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Abstract:

The transition to a sustainable bioeconomy represents a crucial strategy for mitigating
climate change and reducing dependence on fossil resources. Central to this strategy
is the development of bio-based alternatives through innovative technologies, such as
biorefineries. The success of this transition, however, depends on farmers' adoption of
these technologies. The factors influencing their decision to participate or not are
complex and not fully understood. This study developed and analysed an agent-based
model that integrates georeferenced data on biomass availability with socio-economic
factors driving farmers' willingness to participate in a biorefinery operating system. The
model uses spatial and sectoral data sources to simulate farmer interactions, decision-
making processes, and the formation of cooperative biorefinery operating systems in a
spatially explicit environment. The results show that cooperation is a prerequisite for
establishing comprehensive industrial production of bio-based platform chemicals in
decentralized integrated biorefineries. Key barriers to adoption extend beyond techno-
economic feasibility and include social factors that together influence a farmer’s
willingness to participate in novel bioeconomy value creation networks. The model
also highlights a first-mover advantage for early adopters, as they have better access
to the limited amount of biomass and cooperation partners. The findings of this study
suggest that policy interventions should prioritize improving information flow and
facilitating coordination among farmers to translate biorefinery potential into
widespread practice, as these measures are expected to enhance technology
adoption.
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Abstract

The transition to a sustainable bioeconomy represents a crucial strategy for mitigating climate change and
reducing dependence on fossil resources. Central to this strategy is the development of bio-based alternatives
through innovative technologies, such as biorefineries. The success of this transition, however, depends on
farmers' adoption of these technologies. The factors influencing their decision to participate or not are complex
and not fully understood. This study developed and analysed an agent-based model that integrates
georeferenced data on biomass availability with socio-economic factors driving farmers' willingness to
participate in a biorefinery operating system. The model uses spatial and sectoral data sources to simulate farmer
interactions, decision-making processes, and the formation of cooperative biorefinery operating systems in a
spatially explicit environment. The results show that cooperation is a prerequisite for establishing comprehensive
industrial production of bio-based platform chemicals in decentralized integrated biorefineries. Key barriers to
adoption extend beyond techno-economic feasibility and include social factors that together influence a farmer’s
willingness to participate in novel bioeconomy value creation networks. The model also highlights a first-mover
advantage for early adopters, as they have better access to the limited amount of biomass and cooperation
partners. The findings of this study suggest that policy interventions should prioritize improving information flow
and facilitating coordination among farmers to translate biorefinery potential into widespread practice, as these
measures are expected to enhance technology adoption.

1. Introduction

Over the last decade, the use of biomass in Germany has remained stagnant, with no significant change since
at least 2014 (FNR, 2024). This trend stands in contrast to the government's supposed stronger focus on
renewable materials. To expand biomass use in Germany, the two previous federal administrations developed a
national bioeconomy strategy (BReg, 2020) and a national biomass strategy (BMWK et al., 2022). The current
administration aims to leverage biomass's potential, enhance utilisation flexibility, and make better use of
biomass residues (CDU et al., 2025). The sustainable production and use of biomass are viewed as a building
block for the necessary transformation of the economic system, which can contribute to achieving climate
protection and biodiversity goals (BMWK et al., 2022). Against this backdrop, the persistent stagnation in biomass
use highlights a clear need for change if political goals are to be met.

The repeated emphasis on biomass potential by different administrations, along with a steady number of
publications on the topic each year (Heck, Frei, et al., 2024), highlights the need to expand the bioeconomy. The
bioeconomy encompasses a wide range of topics, such as the economic use of biomass for energy or material
purposes (McCormick & Kautto, 2013), and the employment of biological processes for production (Pyka et al.,
2022). In general, the bioeconomy is a modern and sustainable form of economics that efficiently utilizes
biological resources for production or processing (BMFTR, 2020). Alongside the establishment of a bioeconomy,
the establishment of the related circular economy is equally important. The circular economy is defined as an
"economic framework that replaces the 'end-of-life' concept with reducing, alternatively reusing, recycling and
recovering materials in production/distribution and consumption processes" (Kirchherr et al., 2017, p. 229).
These two concepts are synergistic rather than separate goals. The bioeconomy provides a practical pathway for
implementing the principles of a circular economy. By providing renewable feedstocks and innovative processes,
the bioeconomy offers a crucial means of achieving a fully circular system — minimizing waste by utilizing
biological resources to their full potential (Birner, 2018).

While biogas plants have become increasingly common, reflecting the rise in electricity generation from
biomass (Statista, 2023), they represent only a small fraction of the bioeconomy's full potential (Stegmann et al.,
2020). The circular bioeconomy, in particular, also depends on biorefineries (Bauer et al., 2017; Stegmann et al.,
2020), a broad category of facilities encompassing a range of concepts (Ubando et al., 2020), all aiming to
mobilize biomass and convert it into bio-based products. By integrating several conversion processes,
biorefineries can play a key role in advancing a future-proof bioeconomy (Velvizhi et al., 2022).

A possible additional reason to place greater emphasis on biorefineries could be that the German federal
government's financial support for biogas plants is declining. Under the Renewable Energy Sources Act
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(Erneuerbare-Energien-Gesetz, EEG), financial subsidies for renewable energy facilities are only guaranteed for
20 years from the date of commissioning (EEG, 2000). Since a significant portion of biogas plants were
constructed between 2005 and 2012 (Statista, 2023), many are approaching the end of their guaranteed support
period. The loss of this financial support presents significant challenges for plant owners, and in some cases, may
even threaten the continuation of operations altogether (Venus et al., 2021). While the current EEG framework
offers opportunities for continued funding, such as participation in auctions or incentives for flexible electricity
production, these mechanisms are not universally accessible and primarily target small-scale plants (EEG, 2023).

Farmers facing the end of financial support for their biogas plants might seek alternative funding options. An
example of a promising option is Baden-Wirttemberg's “Future Biogas Plus” (Zukunft Biogas Plus) program,
which promotes the development of sustainable, future-ready biogas plants (MLR, 2025). It aims to strengthen
biogas in the renewable energy system while advancing the circular economy. A key goal is to expand the range
of biomass-based products, such as bio-based materials from biorefineries, offering a potential path for farmers
unsure how to proceed. Such policy incentives are signs of the growing recognition that the future of the
bioeconomy does not solely lie in energy production through biogas plants, but also in innovative material use,
an area in which biorefineries are expected to become increasingly important (Bauer et al., 2017).

However, political decision-makers must provide stronger support to enable the establishment of innovative
conversion plants, as well as the adjacent supply networks (Lihmann & Vogelpohl, 2023). Liihmann & Vogelpohl
(2023) also point out that, although significant funding has been invested in biorefinery and bioeconomy
research, neither the government nor private companies have taken concrete steps or integrated these efforts
into their policies. As a result, there is still a long way to go towards achieving the necessary transformation of
Germany’s economic system, which the federal government aims to accomplish through its biomass and
bioeconomy initiatives (BMWK et al., 2022).

In recent years, academic research has increasingly focused on this transformation process, with biorefineries
emerging as key components of this shift (Heck, Frei, et al., 2024). Although there are still relatively few industrial-
scale biorefineries in operation (COM, 2022), the literature features conceptual designs exploring how various
types of biomass can be converted into diverse end products like platform chemicals (Aristizabal M et al., 2015;
GOtz et al., 2022), hydrogen (Escamilla-Alvarado et al., 2015), or biofuels (Velvizhi et al., 2022). A promising type
of biorefinery is the concept of integrated biorefineries, which builds on existing biogas infrastructure and
significantly widens its value-creation potential (G6tz et al., 2022; Heck, Rudi, et al., 2024). Some studies have
investigated optimal refinery sizes using methods such as multi-objective optimisation (Budzinski et al., 2019; El-
Halwagi et al., 2013; Gotz et al., 2022) or analyses of economies of scale (Larasati et al., 2012; Wright & Brown,
2007). Others have explored the broader economic potential of biorefineries, employing top-down approaches
such as life cycle assessment (Bello et al., 2018; Ubando et al., 2022) or integrating geographic information
systems (GIS) with mathematical modelling (Heck, Rudi, et al.,, 2024; Xie et al., 2010). Nonetheless,
comprehensive evaluations of the wider utilisation capacity of biorefineries remain limited.

While existing studies assess the broader potential of biorefineries from a policy perspective, a noticeable gap
remains in the literature regarding their economic feasibility from the viewpoint of those who would actually
implement them — such as farmers or rural entrepreneurs (Heck, Frei, et al., 2024). Little research has explored
the incentives, motivations, or barriers these actors face in initiating biorefinery projects. Moreover, there is a
lack of literature combining this perspective with a comprehensive analysis of the wider economic impact, rarely
assessing individual farmer profitability and the subsequent likelihood of widespread adoption. Several
promising methodologies could help address this gap using a bottom-up approach. Among them, Heck, Frei, et
al. (2024) highlight agent-based modelling as particularly well-suited, as it “provides a detailed insight into
interactions, considering diversity and heterogeneity” (p. 11). Similarly, Pyka et al. (2022) argue that Agent-based
models (ABMs) offer distinct advantages over traditional models, primarily through their ability to incorporate
structural changes, such as the transition towards a bioeconomy, into the simulations.

ABMs present a promising approach for tackling emerging challenges in bioeconomy modelling, as they
facilitate complex decision-making processes among heterogeneous stakeholders, including farmers,
policymakers, and other relevant parties. ABMs are particularly valuable when the outcome of a model is unclear
or when the primary interest lies in understanding the pathways and behaviours that lead to those outcomes.
By simulating the specific actions and interactions of individual agents, ABMs provide a more detailed view of
the dynamics of decision-making (de Marchi & Page, 2014).



A key advantage of ABMs over traditional modelling approaches lies in their ability to include these individual
decision-making processes in a more realistic manner. Each agent within an ABM can be assigned unique
attributes such as goals, preferences, and initial conditions, which enables the construction of more detailed and
context-sensitive simulations (DeAngelis & Diaz, 2019; Duffy, 2006). This results in model environments that
better reflect the complexity of real-world systems. Another essential strength of ABMs is their ability to model
dynamic processes. They allow for continuous tracking of agents’ internal states and can simulate multiple agents
in parallel, thereby more effectively capturing behaviour, interactions, and system-wide patterns(DeAngelis &
Diaz, 2019). By incorporating elements of structural change (e.g., new subsidies) and dynamic systems (e.g.,
fluctuating biomass supply), ABMs can help identify conditions and incentives that may influence farmers'
decisions regarding participation and biorefinery adoption.

Since the turn of the millennium, ABMs have been infrequently applied to analyse the impact of policy and
their influence on individual farmers’ decision-making (Kremmydas et al., 2018). For instance, Burg et al. (2021)
investigated whether farmers would be willing to establish biogas facilities under what conditions. Based on
survey data, they developed an ABM to simulate the farmers’ decision-making process.

To achieve a more holistic modelling approach, this study proposes a conceptual methodology for analysing
the socio-spatial dynamics of biorefinery adoption. The core of this approach is an agent-based model that
simulates the bottom-up decision-making of individual farmers. To ground these agent interactions in a realistic
environment, the model is informed by a GIS-based assessment of biomass potential as well as empirical data on
biomass distribution. The aim is to demonstrate the potential of this combined methodology to reveal key
barriers and opportunities for advancing Germany’s bio-based industrial production. The remainder of the paper
presents the methodology, including data sources and the agent-based model, in Chapter 2 (Data and Methods),
followed by qualitative and quantitative results in Chapter 3 (Results). The discussion in Chapter 4 highlights key
insights, limitations, and future outlook, and the paper concludes in Chapter 5 (Conclusion) by summarising the
main contributions.

2.Data and Methods

This study integrates several data sources to develop an agent-based model (ABM). These include a survey on
the socio-economic conditions of German farmers (age, gender, and farm size) and their attitudes towards
biomass utilisation (questions regarding the use of biomass for material purposes), the locations of existing
biogas plants, and geospatial data on the availability of selected biomass residue potentials across Germany. The
following sections outline this methodology: Section 2.1 describes the underlying data sources, while Section 2.2
provides a comprehensive description of the chosen modelling approach.

2.1. Data sources for the Location Allocation Analysis

Several factors must be considered to evaluate the suitability of locations for establishing integrated
biorefineries. Among the most important are the local availability of usable biomass and the presence of existing
infrastructure capable of supporting integrated biorefinery development, i.e., already operating biogas plants.

This study builds directly on the work of Heck, Rudi, et al. (2024), who identified potential biorefinery sites
across Germany using a brownfield approach. To ensure continuity and comparability, the present study uses
the same biomass database developed in their research. They built the database in ArcGIS (ESRI Inc., Redlands,
CA, USA) using spatial and sectoral data sources, including land cover classifications, protected areas, high-
resolution agricultural data, and detailed information on biomass properties such as dry matter content (ArcGIS
& BKG, 2011; BKG, 2018; BfN, 2021; FNR, 2020; Gocht, 2022; Krause et al., 2020). In their analysis, Heck, Rudi, et
al. (2024) assessed the potential of multiple biomass types, including residual straw, hay, forest residues, and
landscape maintenance residues.

By focusing the research on lignocellulosic integrated biorefineries (Gotz et al., 2022), the scope of the site
selection process can be narrowed significantly, limiting the analysis to areas where key infrastructure already
exists. This ensures technical feasibility while reducing computational complexity. Integrated biorefineries
located at these sites can benefit from synergies between anaerobic digestion and biorefining technologies,
enabling more efficient resource utilisation and energy conversion (Go6tz et al., 2022; Velvizhi et al., 2022).
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Building on this methodology, this study also requires detailed information on the location of existing biogas
plants in Germany, which was obtained from the Marktstammdatenregister database maintained by the BNetzA
(2025).

Regarding primary data, the last missing input is reliable data at the farmer (agent) level. Such data points are
crucial for ensuring that the model reflects real farmer behaviour and produces meaningful conclusions for
investors and policy. Detailed information on farmer characteristics, attitudes, and decision-making patterns is
particularly important, as differences in economic situation, location, or other factors may influence perspectives
on biorefineries (Lee et al., 2017). Collecting input from numerous farmers with diverse backgrounds and
locations is crucial for a representative analysis.

The general decision-making framework used here builds on the approach introduced by Burg et al. (2021).
Their structure centres on three guiding questions: Are farmers willing to process biomass in their own facility?
(Parameter W1) Are they willing to process biomass from others? (W2) And are they willing to provide their own
biomass for others to process? (W3) This framework provides a straightforward yet effective approach to
capturing the key dimensions of farmer cooperation and their willingness to adopt new technologies.

To generate data specific to the German agricultural context (as the survey by Burg et al. (2021) was among
farmers in Switzerland), researchers at the same institute as the present study conducted a new farmer survey
modelled closely after the approach of Burg et al. (2021). Although the full dataset of this survey has not yet
been published, preliminary findings are available and serve as the empirical basis for the analysis presented
here (Heck, 2022).

Together, these data sources form the foundation for the agent-based modelling and scenario analysis
presented in the subsequent sections.

2.2. Agent-Based Model

A central objective is to integrate the three key datasets described in Section 2.1 — (1) geospatial data on
biomass availability (Heck, Rudi, et al., 2024); (2) the locations of existing biogas infrastructure (BNetzA, 2025);
and (3) farmer behaviour and preferences derived from an unpublished survey (Heck, 2022) — into a single
simulation framework. To achieve this objective, this study employs agent-based modelling (ABM), a method
well-suited to model heterogeneous systems. This heterogeneity arises from the uneven distribution of biomass
resources (Heck, Rudi, et al., 2024) and the various characteristics of the farmer agents.

ABMs are advantageous in this context because they enable individual entities, such as farmers, to be
modelled as autonomous agents operating within a dynamic environment. These agents react to their
environment, engage with one another, and adjust their actions over time (DeAngelis & Diaz, 2019), which
enables a "bottom-up" understanding of the entire system (Niamir et al., 2020).

The model was implemented using AnyLogic Personal Learning Edition 8.9.5 (The AnyLogic Company, Chicago,
IL, USA), a platform well-suited for hybrid and spatial agent-based modelling. AnyLogic models agent behaviour
and decision-making through statecharts (Grigoryev, 2025), a visual modelling approach grounded in decision
flowcharts commonly used in computer science and systems modelling (ISO, 1985). While these statecharts
define the internal logic for each agent, the model must also specify the temporal dynamics of how agents enter
the simulation and begin this process. A core assumption of the model is that agents do not begin evaluating the
innovation simultaneously, as this would be an unrealistic representation (Rogers, 1962). To capture the
staggered and heterogeneous nature of real-world decision-making, the model incorporates a two-stage entry
mechanism, utilising the parameter “prior knowledge” from the survey (Heck, 2022), where respondents
indicated their current level of familiarity with biorefineries. First, an agent must achieve a minimum knowledge
threshold before actively considering the innovation, as increased information enhances their ability to assess
potential risks and benefits (Barham et al., 2015). Information, as a factor influencing the adoption rate, has been
consistently identified as a key determinant in agricultural adoption studies (Feder et al., 1985). Second, agents
who have surpassed this threshold enter the evaluation phase not concurrently but are introduced progressively
over time.

In this model, a farmer’s threshold does not represent the final adoption decision, but rather the minimum
level of knowledge required to initiate an active evaluation of biorefinery technology. This modelling choice is
designed to reflect a key insight: knowledge and information availability primarily influence the speed or the
timing of the decision-making process, not necessarily the outcome. Thus, while high prior knowledge may
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The simulation is initialised using empirical survey data (Heck, 2022). As agents with high prior knowledge adopt, the
ambient knowledge level increases, progressively pushing more farmers across the knowledge threshold and
thereby accelerating their consideration of the technology.

Theresulting adoption curve exhibits elements of the characteristic S-shape of technology adoption, as described
by Rogers (1962), and can be divided into several phases (see Section 3.2.2). Initial uptake is slow, led by a few
farmers with high prior knowledge - akin to Rogers’ “Innovators”. As the ambient knowledge increases, adoption
accelerates, driven by increasing awareness and peer influence, before eventually plateauing as saturation is
reached. A similar pattern appears in Granovetter's (1978) threshold model of collective behaviour. While
Granovetter’s modelis about individuals adopting a new behaviour as more peers do so, this modelis about initiating
their decision-making process. ABMs are well-suited for this, as they can capture differences in agents’ knowledge
levels and account for social influence, both of which are known to be key drivers of complex diffusion patterns
(Kiesling et al., 2011).

As agents enter the model, they can adopt five possible states:

(1) Unaware or undecided: the agent has not yet considered building or participating in a biorefinery.

(2) Declined participation: the agent opts out due to personal preferences or unfavourable conditions (e.g.,
insufficient biomass, lack of willing collaborators).

(3) Owner: the agent has built a biorefinery and now operates it.

(4) Deliverer: the agent supplies biomass (e.g., residual straw, hay, forest residues, landscape
maintenance residues) to a biorefinery.

(5) Co-owner: this state represents agents who are willing to co-invest and share operational risk, even
though they would not initiate a biorefinery project on their own.

Figure 1 provides an overview of the model logic and the different states:
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in own facility
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Figure 1: Flowchartillustrating a farmer’s decision-making process and its consequences within the model (adapted
from Burg et al. (2021))

This structure captures the different roles and states of farmers, allowing the model to reflect varying levels of
commitment and collaboration within biorefinery diffusion.

Through a sequence of decisions, agents follow a statechart that captures their behavioural logic regarding
participation in an integrated biorefinery operating system. The underlying rationale is depicted in a conceptual
decision flowchart (see Figure 1), which outlines the agents’ decision paths in a simplified, visual format.

Upon entering the decision-making process, agents begin evaluating whether to initiate the construction of a
biorefinery themselves. This decision is shaped by several independent factors. These include the agent’s personal
attitude toward biomass use and their willingness to support medium- or small-scale decentralised or cooperative
processing, the amount of biomass available on their own farm, and the potential biomass accessible through other
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farms that are in their surrounding area. Each agent is connected to a set number of peers - their communication
network - from whom they can request biomass. This network is determined by proximity, specifically the x nearest
farmers to the agent (with x varying across farmers), regardless of the actual distance between them. Central to the
decision is whether the agent can secure at least 31,500 tons of biomass annually—defined as the minimum
operational amount for integrated biorefineries based on the techno-economic assessment of a lignocellulosic
biorefinery conducted by G6tz et al. (2022).

While still in the knowledge acquisition or evaluation phase, agents may be approached by others seeking
biomass suppliers and thus receive requests to become deliverers (state (4)). However, this is not automatic;
deliverer status requires the agent’s active consent. Moreover, agents who accept such arole currently cannot later
initiate a biorefinery themselves or become co-owners in the current version of the model.

As agents progress through the statechart, they ultimately reach one of three outcomes. They may decline
participation entirely (state (2)), decide to construct a biorefinery with sole ownership (state (3)), or proceed with co-
construction alongside another farmer (state (5)). The path taken reflects a combination of personal values, local
structural conditions, and system-level constraints.

The process concludes either in the successful establishment of a biorefinery—individually or as part of a
cooperative—or in the agent opting out altogether. In this way, the model captures the dynamic interplay between
individual decision-making and broader cooperative system formation.

3.Results

The outcome of this study is a model that integrates an agent-based approach to farmer decision-making
processes regarding biorefinery adoption. It also incorporates the geographical distribution of key biomass types
suitable for a lignocellulosic biorefinery, as examined by Heck, Rudi, et al. (2024), such as residual straw and hay. A
view of the model is presented in Figure 2. The model provides valuable insights into the potential development of
biorefineries in Germany and serves as a simulation tool to explore future possibilities for the country’s bioeconomy.
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Figure 2: lllustration of an agent-based model in the modelling software AnyLogic, showing possible biorefinery
ownership configurations (a) and (b) (marked with circles), as explained in Section 3.1, capturing regional patterns
within the transformation towards a decentralised industrial bioeconomy.



3.1. Biorefinery Operating System Configurations

In the following, each biorefinery together with its biomass suppliers, owners, and, where applicable, co-
owners is referred to as a single “biorefinery operating system”. This term encompasses the entire network of
actors involved in establishing and sustaining the facility — whether through direct operation, shared ownership,
or the provision of biomass.

A closer examination of the model revealed several distinct system structures, including cooperative forms of
biorefinery operation (illustrated in Figure 2):

(a) With deliverers: A single operator takes on full financial and operational responsibility, while multiple
surrounding actors supply biomass to meet the required input. This is one of the more common
configurations in the model (~50-65%). In areas with limited biomass availability or generally smaller
farm sizes, the viability of this setup depends on cooperation with a broad network of contributors,
requiring the initiator to actively engage with suppliers (see circles marked with (a) in Figure 2).

(b) With Co-Owners: Another operating system configuration involves shared ownership, which
accounts for roughly 35-50% of cases. In this setup, additional partners help mitigate risk, contribute
biomass, and expand connections to further suppliers. Involving multiple co-owners not only
broadens access to resources but also distributes the financial burden and increases the likelihood of
meeting operational thresholds (Burg et al., 2021) (see circles marked with (b) in Figure 2).

(c) Fully independent: In contrast to the more common cooperative constellations, the model
occasionally (< 1%) generates a fully independent, non-cooperative scenario. This outcome
represents a case of complete self-sufficiency, where a single operator manages the facility alone —
without co-owners or external suppliers. Given the biomass demand, this setup occurs only under
highly favourable conditions (e.g., large-scale farms in areas of high biomass density) and remains an
exception within the model.

These are the primary configurations the model can generate in its current iteration. Beyond these
constellations, repeated simulation runs also uncover several emerging patterns that reveal how the system
behaves in practice.

For instance, not all contributors who supply biomass to a facility are the geographically closest. Instead,
delivery depends not only on spatial proximity but also on individual willingness (cf. Section 2.2). A nearby farmer
may still decline participation, while someone farther away, yet more inclined, steps in. This highlights the
importance of agent-specific attributes in shaping the model’s outcome.

The model also generates scenarios where agents, who previously declined to build a biorefinery themselves,
later choose to participate as biomass suppliers for a project initiated by another farmer agent. This earlier
reluctance often stems from practical barriers, such as a limited communication radius or an unwillingness to
accept co-owners, rather than from a fundamental opposition to the biorefinery concept itself. Consequently,
these agents are open to collaboration, just not in an initiating role.

These behavioural patternsillustrate the strength of agent-based models. Where traditional top-down models
rely on generalised assumptions, ABMs allow for heterogeneity in preferences, risk tolerance, and decision-
making paths — a key advantage for modelling the dynamics of behavioural change (Niamir et al., 2020). Because
such diversity and interaction are central to understanding how individual behaviours aggregate into system-
level outcomes, ABMs are particularly effective for exploring decentralised innovation processes and complex
systems, such as the transition towards a bio-based economy.

3.2. Key Quantitative Findings

In addition to the qualitative insights into different types of biorefinery operating systems, the model also
generates several quantitative results. To address the stochastic nature of the model — specifically the random
assignment of farmers and their characteristics to biogas plants — twelve independent simulation runs were
performed to capture a more reliable picture of model behaviour. While this number falls short of the minimum
number of runs recommended for robust hypothesis testing (Seri & Secchi, 2017), it remains sufficient for
identifying overarching patterns and exploring general trends, as suggested by Law (2015) in the context of
simulation studies.



rejecting facility construction. Moreover, a 15-year horizon provides a relatively long planning period in this context,
allowing for the observation of long-term dynamics and informed decision-making processes.
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Figure 3: Average probability distribution of the number  Figure 4: Average probability distribution of the number
of co-owners per biorefinery across 12 simulation runs. of biomass deliverers per biorefinery across 12
simulation runs.

3.21 Cooperation Dynamics

A consistent observation across all model runs is that cooperation is important and almost a prerequisite for
successfully establishing integrated biorefineries. In only about 1% of the cases across the simulation runs did an
individual agent succeed in building a biorefinery entirely in isolation (case (c) from Section 3.1). Most successful
systems required at least one biomass deliverer to meet the minimum annual input threshold of 31,500 tons
necessary for efficient operation of an integrated lignocellulosic biorefinery (G6tz et al., 2022).

The number of deliverers required varied considerably depending on regional conditions and farm sizes. Most
systems were supplied by between 5 and 17 deliverers, with instances of fewer (< 12%) or more (< 12%) suppliers
being uncommon (see Figure 4). This distribution resembles a normal distribution, which is notable given that the
number of farmers an agent can contact is determined by a fixed “communication radius” (4, 8, 20, or 28 farmers).
Each agent can approach only this set of closest farmers, starting with the nearest and moving outward. Farmers
who are already committed to another biorefinery system or are unwilling to supply them for personal reasons are
excluded. The process continues until either all potential contacts are exhausted or the deliveries secured exceed
the minimum input threshold.

The pattern differs for co-ownership. In contrast to deliverers, relatively few co-owners were sufficient for the
successful establishment (see Figure 3), as they are not replacements for biomass suppliers but rather partners who
share the risk and reward of the biorefinery. Around 60% of simulated biorefineries were operated by a single owner
(with deliverers), with an additional 35% of facilities having one or two co-owners. That means nearly 95% of systems
lie within the category of low-ownership structures. Larger collective arrangements, comprising four to eight co-
owners, were rare. This outcome is consistent with findings from cooperative studies, which emphasise that internal
frictions and governance costs tend to increase with the growing number of co-owners, thereby complicating
coordination and management (Iliopoulos & Cook, 2023; Markelova et al., 2009).

Taken together, these results highlight that while ownership structures tend to remain small, cooperative
mechanisms —whether through a network of deliverers, shared ownership, or both - are fundamental to the viability
of integrated biorefinery systems.



3.2.2 First Mover Advantage

Farmers who entered the system earlier exhibited a substantially higher probability of adopting the innovation as
owners or co-owners. In the simulation results, this dynamic is visible in the offset between the curve of agents
constructing a biorefinery and that of agents merely considering it (Figure 5). Specifically, the number of biorefinery
buildersincreases earlier and initially more steeply before flattening, also earlier, and reaches saturation faster than
the group of non-builders. This divergence highlights that certain factors systematically favour early entrants.
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Figure 5: Average number of agents entering the decision-making process and number of biorefineries established
over time across twelve simulation runs. The figure highlights the advantage of early entrants, whose adoption
success diverges significantly from that of later entrants.

Two mechanisms primarily drove this outcome. First, farmers with higher prior knowledge display an increased
willingness to both use biomass themselves and integrate biomass from neighbouring farms, according to the
dataset (Heck, 2022). Instead of dismissing the idea outright, these actors remain engaged in the decision process
for longer, thereby preserving the possibility of adoption. Second, the pattern of agent entries aligns with insights
from the diffusion of innovation theory (Rogers, 1962), which emphasises that early adopters typically benefit from
accumulated knowledge, better access to resources, and generally more favourable conditions. Within the model’s
environment, this manifests as early entrants securing scarce deliverers and biomass sources before later entrants
can mobilise them, which significantly increases their chances of successfully establishing a biorefinery.

This dynamic reflects real-world competition over finite resources. Biomass availability is limited, and once
neighbouring farmers have committed their supply to another facility, subsequent entrants face considerable
barriers to achieving the minimum input threshold of 31,500 tons required for viable operation. The results thus
underscore that cooperation alone does not guarantee success. Instead, the timing of entry becomes a decisive
advantage: farmers with higher readiness to start the adoption process not only benefit from early access to
resources but also shape the structural conditions under which later actors must operate.

3.2.3 Reasons for Non-Adoption

One of the model’s central contributions lies in explaining why many agents ultimately reject participation in a
biorefinery operating system or construction of their own facility. Identifying these rejection points is essential for
designing policies that lower barriers and encourage farmer participation in biorefinery systems.

The model allows rejection at several stages of the decision-making process, as depicted in Figure 1. Initially,
some farmers reject the idea outright because they are generally unwilling to process biomass in any facility. Others
proceed further but withdraw once they face the decision of whether to involve external partners and suppliers.
Unless they possess sufficient biomass themselves, they opt out at this stage. Finally, rejection may occur even at a
later stage, when farmers are unable to secure enough deliverers to meet the minimum input threshold of 31,500
tons per year (Burg et al., 2021; Gotz et al., 2022).

Across the simulation runs, the most frequent barrier was insufficient willingness to use available biomass in a
biorefinery. Between 45-50% of rejections stemmed from this reluctance. Even in cases where sufficient biomass
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Others proceed further but withdraw once they face the decision of whether to involve external partners and
suppliers. Unless they possess sufficient biomass themselves, they opt out at this stage. Finally, rejection may
occur even at a later stage, when farmers are unable to secure enough deliverers to meet the minimum input
threshold of 31,500 tons per year (Burg et al., 2021; Gotz et al., 2022).

Across the simulation runs, the most frequent barrier was insufficient willingness to use available biomass in
a biorefinery. Between 45-50% of rejections stemmed from this reluctance. Even in cases where sufficient
biomass existed on farms, many agents considered it unsuitable or undesirable for such use. This outcome aligns
with empirical findings on the persistent scepticism that farmers, as well as many other groups, express toward
biomass utilisation with new technologies, often linked to perceptions of risk, uncertainty, or competing land-
use priorities (Blennow et al., 2014; van Dijk et al., 2024).

Closely related is the reluctance to co-invest with partners. Because the biomass requirements of an
integrated lignocellulosic biorefinery often exceed the capacity of an individual farmer, cooperative ownership
often becomes indispensable. Yet nearly 40% of rejections were based on resistance to shared investment. This
outcome resonates with Rogers' (1962) diffusion of innovations theory and Granovetter's (1978) threshold model
of collective behaviour, both of which stress that collaboration is necessary to overcome hesitation at critical
decision points, especially among heterogeneous groups of farmers (lliopoulos & Cook, 2023; Markelova et al.,
20009).

A smaller but still significant portion of rejections (around 10%) reflects structural limitations. Even when
attitudes toward cooperation were positive, some farmers were unable to assemble enough biomass to reach
the viability threshold. In these cases, willingness alone proved insufficient to offset the constraints of local
resource availability.

Taken together, these findings show that non-adoption is rarely a question of technical feasibility alone.
Instead, rejection emerges from the interplay between attitudes, risk perceptions, and structural constraints.
Overcoming these barriers requires policies that address not only resource availability but also trust,
collaboration, and knowledge-sharing, thereby unlocking more of the untapped potential of integrated
biorefineries.

4. Discussion

4.1. Summary of Key Findings and Contributions

The results demonstrate that the model has considerable potential to reveal patterns that might otherwise
remain hidden. Even at this stage, it offers valuable insights for policymakers.

Each finding carries implications for the design of future measures. A first key result is the central role of
cooperation, both in the different types of biorefinery operating systems (Section 3.1) and in the dynamics of
ownership and supply. Farmers only in the rarest cases (< 1%) establish a biorefinery independently (Section
3.2.1). Instead, rejection occurs commonly because of an unwillingness to share ownership or to process biomass
from others (Section 3.2.3). These outcomes confirm insights from cooperative studies, which emphasise that
governance costs and interpersonal frictions can inhibit collaboration (lliopoulos & Cook, 2023; Markelova et al.,
2009). Strengthening ties between farmers — through shared regional databases, networking platforms,
matchmaking tools, or structured cooperation initiatives — would increase the likelihood of finding potential
deliverers or suitable partners, thereby improving overall feasibility.

A second major insight is that early entrants benefit disproportionately in the adoption process. Since biomass
is a finite and contested resource within the model, agents who move first secure scarce deliverers before others
mobilise. Similarly, farmers with higher prior knowledge are more inclined to establish a biorefinery and more
open to processing biomass (Section 3.2.2). The data indicate that the general unwillingness to process biomass
in biorefineries (see willingness parameters W1 and W2 in Section 2.1) remains the primary reason for rejection
(Section 3.2.3). Providing clear, accessible information on the technical and economic potential of biorefineries
could therefore increase adoption, as better-informed farmers are less likely to reject novel biomass usage in
biorefineries outright.

Improved awareness and understanding of the technology may also help shift broader attitudes towards
biomass, particularly when supported by targeted campaigns addressing common concerns about risk, feasibility,
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and cooperation. Such interventions could enhance both willingness and collective readiness to establish
integrated biorefineries, thereby helping some agents “cross” the knowledge threshold (Granovetter, 1978).

Taken together, the results demonstrate that the model has its uses in identifying existing problems faced by
farmers. Its strength lies in the scalable framework, which is designed to increase in precision and predictive
power as richer datasets are integrated, making it a powerful, forward-looking instrument for evidence-based
policymaking.

4.2. Limitations

This study is subject to limitations that need to be considered when interpreting the results. While specific
figures from the model (such as percentages or counts) should be treated cautiously, the overall patterns provide
reliable insights for decision-makers (Law, 2015).

One limitation lies in the assumptions regarding the number and location of the agents (i.e., farmers) in
Germany. Since one of the initial objectives of the model was to identify optimal locations for integrated
biorefineries (Gotz et al., 2022; Heck, Rudi, et al., 2024), the location data are based exclusively on fewer than
11,000 active or planned biogas plants across the country (BNetzA, 2025). This approach excludes more than
240,000 farms without biogas facilities (Destatis, 2024). Farmers outside the biogas sector are therefore not
represented and cannot participate in the scenarios as suppliers or co-owners. Additionally, the potential
locations for new biorefineries are limited to sites with existing biogas plants, which narrows the scope of the
analysis and limits the completeness of the results. Currently, there is no comprehensive, publicly accessible
database on farm size and location in Germany. This is largely due to data protection regulations that classify
farm-level information as personal data, thereby restricting its publication beyond an aggregated form (GDPR,
2016). If such a database existed, it could be easily integrated into this model, allowing for further exploration of
the results in subsequent studies.

A second limitation concerns the allocation of farmer characteristics to biogas plant locations. Due to the
limited availability of detailed survey data (Heck, 2022), statistically reliable conclusions about regional variations
in attitudes towards biomass use or willingness to engage in biorefinery development cannot yet be drawn. For
this reason, farmer profiles were assigned randomly. At the same time, care was taken to ensure that the overall
distribution of key characteristics such as farm size, age structure, and other variables remained consistent with
national statistics (Destatis, 2024). However, conducting a survey with a substantially larger sample size entails
considerably higher costs and requires more time, which illustrates a trade-off between maximising sample size
and practical feasibility.

A third limitation pertains to the type of biorefinery examined in the model. Currently, the model only
considers lignocellulosic integrated biorefineries as an option, which restricts the analysis to a single technology
pathway. As a result, the model may overemphasise adoption patterns, barriers, and incentives specific to this
biorefinery type, while neglecting alternative technologies that could be more suitable or attractive to certain
farmers. This focus may therefore limit the generalizability of the results, as observed adoption rates,
cooperation patterns, or the identified critical thresholds for participation might differ if other biorefinery types
were included.

4.3. Outlook and Recommendations for Future Research

Several promising directions exist for advancing this line of research. A more detailed representation of
farmers’ decision-making would add considerable value. Instead of treating their choices as a single step, the
process could be broken down into multiple stages —whether to participate, build, cooperate, or deliver biomass.
Each stage could then be modelled individually, for example, using logistic regression. This would enable the
assessment of how factors such as age, motivation, or education influence distinct types of decisions. With such
a modular structure, the model could capture farmer diversity more accurately, provide a more precise
assessment of targeted policy interventions, and highlight the conditions that either encourage or hinder
adoption at different points in the process.

Another promising avenue lies in refining biomass allocation and broadening the pool of potential
participants. Farmers without biogas plants are currently excluded, even though many of them could be willing

12



to supply biomass to a refinery. Their inclusion would produce a more realistic assessment of available resources.
Similarly, the current random assignment of farms and locations sometimes leads to unrealistic overlaps or
distorted farm sizes. More spatially consistent methods, such as allocating farmland with Voronoi diagrams (Feng
& Murray, 2018), could help to avoid these distortions and improve the geographic realism of the model.

Adjustments to the communication structure could also lead to more detailed outcomes. Instead of only
modelling social ties as a fixed number of contacts, introducing an additional geographical radius would ensure
that an agent’s contacts are not just their nearest peers, but also within a practical distance, preventing
unrealistic long-distance links. Knowledge diffusion could likewise be expanded. Mechanisms such as positive or
negative word-of-mouth might more closely mirror real-world dynamics, with farmers who talk positively about
refineries increasing the willingness of peers, while those who express reservations discourage other farmers.
Allowing rejected farmers to revisit their decision later — possibly after being influenced by neighbours — would
further increase realism. Similarly, deliverers with surplus biomass could be allowed to supply more than one
facility, better reflecting the flexibility of actual resource flows.

Economic dimensions represent another important field of extension. Building on the economic examinations
of underlying studies (Heck, Rudi, et al., 2024), the model could include factors such as fluctuating biomass prices,
input costs, and cooperative financing. Policy levers, such as subsidies, preferential credit lines, or government
funding programs, could also be incorporated, offering insight into how financial incentives shape adoption.
Introducing these mechanisms would enable the analysis of not only behavioural and structural dynamics but
also the economic and institutional environment in which farmers operate.

Collectively, these extensions would enhance the model’s ability to capture the interplay of decision-making,
cooperation, and competition, while also reflecting the influence of policy instruments such as subsidies or
funding schemes. At the same time, the current framework already provides a strong and flexible basis, making
it well-suited for extensions and for generating insights that are relevant to both policy and practice.

5.Conclusion

This study developed a model that integrates georeferenced data on biomass availability with an agent-based
framework simulating farmers’ decisions and their willingness to build a biorefinery. Thereby, the model
combines empirical, statistical, and spatial data, allowing it to represent both the geographical distribution of
resources and the behavioural dynamics of potential adopters. The goal was not only to test feasibility but also
to uncover structural and social factors that influence adoption.

The model already provides valuable insights into cooperation dynamics, resource competition, and adoption
barriers, offering tangible implications. To accelerate the establishment of integrated biorefineries, decision-
makers could prioritise information campaigns that communicate the benefits of such facilities, as this measure
should increase the speed of adoption. Strengthening coordination mechanisms, such as regional cooperation
platforms or matchmaking tools, would further connect willing farmers, making it easier to form viable
partnerships. This model demonstrates that these steps are crucial for increasing the likelihood of investment,
construction, and long-term operation of biorefineries.

The model still works with several assumptions. Future refinements could address these limitations by
incorporating more comprehensive survey data, expanding the farmer pool, and differentiating decision
processes more precisely. In addition, the model offers a solid foundation for integrating economic dimensions
(e.g., biomass price volatility or profitability thresholds), expanding the representation of innovation diffusion
(e.g., peer influence or word-of-mouth effects), and simulating targeted policy interventions such as subsidies.

Emerging technologies can also enhance the framework. For example, Al could be used to analyse large-scale
farmer survey data to better predict local adoption likelihood and resource availability. This would not only fill
data gaps but also improve the accuracy of behavioural and spatial inputs to the model. Additional data could
also be integrated into the model, with climate data being able to predict biomass quantities depending on the
season.

Ultimately, continued development of such integrated models is seen as essential for bridging the gap
between biorefinery potential and its practical implementation, supporting the transition to a more sustainable,
bio-based economy.
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