Coarsening-Methode die Struktur des Eingabe-Graphen
zu erhalten. Diese Arbeit untersucht die Anwendung von Embeddings um Multilevel-
Graphpartitionierern um in der Coarsening-Phase mehr strukturelle Informationen iiber
den Eingabe-Graphen zur Verfiigung zu stellen. Dazu werden verschiedene Coarsening-
Strategien mit zwei verschiedenen Embedding-Verfahren in KaMinPar, einem Multilevel-
Graphpartitionierer, implementiert und verglichen.

Multilevel graph partitioners are a standard tool in graph partitioning. Simultaneously,
graph embeddings find use in graph analysis for their ability to create low-dimensional
graph representations that preserve the structure of the input graph. The solution quality
of multilevel graph partitioners is greatly dependent on the ability of the used coarsening
method to maintain the structure of the input graph throughout all layers of the graph hi-
erarchy. This work explores the use of graph embeddings in multilevel graph partitioners
to make global structural information on the input graph available in the coarsening phase.
To this end, this work implements different coarsening strategies in KaMinPar, a multi-
level graph partitioner and compares them with two embedding methods, Node2Vec and
InstantEmbedding.

Acknowledgements

The author acknowledges support by the state of Baden-Wiirttemberg through bwHPC.

Hiermit versichere ich, dass ich diese Arbeit selbstindig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wortlich oder inhaltlich {ibernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts fiir Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils giiltigen Fassung beachtet
habe.

Karlsruhe, den 1. Dezember 2024

Contents

n2

Graph Partitioning]

n3

Graph Embedding| .

Multi-Level Graph Partitioning|
[3.2 Overview of Graph Coarsening Methods|
[3.2.1 Size Constrained Label Propagation|
[3.2.2 Matching-Based Coarseningf

31

[3.3.1 Size Constrained Label Propagation|

[3.3.3 Fiduccia-Mattheyses Local Search|

B4

Overview Of Different Graph Embedding Methods|

[3.4.1 Graph Embedding Based On Matrix Dimension Reduction|

[3.4.2 Neural Graph Embedding|

4

Embedding-based Coarsening|

A1

Size Constrained Label Propagation|

[4.1.1 Using Embeddings|

%)

Embedding Contraction|.

A3

Cluster Overlaying|

a4

Algebraic Distance|

17
17
18
19
20
21

vii

[> Experimental Evaluation| 23

[5.1 Implementation| Lo 23
[5.1.1 Embedding Implementation| 23

[5.1.2 Coarsening by S1ze Constrained Label Propagation and Heavy Edge [

| Matching| 23
[5.2 Experimental Setup| oo 24
[5.2.1 Environment and Parameters 24

022 TInstancesl 25

[5.2.3 Methodology| 25

[5.3 Evaluation of Embedding-based Coarsening| 25
[5.3.1 Correlation between Embeddings and Final Partition| 27

[5.3.2 Alternative Edge Rating Functions| 28

[5.4 Overlaying Clusterings| 29
[5.5 Algebraic Distance-based Coarsening| 31

6 Conclusion and Future Work| 33
61 Future Workl 34
|AExperiments| 35
[A.l Instancesl 35
(A2 Graph Types|. 37

[Bibliography| 41

1 Introduction

1.1 Motivation

Graph partitioning is a problem that is used in different domains, such as circuit design[20]
and power grid analysis[27] and is an essential preprocessing step for parallel graph anal-
ysis techniques, such as parallel pagerank[41]. However, graph partitioning is NP-hard
to solve and NP-hard to approximate[4], so that graph partitioners are usually based on
heuristics.

A commonly used category of graph partitioners are multi-level graph partitioners. Multi-
level graph partitioners work in three phases, the first being the coarsening phase, where
the input graph is iteratively shrunken down in a way that — one hopes — preserves the
structure of the input graph. In the remaining two phases, a multi-level graph partitioner
first finds an initial partition for the coarsest graph acquired from the coarsening phase and
then projects that partition to the finer graphs of the coarsening hierarchy, while further
refining the partition.

In this process, graph coarsening plays a critical role. Initial partition quality is highly
dependent on the coarsener’s ability to preserve the graph’s structure. Additionally, while
low quality initial partitions may be improved in the refinement phase, this process can not
replace the need for high quality graph coarsening.

Graph embeddings represent each node in a graph as a low-dimensional vector which sum-
marises each node’s role in the graph’s global structure. This allows to maintain a view
of a graph’s global structure that is both space-efficient and easy to interface with. Graph
coarseners can be extended to make use of this structural information. Rather than decid-
ing if two nodes should be contracted in the coarse graph based only on their immediate
neighborhoods, considering the similarity of the embedding vectors of these two nodes
introduces a notion of the global structure of the graph into the decision.

1.2 Contribution

This thesis extends the work of Srybrandt et al.[43] by verifying their results with an imple-
mentation of embedding-based graph coarsening in a different graph partitioner, KaMinPar([[15,
2] and using a different coarsening scheme based on size constrained Label Propagation,
rather than Heavy Edge Matchings. Different strategies are evaluated, including different
edge rating functions and cluster overlaying (ref. Section[4.3).

CHAPTER 1. INTRODUCTION

Additionally, statistical tests are done on the effectiveness of embedding-based graph coars-
ening by testing the correlation of embeddings and the partitions that were found based on
these embeddings.

All coarsening methods are evaluated using two embedding methods, InstantEmbedding|[135]]
and Node2Vec[16]. In the past, Safro et al.[40] and Chen et al.[9] have used algebraic dis-

tances as another means of making graph structural information available in the coarsening

phase on a wider scale. That makes algebraic distances similar to embeddings for the

scope of this work and as such, additional experiments are done which compare the use of

embeddings with the use of algebraic distances.

The achieved solution quality is found to vary among the compared embedding methods.
While Node2Vec-based coarsening is found to improve solution quality over the baseline
and algebraic distance-based coarsening, InstantEmbedding-based coarsening has worse
solution quality than the baseline and algebraic distance-based coarsening. This effect
is found to be alleviated by cluster overlaying, which boosts the solution quality of both
embedding-based methods to be higher than the baseline or using cluster overlaying with-
out embeddings.

1.3 Structure

Chapter 2, "Fundamentals", gives an overview of the graph partitioning problem and graph
embeddings, while also presenting general definitions used throughout this work. Chap-
ter 3 presents an overview of multilevel graph partitioning and assorted graph coarsening
strategies and refinement strategies, as well as an introduction to and comparison of dif-
ferent graph embedding methods. In chapter 4, a run-down of the evaluated algorithms
prepares the reader for chapter 5, which details the implementation of the previously intro-
duced algorithms and describes the experiments done to compare them. Finally, chapter 6
contains a conclusion with options for future work.

2 Fundamentals

2.1 General Definitions

For the rest of this work, let G = (V; E/, ¢,w) be an undirected graph with node weights
¢:V — Nand edge weights w : £ — N. To extend ¢ and w to sets of nodes V', respective
edges I, letc(V) = > .y c(v)and w(E) = pw(e).

2.2 Graph Partitioning

The Graph Partitioning problem is the problem of splitting a graph G = (V, E) into k
disjoint blocks Vi, V5, Vi, such that Ule V; = V. The weight of all blocks have to fulfil a
balance constraint, i.e. Yi € {1..k} : ¢(V;) < Lpax == (1 + 6)% + max. c¢(v), where ¢ is
an imbalance parameter.

An optimal partition has a minimal cut w(E.) where E. = {{u,v}lu € V;,v € V},i <
j}CE.

2.3 Graph Embedding

The Graph Embedding problem is the problem of embedding a graph G = (V, E) into a
d-dimensional vector space with d < n, such that every node v can be represented by an
embedding vector €(v) € R%. A good node embedding of a node u € V captures the role
of u in the global structure of the graph. Through this property, graph embeddings can
capture the global structure of a graph and make it available to downstream tasks, such as
node classification[25]] and graph visualisation[48].

A d-dimensional representation of the whole graph G is given by the embedding matrix
W € R™4, such that its rows W v, 1 : d] are the embedding vectors ¢(v) for all nodes v.

2 Fundamentals

3 Related Work

3.1 Multi-Level Graph Partitioning

OD‘ "V :',' /
e

refine

T uncoarsen
PP
-
v,
’
’
[y
1
1
coarsen 1 uncoarsen
’
.
’
,
-
-

Figure 3.1: Multi-level graph partitioning on an example graph.

coarsen

Multi-level graph partitioners are a group of graph partitioning methods that work by iter-
atively shrinking a graph before finding a partition and then transforming the partition to a
partition of the original input graph. Multi-level graph partitioners generally work in three
phases, which are illustrated in Figure[3.1]

In the first phase, the input graph is repeatedly coarsened, until only £C nodes remain,
where C' is a tuning parameter. Coarsening is also stopped if it converges, i.e. if suc-
cessive iterations of the coarsening method fail to reduce the size of the graph by an
implementation-dependent threshold.

In the second phase, an initial partition for the coarsest graph is computed. The quality of
this partition greatly depends on how well the structure of the input graph can be preserved
by the graph coarsening method.

Finally, in the last phase, the partition is projected to the finer graphs. At the same time,
the partition gets refined on each level to improve the cut and balance of the partition.
As the initial partition is found on the coarsest graph, refinement is necessary to optimise
partitions in regard to the additional information available on finer graphs.

3 Related Work

Deep Multi-Level Graph Partitioning In deep multi-level graph partitioning, the
coarsest graph is further coarsened until it has only 2C' nodes left. At the same time,
each new coarse graph is recursively duplicated and coarsened.

These coarsest graphs are then bipartitioned. During refinement, the best partition is chosen
and recursively bipartitioned until a k—partition has been found. At this point refinement
is continued without further bipartitioning until all coarsening has been undone.

Deep multi-level graph partitioning leads to faster runtimes and better partitioning quality
when £ is large[[15]].

3.2 Overview of Graph Coarsening Methods

Graph coarsening is the process of creating a graph G¢ from a graph G, such that G¢ has
less nodes than GG, while trying to maintain the structure of GG. This section describes two
coarsening methods, size constrained label propagation and matching-based methods, in
greater detail.

3.2.1 Size Constrained Label Propagation

Size constrained Label Propagation is an extension by Meyerhenke et al.[30] to the Label
Propagation Clustering Algorithm (LPA) by Raghavan et al.[36].

LPA iteratively improves an initial clustering. In the context of graph coarsening, for the
initial clustering each node is assigned to its own cluster. In each iteration, nodes u are
then moved to the cluster V; they have the strongest connection to, i.e. to the cluster V; that
maximises w({{u,v} € E | v € V;}). After finishing a certain number of rounds or if no
more moves can be made, nodes uq, ..., u; that are part of the same cluster get contracted
into a single node.

Size constrained LPA introduces a size constraint U that prevents moving a node u to a
cluster V; if ¢(V;) + ¢(u) > U (cf. Line 6 in Algorithm[I)). When used in coarsening, U is

set to U := max(max, c¢(v), %), where f is a tuning parameter.

Meyerhenke et al. further note that size constrained LPA is especially suited for irregular
graphs and runs in near linear time, as each iteration requires O(n + m) time[30].

3.2.2 Matching-Based Coarsening

Matching-based coarsening methods coarsen a graph by constructing a maximal match-
ing M C FE and then contract that matching by contracting pairs of nodes u, v that are
connected by an edge e C M with a coarse node u°.

[SSIE)

=N O A

3.3 Partition Refinement

Algorithm 1: Size Constrained Label Propagation

Input: Graph G = (V| E), Size Constraint U, Initial Clustering C', Rounds
Output: Clustering C

fori<1ltordo

foreachu € V do
B «+ adjacentClustersToNode(u)
B C B all clusters b, where ¢(b) + c(u) < U
b« argmax, s w({{u,v} € E|v € b})
if ¢(b) + ¢(u) < U then
L Clu] «+ b
return C

A variety of matching algorithms have been used for graph coarsening. These include but
aren’t limited to Heavy Edge Matching[22], the Global Path Algorithm[29] and Sorted
Heavy Edge Matching[22].

Srybrandt et al.[43] propose an embedding-based coarsening algorithm based on Sorted
Heavy Edge Matching. They initially score all nodes u based on the dot products of their
embedding with any adjacent v node’s embedding (cf. Lines 2-5 of Algorithm [2). After-
wards, they iterate over all nodes in the order of their previously achieved scores. Lines
9-11 of Algorithm[2]show how a node u that is not yet part of the matching will be included
through the edge {u, v} that maximises a combination of its edge weight w({u, v}) and the
dot product €(u)%e(v) of the embeddings of nodes u, v.

3.3 Partition Refinement

The goal of partition refinement is to improve an existing partition in regards to balance
and cut. This section describes three refinement algorithms which are also used in the
experiments done for this thesis.

3.3.1 Size Constrained Label Propagation

Size constrained Label Propagation (see Section (3.2.1)) can also be used for partition re-
finement, by using the size constraint U := max(max, ¢(v), Limax). All nodes of one block
are then initially assigned to the same cluster.

The algorithm then iterates over all nodes, moving a node w to the cluster that most of its
neighbours are in, as long as this does not violate the size constraint. Additionally, if a
node u is part of an overloaded cluster V, it is moved to the block V), that has the strongest
connection to v and where moving u to V}, does not violate the balance constraint[30].

A WD =

3 Related Work

Algorithm 2: Embedding-based Heavy Edge Matching
Input: Graph G = (V, E)

Output: Matching M

M = (Vyy, Ey) an empty Matching

Vscore an empty node scoring

foreachu €V do

N« {v|{u,v} € E}

€T (u)e(v)

L c(u)e(v)
foreach u € V sorted by decreasing score in Vieore dO

ifu € Vy then

L continue
N+ {v |[{u,v} € E}
€T u)elv

U 4= MaXye N\Vy, c(i))c(s)))w({u, v})

| add {u,v} to M

return M

‘/score [U] — maxyen

3.3.2 Jet

Jet[[13]] is a refinement algorithm primarily developed to run on GPUs, although CPU im-
plementations are available (e.g. in KaMinPar[2])).

Jet consists of two parts, which its authors call Jetlp and Jetr, respectively. Jetlp is a syn-
chronous implementation of unconstrained label propagation, while Jetr rebalances a par-
tition. Jetlp additionally locks moved nodes, so that a node u© may not be moved in the next
iteration, which prevents nodes from oscillating between blocks[13]].

Jet works by interleaving runs of Jetlp and Jetr, such that Jetr is run whenever the partition
becomes unbalanced.

3.3.3 Fiduccia-Mattheyses Local Search

Fiduccia and Mattheyses propose a local search algorithm[11] for partition refinement
which is commonly called the FM algorithm. In its original version, the FM algorithm
is a sequential refinement algorithm for bipartitions that works in rounds. More modern
variants of the FM algorithm can improve k-way partitions and can be parallelised.

A round consists of repeatedly moving the node w that has the highest gain, i.e. u is moved
to the other block if out of all nodes that can be moved, moving v would decrease the cut
the most. Nodes may only be moved once per round and only if moving would not violate
the balance constraint.

Previous implementations of the FM algorithm would consider all boundary nodes for mov-

3.4 Overview Of Difterent Graph Embedding Methods

ing, i.e. all nodes adjacent to another node from a different block, at once. Sanders and
Schulz only consider a single boundary node at a time, repeatedly initialising their FM
search with a single boundary node[42]. Moving a node v will insert all neighbours of u
into a queue of nodes that will be considered for further moves.

Gottesbiiren et al. parallelise this approach by starting multiple FM searches at the same
time and then joining all obtained move sequences into a single global move sequence.
They finally apply the prefix of the move sequence that leads to the highest gain without
violating the balance constraint[14]. [14]].

3.4 Overview Of Different Graph Embedding
Methods

This section will provide an overview of different graph embedding methods, as well as a
comparison of the presented graph embedding methods.

3.4.1 Graph Embedding Based On Matrix Dimension Reduction

Graph Embedding methods based on matrix dimension reduction work in two steps. First a
similarity matrix S' € R"*" of GG is computed. S can for example be the squared adjacency
matrix A%[32]] or the Personalised Page Rank (PPR) matrix of a graph[33]]. The second step
is to compute the embedding matrix W € R™*? of GG by using dimensionality reduction
methods on S.

InstantEmbedding [35] Postivaru et al. propose InstantEmbedding for computing
embeddings of single nodes that can be computed in time independent of the total size of
G but are nonetheless globally consistent, i.e., single node embeddings can be combined to
produce a consistent graph embedding.

To find a node embedding ¢(v) for a node v, InstantEmbedding first computes the Per-
sonalised Pagerank (PPR) vector ppr(v) of v and then uses feature hashing to reduce its
dimension. Personalised Pagerank is a variant of the original PageRank algorithm proposed
by Page and Lawrence[33]]. Instead of measuring the importance of every node at once, the
PPR vector shows the importance of all nodes in a graph, if a set of nodes is already known
to be important.

Feature hashing is a dimensionality reduction technique commonly attributed to Wein-
berger et al.[49]. Two hash functions Ay, : N — {£1} and hq : N — {1,...,d} are
sampled from two universal hash families Uiy, Uy 4y, respectively, are applied to a
vector or matrix to reduce its dimensionality. In the case of InstantEmbedding, /g, and iy

3 Related Work

are applied to the logarithm of all PPR vectors log ppr(v) by computing

60)= 3 hua(k) * max{log(ppry(v) # n), 0}.
ke{k|ha(k)=i}

By executing InstantEmbedding for every node of (G, an embedding for the full graph can
be obtained.

HOPE [32] Ou et al. identify the asymmetric transitivity as a critical property of directed
graphs[32] and note a lack of graph embedding methods that preserve asymmetric transi-
tivity. Asymmetric transitivity is the property of a graph that if there is a directed path from
anode u to a node v then there is likely a directed edge from u to v.

Their solution is to compute two embedding vectors for each node v, the source vector
€source(V) and the target vector €gueet(v). If there is an edge e = (u, v) but no edge é =
(v, u) then €gource (1) and €qarger (v) shall have similar values while the values of €gource (V)
and €qayget (1) shall be dissimilar.

Ou et al. find decompositions of different similarity matrices S = M g 'M;[32]). Their
algorithm then applies generalised SVD to M L and M; to compute the d largest singular
values o; of S, as well as their corresponding singular vectors s; source and S; sarget, fOr
i € {1,...,d}. The source and target embedding matrices are then given by Wiource =

[\/ 0151,sources «++» V std,source] and Wtarget - [\/ Ulsl,targeta REEIV Odsd,target], YCSPeCtiVely-

FastRP [8] FastRP works by reducing the dimensionality of a similarity matrix using
very sparse random projection. The idea of random projection is to reduce the dimension-
ality of a similarity matrix S by multiplying it with a random projection matrix R with
dimension n x d. Li et al.[28]] recommend the following definition of R:

/m with probability #ﬁ
Rij =40 with probability 1 — -1,
—/m with probabilityﬁ
which Chen et al.[8] call very sparse random projection.

As a similarity matrix, FastRP uses a normalised variant of 7% where T is the transition

matrix 7' = D~'A with A the adjacency matrix of G and D the degree matrix of G with
5 {deg(’u) if i = j A v is the ith node of G
ij = :
0

3.4.2 Neural Graph Embedding

Neural graph embedding methods apply methods for word representation learning from
natural language processing to learn graph embeddings[47, 46].

10

3.4 Overview Of Different Graph Embedding Methods

DeepWalk [34] DeepWalk interprets nodes as words and truncated random walks as
sentences. It then applies SkipGram[31] to these random walks to learn a graph embedding.
In language modelling, SkipGram learns which words appear in the same context as a given
word. In the context of DeepWalk, SkipGram learns W by observing context windows of
size w around all nodes v of the generated random walks.

Since DeepWalk learns the similarity of two nodes v, w by comparing the similarity of
random walks that v, w are included in, DeepWalk only learns the second-order proximity
of a node [44]].

Node2Vec [16] Node2Vec uses SkipGram to learn an embedding from a set of biased
random walks.

The sampling patterns of these random walks are controlled by two parameters p and g,
which allows different notions of node similarity [16]. The return parameter p controls the
likelihood of immediately returning to the previous node, whereas the in-out parameter ¢
influences the random walk’s bias towards visiting nodes that are not the previous node.

A random walk that just traversed an edge (v, w) and is now at node w will traverse to
the adjacent node x which has the highest transition probability m,,. The unnormalised
transition probability is given by 7, = o,(v, z) - w,,, Where w,, is the weight of the
edge (w, z),

% ifdy, =0
apg(v,2) =<1 ifdy, =1
é ifdy, =2

and d,, is the length of the shortest path from v to z.

LINE [44] Tang et al.[44] propose LINE, a graph embedding method for directed, as
well as undirected and weighted, as well as unweighted networks. LINE is built around two
optimisation functions that are designed to preserve first-order and second-order proximity,
respectively. These optimisation functions are optimised using Stochastic Gradient Descent
(SGD).

Unlike DeepWalk, LINE samples nodes using Breadth-First Sampling.

Force2vec [38] Force2vec aims to use force-directed graph layout models (e.g. [12])
from the field of graph drawing to find a graph embedding.

Graph drawing is the problem of embedding a graph in two or three dimensions in such a
way that it is "aesthetically pleasing"[38]].

Force-directed graph layout models generally work by simulating a system of attractive
and repulsive forces. Two nodes v, w will be attracted to each other when there is an edge
between v and w, otherwise, they will repulse each other.

11

3 Related Work

Force2vec then learns W' by minimising a loss function that is based on these attracting
and repelling forces.

VERSE [46] VERSE introduces an optimisation objective that minimises the Kullback-
Leibler divergence between the node similarity sim¢ in G and the node similarity sim. in
the embedding space using SGD. VERSE allows different choices for sim but uses PPR
as its default choice[46]].

3.4.3 Others

Algebraic Distance [39] The algebraic distance is a measure for the connectivity of
two vertices[9]. While not a graph embedding method in a strict sense, algebraic distance-
based coarsening can be viewed as implicitly computing a graph embedding W with di-
mension d = n and using the information from W to adjust the weight of all edges (cf.

[9D.

3.4.4 Comparison of Static Graph Embedding Methods

Rahman and Azad[37] compare HOPE, DeepWalk, LINE, VERSE and force2vec. Posta-
varu et al.[35] compare DeepWalk, Node2Vec, VERSE, FastRP and InstantEmbedding for
generating embeddings of single nodes.

This comparison will refer to several datasets that were used in experiments by Postivaru
et al.[35] and Rahman and Azad[37]. An overview of these datasets is given in Table[3.1]

Table 3.1: Dataset characteristics: number of nodes |V|; number of edges |E|; number of node

labels |L|; average node degree; density %
2

Dataset V| |E| |L| Avg.deg. Density

Cora 2k 5k 7 5 2.5 x 1073
Citeseer 3k 4k 6 2.67 8.89 x 107*
BlogCatalog 10k 334k 39 64.8 6.3 x 1073
Pubmed 20k 44k 3 4.4 2.2 x 1074
CoAuthor 52k 178k — 6.94 1.3 x 1074
Flickr 80k 12M 195 146.55 1.8 x 1073
YouTube 1.1IM 3M 47 5.25 9.2 x 1076
Orkut 3M 117M 110k 7.8 2.6 x 10°

12

3.4 Overview Of Different Graph Embedding Methods

Embedding Quality Based On Node Classification Postivaru et al.[35] and Rah-
man and Azad[37] evaluate the embedding quality of InstantEmbedding, DeepWalk, HOPE,
VERSE, LINE, Node2Vec, force2vec and FastRP by using these methods for node classi-
fication.

For their node classification experiments, Postdvaru et al. train a simple classifier on 10%
of the available labels of BlogCatalog and on 1% of the available labels of CoCit, Flickr,
YouTube and Orkut. The results that Postivaru et al. report are available in Table [3.2]
Postavaru et al. note that InstantEmbedding achieves a higher Micro-F1 score than Deep-
Walk, Node2Vec, VERSE and FastRP on all their datasets, except for Flickr.

Table 3.2: Average Micro-F1 scores and confidence intervals as reported by Postdvaru et al. for
their node classification experiments[35]].

BlogCatalog CoCit Flickr YouTube Orkut
DeepWalk 32.48 £0.35 37.44 £0.67 31.22 +£0.38 38.69 £1.17 87.67 £0.23
Node2Vec 33.67 £0.93 38.35=£1.75 29.8+0.67 36.02=£2.01 -
VERSE 24.64 £0.85 3822 £1.34 25.22+0.2 36.74 £1.05 81.52+1.11
FastRP 33.54 £0.96 26.03 £2.1 29.85 +0.26 22.83 £0.41 -
InstantEmbedding 33.36 £0.67 39.95 £0.67 30.43 £0.79 40.04 £0.97 76.83 £1.16

Bl Force2Vec Bl VERSE ElHOPE
B DeepWalk EBLINE

0.6 0.8

0.7

o
w

0.6

0.4 0.5

F1-micro score
=)

0.4 0.3 0.4
0.3
0.2
0.2 0.2
5% 10% 15% 20% 25% 5% 10% 15% 20% 25% 5% 10% 15% 20% 25%
Percentage of training vertices Percentage of training vertices Percentage of training vertices
(a) Node classification for Cora (b) Node classification for Cite- (c) Node classification for
seer Pubmed
05 B Force2Vec Il DeepWalk J
0.45| B VERSE EEEILINE
0.4
0.4
@ 0.35
g 0.3 03
=
.; 0.25
g 0.2 02
: 0.15
0.1 o
: 0.05
5% 10% 15% 20% 25% 5% 10% 15% 20% 25% 0N prvs o 0% poo
Percentage of training vertices Percentage of training vertices) Percentage of training vertices -
(d) Node classification for (e) Node classification for (f) Node classification for
Flickr BlogCatalog YouTube

Figure 3.2: Micro-F1 scores for node classification as reported by Rahman and Azad([37].

Rahman and Azad train a logistic regression model for their node classification experiments

3 Related Work

on different percentages of their datasets[3’/]. Their results are reported in Figure|3.2| where
the percentage of vertices used for training is given on the x-axis. Rahman and Azad
state they were unable to run HOPE on larger graphs, such as Flickr and YouTube, due to
HOPE’s high memory requirements[37]. While no single method achieves a higher F1-
micro score for all datasets and test-training splits than all other methods, Figure [3.2]shows
that the three highest F1-micro scores are always achieved by DeepWalk, force2vec and
VERSE.

Embedding Quality Based On Link Prediction Postivaru et al. and Rahman and
Azad use DeepWalk, Node2Vec, LINE, HOPE, force2vec, VERSE and InstantEmbedding
for link prediction to further quantify the quality of the generated embeddings[35, 147, 37].

Link prediction is the task of predicting edges that might be present in future evolutions
of a network. The applications for link prediction include the recommendation of user
accounts on platforms such as Facebook[19] and the prediction of drug-disease association
in biomedical networks[50].

For their link prediction experiments on the CoAuthor dataset, Postidvaru et al. use links
until 2014 for training. For testing and validation, they split links from 2015-2016 in two
balanced partitions[35]]. On all other datasets, Postavaru et al. uniformly sample 80% of all
links for training and 10% for testing and use the remaining 10% for validation[35]].

Postdvaru et al. observe that VERSE achieves the highest ROC-AU scores on all datasets,
except for YouTube, where the highest ROC-AU score is achieved by InstantEmbedding|[35]].
Their results are summarised in Table 3.3

Table 3.3: Average ROC-AUC scores and confidence intervals for link prediction as reported by
Postdvaru et al.[35]].

CoAuthor BlogCatalog ~ YouTube Amazon2M
DeepWalk 88.43 £1.08 91.41 £0.67 82.17 £1.02 98.79 +0.41
Node2Vec 86.09 £0.85 92.18 £0.12 81.27 +1.58 -
VERSE 92.75 £0.85 93.42 £0.35 80.03 £0.99 99.67 £0.18
FastRP 82.19 £2.22 88.68 £0.7 763 £1.46 92.12 +0.61
InstantEmbedding 90.44 £0.48 92.74 £0.6 82.89 +£0.83 99.15 £0.18

Rahman and Azad use 50% of all edges for training and the remaining 50% for testing[37].
They find that when using the Hadamard operator to generate edge embeddings, force2vec
and VERSE achieve almost 99% accuracy in all datasets, while DeepWalk achieves a
higher accuracy than all other methods when using the weighted L1 operator or the weighted
L2 operator[37/]]. The results of their experiments are summarised in Figure Rahman
and Azad also observe, that on the Cora and Pubmed datasets, HOPE achieves 79.8% and
80% accuracy, respectively[37].

14

3.4 Overview Of Different Graph Embedding Methods

1.2
ElForce2Vec HMLINE ! !
1.1 ElDeepWalk EHVERSE
[§ 0.8 § 0.8
€00 g E
X X 06 0.6
§,0.8 = =
£07 £04 £o4
1 g 1
-1 1 S
< 0.6
<02 <02
0.5
Cora Citeseer ~ Pubmed Flickr Cora Citeseer Pubmed Flickr

Cora Citeseer Pubmed Flickr

(a) Link prediction based on (b) Link prediction based on L1 (€) Link prediction based on L2
hadamard operator operator operator

Figure 3.3: Link prediction results by Rahman and Azad. Chart adapted from Rahman and
Azad[37]).

15

3 Related Work

16

4 Embedding-based Coarsening

This work uses[Node2Vec|and [InstantEmbedding|to generate its embeddings. Embeddings
are then used in a coarsening algorithm based on Size-Constrained Label Propagation to
acquire a coarse graph.

4.1 Size Constrained Label Propagation

Size constrained label propagation is a clustering algorithm first proposed by Meyerhenke
et al.[30]. Nodes are assigned to clusters and then join the clusters of those nodes adjacent
to them, to which they have the strongest connection without violating a constraint to the
maximum node weight of each cluster (see Section [3.2.1)). Since the algorithms presented
in this thesis are implemented in KaMinPar, a parallel multilevel graph partitioner which
uses size constrained label propagation for its coarsening algorithm, this section presents
the size constrained label propagation as used in KaMinPar[15], which is shown in Algo-
rithm [3]

KaMinPar specifically uses the size constraint U = 8%, where k' = min{k, “{—‘}, where

¢ is a tuning parameter. In Line 4 of Algorithm 3] node traversal is not done in an arbitrary
order. Instead, nodes are sorted in exponentially spaced degree buckets, such that bucket
i contains all nodes u with degree 2¢ < deg(u) < 2'*!. Buckets are then broken down
further into chunks, inside which the node order is randomised. Iterating over nodes is
done chunk by chunk, with chunks of lower degree buckets being processed before chunks
of higher degree buckets. This strategy seeks to apply the findings of Meyerhenke et al.,
who observe that the solution quality of size constrained label propagation increases if node
are visited in increasing degree order[30], while maintaining some diversification through
randomisation and improving cache efficiency.

Size constrained label propagation as used in KaMinPar also uses two-hop clustering. For
every node u where the size constraint prevents u from joining any clusters, the cluster
which receives the highest rating by u is stored (see Lines 10-11 of Algorithm [3)). If the
graph later shrinks by less than 50%, all nodes that could not join any clusters and share the
same highest rated cluster are moved to the same new cluster (see Line 12-13 of Algorithm

B).

17

L S

B e

4 Embedding-based Coarsening

Algorithm 3: Size Constrained Label Propagation in KaMinPar

Input: Graph G = (V, E), Rounds r, Tuning Parameter ¢
Output: Clustering C

(V) . .
U + E T VI/IT // set the size constraint
C+[vlveV] // initialise clustering

fori<1tordo
foreachu € V do
B «+ adjacentClustersToNode(u)
B C B all clusters b, where c(b) + c(u) < U
b argmaxXycs D1y (uoter) Fating(u, v) // select highest rated cluster
if ¢(b) + ¢(u) < U then
L Clu] b
else
L favouredCluster, <— argmaxuen D r,cp| fuv)en) rating(u, v)

if C would shrink G by less than 50% then
L cluster all nodes in singleton clusters with same favoured clusters

return C

4.1.1 Using Embeddings

Line 7 of Algorithm[3|shows the use of an edge rating function rating(u, v) for edges {u, v}
to find the cluster that a node u should join. In standard size constrained label propagation,
rating(u, v) = w({u, v}). Part of this work is to examine alternative edge rating functions
that use embeddings to influence the score of edges such that edges between similar nodes
achieve higher scores than edges between dissimilar nodes.

Srybrandt et al. use Equation as the rating function in coarsening algorithm based
on heavy edge matching[43] (cf. Section [3.2.2)), where they use a heavy node penalty to
prevent too many heavy nodes being contracted into the same coarse node.

rating({u,v}) = FOEOR w({u,v}) 4.1.1)

The size constraint of size constrained LPA makes this heavy node penalty somewhat re-
dundant and preliminary experiments done for this thesis show that removing the heavy
node penalty improves solution quality. As such, this thesis uses Equation4.1.2]as its edge
rating function in size constrained LPA.

rating({u,v}) = e(u)e(v) - w({u,v}) (4.1.2)

18

(= N B T S

4.2 Embedding Contraction

Further experiments are done with the rating functions depicted in Equations 4.1.3| and
M.1.4] These scale the embedding dot product of the incident nodes super-linearly. This
gives highly similar nodes a higher chance of getting inserted into the same cluster.

rating, .« ({u, v}) = (e(u)Te())” - w({u,v}) (4.1.3)

ratingq, ({u, v}) = 20 w({u, v}) (4.1.4)

All of these rating functions have the use of the embedding dot product in common, the
computation of which adds O(d) steps to the total runtime of evaluating a single edge
during label propagation.

4.2 Embedding Contraction

Computing embeddings is expensive in terms of runtime. Additionally, preliminary exper-
iments done for this thesis and by Srybrandt et al. suggest that computing new embeddings
on each coarse graph does not improve solution quality[43]], so rather than computing a
new embedding at each level, this work projects embeddings to coarse levels. This is done
by setting the embedding of a coarse node to the centroid of all contributing nodes, as
shown by Algorithm [4, More formally, given a coarse node u“ which consists of nodes

U1, Us, ..., uj, the embedding e(u®) of u“ is defined by e(u”) = 3 T e(uy).

Algorithm 4: Embedding Contraction
Input: Embedding W of size n x d, Clustering C'
Output: Embedding W’
nc the number of clusters in C'
W' an embedding matrix of size nc X d
foreach Cluster V do
ny the number of nodes in cluster V'

u® the node to which V is contracted in the coarse graph
W', 1 d] < =30 ey €(v)

ny

return W’

Algorithm [] illustrates that the impact of embedding contraction on the runtime needed
to compute a new coarse graph is not negligible. It requires that each embedding vector
is used in vector addition and also that each sum of these vector additions is divided by a
scalar, which requires O(nd) steps on each step on each level of the graph hierarchy.

19

4 Embedding-based Coarsening

./0

./’

7

Figure 4.1: Overlaying two clusterings means combining two clusterings so that clusters in the
resulting clustering only contain nodes which are part of the same initial clusters.

4.3 Cluster Overlaying

Meyerhenke et al. use the term overlay clustering to describe the process of combining
two or more clusterings to acquire a new clustering[30]. This technique is also known in
the field of machine learning as "ensemble learning", where multiple weak classifiers are
combined to form a single stronger classifier.

Combining clusterings is done by placing two nodes u, v in the same cluster C' if and only
if they are part of the same cluster in both clusterings. More formally, given two clusterings
V., Vi and two clusters C,, Cp, with nodes u € C,, v € C}, u and v are part of the same
cluster C'if and only if u € C, A v € C,. For an illustration, refer to Figure

This work assesses two kinds of overlay clusterings: the first kind combines two cluster-
ings obtained through size constrained LPA, while the second kind combines two size con-
strained LPA clusterings where one clustering uses embeddings. This approach decreases
the rate at which embedding-based LPA clusters similar nodes and prevents “bad” deci-
sions in the coarsening process, while still making the more global structural information
stored in graph embeddings available in the coarsening process.

Overlaying increases the total runtime needed to compute a coarse graph: it requires the

20

4.4 Algebraic Distance

LPA algorithm to be executed twice instead of once and requires the subsequent combi-
nation of the two obtained clusterings. Additionally, overlaying generally increases the
number of clusters present in the final clustering. This means that the coarse graphs result-
ing from clusterings obtained through overlaying will be bigger, potentially increasing the
number of coarsening steps that need to be done before initial partitioning can begin.

4.4 Algebraic Distance

Algebraic distance is a measure of the connectivity between two vertices[9]]. The use of it
is evaluated in this thesis because it is an approach which captures structural information
about the nodes of a graph that has been used in graph coarsening before[9, 40]].

Algorithm [5] describes how to compute the algebraic distance. The parameter « in Line
11 of Algorithm [5]is set to & = 0.5, as Chen et al. use the same for their own graph
partitioning experiments. Chen et al. also note that the number of iterations (cf. Line 6 of
Algorithm [5) does not significantly influence the solution quality, so that iterating may be
stopped before convergence. Line 14 of Algorithm [5]also performs degree normalisation,
which is an optional addition to the method of computing the algebraic distance described
by Chen et al.

Algorithm 5: Algebraic Distance

Input: Graph G = (V, E), Parameter R

Output: Algebraic Distance Matrix W
1 x array of size |V|
> W matrix of size |V| x |V // assume initialisation with 0
3 forr=1to Rdo

4 | 2 array of size |V|
5 initialise (¥ with random values
6 fork=1,2...do
7 Z array of size |V/|
8 foreachu €V do
9 L]\H—{v\{u,v}EE}
Zu] ey w{u, v}z V] / 3 oy w{u,v})
1 z®) (1 —a)z* D +az
12 e zk)
13 foreach {u,v} € F do
W — max{|z[u]—z[v]]|, W[u,v]}
14 | [’LL, U] \/degree(u)-degree(v)

s return W

21

4 Embedding-based Coarsening

Chen et al. use the inverse of the algebraic distance as an edge rating function during graph
coarsening[9]. This thesis employs this edge rating function as well, whenever algebraic
distance is used for a configuration. This makes for an edge rating function whose runtime
is not much different to using the edge weight w(e) to rate an edge e. Instead, it requires an
increase of space complexity by 2(m), unless edge weights are replaced with the respective
algebraic distance on the top level of the graph hierarchy.

22

5 Experimental Evaluation

5.1 Implementation

All algorithms were implemented as part of the KaMinPar parallel graph partitioner and
compiled using g++-14.1. Intel’s TBB library[1] was used for parallelisation and Eigen[/17]]
for the implementation of embeddings and operations on embeddings.

5.1.1 Embedding Implementation

Embeddings are implemented as wrappers around dense or sparse matrices, where the ex-
act type has to be chosen in code. For each level of the graph hierarchy, the respective
embedding is saved separately, rather than replacing the edge weights of the graph. By
default, embeddings are computed once at the top level and then contracted on each level
of the hierarchy in accordance with the algorithm outlined in Section although pass-
ing the flag ——c-embedding-recompute will cause embeddings to be recomputed on
each level of the graph hierarchy.

For this work, InstantEmbedding (ref. Section [3.4.1)) and Node2Vec (ref. Section [3.4.2)
were chosen as embedding methods. Both methods achieve good results in the node clas-
sification and link prediction experiments done by Postavaru et al.[35] and Rahman and
Azad[37]. Additional benefits include that Node2Vec’s is widely known and that a basic
implementation of InstantEmbedding can be done fairly easily.

A parallel implementation of InstantEmbedding was added to KaMinPar, which makes use
of InstantEmbedding’s ability to compute globally consistent node embeddings indepen-
dently of all other nodes (cf. Section [3.4.1). For Node2Vec embeddings, Tsitsulin and
Bischoff’s C++ implementation of Node2Vec[46! 45] was used.

5.1.2 Coarsening by Size Constrained Label Propagation and
Heavy Edge Matching

KaMinPar already contains an implementation of a coarsener based on size constrained
LPA, which is extended for the purpose of this thesis. To allow overlaying clusters during
coarsening, the existing coarsener is extended to optionally overlay two clusterings. Clus-
terings are then overlayed following the algorithm outlined in[6] All nodes are inserted into

23

0 N N R WD =

=)

5 Experimental Evaluation

a hash table, where the key for a node u contained in clusters C,,, Cj, is the tuple (C,, Cy).
The new clustering is derived by placing all nodes with the same key in the same cluster.

Algorithm 6: Cluster Overlaying

Input: Clustering C,, Cj, Clustering Size n
Output: Clustering C

hash table H

Clustering C of size n

c+0

forue{0.n—1} do

k= (Calu], Cylu])

if H does not have key k then

LH[k]ec

c—c+1
| Clu] + H|[k]

KaMinPar’s implementation of size constrained LPA[30] is extended to enable the use
of Equation [4.1.2] for rating edges. By passing a template parameter, the type of the the
LPA implementation can be switched between using normal edge weights and embedding-
based edge weights. When using embedding-based edge weights, Equation |4.1.2|is used
for rating edges. The LPA implementation iterates over all nodes in parallel and updates
cluster weights with atomic fetch-and-add operations.

Additionally, a coarsener based on Heavy Edge Matching was added to KaMinPar, which
is a reimplementation of Procedure 1 in [43].

5.2 Experimental Setup

5.2.1 Environment and Parameters

All experiments were conducted on the single partition of bwUniCluster 2, with each in-
stance having 32 cores and 18 gB of memory allocated to it. To increase the observable

coarsening depth, all configurations of KaMinPar are run with -——c-contraction-limit

160.

Configuration Naming Scheme The following experiments use different configu-
rations of KaMinPar, whose names contain consist of affixes which describe the con-
figuration. Some of these affixes appear in configurations used throughout most exper-
iments. These affixes are “Base”, which denotes that a configuration uses KaMinPar’s

24

5.3 Evaluation of Embedding-based Coarsening

default coarsener based on standard size constrained Label Propagation, “n2v”, which de-
notes the use of Node2Vec-based Label Propagation and “ie”, which denotes the use of
InstantEmbedding-based Label Propagation.

To denote the strategy refinement, configurations may have the “FM” suffix for FM-based
refinement using KaMinPar’s fm preset or “4xJet” suffix for Jet-based refinement using
KaMinPar’s 4x jet preset. Configurations that have neither of these suffixes use KaMin-
Par’s default refinement strategy, which is based on size constrained Label Propagation.

5.2.2 Instances

Graph instances consist of 37 graphs from the 10th DIMACS implementation challenge[Sl],
5 road networks from the 9th DIMACS implementation challenge[3], 12 VLSI graphs from
Testset ALUE[24, 23], 10 graphs from the SNAP Large Network Dataset Collection[26],
as well as the social network wordassociation—2011[6,7] and the circuit simulation
problem scircuit_spmv[18]. To keep embedding time and embedding size down, only
graphs with less than 1.5 million nodes and less than 2 million edges were chosen. See
Table for a full list of all graph instances.

Experiments used ten seeds and four values of k (k € {2, 8,32,128}) and were conducted
with a maximum allowed imbalance of 3%. Embeddings for all graphs were precomputed
once for every graph and every seed and then reused in all subsequent experiments.

5.2.3 Methodology

Each combination of a graph and a value of % is run ten times with different seeds. The
produced edge cuts are then aggregated with the arithmetic mean over all seeds.

Comparison is done using performance profiles[10]. Given the set of all algorithms to

compare A and the set of all instances Z and the quality g4 (/) of an algorithm A € A on

aninstance I € 7,74 = {I € T|qa(I) < mingc4qa (1)} is the set of all instances where

é e‘lchieves a solution within tau of the best solutions for /4. The fraction of all instances
A

N is plotted against the ratio 7.

5.3 Evaluation of Embedding-based Coarsening

Figures and show performance profiles for the average cuts of baseline KaMinPar
with LPA coarsening based on embeddings computed with Node2Vec and InstantEmbed-
ding, respectively. While Node2Vec embeddings lead to measurably improved solution
quality, the solution quality gets noticeably worse when using InstantEmbedding as the
embedding method.

25

5 Experimental Evaluation

1 1 1 —
0.9 0.9 0.9
0.8 0.8 0.8
=07 =0.7 =0.7
30.6 20.6 20.6
50.5 505 505
S04 S04 S04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 L1 1.5 2 q.O 1.05 N 1.5 2 q.O 1.05 L1 1.5 2
Ratio Ratio Ratio
Base — n2v BaseFM — n2vFM Base4xJet— n2v4xJet

Figure 5.1: Node2Vec-based LPA coarsening achieves a higher solution quality than the baseline.

1 1 1
0.9 0.9 - 0.9
0.8 0.8 0.8
=07 =0.7 =0.7
S0.6 306 0.6
50.5 50.5 505
S04 S04 S04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
4% 1.05 1115 2 % 1.05 11 15 2 4% 1.05 1115 2
Ratio Ratio Ratio
Base - ie BaseFM - ieFM BasedxJet— iedxJet

Figure 5.2: Coarsening by LPA based on InstantEmbedding is achieves lower solution quality than
the baseline.

Figures [5.1] and [5.2] also show that the impact that embeddings have on the solution qual-
ity depends on the used refinement strategy. Figure [5.1| shows that Node2Vec-based LPA
coarsening leads to more significant improvements of the solution quality when combined
with the default refinement or the 4xJet preset, compared to the FM preset. Likewise, Fig-
ure shows that the gap in solution quality is InstantEmbedding-based LPA coarsening
is significantly higher when using the FM preset, than the gap in solution quality when the
default refinement or the 4xJet preset are used.

Table[5.1|shows the standard deviation of the cuts produced by the Base, n2v and ie config-
urations on each instance. From the Table[5.1lit is evident that while the standard deviation
of the cuts produced by all three configurations is similar on most instances, both n2v and

Configuration | Base n2v ie
Minimum 0.00 0.00 0.00
1st Quartile 12.69 10.52 12.77
Median 71.05 60.24 65.42
Mean 369.19 434.38 528.44
3rd Quartile 527.68 422.05 462.45
Maximum 4116.00 16995.78 13600.95

Table 5.1: Comparison of the standard deviation of solutions found by the Base, n2v and ie con-
figurations for each instance.

26

5.3 Evaluation of Embedding-based Coarsening

especially ie suffer from some outliers.

10000 A

1000 A

1004

Cut Standard Deviation

Base i n2v
Figure 5.3: Distribution of the standard deviation of the cuts of Base, n2v and ie.

Figure @] shows that for n2v, the standard deviation of the cut is similar to the standard
deviation of the cuts produced by Base, except for the graphs soc-Slashdot0811 and
soc-Slashdot0902 with k = 2 which are prominent outliers.

5.3.1 Correlation between Embeddings and Final Partition

The influence of embeddings on the final partition is assessed using Welch’s ANOVA. The
test compares dot products of the embedding vectors of 4 different node pair categories:
intra-block edges and inter-block edges, as well as intra-block non-edges and inter-block
non-edges.

The number of runs where the difference between groups is significant at a 5% level varies
between configurations ie and n2v, with the difference being significant on 89.9% of all
runs of the ie configuration and 92.8% of all runs of the n2v configuration. Let Ri, Ruoy
be the sets of all runs on which a significant difference between node pair categories is
found for the ie, respective n2v, configuration. Further analysis using a Games-Howell
post-hoc test shows that the difference between intra-block edges and inter-block edges is
significant at a 5% level on 33.3% of R, and on 41.5% of R ..

27

5 Experimental Evaluation

These results are in line with experiments in Section where n2v beats the baseline’s
solution quality but ie does not beat the baseline’s solution quality. The lower percent-
age of runs with a significant difference between categories of the ie configuration further
underlines how the latent structural information of the embedding remains unused.

5.3.2 Alternative Edge Rating Functions

For this experiment, label propagation is done using the edge rating functions rating, . ({u, v}) =
(e(w)Te(v)™ - w({u,v}) and rating,,,, ({u, v}) = 2¢ <) .w({u,v}). Configurations us-

ing the edge rating function expo carry the affix “expo”, while configurations using an edge

rating function poly” carry the affix “polyz”.

Figure @ shows that the edge rating functions rating,.2 and rating s do not signifi-
cantly change the solution quality when combined with Node2Vec. Figure[5.5|shows that
while this holds true for the combination of rating, 2 with InstantEmbedding, a combi-
nation of rating, s with InstantEmbedding leads to a lower solution quality.

For rating,,,,,, results are more different. Figure @ shows that while for both Node2Vec
and InstantEmbedding rating,, , leads to a loss in solution quality, Figure @ also shows
that InstantEmbedding is affected more than Node2Vec.

1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
=07 =07 =0.7
306 306 306
505 505 505
£0.4 £0.4 £0.4
=03 003 003
0.2 0.2 0.2
0.1 0.1 0.1

q.O 1.05 L1 1.5 2 q.O 1.05 L1 1.5 2 q.O 1.05 L1 1.5 2

Ratio Ratio Ratio
n2v — n2v-poly2 n2v-poly2FM — n2vFM n2v-poly24xJet— n2v4xJet

1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
=07 =07 =0.7
306 306 306
505 205 205
£0.4 S04 S04
003 003 003
0.2 0.2 0.2
0.1 0.1 0.1

(‘].0 1.05 NI 1.5 2 (‘].0 1.05 NI 1.5 2 q.O 1.05 Nt 1.5 2

Ratio Ratio Ratio
n2v - n2v-poly3 n2v-poly3FM - n2vFM n2v-poly34xJet— n2v4xJet

Figure 5.4: Using rating 2 or rating, ., s with Node2Vec does not impact solution quality.

While both InstantEmbedding-based configurations and Node2Vec-based configurations
do not benefit from any of the alternative edge rating functions, Figures 5.5 and [5.6| show
that InstantEmbedding-based configurations are more significantly influenced by the choice
of the edge rating function than their Node2Vec-based counterparts.

28

5.4 Overlaying Clusterings

1 1 P 1
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
0.6 0.6 20.6
505 505 505
£0.4 £0.4 £0.4
003 003 003
0.2 0.2 0.2
0.1 0.1 0.1

q.O 1.05 N 1.5 2 q.O 1.05 L 1.5 2 Q.O 1.05 NI 15 2

Ratio Ratio Ratio
ie — ie-poly2 ie-poly2FM- ieFM ie-poly24xJet — iedxJet

1 — 1 1
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
0.6 0.6 0.6
505 205 205
£04 £04 £04
003 003 H0.3
0.2 0.2 0.2
0.1 0.1 0.1

q.O 1.05 L1 1.5 2 q40 1.05 1 1.5 2 q.O 1.05 L1 1.5 2

Ratio Ratio Ratio
ie - ie-poly3 ie-poly3FM- ieFM ie-poly34xJet — iedxJet

Figure 5.5: While using rating, ;.2 with InstantEmbedding does not impact solution quality, us-
ing rating ;s with InstantEmbedding leads to an worse overall worse solution qual-

ity.

5.4 Overlaying Clusterings

For this experiment, clusterings obtained through standard size constrained LPA were over-
layed with standard clusterings and embedding-based clusterings, respectively. By com-
bining a clustering obtained through standard LPA with an embedding-based clustering,
the effect of overeager merging can be reduced which can make the use of embeddings
in clustering-based coarsening strategies more worthwhile. The configurations studied for
this experiment use the affix “overlay” to show that they use overlaying.

Figures [5.7] and [5.8] compare the solution quality between baseline KaMinPar, KaMinPar
with two overlayed LPA clusterings and KaMinPar with an overlaying of a normal LPA
clustering with a Node2Vec-based LPA clustering, respective InstantEmbedding-based LPA
clustering.

Like in Section [5.3] Node2Vec-based overlay clusterings achieve a measurable increase
in solution quality, compared to when overlaying clusterings without embeddings. Im-
portantly, InstantEmbedding-based cluster overlaying achieves higher solution quality than
overlaying clusterings without embeddings, which is unlike the results of the previous ex-
periment (see Section[5.3). However, the increase in solution quality is not as high as with
Node2Vec-based cluster overlaying.

The differences in solution quality depending on the used refinement strategy observed
in Section [5.3] can be observed here as well: Figure shows a significantly larger dif-
ference in the solution quality of Node2Vec-based overlaying and standard overlaying.
Likewise, Figure [5.8] shows a measurable improvement in solution quality when using
InstantEmbedding-based overlaying over standard overlaying with the 4xJet preset and also

29

5 Experimental Evaluation

1 = 1 1
0.9 0.9 0.9
0.8 0.8 0.8
=07 =0.7 =0.7
206 206 206
50.5 505 505
S04 S04 S04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1

q.O 1.05 L1 1.5 2 q.O 1.05 L1 1.5 2 q.O 1.05 L1 1.5 2

Ratio Ratio Ratio
n2v- n2v-expo n2v-expoFM—- n2vFM n2v-expo4xJet— n2v4xJet

1 1 1
09 a 09l 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
20.6 20.6 20.6
‘g 0.5 ‘g 0.5 ‘g 0.5
0.4 0.4 0.4
K03 K03 K03
0.2 0.2 0.2
0.1 0.1 0.1

q.O 1.05 1. 15 2107102 q.O 1.05 1. 15 2107102 q.O 1.05 1. 15 2107 10%

Ratio Ratio Ratio
ie — ie-expo ie-expoFM - ieFM ie-expodxJet — iedxJet

Figure 5.6: Unlike rating,,, using rating.,,, leads to a significant loss of solution quality.

1 1 S— — 1
0.9 0.9 0.9 //
0.8 0.8 0.8
=07 =07 =07
0.6 0.6 0.6
205 505 505
S04 S04 S04
10.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
4% 1.05 11 15 2 4% 1.05 11 15 2 4% 1.05 1115 2
Ratio Ratio Ratio
Base — n2v-overlay—- overlay BaseFM — n2v-overlayFM Base4xJet — n2v-overlay4xJet
overlayFM overlay4xJet

Figure 5.7: Overlaying Node2Vec-based LPA with standard LPA achieves higher solution quality
than the baseline and overlaying two clusterings obtained by standard LPA.

the default refinement but only a very small difference in solution quality when comparing
InstantEmbedding-based overlaying to standard overlaying with the FM preset.

Figures and [5.8] also show that overlaying leads to significant improvement in solution
quality over the baseline, regardless of the specific configuration used. Appendix [A.2]illus-
trates that overlaying benefits embedding-based coarsening methods especially on irregular
graphs. Both the n2v configuration and the ie configuration generally perform worse on ir-
regular graphs than on regular graphs. Using them in conjunction with cluster overlaying
significantly increases the solution quality of both configurations on irregular graphs, with
n2v-overlay outperforming both overlay and Base on irregular graphs.

Overlaying comes at the cost of increased coarsening time, with the median coarsening
depth of the overlay configuration being twice as high as the median coarsening depth of
baseline KaMinPar and maximum coarsening depth being 1.5 times as high.

30

5.5 Algebraic Distance-based Coarsening

1 — 1 1
0.9 e 0.9 0.9]
0.8 0.8 0.8
=0.7 =0.7 =0.7
20.6 20.6 20.6
505 505 505
S04 S04 S04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 L1 1.5 2 q.O 1.05 L1 1.5 2 Q.O 1.05 L 1.5 2
Ratio Ratio Ratio
Base — ie-overlay BaseFM - ie-overlayFM Base4xJet — ie-overlay4xJet
overlay overlayFM overlay4xJet

Figure 5.8: Solution quality generally benefits from using InstantEmbedding when combining it
with overlaying.

5.5 Algebraic Distance-based Coarsening

Chen et al.[9] first apply algebraic distances in graph coarsening as an exemplary use case
of algebraic distances for graph applications. They implement a matching-based graph
coarsener in HMetis2[21]] and report measurable improvements to the cut of the partitioned
graphs. Safro et al.[40] later build a more complex graph coarsener in KaFFPa[42] and
report that it achieves lower cuts than alternative matching-based coarseners that do not
make use of algebraic distances.

Since algebraic distances are a form of distance metric on graphs as well, algebraic distance-
based coarsening provides a natural extension to the scope of this work and as such is im-
plemented in KaMinPar as an embedding with dimension d = n. Configurations that use
algebraic distances carry the affix “ad”. Additionally, configurations that use heavy edge
matching-based coarsening carry the affix “hem”.

1 1 = 1
0.9 0.9 0.9
0.8 0.8 0.8
=07 =0.7 =0.7
306 306 306
305 305 505
S04 £04 £04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 L L1 1.5 2 q.O 1.05 L1 1.5 2 q40 1.05 L L1 1.5 2
Ratio Ratio Ratio
ad— Base adFM - BaseFM ad4xJet — Base4xJet

Figure 5.9: Algebraic distances improve the solution quality of LPA-based coarsening, although
effectiveness with LPA-based refinement and FM refinement is limited.

Figures[5.9)and[5.10]show performance profiles for the cuts of algebraic distance-informed
LPA-based coarsening and algebraic distance-informed matching-based coarsening, re-
spectively. While algebraic distances lead to improvements with all evaluated configu-
rations, the observed improvements are noticeably smaller when comparing configurations
based on LPA, with ad and adFM achieving only minor improvements over base KaMinPar
and KaMinPar-fm, respectively.

31

5 Experimental Evaluation

1 =
0.9
0.8
=07
0.6
205
£0.4
0.3
0.2
0.1

(].0 1.05 1. 15 210" 1
Ratio
ad-hem — Base — hem

Fraction

1 = 1
0.9 0.9
0.8 0.8
0.7 =0.7
0.6 .20.6
0.5 50.5
0.4 £0.4
0.3 H0.3
0.2 0.2
0.1 0.1

q.O 1.05 1.5 2107102 q.O 1.05 1.5 2107107

.1
Ratio

ad-hemFM- BaseFM — hemFM

T.1
Ratio

ad-hemdxJet— Base4xJet

hem4xJet

Figure 5.10: Algebraic distances improve the solution quality of matching-based coarsening but
are outperformed by the baseline or improve solution quality only marginally.

1
0.9
0.8 /
=0.7
20.6
50.5
S04
0.3
0.2
0.1
qAO 1.05 1. 15 21071
Ratio
ad—ie—n2v

T

Fraction

1 1
0.9 0.9
0.8 / 0.8 /
0.7 =0.7
0.6 206
0.5 505
0.4 S04
0.3 H0.3
0.2 0.2
0.1 0.1
qAO 1.05 1. 15 2101107 qAO 1.05 1. 15 2107 10%
Ratio Ratio
ad—ie— n2v ad—ie— n2v

Figure 5.11: Comparison of the solution quality of embedding-based and algebraic distance-based
configurations.

Figure [5.11] shows that Node2Vec-based LPA and algebraic distance-based LPA lead to
similar solution quality when combined when the FM or 4xJet presets are used during re-
finement. Figure[5.1T|further shows that both algebraic distance-based LPA and Node2Vec-
based LPA further lead to a higher solution quality than InstantEmbedding-based LPA.

32

6 Conclusion and Future Work

This thesis presented two approaches to using embeddings in the coarsening phase of
multi-level graph partitioning. These approaches were evaluated by implementing them
in KaMinPar and comparing their effectiveness with two embedding methods, Node2Vec
and InstantEmbedding.

By extending the edge rating function used in label propagation-based coarsening to con-
sider the node embeddings of participating nodes, embeddings can be used to improve
the solution quality of existing graph partitioners. This approach is not agnostic to the
used embedding method: while the Node2Vec-based configuration achieved a measurable
increase in solution quality, the InstantEmbedding-based configuration experienced a de-
crease in solution quality. The effectiveness also depends on the used refinement strategy
with FM-based refinement generally leading embedding-based coarsening to have worse
performance than if the refinement strategy is based on size constrained label propagation
or jet. Additionally, experiments with alternative edge rating functions lead to the obser-
vation that Node2 Vec-based configurations are less susceptible to the choice of edge rating
function than InstantEmbedding-based configurations.

By combining the clusterings produced by embedding-based label propagation and stan-
dard label propagation, both InstantEmbedding and Node2Vec can be used to increase the
solution quality. This effect can be observed regardless of whether the combined clustering
is compared to standard label propagation-based coarsening or to a coarsening process that
combines two standard clusterings. Additionally, Appendix [A.2]shows that overlaying has
an especially positive effect on the solution quality on regular graphs.

Algebraic distances, which have already been investigated for their use in graph coarsening[9,
40]], were used in label propagation-based coarsening to label propagation-based coars-
ening based on Node2Vec and InstantEmbedding, respectively. Algebraic distances are
observed to improve the solution quality of standard label propagation-based coarsening
and configurations using algebraic distance-based label propagation during coarsening find
significantly better partitions than configurations that use InstantEmbedding-based label
propagation during coarsening. Compared to Node2Vec-based label propagation, label
propagation-based coarsening based on algebraic distances leads to a similar solution qual-
ity, with some influence from the respective refinement strategy.

33

6 Conclusion and Future Work

6.1 Future Work

While this thesis presents a way of successfully using InstantEmbedding for graph parti-
tioning, its usefulness in this context remains limited. It does, however, show the impor-
tance of employing embeddings in a way that works well with the embedding method in
question. As such, it would benefit from further research in applying embeddings in graph
coarsening and label propagation-based graph coarsening in particular. Based on the obser-
vation that there is a significant difference in the solution quality between Multilevel Graph
Partitioning with InstantEmbedding-based coarsening and with Node2Vec-based coarsen-
ing, an investigation of more different embedding methods appears worthwhile.

Additionally, the scope of this thesis has been limited by the size of the graphs used in
experiments. While using smaller graphs allows for experiments to be cheaper concerning
runtime and space, it is also limiting in the sense that it is difficult to observe the impact
of graph size on the final solution quality. Likewise, only two embedding methods were
evaluated, although many other potentially promising embedding methods exist

Meyerhenke et al. describe that the order in which nodes are evaluated during label prop-
agation can have positive effects on the solution quality[30]. Specifically, Meyerhenke et
al. mention the positive effects of choosing to iterate nodes based on their degree, which
is the basis of the default iteration strategy followed in KaMinPar. Future investigation
could thus entail the use of different, embedding-informed iteration strategies during label
propagation.

34

A.1 Instances

A Experiments

Graph Name Dataset Nodes V| Edges |E)|
144 DIMACS 10[5] 144649 1074393
3elt DIMACS 10[5] 4720 13722
delt DIMACS 10[5]] 15606 45878
598a DIMACS 10[5] 110971 741934
add32 DIMACS 10[5] 4960 9462
alue3146 Testset ALUE[24]] 3626 5869
alue5067 Testset ALUE][24] 3524 5560
alue5345 Testset ALUE][24]] 5179 8165
alue5623 Testset ALUE][24] 4472 6938
alue5901 Testset ALUE[24] 11543 18429
alue6179 Testset ALUE][24] 3372 5213
alue6457 Testset ALUE][24] 3932 6137
alue6735 Testset ALUE][24]] 4119 6696
alue6951 Testset ALUE[24] 2818 4419
alue7065 Testset ALUE][24] 34046 54841
alue7066 Testset ALUE][24] 6405 10454
alue7080 Testset ALUE][24] 34479 55494
amazon0302 SNAP[26] 262111 899792
bay DIMACS 9[3]] 321270 397415
bcsstk29 DIMACS 10[5] 13992 302748
besstk30 DIMACS 10[5] 28924 1007284
besstk31 DIMACS 10[5] 35588 572914
besstk32 DIMACS 10[5] 44609 985046
besstk33 DIMACS 10[5]] 8738 291583
brack2 DIMACS 10[5]] 62631 366559
ca-GrQc SNAP[26] 5241 14484
citationCiteseer DIMACS 10[5]] 268495 1156647
coAuthorsCiteseer DIMACS 10[5] 227320 814134
coAuthorsDBLP DIMACS 10[5] 299067 977676

35

A Experiments

36

col
com-amazon
com-dblp
crack

cs4d

cti

data

ecologyl
ecology?
email-Enron
email-EuAll
fe_4elt2
fe_body
fe_ocean
fe_pwt
fe_rotor
fe_sphere
fe_tooth
finan512

fla
loc-brightkite
loc-gowalla
ml4b
memplus

nw

ny
roadNet-PA
roadNet-TX
scircuit_spmv
soc-Epinions1
soc-Slashdot0811
soc-Slashdot0902
t60k

uk

vibrobox
wave
web-NotreDame
web-Stanford
whitaker3

DIMACS 9[3]]
SNAP[26]
SNAP[26]
DIMACS 10][5]]
DIMACS 10][5]]
DIMACS 10[5]
DIMACS 10][3]]
DIMACS 10][3]]
DIMACS 10][5]]
SNAP[26]
SNAP[26]
DIMACS 10][53]]
DIMACS 10][5]]
DMACS 10[3]
DIMACS 10][5]]
DIMACS 10[3]
DIMACS 10[5]
DIMACS 10][5]]
DIMACS 10][5]]
DIMACS 9[3]]
SNAP[26]
SNAP[26]
DIMACS 10][3]]
DIMACS 10][3]]
DIMACS 9[3]]
DIMACS 9[3]]
SNAP[26]
SNAP[26]
Hamm|[18]]
SNAP[26]
SNAP[26]
SNAP[26]
DIMACS 10][3]]
DIMACS 10][5]]
DIMACS 10][5]]
DIMACS 10][5]]
SNAP[26]
SNAP[26]
DIMACS 10][5]]

435666
548552
425957
10240
22499
16840
2851
1000000
999999
36692
265009
11143
44775
143437
36463
99617
16386
78136
74752
1070376
58228
196591
214765
17758
1207945
264346
1090920
1393383
341996
75879
77360
82168
60005
4824
12328
156317
325729
281903
9800

521200
925872
1049866
30380
43858
48232
15093
1998000
1997996
183831
364481
32818
163734
409593
144794
662431
49152
452591
261120
1343951
214078
950327
1679018
54196
1410387
365050
1541898
1921660
958936
405740
469180
504230
89440
6837
165250
1059331
1090108
1992636
28989

A.2 Graph Types

wiki-Vote SNAP[26] 7115 100762
wing DIMACS 10[5]] 62032 121544
wing_nodal DIMACS 10[5]] 10937 75488
wordassociation-2011 LAW][7, 6] 10617 63788

Table A.1: Full list of all instances used in experiments (See Section .

A.2 Graph Types

During the experiments shown in Chapter [5 differences between the solution quality on
regular and irregular graphs could be observed.

Figure [A.T] shows that for the n2v configuration, solution quality is mostly improved on
regular graphs, with the Base configuration beating n2v on irregular graphs with LPA-
based refinement as well as FM refinement.

1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
306 206 306
505 505 505
S04 S04 S04
K03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
4% 1.05 L1 15 210710 4% 1.05 .1 15 2107102 4% 1.05 .1 15 2107102
Ratio Ratio Ratio
Base — n2v BaseFM — n2vFM BasedxJet — n2v4xJet
1 1 1 =
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 = 0.7
20.6 20.6 20.6
505 505 505
S04 S04 S04
K03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 1.1 15 2107 10? q40 1.05 1.1 15 2107 10? q.O 1.05 1.1 15 2107 10?
Ratio Ratio Ratio
Base — n2v BaseFM — n2vFM BasedxJet — n2v4xJet

Figure A.1: Irregular graphs on top, regular graphs at the bottom. Node2Vec-based LPA outper-
forms the baseline on regular graphs but not on regular graph.

Figure[A.2]shows that when combined with the LPA-based refinement and Jet refinement,
the ie configuration performs significantly better on regular graphs than on irregular graphs.

ie-overlay, shown in Figure[A.3] generally has a higher solution quality on irregular graphs,
except when used with KaMinPar’s default refinement strategy based on LPA,where it has
a higher solution quality on irregular graphs.

For n2v-overlay, Figure [A.4] shows that the rate at which the solution quality improves
upon the solutions of the Base and overlay configurations is different depending on the

37

A Experiments

1 1 1
0.9 0.9 0.9 f
0.8 0.8 0.8
=0.7 =0.7 =0.7
20.6 20.6 20.6
g 0.5 g 0.5 g 0.5
0.4 0.4 0.4
E 0.3 E 0.3 E 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q,O 1.05 1.1 15 2107 10% q.O 1.05 1.1 15 2107102 01.0 1.05 1.1 15 2107102
Ratio Ratio Ratio
Base - ie BaseFM - ieFM BasedxJet — iedxJet
1 1 1
09 09 - 0.9
0.8 0.8 0.8
=07 =07 =0.7
0.6 S0.6 S0.6
505 505 505
204 204 204
H0.3 H0.3 K03
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 1.1 1.5 210710% q.O 1.05 1.1 1.5 2107107 q.O 1.05 1.1 1.5 2107102
Ratio Ratio Ratio
Base - ie BaseFM - ieFM BasedxJet — iedxJet

Figure A.2: Irregular graphs on top, regular graphs at the bottom. The performance gap between
InstantEmbedding-based LPA and the baseline is smaller on regular graphs than on
irregular graphs.

refinement strategy. While n2v-overlay and n2v-overlayFM perform better on irregular
graphs, n2v-overlayFM achieves a higher performance on regular graphs.

Figures[A.4]and[A.3|both show that overlaying improves the solution quality of embedding-
based coarsening, with Node2Vec-based coarsening benefiting especially on irregular graphs.

38

A.2 Graph Types

1 1 1
0.9 I/,r’ 0.9 B 0.9
0.8 0.8 0.8
=0.7 r—‘JJI =0.7 =0.7
S0.6 S0.6 S0.6{/
505 505 505
204 S04 S04
003 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
q.O 1.05 1.1 15 2107 102 q‘O 1.05 1.1 1.5 2107102 q.O 1.05 1.1 1.5 2107102
Ratio Ratio Ratio
Base — ie-overlay BaseFM - ie-overlayFM Base4xJet— ie-overlay4xJet
overlay overlayFM overlay4xJet
1 ey L 1 —
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
S0.6 S0.6 306
505 505 505
£0.4 £0.4 S04
H0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
1% 1.05 LI 15 210710 %o 1.05 LI 15 210710 1o 1.05 LI 15 210710
Ratio Ratio Ratio
Base — ie-overlay BaseFM - ie-overlayFM Base4xJet— ie-overlay4xJet
overlay overlayFM overlay4xJet

Figure A.3: Irregular graphs on top, regular graphs at the bottom. With overlaying the solution
quality of InstantEmbedding-based LPA is better than the baseline and than overlaying
without embeddings.

1 - 1 1
= — [~
0.9 091 = | 0.9
0.8 I'— 0.8 0.8 ﬁ
=0.7 =0.7 =0.7
206 S0.6 0.6
505 505 505
S04 S04 S04
K03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
1% 1.05 .1 1.5 2107102 1% 1.05 I 1.5 210710 1% 1.05 LI 1.5 210710
Ratio Ratio Ratio
Base - n2v-overlay BaseFM — n2v-overlayFM Base4xJet— n2v-overlay4xJet
overlay overlayFM overlay4xJet
1 1 1 - =
0.9 0.9 0.9
0.8 0.8 0.8
=0.7 =0.7 =0.7
S0.6 S0.6 0.6
505 505 50.5
204 204 S04
K03 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
4% 1.05 L1 15 2107102 4% 1.05 L1 15 210710 4% 1.05 L1 15 2107107
Ratio Ratio Ratio
Base — n2v-overlay BaseFM — n2v-overlayFM Base4xJet— n2v-overlay4xJet
overlay overlayFM overlay4xJet

Figure A.4: Irregular graphs on top, regular graphs at the bottom. With overlaying Node2Vec-
based LPA achieves the best solution quality on irregular graphs.

39

A Experiments

40

Bibliography

[1]

[7]

[8]

Intel Thread Building Blocks. https://www.threadingbuildingblocks.
orqg/.
KaMinPar. https://github.com/KaHIP/KaMinPar.

9th DIMACS Implementation Challenge: Shortest Paths. https://diag.
uniromal.it/challenge9/download.shtml#benchmark, June 2010.

Konstantin Andreev and Harald Ricke. Balanced graph partitioning. In Proceedings
of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pages 120—124, Barcelona Spain, June 2004. ACM. https://dl.acm.
org/doi/10.1145/1007912.1007931l

David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Dorothea
Wagner, and editors. Graph Partitioning and Graph Clustering. In /0th DIMACS
Implementation Challenge Workshop, Georgia Institute of Technology, Atlanta, GA.
Contemporary Mathematics 588, 2012-02-13/2012-02-14. American Mathematical
Society and Center for Discrete Mathematics and Theoretical Computer Science.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A MultiResolution coordinate-free ordering for compressing social net-
works. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th International Con-
ference on World Wide Web, pages 587-596. ACM Press, 2011.

Paolo Boldi and Sebastiano Vigna. The WebGraph Framework I: Compression Tech-
niques. In Proc. of the Thirteenth International World Wide Web Conference (WWW
2004), pages 595-601, Manhattan, USA, 2004. ACM Press.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena.
Fast and Accurate Network Embeddings via Very Sparse Random Projection. In
Proceedings of the 28th ACM International Conference on Information and Knowl-
edge Management, pages 399-408, Beijing China, November 2019. ACM. https:
//dl.acm.org/doi/10.1145/3357384.33578709.

Jie Chen and Ilya Safro. Algebraic Distance on Graphs. SIAM Journal on Scientific
Computing, 33(6):3468-3490, January 2011. http://epubs.siam.org/doi/
10.1137/090775087.

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201-213, January 2002.
http://link.springer.com/10.1007/s101070100263.

41

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://github.com/KaHIP/KaMinPar
https://diag.uniroma1.it/challenge9/download.shtml#benchmark
https://diag.uniroma1.it/challenge9/download.shtml#benchmark
https://dl.acm.org/doi/10.1145/1007912.1007931
https://dl.acm.org/doi/10.1145/1007912.1007931
https://dl.acm.org/doi/10.1145/3357384.3357879
https://dl.acm.org/doi/10.1145/3357384.3357879
http://epubs.siam.org/doi/10.1137/090775087
http://epubs.siam.org/doi/10.1137/090775087
http://link.springer.com/10.1007/s101070100263

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

42

Charles M. Fiduccia and Robert M. Mattheyses. A Linear-Time Heuristic for Im-
proving Network Partitions. In /9th Conference on Design Automation (DAC), pages
175-181, Las Vegas, NV, USA, 1982-06-14/1982-06-16. IEEE.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129-1164, Novem-
ber 1991. https://onlinelibrary.wiley.com/doi/10.1002/spe.
4380211102.

Michael S. Gilbert, Kamesh Madduri, Erik G. Boman, and Siva Rajamanickam. Jet:
Multilevel Graph Partitioning on Graphics Processing Units. SIAM Journal on Sci-
entific Computing, 46(5):B700-B724, October 2024. https://epubs.siam.
org/doi/10.1137/23M1559129.

Lars Gottesbiiren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag.
Scalable High-Quality Hypergraph Partitioning. http://arxiv.org/abs/
2303.17679, March 2023.

Lars Gottesbiiren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. Deep Multilevel Graph Partitioning. https://arxiv.org/abs/
2105.02022, 2021.

Aditya Grover and Jure Leskovec. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 855-864, San Francisco Cal-
ifornia USA, August 2016. ACM. https://dl.acm.org/doi/10.1145/
29396772.2939754.

Gaél Guennebaud, Jacob Benoit, et al. Eigen v3. http://eigen.tuxfamily.
org/, 2010.

Steve Hamm. Circuit, many parasitics. https://sparse.tamu.edu/Hamm,
2001.

Mohammad Al Hasan and Mohammed J. Zaki. A Survey of Link Prediction in Social
Networks. In Charu C. Aggarwal, editor, Social Network Data Analytics, pages 243—
275. Springer US, Boston, MA, 2011. https://link.springer.com/10.
1007/978-1-4419-8462-3_09l

Andrew B. Kahng, Jens Lienig, Igor L. Markov, and Jin Hu. VLSI Phys-
ical Design: From Graph Partitioning to Timing Closure. Springer Interna-
tional Publishing, Cham, 2022. https://link.springer.com/10.1007/
978-3-030-96415-3.

George Karypis and Vipin Kumar. A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices.

George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme
for irregular graphs. In Proceedings of the 1996 ACM/IEEE Conference on Super-

https://onlinelibrary.wiley.com/doi/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/10.1002/spe.4380211102
https://epubs.siam.org/doi/10.1137/23M1559129
https://epubs.siam.org/doi/10.1137/23M1559129
http://arxiv.org/abs/2303.17679
http://arxiv.org/abs/2303.17679
https://arxiv.org/abs/2105.02022
https://arxiv.org/abs/2105.02022
https://dl.acm.org/doi/10.1145/2939672.2939754
https://dl.acm.org/doi/10.1145/2939672.2939754
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
https://sparse.tamu.edu/Hamm
https://link.springer.com/10.1007/978-1-4419-8462-3_9
https://link.springer.com/10.1007/978-1-4419-8462-3_9
https://link.springer.com/10.1007/978-3-030-96415-3
https://link.springer.com/10.1007/978-3-030-96415-3

Bibliography

[26]

[27]

[33]

[34]

computing, page 35, Pittsburgh Pennsylvania USA, November 1996. IEEE Computer
Society. https://dl.acm.org/doi/10.1145/369028.369103.

T. Koch, A. Martin, and S. VoB. SteinLib: An updated library on steiner tree
problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin, Takustr. 7, Berlin, 2000. http://elib.zib.de/
steinlibl

Thorsten Koch, Alexander Martin, and Stefan VofB. Testset ALUE. https:
//steinlib.zib.de/showset.php?ALUE.

Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan.
Node classification on graphs with few-shot novel labels via meta transformed net-
work embedding. Advances in Neural Information Processing Systems, 33:16520—
16531, 2020.

Jure Leskovec and Andrej Krevl. SNAP Datasets: (Stanford) Large Network Dataset
Collection, June 2014.

Hao Li, G.W. Rosenwald, J. Jung, and Chen-ching Liu. Strategic Power Infras-
tructure Defense. Proceedings of the IEEE, 93(5):918-933, May 2005. https:
//ieeexplore.ieee.org/document /1428007 /?arnumber=1428007.
Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 287-296, Philadelphia PA USA, August 2006.
ACM. https://dl.acm.org/doi/10.1145/1150402.1150436.

Jens Maue and Peter Sanders. Engineering Algorithms for Approximate Weighted
Matching. In Camil Demetrescu, editor, Experimental Algorithms, volume 4525,
pages 242-255. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. http://
link.springer.com/10.1007/978-3-540-72845-0_109.

Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning Complex
Networks via Size-constrained Clustering. http://arxiv.org/abs/1402.
3281, March 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. 2013. https://arxiv.org/abs/
1301.3781.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric Tran-
sitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1105—
1114, San Francisco California USA, August 2016. ACM. https://dl.acm.
org/doi/10.1145/2939672.2939751.

Lawrence Page. The PageRank citation ranking: Bringing order to the web. Technical
report, Technical Report, 1999.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD International

43

https://dl.acm.org/doi/10.1145/369028.369103
http://elib.zib.de/steinlib
http://elib.zib.de/steinlib
https://steinlib.zib.de/showset.php?ALUE
https://steinlib.zib.de/showset.php?ALUE
https://ieeexplore.ieee.org/document/1428007/?arnumber=1428007
https://ieeexplore.ieee.org/document/1428007/?arnumber=1428007
https://dl.acm.org/doi/10.1145/1150402.1150436
http://link.springer.com/10.1007/978-3-540-72845-0_19
http://link.springer.com/10.1007/978-3-540-72845-0_19
http://arxiv.org/abs/1402.3281
http://arxiv.org/abs/1402.3281
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://dl.acm.org/doi/10.1145/2939672.2939751
https://dl.acm.org/doi/10.1145/2939672.2939751

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

44

Conference on Knowledge Discovery and Data Mining, pages 701-710, New York
New York USA, August 2014. ACM. https://dl.acm.org/doi/10.1145/
2623330.2623732.

Stefan Postdavaru, Anton Tsitsulin, Filipe Miguel Gongalves de Almeida, Yingtao
Tian, Silvio Lattanzi, and Bryan Perozzi. InstantEmbedding: Efficient Local Node
Representations. http://arxiv.org/abs/2010.06992, October 2020.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al-
gorithm to detect community structures in large-scale networks. Physical Review
E, 76(3):036106, September 2007. https://link.aps.org/doi/10.1103/
PhysRevE.76.036106.

Md. Khaledur Rahman and Ariful Azad. A Comprehensive Analytical Survey on
Unsupervised and Semi-Supervised Graph Representation Learning Methods. 2021.
https://arxiv.org/abs/2112.10372.

Md. Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. Force2Vec: Parallel
Force-Directed Graph Embedding. In 2020 IEEE International Conference on Data
Mining (ICDM), pages 442—451, Sorrento, Italy, November 2020. IEEE. https:
//ieeexplore.ieee.org/document /9338414 /.

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-Based Coarsening and Multi-
scale Graph Organization. Multiscale Modeling & Simulation, 9(1):407-423, January
2011. http://epubs.siam.org/doi1/10.1137/100791142.

Ilya Safro, Peter Sanders, and Christian Schulz. Advanced Coarsening Schemes for
Graph Partitioning. ACM Journal of Experimental Algorithmics, 19:1-24, February
2015. https://dl.acm.org/doi/10.1145/2670338.

Semih Salihoglu and Jennifer Widom. GPS: A graph processing system. In Pro-
ceedings of the 25th International Conference on Scientific and Statistical Database
Management, pages 1-12, Baltimore Maryland USA, July 2013. ACM. |https:
//dl.acm.orqg/doi/10.1145/2484838.2484843.

Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning Algo-
rithms. In Camil Demetrescu and Magntis M. Halldé6rsson, editors, Algorithms — ESA
2011, volume 6942, pages 469-480. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. http://link.springer.com/10.1007/978-3-642-23719-5_|
40L

Justin Sybrandt, Ruslan Shaydulin, and Ilya Safro. @ Hypergraph Partition-
ing With Embeddings. IEEE Transactions on Knowledge and Data Engi-
neering, 34(6):2771-2782, June 2022. https://ieeexplore.ieee.orqg/
document/9169850/.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
LINE: Large-scale Information Network Embedding. In Proceedings of the 24th In-
ternational Conference on World Wide Web, pages 1067-1077, Florence Italy, May

https://dl.acm.org/doi/10.1145/2623330.2623732
https://dl.acm.org/doi/10.1145/2623330.2623732
http://arxiv.org/abs/2010.06992
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://arxiv.org/abs/2112.10372
https://ieeexplore.ieee.org/document/9338414/
https://ieeexplore.ieee.org/document/9338414/
http://epubs.siam.org/doi/10.1137/100791142
https://dl.acm.org/doi/10.1145/2670338
https://dl.acm.org/doi/10.1145/2484838.2484843
https://dl.acm.org/doi/10.1145/2484838.2484843
http://link.springer.com/10.1007/978-3-642-23719-5_40
http://link.springer.com/10.1007/978-3-642-23719-5_40
https://ieeexplore.ieee.org/document/9169850/
https://ieeexplore.ieee.org/document/9169850/

Bibliography

[48]

[49]

[50]

2015. International World Wide Web Conferences Steering Committee. https:
//dl.acm.orqg/doi/10.1145/2736277.2741093.

Anton Tsitsulin. Xgfs/mode2vec-c. https://github.com/xgfs/
node2vec-c, 2020.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Miiller. VERSE:
Versatile Graph Embeddings from Similarity Measures. In Proceedings of the 2018
World Wide Web Conference on World Wide Web - WWW 18, pages 539-548, Lyon,
France, 2018. ACM Press. http://dl.acm.org/citation.cfm?doid=
3178876.3186120.

Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan Os-
eledets, and Emmanuel Miiller. FREDE: Anytime graph embeddings. Proceedings
of the VLDB Endowment, 14(6):1102—-1110, February 2021. https://dl.acm.
org/doi/10.14778/3447689.3447713.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579-2605, 2008.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Atten-
berg. Feature hashing for large scale multitask learning. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 1113—1120, Montreal
Quebec Canada, June 2009. ACM. https://dl.acm.org/doi/10.1145/
1553374.1553516.

Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosav-
inasab, Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph
embedding on biomedical networks: Methods, applications and evaluations. Bioin-
formatics, 36(4):1241-1251, February 2020. https://academic.oup.com/
bioinformatics/article/36/4/1241/5581350.

45

https://dl.acm.org/doi/10.1145/2736277.2741093
https://dl.acm.org/doi/10.1145/2736277.2741093
https://github.com/xgfs/node2vec-c
https://github.com/xgfs/node2vec-c
http://dl.acm.org/citation.cfm?doid=3178876.3186120
http://dl.acm.org/citation.cfm?doid=3178876.3186120
https://dl.acm.org/doi/10.14778/3447689.3447713
https://dl.acm.org/doi/10.14778/3447689.3447713
https://dl.acm.org/doi/10.1145/1553374.1553516
https://dl.acm.org/doi/10.1145/1553374.1553516
https://academic.oup.com/bioinformatics/article/36/4/1241/5581350
https://academic.oup.com/bioinformatics/article/36/4/1241/5581350

	Abstract
	Introduction
	Motivation
	Contribution
	Structure

	Fundamentals
	General Definitions
	Graph Partitioning
	Graph Embedding

	Related Work
	Multi-Level Graph Partitioning
	Overview of Graph Coarsening Methods
	Size Constrained Label Propagation
	Matching-Based Coarsening

	Partition Refinement
	Size Constrained Label Propagation
	Jet
	Fiduccia-Mattheyses Local Search

	Overview Of Different Graph Embedding Methods
	Graph Embedding Based On Matrix Dimension Reduction
	Neural Graph Embedding
	Others
	Comparison of Static Graph Embedding Methods

	Embedding-based Coarsening
	Size Constrained Label Propagation
	Using Embeddings

	Embedding Contraction
	Cluster Overlaying
	Algebraic Distance

	Experimental Evaluation
	Implementation
	Embedding Implementation
	Coarsening by Size Constrained Label Propagation and Heavy Edge Matching

	Experimental Setup
	Environment and Parameters
	Instances
	Methodology

	Evaluation of Embedding-based Coarsening
	Correlation between Embeddings and Final Partition
	Alternative Edge Rating Functions

	Overlaying Clusterings
	Algebraic Distance-based Coarsening

	Conclusion and Future Work
	Future Work

	Experiments
	Instances
	Graph Types

	Bibliography

