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Abstract

The discovery of the Higgs boson in 2012 completed the particle content of the Standard
Model (SM) and enabled detailed studies of its properties. While couplings to gauge bosons
and third-generation fermions are well established, the coupling to charm quarks remains
largely unconstrained. Direct searches for H — cc decays face severe challenges from
QCD backgrounds and jet flavor identification. This thesis presents a complementary,
indirect approach based on the measurement of the charge asymmetry in associated WH
production, which is sensitive to the charm Yukawa coupling.

The analysis is performed using the full Run 2 dataset of the CMS experiment at the
LHC, corresponding to an integrated luminosity of 138 fb™". Since the end of the Run 2 the
data have been re-analyzed with improved and consistent simulation, detector alignments
and calibrations throughout the data-taking years, by the CMS Collaboration. Events
are selected in final states where the Higgs boson decays to a pair of T leptons and the
accompanying W boson decays to an electron or muon and a corresponding neutrino.
Multiple Tt final states are reconstructed, and advanced analysis techniques are employed
to enhance the sensitivity of the analysis. Backgrounds from jets misidentified as leptons
are estimated with a data-driven Fr method, while genuine multi-lepton backgrounds
are modeled with simulation. A neural network classifier is trained to distinguish signal
from background and to provide event categorization, improving statistical precision and
control over systematic uncertainties.

This work presents the first measurement of the WH charge asymmetry in H —
7T decays, along with measurements of the WH, W*H, and W™H production cross
sections. These measurements contribute to the global program of precision Higgs boson
measurements, which aim to test the SM and probe for possible signs of physics beyond
the SM.
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1. Introduction

The Standard Model of particle physics (SM) has been remarkably successful in describing
the fundamental particles and their interactions. Many of its predictions, such as the
existence of the W and Z bosons, were confirmed experimentally long after they were
theoretically proposed. The last missing piece, the Higgs boson (H), was predicted in 1964
through the Brout-Englert-Higgs (BEH) mechanism [1-6] and observed in 2012 by the
ATLAS [7] and CMS [8] Collaborations at the Large Hadron Collider [9] (LHC) [10}|11].
This discovery confirmed the mechanism responsible for electroweak symmetry breaking
and the generation of particle masses.

Despite these achievements, the SM is incomplete. It does not provide a description of
gravity and cannot explain the observed dark matter content of the universe. Many other
open questions remain, pointing to physics beyond the SM (BSM). The LHC is designed to
address these questions by exploring two main avenues: the discovery of new particles
at the highest accessible energies, and precision tests of the SM searching for deviations
from its predictions. The Higgs sector plays a central role in both strategies. The BEH
mechanism does not require the existence of only one Higgs boson, leaving room for
extended models. At the same time, precise measurements of Higgs boson couplings may
reveal subtle signs of BSM physics.

Since its discovery, the couplings of the Higgs boson have been tested in several channels.
Its decays to heavy gauge bosons (W [[12-14], Z [15-17]), photons [18}19], b [20, 21] and
top quarks [22-25], and T leptons [26, 27| are established. Together, these measurements
confirm couplings to all known gauge bosons and third-generation fermions. More recently,
evidence for the rare H — pp decay provided the first direct probe of second-generation
Yukawa couplings [28, 29]]. The next step is the investigation of the Higgs boson coupling
to charm quarks for which the ATLAS and CMS Collaborations have reported upper limits
[30-33].

Among the fermionic final states, the decay into T leptons is of particular interest. The
T lepton is the heaviest lepton, and its Yukawa coupling is therefore sizable. In fact, the
H — 77 final state provides the highest sensitivity to Higgs boson couplings in the Yukawa
sector. At the same time, its analysis is challenging due to the many possible T lepton
decay modes and the presence of neutrinos in the final state, which escape undetected.

This thesis presents a measurement of the WH production mode with H — Tt decays
using the full reprocessed Run 2 dataset of the CMS experiment, with improved simulation,
detector alignments and calibrations. The analysis targets the associated production
of a Higgs boson with a W boson and the charge asymmetry between W*H and W™H
production. The latter is in particular interesting to constrain the charm quark Yukawa
coupling.

Events are selected in final states containing hadronic T lepton decays, electrons, and
muons. A main challenge of the analysis is the suppression and precise modeling of the
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large backgrounds, in particular top quark pair (tt), Drell-Yan, W+jets and WZ production.
To address this, the data-driven Fr method is used to estimate backgrounds from jets
misidentified as leptons. Genuine multi-lepton backgrounds are estimated from simulation.
A neural network (NN) is trained to optimally separate signal from background and to
classify events into categories enriched in different processes. This multi-classification
approach increases the sensitivity of the analysis and provides dedicated control regions
to constrain systematic uncertainties.

The structure of the thesis is as follows. Chapter 2 introduces the theoretical background
of the SM Higgs sector and the relation between the charge asymmetry in the WH
production and the charm quark Yukawa coupling. Chapter 3 describes the CMS detector
and its reconstruction algorithms. Chapter 4 explains the event selection, the overall
analysis strategy and the results, and Chapter 5 concludes with a summary and outlook.



2. The Standard Model of Particle Physics

The SM is a theory that provides a comprehensive framework to describe all known
fundamental particles and their interactions. Based on the symmetries of the universe, the
SM successfully predicts the kinematic behavior, creation, and annihilation of elementary
particles. These particles are classified into two main categories: fermions, which have
half-integer spin and constitute matter, and bosons, which have integer spin and mediate
the fundamental forces between matter particles, which are the weak, electromagnetic,
and strong forces. Considered as the fourth fundamental force, the gravitational force
cannot be described by the SM. The complete set of SM particles is shown in Figure

Fermions are further divided into quarks and leptons, depending on the interactions
they are involved in. Leptons participate only in electroweak interactions, whereas quarks
participate in the strong interaction as well. Due to this fact, quarks and leptons show
very different characteristics. Furthermore, fermions are organized into three generations,
differing primarily in mass, with the first-generation fermions forming the matter that
makes up our everyday lives. These are the up and down quarks forming protons and
neutrons, and the electrons. The quarks are grouped into the up-type (electric charge +2/3)
and down-type (electric charge —1/3) quarks. The leptons are grouped into charged leptons
and neutral leptons, which are the neutrinos (v). The Higgs boson is a scalar particle with
spin zero. Unlike other bosons, it does not act as a force carrier. It evolves from the BEH
mechanism, described below.

Mathematically described as a quantum field theory (QFT), the SM unifies quantum
mechanics and special relativity in a field theory. The system is described by a Lagrangian
density that determines the dynamics of the particles and is required to be invariant under
symmetry transformations. These symmetries are related to Lorentz invariance but also to
the three fundamental forces described by the SM. In mathematical terms, the three forces
arise in the Lagrangian density by requiring the invariance of the Lagrangian density
under local SU(3), x SU(2); X U(1)y transformations:

+ The electromagnetic force is mediated by the massless photon and acts on electrical-
ly charged particles. It is of infinite range and relatively strong compared to the weak
and gravitational forces. At the classical level it is described by Maxwell’s equations,
while in the SM it is formulated as a QFT.

« The weak force interacts very weakly compared to the other two forces described by
the SM. With a similar coupling strength compared to the electromagnetic force, the
weak force is mediated by the W and Z bosons. As both bosons carry a heavy mass,
the force acts only at a very limited range 100 times smaller than the protons’ diameter,
which is the reason for its weakness. It is responsible for flavor-changing particle
decays and is embedded in the SM through the electroweak theory [34-36]]. This
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Figure 2.1.: Particles of the SM [37].

theory unifies the electromagnetic and the weak force into one fundamental force,
the electroweak force. It is described by the gauge symmetry SU(2); X U(1)y. The
SU(2);, group acts on the weak isospin I3, while the U(1)y group acts on hypercharge.

« The strong force is described by quantum chromodynamics, a gauge theory with
symmetry group SU(3).. It acts in the three-dimensional color space and is mediated
by massless gluons. The force grows with the distance between color-charged
particles, a behavior opposite to that of electromagnetism. At short distances, quarks
and gluons behave almost as free particles, a property known as asymptotic freedom.
At large distances, the potential increases until new quark-antiquark pairs are created,
leading to a phenomenon usually referred to as confinement. As a result, only color-
neutral bound states, the hadrons, are observable, while free quarks and gluons
cannot be isolated.

The Brout-Englert-Higgs Mechanism

The BEH mechanism [[1-6] completed the SM by providing an explanation for the origin
of elementary particle masses. Mass is an intrinsic and directly measurable property
of elementary particles. However, the symmetries of the SM forbid the straightforward
inclusion of mass terms for both bosons and fermions. In the case of vector bosons, a mass
term would read like

Linass = —m&G,G*, (2.1)



where G, is a generic vector field. Mass terms for bosons break the gauge symmetry of the
SM Lagrangian density, while those for fermions violate the chiral symmetry of the SU(2)
group. Instead of adding such a mass term, the BEH mechanism provides a consistent
method for dynamically generating such mass terms through spontaneous symmetry
breaking (SSB). In this framework, the vacuum state does not respect the full symmetry of
the theory. Specifically, the electroweak symmetry of the SU(2); x U(1)y gauge group is
broken down to the U(1), symmetry of quantum electrodynamics (QED). This happens
via the introduction of a complex scalar SU(2); doublet field :

o- (). o2

The interaction of ® with the SM Lagrangian density is described by
£Higgs = |qu)|2 - V((I)?(I)), (2.3)

where D, is the covariant derivative associated with the electroweak gauge symmetry
group SU(2); X U(1)y and is explicitly defined as

a

. a0 Y
DH = 8,1 - lgWy 7 —1g EB/J, (24)

with g and ¢’ being the gauge coupling constants for the SU(2) and U(1) groups respectively
and the o¢ are the Pauli matrices.
The scalar potential responsible for SSB is given by

V(®T®) = —p20" 0 + ’%(@T@)Z, (2.5)

where p and A are real constants. The vacuum expectation value (VEV) of the field is found
by minimizing the potential at

. @ o
Only the neutral component of ® can acquire a VEV to preserve the electric charge. In the
unitary gauge, the scalar field becomes

@:i( 0 ) 2.7)

v+h

where h is the physical Higgs boson field.
Focusing on the non-derivative parts of |D,®|?, the mass terms for the gauge bosons

are obtained: . .
mwy = Egv, my = 5\/92 + g7 0. (2.8)
Three degrees of freedom of the scalar doublet are absorbed in order to give mass to the
W* and Z bosons. The remaining degree of freedom manifests as the Higgs boson, with

its mass given by my = V2Av. Interaction terms between the Higgs field and the massive
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vector bosons appear with strengths proportional to the square of the respective boson
masses. Fermion mass terms of the form

Linass = _mll;lﬁ (2.9)

are not gauge invariant under SU(2); X U(1)y, as they couple left- and right-handed
fermions, which transform differently. To provide fermions with masses while preserving
gauge invariance, Yukawa couplings to the scalar field are introduced. For the electron,
the interaction is written as

Lyukawa = —Ae(Er®eg + &O'Ep), (2.10)

where A is a dimensionless coupling constant, E; = (Ver,&1) is the left-handed lepton
SU(2)-doublet, and eg is the right-handed electron which is an SU(2)-singlet. After
symmetry breaking, in the unitary gauge, this becomes:

Ae h\ _ _
Lyukawa = ———= (1 + _) (eLeR + eReL) (2-11)
\V2 v
= —meee — %éeh, (2.12)

Y

where the electron mass is given by m, = %’ and e = e, + eg is the full Dirac field. The

same mechanism also generates the masses of other leptons and quarks. For all fermions,
the masses are proportional to v.

Higgs Boson Phenomenology

The discovery of the Higgs boson in 2012 by the ATLAS and CMS Collaborations marked
a significant milestone in particle physics, confirming the final missing element of the
SM predicted by the BEH mechanism. At hadron colliders like the LHC at CERN, Higgs
bosons are produced through various mechanisms, each initiated by the quark and gluon
constituents of the colliding protons. The dominant production channel is gluon fusion
(ggF), in which gluons interact via a heavy-quark loop, primarily involving top quarks.
Other important production modes include vector boson fusion (VBF), characterized by two
forward jets resulting in little hadronic activity in the central detector, and Higgsstrahlung,
where the Higgs boson is emitted from an off-shell vector boson produced in association
with a W or Z boson. Associated production with heavy quarks, such as top or b quark pairs
has smaller cross sections. The leading order Feynman diagrams of the main production
channels are given in Figure

The Higgs boson decays preferentially to the heaviest kinematically allowed SM particles
due to its coupling being proportional to the particle mass. The largest branching fraction
corresponds to decays into b quark pairs, followed by WW and ZZ decays, where one
of the vector bosons must be off-shell due to the Higgs mass of approximately 125 GeV.
Although rarer, decays into two photons via a quark loop and four leptons via ZZ offer
clean experimental signatures and were pivotal in the discovery. In Figure [2.3|the branching
fractions of the different final states of the SM Higgs boson are displayed. In the years
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Figure 2.2.: Feynman diagrams of the major Higgs boson production channels at the LHC,
which are ggF (upper left), VBF (upper right) and VH production (bottom).

following the discovery, further studies have confirmed Higgs boson couplings to third-
generation fermions such as top [22-25] and b quarks [20} [21]], and T leptons [26, 27].
Notably, the H — Tt decay channel, due to its manageable background and clean leptonic
final states, has become a key probe of the Yukawa interaction and remains a central focus
in ongoing analyses.

Higgs Boson to Charm Quark Coupling

A main goal in ongoing Higgs boson research is probing the couplings to second-generation
fermions, which remains a major challenge. There is now experimental evidence for the
Higgs boson decaying into a pair of muons, a second-generation process, as reported by
the CMS and ATLAS Collaborations [28| [29]. The next target in the less well-constrained
second-generation sector is to measure the charm quark Yukawa coupling. A direct search
for the H — cc decay aims to probe this coupling but faces considerable experimental
difficulty due to the overwhelming jet background at the LHC. Discriminating charm quark
jets from those initiated by light or b quarks requires dedicated multivariate techniques,
including charm-tagging algorithms trained to exploit differences in hadronization and
decay patterns. Both ATLAS and CMS have performed searches for this decay mode and
set upper limits on the charm quark Yukawa coupling, though a direct observation has not
yet been achieved [39-42]. An alternative, indirect approach to constraining the charm
quark Yukawa coupling involves studying the charge asymmetry in associated Higgs
boson production with W* bosons (WH) which is defined as

_ o(W'H) - o(W™H)
~ o(W*H) + o(W-H) '

(2.13)
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Figure 2.3.: The dependence of the Higgs boson’s branching fractions on its mass. Taken
from [38]].

Due to the proton’s parton distribution functions, more W* than W™~ bosons are produced
in proton-proton (pp) collisions, leading to a well-predicted charge asymmetry in the SM
[43] of

Agpm = 0.22 + 0.01. (2.14)

In the WH process, contributions from Feynman diagrams involving ¢-channel quark
exchange are sensitive to Higgs boson Yukawa couplings. Feynman diagrams of those
production processes are given in Figure An enhancement of the up or down quark
Yukawa coupling increases the predicted asymmetry beyond the SM expectation. In
contrast, an enhancement of the charm or strange quark Yukawa coupling decreases the
asymmetry [44]]. This dependence is illustrated in Figure which shows the charge
asymmetry in pp— W*H production at /s = 14 TeV as a function of the Yukawa rescaling
factor kr, with &M ~ 0.23. The observable therefore provides a clean and largely model-
independent probe of light-quark Yukawa couplings. In particular, it offers an indirect
method to constrain the charm Yukawa coupling, complementary to direct searches in the
H — cc decay mode.
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Figure 2.4.: Feynman diagrams of WH production involving a quark exchange in the t-
channel, sensitive to light quark Yukawa couplings.
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3. The CMS Experiment

The data used in this analysis is collected by the CMS experiment, one of the four main
detectors operating at the LHC at CERN near Geneva, Switzerland. The LHC is a 27-
kilometer circular accelerator mainly to collide protons but also heavy ions. Since its
commissioning in 2010, it has provided pp collisions at unprecedented energies, with Run
2 (2016-2018) reaching a center-of-mass energy of 13 TeV. During this period, protons
were grouped into bunches, each containing approximately 10! protons, with around
2500 bunches per beam circulating simultaneously. A minimum bunch spacing of 25 ns
allowed for collision rates up to 40 MHz.

The LHC features four primary interaction points where beams are brought to collision,
each instrumented with a large-scale detector: Compact Muon Solenoid (CMS) [8], A
Toroidal LHC Apparatus (ATLAS) [7], A Large Ion Collider Experiment (ALICE) [45], and
LHC-beauty (LHCb) [46]. CMS and ATLAS are general-purpose detectors designed to
explore a broad range of SM and BSM physics. In contrast, ALICE specializes in studying
heavy-ion collisions and the properties of the quark-gluon plasma, while LHCb focuses
on precision measurements involving b quark decays and CP violation.

Following Run 2, Run 3 began in 2022 with an increased center-of-mass energy of
13.6 TeV and aims to collect a total integrated luminosity of up to 350 fb™! by the end
of Run 3 in 2026. In the longer term, after a major upgrade phase, the LHC is expected
to deliver up to 3000 fb™! of data, significantly enhancing the discovery potential and
precision measurements at the energy frontier.

3.1. The CMS Detector

As illustrated in Figure CMS features a cylindrical geometry centered around the
collision point, with multiple concentric layers of detector components designed to measure
the properties of particles produced in pp collisions. These layers utilize different detector
technologies, each optimized for trajectory measurement, energy measurement, or particle
identification, forming a highly integrated system capable of reconstructing complex final
states. CMS employs a Cartesian coordinate system aligned with the nominal interaction
point to describe particle trajectories and detector geometry. As shown in Figure the
x-axis points towards the center of the LHC ring, the y-axis extends vertically upward,
and the z-axis follows the direction of the counterclockwise circulating proton beam. In
addition to this, a polar coordinate system is used to account for the cylindrical symmetry
of the detector. The azimuthal angle ¢ is measured in the plane perpendicular to the beam
direction relative to the x-axis, while the polar angle 0 is measured relative to the z-axis.
To characterize particle directions more effectively, especially for relativistic particles, the

11
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Figure 3.1.: Sketch of the CMS detector with its sub-detectors, build cylindrically around
the beam pipe. Taken from [47].

variable pseudorapidity 7 is typically used instead of the polar angle. It is defined as
n = —In(tan(6/2)) (3.1)

and has the advantage of being invariant under Lorentz transformations along the beam
axis. Therefore, it is a convenient quantity for comparing events and analyzing detector
coverage. The following sections provide a brief overview of each CMS sub-detector, based
primarily on [8], which offers more detailed technical documentation.

3.1.1. Silicon Tracker

At the core of the CMS detector lies the inner tracking system, surrounding the interaction
point. Its primary function is to reconstruct the trajectories of charged particles with high
precision, enabling accurate measurements of their momentum and the location of the
primary collision vertex (PV). The tracking system operates within a strong magnetic field,
which causes charged particles to curve due to the Lorentz force. Based on this curvature,
the particle momentum is determined.

The innermost component of the tracker is the pixel detector. It consists of four barrel
layers made of high-resolution silicon pixel sensors, each with a pixel size of 100 x150 um?,
positioned at radial distances of 2.9 cm, 6.8 cm, 10.9 cm, and 16.0 cm from the beam axis.
These are complemented by six forward pixel disks, located at z = +29.1 cm, z = +39.6 cm,

12
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LHCb

Ne— o ATLAS

Figure 3.2.: Sketch of the CMS detector with its sub-detectors, build cylindrically around
the beam pipe. Taken from [48].

and z = £51.6 cm, which extend the coverage in the forward regions, allowing full tracking
capability up to pseudorapidity values of |n| < 2.5. [49]

Surrounding the pixel detector is the silicon strip tracker, which forms the outer portion
of the inner tracking system. It spans a radial range from approximately 25 cm to 116 cm
and maintains full coverage within the same pseudorapidity range as the pixel system.
The strip tracker is divided into several subcomponents: the tracker inner barrel and disks,
the tracker outer barrel, and the tracker endcaps. Each region employs different types of
silicon strip sensors tailored to their location and function. Together, the entire tracking
system comprises roughly 75 million readout channels, enabling detailed and efficient
reconstruction of particle trajectories throughout the CMS detector volume.

The transverse momentum (pr) resolution of the tracker can be described with a simple
two-term form

o L epr @ (3.2)
— X —— O PT , :
pr  BL2 " B+IX,

g ~——

hit resolution multiple scattering

where B is the magnetic field, L the effective lever arm, o, the hit resolution, X, the
radiation length, and a, b are geometry/material constants. The first term grows linearly
with pt and improves with better hit resolution, stronger B, and larger L. The second term
describes the contribution of multiple scattering and becomes more dominant at low pr. It
is approximately momentum independent and is set by the amount of material.

3.1.2. Electromagnetic Calorimeter

Surrounding the tracking system is the electromagnetic calorimeter (ECAL), which is
designed to precisely measure the energy of electrons and photons. It functions by fully
absorbing the particles and converting their energy into light using lead tungstate (PbWOy,)

13
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crystals. These crystals have a high density (8.28 g/cm™) and short radiation length
(0.89 cm), which, together with their small Moliére radius (2.2 cm), enable a compact, finely
segmented calorimeter suitable for high-resolution measurements.

The ECAL is composed of multiple subsystems, each optimized for different detector
regions using varying crystal geometries and photodetector types. The barrel section
covers the central detector region (|n| < 1.479) and is located at radii of 129-152 cm from
the beam axis. The total length of this section corresponds to approximately 25.8 radiation
lengths, allowing for effective energy containment. In the forward regions, the ECAL
endcaps extend the coverage to |n| < 3.0 and are positioned at z = +315.4 cm. Each endcap
crystal measures 220 mm in length, equivalent to about 24.7 radiation lengths.

In front of the endcaps, the ECAL preshower system provides additional discrimination
between photons and neutral pions. It is a sampling calorimeter that uses alternating
layers of lead absorbers and silicon strip detectors. This setup improves the identification
of electromagnetic showers in the forward region.

Altogether, the ECAL consists of 75848 lead tungstate crystals, each read out individually,
providing high granularity and precise spatial and energy resolution across the pseudo-
rapidity range up to |5| < 3.0.

The ECAL’s energy resolution is characterized by three main contributions, each with a
distinct dependence on the particle energy. It is typically expressed as

S N
E_o 2 s-acC (3.3)

E «E E

The first term, known as the stochastic term, accounts for statistical fluctuations in the
shower development and light collection within the crystals. The second, the noise term,
represents contributions from electronic and digitization noise, which are more significant
at low energies. The final term, the constant term, includes residual calibration errors and
other effects.

3.1.3. Hadronic Calorimeter

Surrounding the ECAL, the hadronic calorimeter (HCAL) is responsible for measuring the
energy of hadrons and other particles that do not deposit their full energy in the ECAL. As
a sampling calorimeter, the HCAL consists of alternating layers of dense absorber material
and active scintillating material. Specifically, brass is used as the absorber, while plastic
scintillators serve as the active medium. When hadrons interact with the absorber and
produce showers, the resulting scintillation light is collected via wavelength-shifting fibers
and read out by silicon photomultipliers.

The HCAL is segmented into several subsystems, each designed to cover different
regions in pseudorapidity and radial distance. The central part of the HCAL, known as
the HCAL barrel, covers the region |p| < 1.3 and is positioned between radii of 1.77m
and 2.95 m, extending up to the inner surface of the superconducting solenoid. Outside
the solenoid lies the HCAL outer, also referred to as the "tail catcher," which provides
additional depth for hadronic energy containment in the same pseudorapidity region by
using the solenoid itself as part of the absorber structure.
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At higher pseudorapidities, the HCAL endcaps extend the coverage to the range 1.3 <
In| < 2.5, located adjacent to the ECAL endcaps. In the very forward region, the HCAL
forward calorimeters cover 2.8 < |n| < 5.2 and are situated approximately 11.2 m from
the interaction point. Unlike the other HCAL subsystems, it uses quartz fibers embedded
in steel to detect Cherenkov radiation produced by the electromagnetic component of
particle showers, enabling energy measurements in regions where radiation levels and
particle flux are highest.

3.1.4. Solenoid and Return Yoke

A key feature that distinguishes the CMS detector is its powerful superconducting solenoid,
which produces a uniform magnetic field of 3.8 T within its interior volume. This large-
scale magnet is 6 m in diameter, 12.5 m long, and weighs approximately 220 t. It is energized
by a high-current power supply delivering 20 kA. Enclosed within the solenoid’s free bore
are the inner tracking system and calorimeters, which operate within this magnetic field
to enable precise particle measurements.

Surrounding the solenoid is a 10000 t iron return yoke that serves both to contain the
magnetic flux within the detector and to provide mechanical support. This structure
houses the vacuum vessel and encloses four layers of superconducting niobium-titanium
coils. Together, the solenoid and return yoke account for nearly 90 % of the CMS detector’s
total mass.

The magnetic field plays a critical role in charged particle reconstruction. As charged
particles move through the field, their trajectories bend due to the Lorentz force. This
curvature not only allows for the determination of a particle’s charge sign based on the
direction of its deflection but also allows to measure the particle’s momentum from the
radius of curvature.

3.1.5. Muon Chambers

Integrated into the iron return yoke is the muon detection system, which is responsible
for identifying and measuring muons—particles that typically traverse the entire detector
without being absorbed by the calorimeters. To achieve this, CMS employs a combination
of gaseous detectors, each optimized for different regions of the detector and providing
complementary information.

In the barrel region of the detector, up to |5| < 1.2, muons are detected using 250 drift
tube chambers arranged in four layers. These chambers are filled with a gas mixture of
argon and carbon dioxide. As charged particles pass through the gas, they ionize it, and
the resulting free electrons drift towards positively charged wires, generating a signal. By
combining signals from multiple drift tubes, the particle’s trajectory can be reconstructed
with high precision.

In the endcap regions, where the magnetic field becomes less uniform and particle rate
are higher compared to the barrel, cathode strip chambers are used. A total of 468 strip
chambers cover the range up to |p| < 2.4. These detectors consist of anode wires crossed
by orthogonal cathode strips, which enables accurate position and timing measurements.
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Complementing the drift and strip chambers are resistive plate chambers, which are
deployed in both the barrel and endcap regions, up to || < 1.6. They consist of two
parallel resistive plates separated by a gas-filled gap. When a charged particle passes
through, it ionizes the gas, initiating an avalanche of electrons that induces a signal on the
readout strips. Due to their fast response of ~ 1ns, significantly shorter than the 25ns
interval between the LHC bunch crossings, they play an important role in the CMS trigger
system.

3.1.6. Trigger and Data Acquisition

During LHC Run 2, the accelerator operated with a bunch crossing frequency of 40 MHz,
corresponding to 40 million pp collisions per second. However, the CMS detector’s data
acquisition and storage systems are only capable of processing and recording events
at a maximum rate of approximately 1kHz [50]. Moreover, only a tiny fraction of
these collisions contains events relevant for physics analyses. To manage this disparity
and isolate potentially interesting events, CMS utilizes a two-level trigger system that
progressively reduces the data rate.

The first level, known as the Level-1 (L1) trigger [51]], is implemented in hardware
using field-programmable gate arrays (FPGAs). It is responsible for the initial event
selection, operating in real time with extremely low latency of around 4 ps. The L1 trigger
is composed of two independent subsystems: one that processes calorimeter data to
reconstruct candidates for electrons, photons, jets, and hadronic tau decays, and another
that analyzes muon system data to identify muon candidates. These subsystems work in
parallel, and their outputs are combined to determine whether a given event meets the
criteria to be read out in full. The L1 trigger reduces the input event rate by a factor of
approximately 400, down to about 100 kHz—the highest rate at which complete detector
data can be transferred for further analysis.

The second stage of the trigger system is the High-Level Trigger (HLT), which runs in
software on a large farm of servers located near the detector. It applies a streamlined, speed-
optimized version of the full event reconstruction algorithm, as used offline. The HLT is
organized into sequences of processing modules that reconstruct physics objects—such as
leptons, jets, and missing transverse momentum (ﬁ%ﬂss)—and apply selection criteria based
on those objects. To minimize computation time, fast preselection steps based on coarse
quantities like localized calorimeter energy deposits are performed before executing more
computationally expensive algorithms such as track reconstruction.

The HLT further reduces the event rate from 100 kHz to about 1 kHz. Events that pass
any of the predefined HLT paths are forwarded to the offline reconstruction system, where
the full event reconstruction is carried out, and the resulting data is stored for later analysis.
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3.2. Event Reconstruction

Particle Flow Algorithm

In pp collisions at the LHC, a wide variety of particles are produced, including charged and
neutral hadrons, leptons, and photons. These particles interact with multiple subsystems
of the CMS detector and often leave signals in more than one detector layer. To exploit
this complementary information and improve the overall reconstruction accuracy, CMS
employs the Particle Flow (PF) algorithm [52]. It aims to identify and reconstruct each
individual particle combining data from all relevant subdetectors, leading to a global and
consistent interpretation of the event.

The algorithm starts by forming basic reconstruction units known as PF elements.
These include charged particle tracks reconstructed from the inner tracking system and
muon detectors, as well as energy clusters identified in the ECAL and HCAL. Tracks
are extrapolated outwards and matched to calorimeter clusters within a defined angular
distance in the n — ¢ plane. If multiple associations are found, only the match with the
smallest spatial distance is retained to minimize ambiguities. Further linking accounts
for photon emission via bremsstrahlung, which can produce ECAL clusters or lead to
secondary electron-positron track pairs. Such links are formed if the tangents to a charged
particle’s trajectory through the traversed tracker layers are consistent with the location
or momentum of these clusters or tracks.

Additional connections are made between ECAL and HCAL clusters, particularly in
cases where the spatial footprint of an ECAL cluster lies within the extent of a nearby
HCAL cluster. Once all links are established, PF blocks are formed, as groups of connected
PF elements, which are used to sequentially reconstruct the final-state particles. This
process begins with muons and electrons, followed by isolated photons, and finally by
hadrons and their nearby electromagnetic energy deposits.

To ensure accurate event interpretation, CMS also applies pileup (PU) mitigation
strategies within the PF framework [53]. PU, the presence of multiple overlapping
collisions in a single bunch crossing, can contaminate the reconstructed particle collection.
Charged hadrons originating from additional vertices are removed, reducing their impact
on quantities such as jet energy, lepton isolation, and ﬁ%ﬁss. However, PU effects are more
challenging to correct for neutral particles, which leave no tracks and cannot be directly
associated with a specific vertex.

Muons

Muon reconstruction in CMS [54] is handled slightly differently from other particles due
to the unique capabilities of the dedicated muon detection system. While the PF algorithm
includes muons in its final particle list, their initial reconstruction is performed separately
to take advantage of the muon system’s extensive coverage and high purity. Most other
particles are absorbed by the calorimeters before reaching the muon detectors, making
muons relatively easy to isolate. Only neutrinos and, rarely, hadrons escape to the muon
system, which helps maintaining a reconstruction efficiency of about 99 %.

17



3. The CMS Experiment

CMS reconstructs three types of muon candidates: standalone muons, global muons,
and tracker muons. Standalone muons are built using only information from the muon
system—namely hits in the drift tubes, cathode strip chambers, or resistive plate chambers.
These hits are assembled into track segments and fitted to form a standalone track.
However, this method provides lower momentum resolution and is more susceptible
to backgrounds like cosmic muons. Global muons are formed by matching a standalone
muon track to a track reconstructed in the inner tracker. The hits from both subsystems
are combined in a global fit, yielding a significant improvement in momentum resolution,
particularly for high-pr muons. Tracker muons, on the other hand, are reconstructed
by extrapolating tracks from the inner tracker to the muon system. If these tracks are
compatible with at least one hit or segment in the muon detectors, they are classified
as tracker muons. This approach is more efficient for low-pr muons but more prone to
mis-identification due to hadronic activity in the outer detector regions.

Once the muon candidates are reconstructed, they are passed to the PF algorithm,
which applies additional selection criteria to identify high-quality PF muons. These
candidates are required to be isolated, which helps distinguish genuine prompt muons
from those originating from hadron decays. Isolation is computed using reconstructed
PF candidates within a cone of radius AR = 0.4 around the muon candidate. For charged
particles, contributions to the isolation can be directly associated with the PV. Neutral
particles—such as photons and neutral hadrons—are also included but cannot be linked
to a specific vertex. Therefore, an estimated contribution of neutral particles from PU is
subtracted. The combined relative isolation is defined as

1

o [Ich + max (I, + I, — Ipy, 0)] (3.4)
T

Lie1 =

where, p;t is the pr of the muon candidate, I, is the sum of transverse momenta of charged
hadrons from the PV, I, and I, are the contributions from neutral hadrons and photons,
respectively, and Ipy = 1 3 p%h’ U estimates the PU contribution from charged hadrons.
Based on this definition, loose and tight WPs are defined by thresholds of 0.25 and 0.15,
respectively, where a smaller value means a more isolated particle. This leads to a selection
efficiency of approximately 98 % for the loose and 95 % for the tight working point (WP).

For the identification of muons, additional variables like the number of hits in the
inner tracker or the goodness-of-fit (GoF) of the global muon track are used to set a score
between zero and one defining the quality of the muon candidate. For this thesis muons
passing the medium WP are used, corresponding to a score of 0.303 for global muons and

an efficiency of 99 % in Z— pp decays.

Electrons

Electrons in the CMS detector [55] are reconstructed as part of the PF algorithm by
combining information from the inner tracking system and the ECAL. As electrons pass
through the tracker material, they are prone to bremsstrahlung, emitting photons that may
further convert into electron-positron pairs. These interactions give rise to electromagnetic
showers, which deposit energy primarily in the ECAL. To capture the full energy of the
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initial electron, including that carried by associated photons, clusters of ECAL energy
deposits are merged into extended superclusters. Because the electron is bent by the
magnetic field while the emitted photons propagate roughly along the tangent, the energy
from a single electron is dispersed predominantly along ¢ in the ECAL.

The electron track reconstruction relies on a specialized fitting method known as the
Gaussian-Sum Filter (GSF) [56]], which is optimized to model the energy losses of electron
trajectories. Two seeding strategies are employed: an ECAL-based method for high-pr
electrons that starts from ECAL clusters and matches them to tracker hits, and a tracker-
based method for lower-pr electrons or those inside jets, which propagates existing tracks
toward the ECAL. Both approaches improve the efficiency of electron reconstruction
across a wide phase space. The final energy of each reconstructed electron is obtained
by combining the momentum from the GSF track and the calibrated supercluster energy
using a weighted average.

Since ECAL superclusters can suffer from energy losses due to shower leakage, dead
crystals, or material interactions in the tracker, an additional energy correction is applied.
This correction is determined by a multivariate regression based on boosted decision
trees (BDTs), trained on simulation, to estimate the ratio of true to reconstructed energy.
The correction is performed in three steps: first correcting the supercluster energy, then
improving its resolution, and finally combining the energy information with that from
the GSF track. Residual differences between simulation and real data are accounted for by
calibrating against the invariant mass peak of Z — ee events, extracting a scale correction,
and applying an energy smearing to match the resolution observed in data.

Electron identification further distinguishes genuine electrons from hadronic fakes,
photon conversions, and decay products of heavy-flavor hadrons. Two algorithms are
used: a cut-based selection applying fixed thresholds on shower shape, track-supercluster
matching, isolation, and conversion rejection criteria; and a multivariate (MVA) approach
using BDTs trained on extended input variables including track quality and energy-
matching features. While the MVA method omits isolation variables, additional isolation
requirements are imposed externally. Electron isolation is computed in a cone of AR = 0.3
with contributions from PU estimated differently compared to the muon isolation. For
the electron isolation the effective area method is used, with Ipy = p - A.g. Here, p is
the median transverse energy density and A is the area defined by the isolation cone
and the n — ¢ plane it covers. The resulting isolation helps suppress background from
non-prompt electrons while retaining high selection efficiencies. Throughout this thesis,
electron candidates identified with the MVA method and a WP with 90 % efficiency for
Z — ee events are used.

Hadronic Jets

Hadronic jets are collimated sprays of particles arising from the fragmentation and
hadronization of high-pt quarks and gluons. Because of color confinement, the partons
are not observed directly but as clusters of stable particles in the detector. In the CMS
detector, they appear as clustered energy deposits in the ECAL and HCAL, associated
with several particle tracks. The reconstruction is performed by clustering PF candidates
using the anti-kt algorithm [57]]. Throughout the thesis jets with a radius parameter of
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R = 0.4 are used. PU complicates the reconstruction by adding extra particles throughout
the event. To reduce the impact of PU, charged hadrons that originate from vertices other
than the PV are excluded from the clustering process [52]]. Within the tracker coverage
(In| < 2.5), the calorimetric energy deposits of hadrons are primarily in the HCAL, as only
a small portion of their energy is deposited in the ECAL. HCAL clusters without track
associations are interpreted as neutral hadrons, while those linked to tracks are assigned
as charged hadrons. To ensure accurate jet energy measurements, a multi-step calibration
is applied. This includes corrections on the jet energy scale and resolution binned in jet pr
and n for PU effects, detector response differences in data and simulation, and adjustments
based on momentum balance in di-jet or Z/y + jet events [58]. These calibrations help
improve both the resolution and accuracy of the reconstructed jets.

Hadronically Decaying T leptons

Hadronic decays of T leptons play a crucial role in many analyses at CMS. With a short
lifetime of about 2.9 - 1073 s [59], T leptons decay before reaching the detector. Due to
their mass of 1.78 GeV [59], they are the only leptons that can decay hadronically, with
approximately 65 % of all decays producing narrow, low-multiplicity jets (Ty) composed
of charged hadrons and neutral pions. These signatures are challenging to distinguish
from the abundant jets initiated by quarks and gluons. The hadrons-plus-strips (HPS)
algorithm [60] is used to reconstruct Ty, candidates from anti-kt clustered jets. It starts by
identifying charged hadrons associated with the PV (with pr > 0.5 GeV) and builds strips
from nearby photons and electrons to capture energy from neutral pion decays. Strips are
constructed within a dynamic An X A¢ window that scales with the pr of the constituents.
Valid 1y, candidates must have a total charge of +1 and fall within a signal cone of radius
Rgig = 3}?6\’ bounded between 0.05 and 0.1. From all possible decay mode hypotheses,
the one with the highest pr is selected The decay modes and corresponding branching
fractions B are given in Table

To suppress backgrounds from jets initiated by quarks and gluons and misidentified
electrons and muons, CMS employs the DeepTau algorithm—a convolutional NN trained
on both low-level detector features and high-level tau candidate variables [61]. DeepTau
outputs a probability p, for each candidate to be a true Ty, or to originate from an electron,
muon, or quark or gluon induced jet. These outputs are combined into discriminants:

D. = P,
pTh+p0¢

WPs of these discriminants are defined based on expected efficiencies or misidentification
rates. For example, a medium WP for Dj.; corresponds to a 70 % efficiency with ~1%
misidentification rate from jets initiated by quarks and gluons, evaluated with an H — Tt
event sample with pr(ty) € [30,70] GeV.

, a € {jet, e, u}. (3.5)

Missing Transverse Momentum

Since neutrinos do not interact with the detector material, they escape undetected and
leave no direct signal. However, their presence in an event can be inferred from an
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Table 3.1.: T lepton decay channels and corresponding Bs which are the same for T leptons
and antileptons.

Decay Mode B (%)

€VeVr 17.8
UV Ve 17.4
Leptonic 35.2
h*v. 11.5
h*mv, 25.9
h* ' m%v. 9.5
h*h*h v, 9.8
h*h*h v, 4.8
Other 3.3
Hadronic 64.8

imbalance in the visible momentum in the transverse plane. This is possible because the
initial protons and their constituents have negligible pr, so the total pr of all final-state
particles is expected to be zero as well. Any deviation from this balance indicates the
presence of undetected particles, such as neutrinos. The imbalance is quantified using the
ﬁ%‘iss. It is defined as the negative sum of pr of all reconstructed particles N:

N
P == Fri and pp®=[pr. (3.6)
i=1

The accuracy of the pf}liss measurement depends strongly on the quality of the reconstructed

particles entering the sum. In particular, additional soft particles from PU interactions
can degrade the resolution. To mitigate these effects, the PileUp Per Particle ID (PUPPI)
algorithm [53} 62] assigns a weight w; to each particle based on the likelihood of it to
originate from the PV. This weight can be used to compute a PU-suppressed version of

Smiss,
pr
N
2miss __ g
P == wiprs
i=1
miss

Using PUPPI weights improves the resolution of the p7"** measurement and leads to better
agreement with the true missing momentum, especially in high PU environments.

B Quark Induced Jets

The identification of jets induced by b quarks (b jets) exploits differences between jets
from b quarks and those from light quarks or gluons. These differences arise from the
decay behavior of b hadrons and their unique fragmentation and hadronization patterns.
Hadrons with b quarks have a mean lifetime of about ~107'% s [59] and therefore can travel
up to a few mm in the rest frame before decaying. This often creates a displaced secondary
vertex with additional tracks [63]. The high mass and hard fragmentation of b hadrons
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lead to decay products with higher pr relative to the jet axis. In about 20 % of cases, b
hadrons decay with a charged lepton in the final state, producing non-isolated leptons
inside the jet. The Deep]Jet algorithm [[64] is used to separate b jets from light quark or
gluon induced jets. It takes as input up to 25 charged and 25 neutral PF candidates per jet,
along with up to four secondary vertices as well as global jet and event properties.
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Charge Asymmetry Measurements

The analysis presented in this thesis aims to measure the inclusive production cross
section of a Higgs boson in association with a W boson (¢(WH)), the individual cross
sections o(W*H) and o(W~H), and the charge asymmetry A, defined in Equation [2.13]
This work provides the first-ever measurements of o(W*H), o(W~H), and A. Crucially,
A is sensitive to the light-quark Yukawa couplings, providing a novel probe of H-quark
interactions. While the Higgs boson is expected to decay into a pair of T leptons the W
boson is required to decay into an electron or a muon and corresponding neutrino. This
analysis was performed and published within the CMS Collaboration [65]] and includes the
dataset collected by the CMS experiment during the LHC Run 2 period, divided into four
run periods during the years 2016 to 2018, corresponding to a total integrated luminosity
of 138 tb™! [[6668]]. This chapter outlines the main steps of the analysis: the selection of
events targeting WH(7T) production, the estimation of background contributions from
other processes, the strategy used to extract the signal, and the results of the measurements.

4.1. Event Selection

As discussed in Section[3.2] a T lepton can decay into an electron, a muon or hadronically.
The possible final states for a TT pair are sketched in Figure [4.1] All of these decays involve
neutrinos, which cannot be detected with the CMS detector. Therefore, a significant
fraction of the T energy can not be measured. The same argument holds for the leptonic
W boson decays. In total, the final states of the signal process require three objects. Four
final states of the WH production are considered: eTyTh, WThTh, €U Th/eTh, and (T,
where the first object in this notation is the W boson decay product and the latter two
objects are associated with the H — Tt decay. Before the statistical inference of the signal
these final states are combined to an ¢ty (£ = e, W; light lepton) and an ¢1,, 7y, final state.
In the #¢1y final states, the light lepton leading in pr is considered to belong to the W
boson decay, which is correct in more than 75% of the cases according to on generator
level studies [[69]. This is expected as the light lepton from the Higgs boson decay chain
shares the energy with a second T lepton and two neutrinos. The light lepton from the W
boson shares the energy only with one more neutrino. In the ¢ty T}, final states the light
lepton is associated with the W boson decay. These final states have the highest impact on
the parameters of interest (POIs): A, c(WH), 0(W™H), and o(W*H). All other possible
final states are neglected.

By the HLT, events are selected based on an isolated, high-pt light lepton. For the ety T,
final state single electron triggers are used, while for the ppty and pt, 1, final states
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Figure 4.1.: Branching fractions of Tt decays. For the analysis only decays with at least
one Ty, are considered covering 87 % of the final states.

single muon triggers are used. In the epty,/pety final state, the light lepton with the higher
pr is considered as the triggering object, associated with the corresponding single light
lepton trigger. To ensure offline selections tighter than the trigger thresholds, minimum
pr values are applied. For electrons, the thresholds are 26 GeV (2016), 28 GeV (2017), and
33 GeV (2018). For muons, they are 23 GeV, 25 GeV, and 25 GeV, respectively. During
parts of 2016, some triggers also required |p| < 2.1 for the triggering electron and muon.
Unless restricted by trigger conditions, electrons (muons) must have pr > 15 (15) GeV and
In| < 2.5(2.4). For the Ty, candidates it holds pr > 20 GeV and |5| < 2.3. In order to obtain
resolved and isolated objects, electrons and muons must be separated by AR(e, i) > 0.3.
Any light lepton and T}, candidates must be separated by AR(¢, T,) > 0.5 after the selection.
In di-Ty, final states, the two T}, candidates must also satisfy AR( Ty, ) > 0.5. The selection
requirements for the objects in each final state are summarized in Table All objects
are required to have a distance of AR > 0.5 from any jet in the event. Events with b
jets are vetoed to suppress the background from tt production. Furthermore, events with
additional light leptons passing the requirements given in Table [4.1|are vetoed to suppress
backgrounds with two or three vector bosons. Charge requirements are applied to suppress
backgrounds and increase the purity with respect to the signal process. In the di-¢ final
states, the two light leptons must have the same charge, and the T, must have opposite
charge to result in the neutral charge for the Higgs boson decay. This reduces backgrounds
with prompt light leptons, like Drell-Yan, by three orders of magnitude in the ppty, and
by a factor of five in the epty/peTy, final state. Because they originate from the Higgs
boson decay the two Ty, candidates must have opposite charges in the di-ty, final states.
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Table 4.1.: Selection criteria for the objects of the final states of the analysis. The pr cuts
are given for the triggering light lepton for 2016, 2017 and 2018. In parentheses
the pr threshold for the non-triggering light lepton is given. D, corresponds to
the DeepTau WP against a € {jet, e, u} for the 1, candidate.

Final state Object pr (GeV) In| Dy / L
LT muon > 23,2525(15) <247 <0.15
Th > 20 < 2.3 Medium
elTh electron > 26,28,33(15) <257 <0.15
muon > 23,2525(15) <247 <0.15
Th > 20 < 2.3 Medium
eThTh electron > 26, 28,33 <25 <0.15
Th > 20 < 2.3 Medium
WTHTh muon > 23,25,25 <24" <0.15
Th > 20 < 2.3 Medium
.

2.1 for the triggering lepton for some trigger paths in 2016.

If more than one possible di-T pair is present after the requirements listed above, the Tty
candidates with the highest scores of DeepTau against jets are chosen.

4.2. Background and Signal Model

Although the event selection described in Section targets events from the signal
processes, background processes are selected as well. In order to estimate the cross section
of the signal process, the description of the background processes and its corresponding
uncertainties must be estimated as accurate as possible. The individual background
processes are introduced below. Based on their modeling, two background classes are
formed. The first class includes events in which a light lepton or a T}, does not originate
from a genuine particle of the targeted final state but instead arises from a misidentified
jet. These backgrounds are referred to as reducible backgrounds and mainly originate
from Drell-Yan, W+jets and tt production processes. Smaller contributions come from
events with two vector bosons with hadronic decays. As Higgs boson production via ggF
or VBF contributes only when a jet is misidentified as one of the required objects these
processes are considered as reducible backgrounds as well. All reducible backgrounds are
estimated using data, as explained in Section [4.2.1]

Irreducible backgrounds arise from processes that produce the same final state particles
as the signal and therefore cannot be suppressed by object identification. The dominant
process in this category is WZ production. Smaller contributions come from ZZ, VVV
production, and W/Z bosons produced in association with tt. These backgrounds are
estimated using simulation, as described in Section[4.2.2] The signal processes are described
via simulation as well. Both the WH(7tt) and WH(WW) processes are considered as signal.
Although this analysis targets WH(t1), WH(WW) is included in the signal model to be
able to combine this analysis with an anticipated, dedicated WH(WW) analysis.
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Private Work (CMS data/simulation) 138fb~1 (Run 2, 13 TeV) Private Work (CMS data/simulation) 138fb~! (Run 2, 13 TeV)
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Figure 4.2.: Fraction of background processes after the event selection in the ¢¢7}, final
state (left) and ¢Ty, Ty, final state (right) integrated over the Run 2 dataset. In
colors the corresponding estimation method is drawn.

In the following the physics of the background processes and their impact on the analysis
are introduced. The background processes included are

« Z boson production in association with jets (Drell-Yan),
« Top quark pair production (tt),

« W boson production in association with jets (W+jets),

Diboson (WZ, ZZ) production (VV),

Triboson (WWZ, WWW, ZZZ, ZZW) production (VVV),
« Higgs boson production in association with a Z boson (ZH),
« tt in association with a vector boson (ttV).

The relative contribution of each background process to the event selection integrated over
the Run 2 dataset and split by the £¢1y, and ¢1,, 7}, final states is shown in Figure In the
£¢1y final state the major background sources originate from tt and WZ processes, while
in the £y}, final state the major background process is Drell-Yan followed by W+jets and
WZ.

Top quark pair production

At /s = 13 TeV tt production has an inclusive cross section of about 830 pb . In Figure
the leading order Feynman diagrams of the tt process are shown. Each top quark
decays almost exclusively via t—bW, while other decay modes are suppressed by the
Cabibbo-Kobayashi-Maskawa matrix encoding the quark-flavor mixing. For this analysis,
mainly the leptonic decays of the W boson are relevant. With two leptons from the W
bosons the third object in the event selection must be faked by a jet. With 37 %, this process
has the highest contribution to the total background in the #¢7}, final state. In the £yt
final state, the contribution is 9.7 %. To pass the selection in both final states, the charge
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Figure 4.3.: Leading-order Feynman diagrams for tt production in pp collisions. The

dominant mechanism is gluon fusion (left and middle); quark—antiquark
annihilation (right) also contributes.
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Figure 4.4.: In Drell-Yan, the Z boson originates predominantly from qq annihilation and
decays into fermion (f) pairs. In this analysis, only the leptonic decays of the Z

boson are relevant. Extra jets in the event are generated by initial- or final-state
quark/gluon radiation.

requirements must be satisfied. In tt events, the prompt light leptons and T}, from the
two W bosons typically mimic the Higgs boson decay products, while the third object
is a misidentified jet (often b jet, but light-flavor jets also contribute). Alternatively, the
selection can be met via charge misidentification.

Drell-Yan production

At /s = 13TeV Drell-Yan production has an inclusive cross section of about 2000 pb.
Representative leading order diagrams are shown in Figure This process has the
highest contribution in the #T1,1, final state with 44 %. Here, Drell-Yan enters the event
selection if the Z boson decays into #T}, and the T}, with the same charge as the light
lepton is faked by a jet. This process is strongly suppressed in the £¢7y, final state due to
the same charge requirement on the two light leptons. Via semi-leptonic Tt decays and
a jet misidentified as a light lepton this process has a contribution of 8.8 % to the total
background in this final state.

VV production

Although the VV cross sections are only at the few-pb level, VV remains a significant
background because its event topology closely matches the signal. This is especially true
for WZ(tt), which yields the same final state signature. Discrimination relies primarily on
the mass difference, which induces shifts in the T lepton pair kinematics. Its contribution
to the total background is 33.8 % in the £¢1y and 20.3 % in the £, Ty final states. Feynamn
diagrams of VV production are displayed in Figure
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4. Towards the WH Cross Section and Charge Asymmetry Measurements

q M ) | j\\z V

qf V VI I qr' VI
Figure 4.5.: Representative leading-order Feynman diagrams for VV production. Left: s-
channel topology; right: t-channel topology (via quark exchange). This process

is irreducible as it shares the same objects as the signal process in the final
states. This holds especially for WZ, which has a very similar topology as WH.

Figure 4.6.: Representative Feynman diagrams for W+jets production. The W boson is
produced predominantly via qq’ annihilation. Like in Drell-Yan, only the
leptonic decays of the W boson are relevant for this analysis. One or more
additional jets arise from initial- or final-state QCD radiation.

WH+jets production

W+jets production has similar topology and kinematic properties compared to Drell-Yan.
Representative leading-order Feynman diagrams for W+jet production are shown in Figure
Only the W— £V decay is relevant for this analysis. Because such events contain only
a single prompt lepton, the selection suppresses W+jets production. Contributions occur
when two jets are misidentified as light lepton or Ty,

4.2.1. Estimation of Reducible Backgrounds

Events selected in the analysis region defined in section [4.1l may include jets that are
misidentified as light lepton or Tty,. These fake objects are primarily due to jets in Drell-Yan,
tt and W+jet production processes being wrongly identified as Ty, (jet — Ty), electron
(jet — e), or muon (jet — ). To estimate the contribution from these processes, a
data-driven method known as the Fr method is used, as described in [71,|72]. The basic
principle of the method is given in Figure here as an example for the estimation of
the contribution of jet — Ty. In this example, the phase space is divided into four regions
that are orthogonal to each another. On the y-axis a cut on the DeepTau against jets
WP is introduced that separates the signal and signal-like regions (SR, SR-like) from the
application and application-like regions (AR and AR-like). On the x-axis a process-specific
selection is splitting the phase space into the SR, AR and SR-like, AR-like, where the
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Figure 4.7.: Illustration of the basic principle of the Fr method. In this example the
contribution of jet— Ty, is estimated. Adapted from [[73].

combined phase space of SR-like and AR-like is called determination region (DR). The
SR and SR-like are enriched in real T, candidates, the AR and AR-like are enriched in
jet— Ty, candidates, and the DR enhances the background process under study. The Fr
method estimates the yield and shape of reducible backgrounds by extrapolating from the
AR into the SR. Each lepton flavor i € {Ty, e, 1} has its own corresponding DR; and AR;.
The exact choice of selection for the DR; depends on the object and is given in detail in
Table The AR and AR-like are enriched in fake leptons by inverting I or loosening
identification requirements compared to the SR:

« For jet — Ty, the DeepTau discriminant is inverted to fail the medium WP, while
still passing the VVVLoose WP.

« For jet — ¢, looser L], 0.15 < I¢ < 0.5, or ID is required.

These modified criteria are anticipated to keep the kinematic properties of the AR; similar
to the SR but enhance the contribution of fake leptons. A transfer factor, or fake factor F P
is derived to connect the event counts in the AR; to the expected contributions in the SR.
The F}, are measured in dedicated Drell-Yan control regions DR;, each orthogonal to the
SR and designed to enrich events with fakeable objects. The Fy, is defined as:

Fi= M (4.1)

i
NAR—like
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4. Towards the WH Cross Section and Charge Asymmetry Measurements

Table 4.2.: Summary of selection criteria used to define the DR; for jet — Ty, 1, e.

Mis-ID Channel Selection Event Selection Cuts

jet — e LpL+e — W pr > 10 GeV, |n| < 2.4, L < 0.15, medium ID
— Leading p: pr > 23,25 GeV (2016, 2017/2018)
— pp-pair: AR > 0.3, opposite charge
—e: pr > 10 GeV, || < 2.5, L < 0.5, loose ID
- AR(e, ) > 0.3
— Event must pass single muon trigger
- b jet veto
- mr(e, p") < 40 GeV
jet = ee+L —e: pr > 10 GeV, || < 2.5, L < 0.15, ID WP90
— Leading e: pr > 26, 28,33 GeV (2016, 2017, 2018)
- W pr > 10 GeV, || < 2.4, L < 0.5, loose ID
— ee-pair: AR > 0.3, opposite charge
- AR(u,e) > 0.3
- Event must pass single electron trigger

- b jet veto
- mr(L, ﬁ%liss) < 40 GeV
jet — Ty UL+T, - wpr > 10 GeV, |g| < 2.4, L < 0.15, medium ID
— Leading p: pr > 23,25 GeV (2016, 2017/2018)
— pp-pair: AR > 0.3, opposite charge
— Ty pr > 20 GeV, || < 2.3, VVVLoose WP
- AR(u, t,) > 0.5

— Event must pass single muon trigger

- b jet veto
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4.2. Background and Signal Model

To reduce the contamination from real leptons in the DR;, the contributions from genuine
leptons, mainly from VV, are estimated using simulation and subtracted before calculating
the Fli. In the case of jet— £, an additional cut on the transverse mass, mr < 40 GeV, is
applied to suppress leptons from WZ decays and increase the purity of Drell-Yan and tt.
Distributions of mt in the pp+e and ee+ selections are given in Figure [4.8| explanatory
for the 2018 run period.
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Figure 4.9.: Distributions of Fg“ binned in T, pr and using the medium WP on all DeepTau
discriminants for 2016preVFP (top left), 2016postVFP (top right), 2017 (bottom
left) and 2018 (bottom right) data.

The F} depend on the following object properties:

« For 1p: dependence on pr, decay mode, and DeepTau discriminator scores, D. and
D
u.

« For e/u: dependence on pr.

The distributions of th are given in Figure [4.9/and of F{ in Figure Once the F} are
known, the expected number of background events in the SR can be calculated. In the
{7, Ty final states, the Ty, which has the same charge as the light lepton, is always faked
by a jet in the case of the reducible backgrounds. Therefore the contribution of jet fakes
is estimated by inverting the DeepTau requirement for the same-charge Ty, to define the
AR, . Other contributions, e.g., from a faked opposite-charge Ty, are negligible.
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Figure 4.10.: Distributions of Ff binned in ¢-pr for 2016preVFP (top left), 2016postVFP (top
right), 2017 (bottom left) and 2018 (bottom right) data.

In the ¢t 74 final states, the yield and kinematic distributions of events with jet— T,
are derived from

Nog = Nawr,, - Fg" (4.2)

In the ¢¢Ty, final states the Ty, the non-triggering ¢, or both are considered as objects that
can be faked by a jet. Other contributions are negligible. Special care is taken to avoid
double counting where both objects pass their AR; selection, denoted with AR, . Double
counting may occure since this case is estimated by Fg b and F{. This overlap is subtracted
from the yield by

Nsg = Z NarFi = Naw,.., FEFe.

i=Tp,t

A summary sketch of the Fr method adapted to this analysis is given in Figure This
method allows for a precise estimate of fake backgrounds, using data as much as possible,
while simulations are used only for minor corrections and validation.

(4.3)
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4. Towards the WH Cross Section and Charge Asymmetry Measurements

Figure 4.11.: Application of the Fr method in this thesis. FI‘; for jet— T, W, e are calculated
in the corresponding DR;. Event by event the F}, are applied in the AR; to get
the total contribution of jet fakes. Taken from [65].

4.2.2. Estimation of Processes by Simulation

To estimate the irreducible background and signal processes, Monte Carlo simulation is
used. It complements the Fr method by covering all processes that are not estimated from
data. Simulated samples are generated using state-of-the-art tools such as

MADGRrAPH5_AMC@NLO [74], POWHEG [75], and PYTHIA 8.2 [76]. The simulation
begins with the pp collision. At LHC energies, not the protons as a whole but the individual
partons of the protons interact with each other. Since the momentum fractions of the
colliding partons are unknown, parton distribution functions (PDFs) are used to estimate
the momenta. The NNPDF3.1 [77] set is applied in all simulations throughout this analysis.

The first step in the simulation is the hard scattering process. This defines the main
partonic interaction, e.g., a Z boson production or a semileptonic top quark decay. After
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4.2. Background and Signal Model

Table 4.3.: Monte Carlo event generators used for signal and background simulation.

Process Event Generator
gglz PowHEG
ttvV PowHEG

VvV MADGRAPH5 AMC@NLO
WZ MADGRAPH5 AMC@NLO
77 PowHEG
VH PowHEG

this, parton showering is simulated using PYTHIA 8.2, modeling additional radiation and
softer interactions. As the energy scale drops, hadronization occurs, where partons form
hadrons. Underlying event (UE) activity, caused by softer parton interactions, is also
simulated using the CP5 tune [78]. Additionally, PU is added to reflect the observed PU
profile in data.

Next, the interaction of particles with the CMS detector is simulated using GEANT4
[79]. This includes detailed modeling of the detector geometry and signal response. The
simulated detector signals are then reconstructed using the same software as for real data.

Different generators are used depending on the process, which are all simulated at
next-to-leading order of perturbative QCD. Table [4.3| summarizes the generators.

Samples involving a Higgs boson are normalized to the cross sections recommended in
[43]. An Higgs boson mass of 125 GeV is used in the event generation. For cross section
and branching ratio calculations, the value 125.38 GeV [80]] is used. The other simulated
samples are normalized to the cross sections provided by the cross section database [81].

4.2.3. Corrections to Simulated Events

In order to match simulation to data as closely as possible, several correction factors are
applied. These corrections account for known differences in trigger efficiency, object
identification, I, energy scales, and b-tagging performance.

Pileup Reweighting

The number of PU interactions in data depends on the instantaneous luminosity provided
by the LHC. At the time of event generation, this number is typically unknown. To account
for it, additional interactions are added randomly using a Poisson distribution, based on the
expected number of PU events for the run period. However, the expected and actual pileup
distributions often differ. A correction is therefore applied. This correction is derived from
the ratio of the measured PU distribution in data to that used in the simulation.
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4. Towards the WH Cross Section and Charge Asymmetry Measurements

Table 4.4.: Requirements applied on the tag muon.

Property Criteria
Trigger  Single muon trigger
pr(p) > 25GeV
ID(w) medium
Irel(u) <0.15

Lepton Reconstruction Efficiencies

In case of electron and muon triggers, identification and I, efficiencies are corrected using
scale factors (SFs):

SF = Data, (4.4)

€MC

These are derived using the Tag-and-Probe method [82] explained below in Z— pp/ee
events and applied as a function of pr and 5. In most cases, they amount to only a few
percent. The efficiencies are calculated step by step, with each new measurement applying
the corrections from the previous one, starting with the identification:

€(ID, L], trig) = e(trig | L, ID) - €(Ie] | ID) - €(ID). (4.5)

The efficiency for identifying Ty, is corrected by SFs as well via the Tag-and-Probe method.
The SFs are measured in an inclusive pty selection, using genuine Z— p1y events as
a signal and the visible invariant mass of the T lepton pair as an observable. They are
provided by CMS and are binned in decay mode or pr(Ty), depending on the T final state,
and also depend on D, [60]].

The Tag-and-Probe Method

The Tag-and-Probe method exploits the clean Z — pp and Z — ee processes, which
can be reconstructed with high precision and efficiency. In the following, the efficiency
measurement for muon identification using the medium WP is described as an example.

Aloose preselection is applied, requiring two muons without any isolation, identification,
or trigger criteria. As a baseline, both muon must satisfy pr > 7 GeV and be separated
by AR > 0.5. To improve the modelling of the Z boson resonance, events containing a
reconstructed photon with pr > 10 GeV within AR = 0.4 of either muon are vetoed to
suppress final state radiation.

After this preselection, Tag-and-Probe pairs are formed. The tag muon is required to
pass any tight selection criteria (see Table[4.4), ensuring a high probability that it originates
from a Z boson decay. The other muon in the event, the probe, is assumed to be genuine
as well but is not required to pass tight selection criteria. This allows testing whether
the identification algorithm correctly recognizes the probe muon. If both muons in an
event satisfy the tag criteria, each can be used as a tag or probe, effectively doubling
the number of Tag-and-Probe pairs. Pairs are sorted into two regions: pass, if the probe
muon passes the medium identification WP, and fail, if it does not. The efficiency of
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the identification algorithm is then extracted from the invariant di-p mass distributions
in both regions. These are fitted simultaneously with a combined model. The Z boson
signal peak is described by a Voigtian function (a convolution of a Gaussian resolution
and a Breit-Wigner line shape), while the background is parametrized by a product of
an exponential function and an error function. The efficiency in each phase space bin i
(typically defined in pr and n of the probe muon) is obtained as

€ = _ Mpasst , (4.6)

Npass,i + Nfail,i

where Npas5; and N, ; are the extracted signal yields in the pass and fail regions, respectively.
These yields are determined from the normalization of the fitted Voigtian functions. The
resulting efficiencies capture both kinematic and detector-dependent effects in the muon
identification. An example fit to extract the medium identification efficiency for data and
simulation is given in Figure The SF distribution for the 2018 run period is given in

Figure

Lepton Energy Scale

The energy scale of genuine Ty, candidates is corrected per decay mode and measured in an
inclusive pty control region. The visible mass of the pty, system is used as the observable.
A maximum likelihood fit is applied to the data and simulated distributions. The T}, energy
scale in the simulation is varied, and the negative log-likelihood is computed. The scale
correction is taken from the minimum of this curve. It is then applied as a rescaling of the
Ty, four-vector in simulation. The corrected Ty, four-vectors are also used to update f)’%ﬁss
and all related variables. The corrections are provided by the CMS Collaboration [60, 61].
Similarly, corrections are applied for electron misidentified as t,. These depend on the
decay mode and 5 and are only applied for T decays with one charged hadron with one or
no neutral pion.

The description of the electron energy correction can be found in Section [3.2] whereas
the muon energy correction can be neglected for this analysis.

Jet Energy Scale

Jet energies are corrected to match the expected detector response at the stable hadron
level. These corrections are derived in bins of jet-pr and 7, as detailed in [83]], and typically
range between 10 — 15 %. Additional residual corrections are applied to simulated events
to account for differences between data and simulation. These corrections are generally
below 1 % for high-pr jets in the central detector region and up to a few percent in the
forward region. All corrections are propagated to ﬁ’Tniss and any derived quantities, such

as mr or the estimated mass of the TT system.

B Jet Identification Efficiency

A precise modeling of the b jet identification efficiency in simulation is important for
this analysis, as a b jet veto is applied to suppress the background from the tt production.
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Figure 4.12.: Example distributions of Z — pp events for the pass (left) and fail (right)
regions in the Tag-and-Probe measurement for data (top) and simulation
(bottom). The probe muon is required to have pt € [28,30] and || € [2.1,2.4].
The black markers refer to data and simulation yields. The dashed line
represents the background model, and the solid line shows the fitted signal-
plus-background model.
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Figure 4.13.: Distribution of SFs for the muon medium ID binned in pt and || for the 2018
run period. No SF is larger than 3 % in this case, and the deviation between
data and simulation is largest at high |]|.

However, the b jet efficiency in simulation does not perfectly match that in data. The
CMS Collaboration provides the necessary corrections, derived using the Tag-and-Probe
method in a tt-enriched phase space with two opposite-sign light leptons and at least two
jets [84]. To reduce contamination from Drell-Yan production, events with a di-¢ mass
near the Z mass are excluded. One jet passing the medium DeepJet WP is selected as the
tag. Similar methods are used to measure corrections for misidentified light-flavor jets in
Drell-Yan events. The corrections are functions of the discriminant value D, jet-pr, and 7.
An event weight is computed by multiplying the SFs for all jets in the event:

Njets
WS\I:ent = 1_[ SF(Di: PT.is Ui)- (4.7)

i=1

Applying this weight alters the event yield in the analysis selection. To correct for this,
a reweighting ratio is calculated using the total weights before and after applying the scale
factors and before any b jet selection:

Z N, events Wl_:)efore

_ i=1 i
N ZNevents after (48)

=1 Wi
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These ratios are computed separately for each background process and analysis channel.
The final per-event weight used in the analysis is

Wevent =T * Ws\r;ent- (4.9)

4.2.4. Control Distributions of Modeling

Control distributions are used to check the consistency between data and estimation. They
ensure that all estimated processes accurately represent the conditions observed by the
CMS experiment. Additionally, these distributions help validate the reconstruction of
physics objects in both data and the corresponding model. They can also reveal potential
systematic effects in key observables. Relevant corrections for such effects, discussed in the
previous section, are applied. In Figure[4.14] distributions of the (leading) light lepton pr are
shown exemplary using data integrated over all run periods of Run 2. Control distributions
of more variables differential in single run periods can be found in the Appendix[A.1] A
quantitative evaluation of the agreement between data and estimation is performed via
GoF tests, described in section |4.3.2
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Figure 4.14.: Control distributions of the (leading) light lepton pr in each final state
integrated over all run periods with events passing the selection criteria
described above. The bottom panel shows the ratio between data and
estimation and the gray band shows the statistical uncertainty of the estimated
processes.

41



4. Towards the WH Cross Section and Charge Asymmetry Measurements

4.3. Measurement Strategy

The measurements of o(WH), c(W™H), c(W*H), and A in the WH(TT) process involve
several steps. First, selected events are categorized to enhance either signal or background
contributions in distinct regions. Next, both observed events and those used for background
and signal estimation are distributed into bins of a variable that separates signal from
background. The aim is to maximize the signal-over-background ratio in bins with high
signal efficiency. Finally, a statistical model is constructed, incorporating all relevant
statistical and systematic uncertainties. Based on this model, the statistical inference of
the signal is performed. This allows the determination of cross sections or interpretations
in terms of signal strengths for the W*H production process and A.

4.3.1. Event Classification via Neural Networks

To separate signal from background events, NNs are used. These classify events based on
a variety of input variables, such as the kinematic properties of Ty, electron and muon. It
assigns each event to one of the predefined process categories. The architecture is based
on a fully connected feed-forward design that includes an input layer featuring 22 event
variables, two hidden layers with 128 nodes, and an output layer with one node for each
process category used for categorizing events in the analysis. This categorization allows
for a high purity of specific processes, either signal or background. Higher efficiency
and purity in these categories lead to increased sensitivity of the measurement. All input
variables are standardized to have zero mean and unit variance. The nodes in an NN
follow the same structure. They receive inputs xP*¥ from the previous layer to compute a
weighted sum:

N
i (XPeY) = Z wi -2 4 b, (4.10)
i

Here, each node j has a trainable weight vector w, matching the number of inputs from
the previous layer N, and a trainable bias term b. After calculating this sum, an activation
function is applied to introduce non-linearity. For the hidden layers, the hyperbolic tangent
function is used:

x;(xP'Y) = tanh(X;(xP™")). (4.11)

Compared to other non-linear activation functions, the hyperbolic tangent is a smooth
function with a well-defined first and second derivative at all points, which is important
for the calculation of Taylor coefficients explained below. In the output layer, a softmax
function is applied, with j running over all output nodes i:

Xi

(4

= Zj o

Yi (4.12)

This ensures the NN output scores y; being between zero and one, which allows for an
interpretation that an event belongs to a process category with a certain probability. An
event is then assigned to the category with the highest y;. A sketch of the NN architecture
is given in Figure The training is based on minimizing the categorical cross-entropy
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Inpgt Input Hidden layers Output categories Output
variables layer vector
Preprocessing

PT(Th)=71 GeV —— > Signal —> 0.55

njet =3 ——

Fe — > 0.14

MET = 58 GeV ——>»
PT(W)=40 GeV —— > WZ —> 0.31

Figure 4.15.: Sketch of the NN classification: The input layer receives a vector of 22
variables describing the kinematic properties of various objects of a single
event. After passing through two hidden layers, the NN output vector outputs
a score for each output category indicating how likely an event belongs to the
given category. Two of these categories correspond to the main background
processes and one to the signal processes.

loss function £, which compares the predicted and true class labels:

N C
L=- Z Z yfr"lfe,i : log(y;fzd,i)- (4.13)
n i

After processing a batch, the NN weights are updated. The first sum runs over all N events
(n)

in a given batch. The second sum compares the true label y, /. .

(n) (n)
ypred,i true,i

zero for all others. The objective of the NN training is to minimize £. The minimization is
performed using backpropagation and exploiting the Adam optimization algorithm [85],
with an initial learning rate of 7 = 107>. The optimization rule for the w; has the form

oL

an' ’

with the predicted value

for each of the C output categories where y is one for the correct category and

Whew,i = Wi — 1 (4.14)
As the NN processes the training data, it learns the features that characterize the different
physics processes. To avoid the NN from learning patterns that are specific to the training
sample and not representative of the general process known as overtraining, Dropout
[86] and L2 regularization [87]] algorithms are applied. The Dropout algorithm randomly
disables a fraction of nodes during training. This helps prevent the NN from relying too
heavily on specific nodes, a common symptom of overtraining. In this analysis, a dropout
rate of 30 % is applied, meaning that 30 % of the nodes are randomly turned off in each
training iteration. L2 regularization adds a penalty term to the loss for large weight values
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4. Towards the WH Cross Section and Charge Asymmetry Measurements

Table 4.5.: List of hyperparameters used to train the NNs.

Hyperparameter value
Dropout 0.3
Learning rate 0.0001
L2 regularization 0.001
Batch size 256
Early stopping 50

Early stopping threshold 0.1

to reduce the dependence of the NN on single trainable parameters. The chosen set of
hyperparameters is presented in Table The training data is split into two halves. Each
half is used to train a NN model, which is then applied to the other half to exploit the full
available statistics. Within each half, a further split into training (75 %) and validation
(25 %) subsets ensures proper control of the learning process. After every training step,
L is evaluated on the independent validation dataset with fixed training weights. The
training is stopped once the performance on the validation data stops improving with the
early stopping threshold of 0.1 within 50 iterations, known as epochs. The evolution of £
over epochs is shown for the pty Ty, final state in Figure The training and validation
loss decrease monotonically, while the validation loss flattens and eventually turns upward,
indicating the onset of overfitting. With a patience of 50 epochs, early stopping triggers at
epoch 176. The NN model is restored to the checkpoint at the validation-loss minimum
(red dashed line) for optimal performance on unseen events.

A separate NN is trained for each final state to account for the distinct event topologies
and background compositions. In contrast, the differences between the four data-taking
periods are relatively small. Moreover, the available dataset is too limited to train a separate
NN for each data-taking period. Therefore, a single NN is used across all eras. To allow
the NN to adapt to era-specific characteristics, the data-taking years are encoded as four
Boolean input nodes. Only one of these nodes is activated per event, corresponding to the
respective era.

Grouping Processes into Neural Network Output Classes

The NN output nodes are designed to represent distinct physics processes. The goal of
the multiclass classification is not only to separate signal from background but also to
isolate the main background processes into dedicated control regions. This categorization
improves the precision of the measurement, as categories with high purity allow for
better constraints on systematic uncertainties related to the major background processes
during the statistical inference. For example, if the cross section of WZ production is
mis-estimated, this effect will be visible in the corresponding category. This enables the
fit to correct such deviations and constrain the systematic uncertainty related to the WZ
cross section.
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Figure 4.16.: L of the training and validation sample versus epoch for the puty, Ty final state.
The red dashed line marks the epoch of the minimum validation loss. The NN
configuration of this epoch is used for the statistical inference of the signal.

Three categories are chosen, reflecting the phase space for signal and the two major
background sources:

« WH: The signal class with WH(tTt) and WH(WW) events.

« Fp: This category is dominated by events with jet — T, |, e mainly due to Drell-
Yan, W+jets and tt processes and modeled by the Fr method. Also, other minor
backgrounds like ttV, ggZZ, ggZH, ZH, VVV are included in this category.

« WZ: Events from WZ and ZZ, where WZ dominates the category.

As no dedicated sample for jet — T, W, e, exists, events of each AR; are used and
weighted by the corresponding event-dependent Fj, to reflect their contribution to the yield.
Figure shows the confusion matrix of the pty Ty final state, which is used to quantify
per-class efficiencies. The signal class is identified with the highest efficiency (67 % on
the diagonal), while Fr and WZ are more challenging (=45 % and =50 %, respectively). The
similarity in topology between the signal and WZ processes is evident in the cross-class
assignments: ~21% of signal events are predicted as WZ, and ~25% vice versa. The reduced
efficiency of processes of the WZ class further reflects its topological similarity to processes
of the Fr class, which increases confusion between the two classes. The input variables
and their power to discriminate between the different processes are discussed in the next
paragraphs.

4.3.2. Input Variables of the NN and their Validation

For event classification, the NN is provided with a set of input features for each event.
Variables related to the final state objects are expected to carry discriminating power, as
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True class

Signal Fe wz

Predicted class

Figure 4.17.: Row-normalized confusion matrix of the NN; diagonal entries indicate
per-class efficiencies, and off-diagonal entries quantify cross-class
misidentification efficiencies.

they are direct decay products of the signal process. But also higher-level variables like
pf;ﬁss or the scalar sum of pr of the final state objects are selected. Additionally, jet-related
variables are included in the input vector. A summary of the variable selection is given in
Table [4.6l

The choice of input variables is based on the Taylor coefficient analysis (TCA) [88]. Via
this method the contribution of each input feature to the NN classification is evaluated.
Starting from 30 input feature candidates, eight features were removed due to their
negligible impact. In the TCA applied to this analysis the NN output function of the
signal class, ywp(Z), is expanded into a Taylor series with respect to the NN input vector
Z up to second order. For an event a with input feature values a;, the expansion reads

wn(®) = f(@)+ Y ez =) + 5 25t 1= )t = )

The first-order coefficients t,, measure the sensitivity of the NN output to changes in single
variables z;. The second-order coefficients ¢, quantify the impact of linear correlations
between variable pairs. The mean absolute Taylor coefficient for feature z; is defined as

() = P ‘v;j |ti(a))]| |

j=1Wj

with event weights w; and total number of events N. Using (t;) to rank the input variables,
it is possible to include both marginal and correlation effects. Figure shows the most
important features to classify the signal process for all final states. Across all final states,

P p‘TniSS, and m(7tT) have the highest sensitivity to classify the signal processes. The

variable p'*" is expected to be close to zero for the signal processes. This results from

summing the pr of all final-state particles from the primary interaction, including the
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Table 4.6.: Selection and short description of variables used to train the NNss.

Label Description

pt_1 pr of the (leading) ¢

pt_2 pr of the sub-leading ¢ in ¢£¢T}, or leading Ty, in £T, T,
pt_3 pr of the (sub-leading) Ty,

m_vis Visible mass of the TT-system

pt_vis Visible pr of the TT-system

jpt_1 pr of the leading non-b-tagged jet

jpt_2 pr of the sub-leading non-b-tagged jet

njets Number of non-b-tagged jets

eta_1 n of the (leading) ¢

eta_2 n of the sub-leading ¢ in ¢¢Ty, or leading Ty, in fThTH
eta_3 n of the (sub-leading) Ty

deltaR_13 AR of the leading ¢ and Ty, in £¢Ty or
the ¢ and sub-leading Ty, in fTT,

deltaR_12 AR of the leading and sub-leading ¢ in £¢1y, or
the ¢ and leading Ty, in T, T

deltaR_23 AR of the sub-leading ¢ and T}, in ££T1 or
the leading and sub-leading Ty, in £T, T,

Lt Scalar sum of the pr of the final state objects

met Missing transverse momentum prTniss

m_tt Reconstructed mass of the TT-system m(TT)

mt_1 mr of the (leading) ¢ and f)f}liss

mt_2 mr of the sub-leading ¢ in £¢ty, or leading Ty, in £T,7T}, and ﬁf}ﬁss
mt_3 mr of the (sub-leading) Ty, and pIss

pt_W Reconstructed pr of the W boson

pt_123met pr of the sum of 4-vectors of the final state objects
and ps: p*
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neutrinos from the W and Tt decays. As a consequence, momentum conservation in
the transverse plane is satisfied, yielding values near zero for well-reconstructed signal
events. The reconstructed mass of the Tt system, m(1T), exhibits a pronounced peak
at approximately 125 GeV, consistent with the Higgs boson mass. This feature provides
strong separation power against the dominant backgrounds, like WZ and jet — T, W, e,
both of which peak at significantly lower values. Furthermore, the WZ and WH processes
typically yield larger p7 miss than the jet— Ty, e background. This difference is effectwely
exploited by the NN to enhance discrimination between these processes. In Figure
distributions of those variables are shown for the pwty Ty, final state.

The NN input variables are validated using GoF tests. These tests quantify how well
the background model describes the data. Both statistical and systematic uncertainties
are included. The main method is the saturated model test [89]]. It is a likelihood-based

extension of the )(2 test,
2
2 N0 (di— fi)
= Z — (4.15)
i i

where d; is the observed value for bin i, o; its uncertainty, and f; the model prediction.
In a case with only statistical uncertainties, the likelihood is

1 di — f)?
L=]]—-exp [—%] . (4.16)
. 2 20¢
iy /27w'i i
For the saturated model it holds f; = d;, giving
1
Laturated = rl . (4.17)

i 27rcrl.2

With equations and the likelihood ratio can be calculated via

_ (di - f )?
A= -Esaturated n [ ] ’ (4.18)

i

leading to the test statistic
Gobs = —2 In A (4.19)

For the simple case above, go,s = y2. This equality does not hold for likelihoods that
include systematic uncertainties like in this analysis.

The saturated model always maximizes the likelihood. Thus, A < 1and gops > 0. Smaller
qobs means better agreement between model and data. The test is not sensitive to the sign
or ordering of deviations and therefore cannot easily detect correlated trends in the data.
Therefore, if necessary, the Kolmogorov-Smirnov [90, 91|] and Anderson-Darling [92] tests
are also performed.

The p-value is computed with Monte Carlo toys based on the uncertainty model. For
each variable and variable pair in each final state and run period, 1000 pseudo-datasets are
generated. As the NN is also sensitive to correlations between variables, both 1D and 2D
GoOF tests are performed in order to detect correlated clusters of mis-modeling. For the
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input variable set in Table in total 440 1D and 4620 2D tests of this kind have been
performed. All nuisance parameters have been varied according to their uncertainties.
The p-value is
_ Ntoys(qu 2 qobs)
Ntoys

, (4.20)

while values near zero indicate strong disagreement and variables above a predefined
value of p = 5% pass the test. For the 1D tests, 10 equipopulated bins are used. For
the 2D tests neighboring bins are merged to obtain 5 X 5 bins for each variable pair. In
case a bin contains less than 10 expected events, neighboring bins are merged. In Figure
the distribution of the leading Ty, pr in the pty Ty final state in the 2018 run period
is shown together with its toy distribution and the saturated GoF test result. Variables
with low p-values in GoF tests are scrutinized for systematic mis-modeling and compared
with their Taylor coefficient ranking, with priority given to failed GoF tests among the
highest-ranked variables. Systematic mis-modeling is diagnosed by a persistent trend in
the data/estimation ratio and by the recurrence of similar deviations across related final
states and across different run periods; for variables meeting these criteria and showing
high sensitivity to the NN output, dedicated modeling uncertainties are assigned.

The outcomes of the 1D GoF tests are presented in Figures - while the
results of the 2D GoF tests are shown in Figures A consolidated overview of
all test results is provided in Figure Out of the 440 individual 1D tests performed,
approximately 98 % meet the defined GoF criteria. For the 4620 2D tests, about 96 % pass
the test, which demonstrates the good agreement between data and model.

During the GoF test evaluation, the uncertainty model of the Fr method was refined by
introducing two additional uncertainty components. These were specifically designed to
address observed mis-modeling in pITniSS and the (leading) lepton pr, which have particularly
large influence on the NN performance. Their calculation is described in details in section
Post-fit distributions of those variables in the w1y Ty, final state for the 2018 run period
can be found in Figure After these adjustments, no further significant mis-modeling
was identified. The distribution of GoF test results in the pty, T, final state in the 2018 run
period is shown in Figure In this case, no variable is failing the GoF test. Variables
with failed GoF tests were studied, and no further systematic mis-modeling or pathological
behavior was found. Variables that failed the test were assessed to fail due to statistical
fluctuations in single bins.
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Figure 4.18.: TCA ranking of the NN input features to discriminate signal events from
background for euty, (upper left), pet, (upper right), puty (middle left),

WwtL Ty (middle right), and ety,Ty, (bottom) final states.
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Figure 4.19.: Normalized distributions of the signal and the two major backgrounds in
the uty, Ty, final state. The events are distributed in the three most sensitive
variables for the NN to classify the signal correctly.
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Figure 4.20.: Pre-fit distribution (left) of the leading T}, pr in the ptyTy final state in the
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2018 run period. In gray the combined statistical and systematic uncertainties
are shown. On the right, the distribution of the saturated GOF test statistic g
is shown for 1000 toy datasets with varied samples of the statistical model.
The observed value, gops, is given with a p-value of 0.974.
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Figure 4.21.: Aggregated GoF test results for all run periods and final states. On the left
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for the 440 1D tests and on the right for the 4620 2D tests. In red the tests

below p = 5% are shown. The error bars correspond to the Poisson-error in
each bin.
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Figure 4.22.: Post-fit distributions of pr() (left) and p%‘iss (right) in the ptyTy final state
in the 2018 run period after introducing dedicated systematic uncertainties
affecting the shape of the distributions.
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variable fails the saturated GoF test in this final state and run period.
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4.4, Statistical Inference and Results

4.4.1. Statistical Inference

After the event classification, three NN output categories are obtained enriched in certain
processes: two background control categories, Fr and WZ, and one signal category, WH.
Each event is assigned to the category in which it obtains the highest NN score y;. This
score also serves as the final discriminant for signal extraction. For three categories, the
minimal possible score is 1/3 and the maximum is 1.0.

In addition, the y; distributions are separated according to the charge of the light lepton
associated with the W boson. This allows sensitivity to c(W*H), o(W™H), and A. In
summary, six categories per final state and run period are included in the fit. For the
statistical inference of the signal, the three di-¢ final states are combined into ¢¢T}, and
the two di-ty, final states into #tyT,. This ensures enough events in each bin of the
distributions. In total, six categories in two final states and four run periods, result in 48
distributions, entering the fit. If a bin contains fewer than ten expected events, it is merged
with an adjacent bin to ensure statistical stability. Merging starts from the bin with the
highest y; values and proceeds toward lower values. High-score bins correspond to events
with a high probability of belonging to the target process of the category. In background
categories, these bins form control regions that constrain background uncertainties in the
fit. In the signal category, the highest-score bins have the largest signal-to-background
ratio and thus dominate the sensitivity for the POIs, which are c(W*H), c(W™H), c(WH),
and A. The cross sections, o;, can be interpreted in terms of a signal strengths given by

O.c_)bs

Wj = = (4.21)

with the SM expectation GJSM for process j.
Summing over all signal processes j the categories enter a combined binned likelihood
function defined by:

L 5@ +b@) = [ 2 (mi 15y @ +0:®) x [] cOclon, @22
i€bins kenuis

where % is the Poisson probability for observing n; events in bin i, given the expected
signal s;; and background b; yields, defined by:

(Hj'sij(é) +bi(é))ni

ni!

P (| 1y 5 (8) + ()] = exp (= (- 5(@) +bi(®))) . (@23)

The signal is scaled by the signal strength modifier ; introduced in Equation [4.21} Both

sij and b; depend on nuisance parameters 6, which are constrained by prior probability
density functions C.

The fit maximizes £ to obtain the best-fit values for p; and é, denoted as [1; and 0.
In the context of this thesis, three different fits with three different signal models are
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performed. In the first and easiest model, s corresponds to the WH process inclusive in
charge with the corresponding signal strength W((WH). In the second model p and s are 2D
vectors for the W*H and W™H processes. The third model to obtain A is more complicated,
as A has nonlinear dependencies on o(W*H) and (W ™H). Accordingly, the following
substitutions are introduced to fit A:

o(WH) - (1+ A)

w(W*H) = 205y (WD) (4.24)
o _ o(WH) - (1- 4)
w(W™H) = 2o (WD (4.25)

Here the second fit model is parameterized by A and o(WH). Systematic uncertainties are
encoded as nuisance parameters 6, affecting both signal and background estimates. Their
treatment is a key part of the statistical inference and will be detailed in the following
paragraphs.

4.4.2. Uncertainty Model

The systematic uncertainties considered for this analysis have three main sources: object
reconstruction and identification, background modeling, and the limited statistical precision
of the template distributions used for signal extraction. The template-statistics uncertainty
is implemented for each bin of every template distribution individually. All other uncertain-
ties induce correlated variations across bins and can take the form of simple normalization
changes or more complex shape effects. Depending on their derivation, correlations may
also be present across different run periods, between individual signal and background
processes, or even among distinct uncertainties.

Uncertainties of Simulated Events

The main sources of uncertainties in simulated signal and background events originate from
corrections to address differences between simulation and data. Corrections associated
with the reconstruction and identification of physics objects—such as electrons, muons,
jets, and T,—have been discussed in Section 3.2 This section provides a summary of the
corresponding uncertainties. All systematic uncertainties related to simulation are treated
as correlated across the final states if those final states share the same objects.

Identification and Isolation of electron and muon

For electron and muon identification, a global rate uncertainty of 2 % is applied in final
states with those objects. For electrons in the endcap region (|n| > 1.479) and with
pr > 100 GeV, the uncertainty is increased to 2.5 %. For the I correction of electrons,
a global rate uncertainty of 0.5 % is chosen, whereas the I uncertainty on muons is
negligible. Rate uncertainties are chosen rather than a shape-dependent uncertainty, as
the identification and I efficiencies show only a weak dependence on the pt of the light
lepton.
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Single Electron and Muon Triggers

A rate uncertainty of 2 % for single muon trigger corrections and 3 % for single electron
trigger corrections is applied.

Identification and Energy Scale of Ty,

In the ¢¢1y, final states, identification scale factors are determined in bins of pt of the Ty
candidate, while in the 1,7y final states, they are obtained in bins of the 1y, decay mode.
The corresponding uncertainties, provided by CMS [60, 61]], are propagated as uncorrelated
shape variations for each pr or decay mode bin. These uncertainties are typically of the
order of 3 % and are mostly statistical in origin, which makes them uncorrelated between
run periods. A yield uncertainty of 3 % is assigned to account for the use of a different D,
WP than those in the CMS measurement. For the Ty, energy scale, corrections are applied
as a function of the 1, decay mode. The associated uncertainties depend on the decay
mode and the run period and are treated as shape-dependent.

Jet Energy Scale and Resolution

The calibration of jet energies in CMS is subject to multiple sources of systematic uncertain-
ties, collectively referred to as jet energy scale (JES) uncertainties. In total, 27 individual
sources are defined. In this analysis, they are grouped into 11 merged sources by combining
strongly correlated components, reflecting the limited sensitivity of the measurement to
jet energy variations. The uncertainty scheme covers the absolute JES calibration, the
relative JES calibration between different detector regions, and statistical limitations of the
JES measurements. Additional contributions arise from the dependence of the calibration
on the jet flavor (b, c, gluon, or light quark), as well as from non-closure corrections that
address residual discrepancies between simulation and data.

In simulation, the jet energy resolution is typically better than in data. To account for
this difference, an additional smearing is applied to jet energies in simulated events, and
an associated systematic uncertainty is introduced.

Top Quark pr

For ttV events, a top-quark pt reweighting is applied. The associated systematic variations
are defined by either omitting the reweighting entirely or applying it twice to the corres-
ponding events.

Identification of b jets

In this analysis, the DeepJet discriminant used for b jet identification is calibrated using
shape-dependent corrections. This procedure introduces systematic uncertainties associat-
ed with both the purity of the b jet selection and the contamination from light-flavor jets.
Additional contributions arise from statistical fluctuations in the determination of the
calibration SFs for b and light-flavor jets. No dedicated SFs are measured for c jets. Instead,
an uncertainty is assigned based on the b jet SF uncertainty. As the calibration depends on
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the jet pr, dedicated SFs are derived for each JES variation and are consistently applied in
the JES uncertainty evaluation.

Pileup

During event simulation, the number of PU interactions is sampled from a Poisson
distribution representing the expected PU profile of the data. Since the actual profile
is not known at the time of simulation, the simulated events are subsequently reweighted
using the measured PU distribution. The associated uncertainty of this method is estimated
by varying the assumed inelastic pp cross section by +4.6 %, following the CMS recommend-
ation, and propagating the resulting effect to all analysis distributions. [93]]

Luminosity

All simulated event yields are normalized to the integrated luminosity recorded during the
four run periods. Individually, the 2016-2018 integrated luminosities carry uncertainties
of 1.2-2.5 % and their combination for Run 2 yields a 1.6 % uncertainty. [66-68]

Background Cross Sections

Each simulated background process is normalized to a cross section derived from theoretical
calculations. These cross sections carry uncertainties reflecting the precision of the
underlying calculations. To account for this, systematic normalization uncertainties are
included, combining contributions from scale variations, the choice of parton distribution
functions (PDFs), and the strong coupling constant as. The specific values for each
background process are 6 % for ttV, 7.5 % for VV and 10 % for VVV.

Statistical Uncertainties

The prediction of each simulated process is limited by the events produced, which affects
the sensitivity of the results. To account for this limitation, statistical uncertainties on the
simulated processes are introduced following the Barlow—-Beeston approach [94]]. This
approach offers a simple yet robust way of incorporating statistical uncertainties into the
model. Its impact is particularly relevant for this analysis, since the signal is concentrated
in only a few bins where the background contribution is small. In this approach, each bin
is assigned a Gaussian nuisance parameter that allows the predicted yields to fluctuate.
The amount of fluctuation f in a bin is calculated via:

f = ot + X+ €to, (4.26)

while nto is given by the sum over events of each simulated background process i

n
Niot = Z n;. (427)
i
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The uncertainty ¢; for a given process is calculated via the quadratic sum of the event
weights w;:

(4.28)

where [; is the number of events from process i. From this, the total uncertainty e is
given by the quadratic sum of all individual uncertainties:

(4.29)

Finally, the parameter x is determined by the fit.

Uncertainties specific to the Signal

Systematic uncertainties from the simulation of signal events are propagated to the signal
prediction in the statistical model. These mainly originate from the limited precision of
the matrix element (ME) calculation for the hard scattering processes. Two main sources
are considered.

The first source is related to the choice of PDFs. Signal events are generated using
the NNPDF3.1 set [77]], which contains about 100 individual PDF replicas with varied
parameters within their uncertainties. The nominal PDF is the mean of these replicas.
Event weights are computed for each replica, and the standard deviation of these weights
defines the PDF uncertainty.

The second source is associated with the renormalization (ug) and factorization (Lg)
scales used in the ME calculation. In MadGraph5_aMC@NLO, both scales are varied by factors
of 2 and 0.5 to obtain up and down variations. The nominal choice is dynamically set for
each event as

MR = up = ) m, (4.30)
i

where mt; denotes the transverse mass of each final state particle i. The envelope of the
resulting distributions is then taken as the variation for the signal processes.

Uncertainties on the Fr method

Several systematic uncertainties influence the prediction of the reducible background.
The first source arises from the estimation of the F}, in the DR; whose topology differs
from that of the SR, leading to a different background composition. In the ¢t,71, final
states, the background is predominantly composed of W+jets and Drell-Yan, similar to
the composition in the DR. In the £¢T}, final states, the reducible background also contains
a significant contribution from tt events. To account for these differences in composition
between the measurement and signal regions, a 20 % yield uncertainty is applied. This
uncertainty is fully correlated across run periods, as it reflects a systematic effect, but is
uncorrelated between final states due to the fact that the background composition depends
on the final state.
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The second source of uncertainty originates from the limited statistics in the DR;
used to measure the F}. To account for this, the F} are varied up and down within their
statistical uncertainties that can be seen in Figures[4.9and[4.10] This variation is performed
independently in each bin, resulting in shape-dependent uncertainties, since they alter all
distributions in the SR; in a non-uniform way.

Another systematic uncertainty arises from the subtraction of processes modeled by
simulation during the F} estimation, like VV or VVV. The prompt background contribution
is varied by +£10 %, and the Fll: for electron, muon, and Ty, are recalculated accordingly. This
uncertainty is motivated by the simulated background cross section uncertainties, which
are 10 % at most. This uncertainty is shape-dependent, as its impact is more pronounced
at high electron and muon pr.

In the ¢ty final states, a rate uncertainty of 3.5 % is assigned to the mr selection
requirement to increase the purity of the DR;, described in Section [4.2.1] This accounts
for variations in the F; when changing the cut value. The uncertainty is determined by
varying the mr threshold from the nominal 40 GeV to 35 GeV and 45 GeV. Across all
run periods and final states the Fli differ by 3.5 % from the nominal value at most. The
uncertainty is taken as fully correlated between run periods and ¢¢7y, final states.

Finally, a set of shape uncertainties is introduced to account for discrepancies between
data and the Fr background prediction in a signal-like control region. These discrepancies
were discovered during the GoF test procedure described in Section Here two
variables, which are highly relevant to the NN categorization, the (leading) light lepton
pr and p’Tniss, failed the GoF tests in multiple run periods and final states. To address the
dis-agreement, a control region is introduced by requiring events to pass the loose but
fail the medium DeepTau WP against jets. The NN signal category in this control region
provides the most reliable estimate of the closure of the Fr method in the NN signal region.
Dedicated Fj, have been calculated for this region. These uncertainties are evaluated in the
P and (leading) light lepton pr distributions, separately for the ££1, and £1,7T), final
states. The distributions are shown in Figure All simulated background contributions
are subtracted from the data, and the ratio of the remaining data yield to the jet fake
estimate is taken as the uncertainty. The 2016 run periods are combined to improve the
statistical precision.

4.4.3. Results

Prior to extracting the POIs 0(W*H), 0(W™H), 0(WH), and A, the 48 NN output distribu-
tions y; that enter the fit are revalidated using GoF tests, as described in Section All
48 distributions pass the GoF tests, showing that the good results obtained by the GoF
tests of the input space translate to the NN output. As shown in Figure only three
distributions have values in the range p = 5 — 10 %, while for the remaining results it holds
p>10%

The best-fit values [1;, 6 are obtained by maximizing the likelihood in Equation |4.22
Figure shows the fitted distributions of y; in the ¢¢T, final state, while Figure
displays the corresponding distributions for the £t} T, final state. The combined fit of both
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Figure 4.24.: Distributions of prTniss (left) and the (leading) light lepton pr (right) of the £¢1y,
(top) and ¢1, Ty, (bottom) final states in the 2018 run period. The events are
selected in a phase space very similar to the NN signal region, with the only
difference being the DeepTau against jets WP.

final states is presented in Figure For presentation purposes the distributions of all
individual run periods have been combined into the full Run 2 dataset.

In the background categories, the agreement between data and simulation after the fit
is excellent for both final states. In the signal categories, however, differences between the
final states appear. The W*H signal is observed in both the ¢£¢Ty, and £1,, Ty, while a W™H
signal is only present in the ¢££Ty, final state. Consequently, in the combined fit, a W*H,
but no W™H contribution is found.

The measured values integrated over both final states and the full Run 2 dataset are
summarized in Table All results are compatible with the SM prediction within two
standard deviations. As already suggested by the distributions, no W™H signal is observed.
Instead, the best-fit value of L(W™H) is negative and thus outside its physical boundaries.
This is not problematic in itself, as the fit result still agrees with the SM expectation
within the given uncertainties. However, the negative best-fit of L(W~H) impacts the
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Figure 4.25.: GoF test results of the y; distributions used for the extraction of the signal. In
total, 48 y; distributions are tested, resulting from three NN categories split
by charge for two final states in four run periods. All categories yield results
above p = 5% and therefore pass the test, showing the good modeling of the
data by the estimation.

measurement of A. From the definition in Equation A can take large values if the
denominator is small, which is the case in the analysis due to the negative yield of W™H.
As a result, A is measured outside its physical boundaries (A € [-1, 1]), including the
upper uncertainty. This behavior is illustrated in the profile likelihood scans, which are
used to derive the 68 % confidence intervals. In this procedure, the likelihood is evaluated
as a function of a single POI ;, while all other signal parameters and nuisance parameters
are fixed to the values that maximize the likelihood for the given ;. These values are

denoted as {ﬁothers, é} The boundaries of the 68 % confidence interval are then defined by
the parameter values y; that satisfy the condition

L(uj’ }_iothers: e)
L(10)
This criterion corresponds to the standard 1-o confidence interval under the asymptotic
approximation, where the likelihood ratio test statistic is assumed to follow a y? distribution.
The 1D profile likelihood scans of A and 0(WH), when used in the same fit model are
given in Figure When scanning A while profiling all other parameters—including

o (WH)—the profile departs significantly from a simple quadratic function. Since c(WH) is
the denominator of A, the shape gets bent for c(WH) — 0 pb, and an asymptotic behavior

(4.31)

-2AInL(y;) =1, with AlnL(p;) :=1In
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Table 4.7.: The measured and expected values for the cross sections and signal strengths
of W*H, W™H, and WH production, as well as A. The quoted uncertainties
include both statistical and systematic contributions. For the cross sections and
A the theoretical predictions and their uncertainties are given as well [43]]. A
and o(W™H) are measured outside their physical boundaries. For A, the upper
uncertainty is not reported because the fit reaches the boundary of the allowed
parameter space. Taken from [65].

Quantity Observed Expected  Theory

0.61 0.61
o(W*H) [pb]  0.96*961  0.83*06L  0.83 = 0.02

o(W™H) [pb] -0.0579%% 0.53%030  0.53+0.01

o(WH) [pb] 0.96793 136799 1.36 +0.03

—0.82 —0.84
A 1.18*092  0.2279%¢  0.22 +0.01
w(W+H) 1.16*97¢  1.007073
w(W-H) —0.15*087  1.00+0-5¢
1(WH) 0.71%5:8  1.00%9,¢

emerges, leading to very large uncertainties in the positive direction when o(WH) is
allowed to float. By contrast, fixing 0(WH) to its best-fit value removes the degeneracy,
and the resulting 1D scan of A exhibits the expected near-parabolic behavior around
the minimum. The 1D scan of 0(WH) shows a visible feature at the physical boundary
o(WH) = 0pb. At that point A is not defined. In the fit model the signal contribution
vanishes, and the likelihood reduces to the background-only model, which can be seen in
Equations and Since A drops out entirely when at the boundary, the profiled
curves with A floated or fixed must coincide there and yield the same value of —2A InL.

These characteristics carry over to the 2D scan in the A — 0(WH)-plane shown on the
left in Figure Due to the arguments above, open confidence regions are produced:
the contours do not close toward large |A| because of the singularity at c(WH) = 0pb
and the fact that A does not share the same values approaching ¢(WH) = 0pb from
positive and negative direction. Along the boundary o(WH) = 0 pb, the surface is flat in A,
reflecting again that the fit is effectively background-only there. Close to the singularity,
the likelihood becomes highly sensitive to changes in o(WH). The best-fit point and the
SM reference are indicated. Overall, the observed non-quadratic A profile, the pronounced
peak in the 0(WH) scan at the boundary, and the open 2D contours are all consistent with
the mathematical structure of the parameterization and the presence of a boundary in
o(WH).

The complementary 2D scan performed with the signal strengths for the two charge
channels is shown in Fig. (right). The contours are elliptical and centered close to the
best-fit point, indicating a well-behaved, near-Gaussian likelihood in this parameterization.
The tilt of the ellipse reveals a positive correlation between the POIs as expected from
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nuisance parameters that scale both charge channels in a similar way (e.g., luminosity or
common reconstruction efficiencies). The SM reference lies within the displayed confidence
region, showing no significant deviation from SM expectations in either process. Unlike
the A—o(WH) scan, no boundary effects are present here, and the contours close smoothly,
since both parameters are directly observable rates in the fit model.

To report physically meaningful constraints on A and ¢(W™H), we construct 95 %
confidence intervals using the Feldman-Cousins (FC) [95]] approach. This is required
because both parameters are found outside their physical boundaries. The FC construction
builds Neyman confidence belts with a likelihood-ratio ordering. For a set of hypothesized
true values ; (either A or o(W™H)) within the physical region, pseudo-experiments are
generated from the full likelihood. For each toy the profile likelihood ratio

L(Hj,é(uj))
¢, = —2AlnL(y;) = —2Iln—— 7 (4.32)
o

is computed, where 0 denotes nuisance parameters, {1}, 0 the global maximizers for the

particular toy dataset, and é(uj) are the profiled values at fixed p;. In the FC construction,
a critical value co5 (1) for each p; is built, which is the 95th percentile of the toy distribution

of gy,;. Finally, for the reported 95 % confidence interval, the set of ;-values is included

obs
K
[1;] > 0.05. In this approach one-sided limits are obtained:

for which the observed statistic satisfies g

obs
Hj

< co5(1;), which is equivalent to P, =
Prob[q,; > q

o(W™H) < 0.88 pb,

4.33
A > —0.09. (4:33)

In Figure this scan in hypothetical values of u; with the FC method is shown for A
and W(W™H).

The statistical model is probed via nuisance parameter shifts and their impacts on
the POIs. For each nuisance parameter 0y, the shift (ék — Ok1)/ok1 with respect to
the pre-fit initialization O; is computed. Large coherent shifts would indicate that the
background model must be adjusted to describe the data and many such shifts would point
to insatisfactory modeling. Figure shows the shift distribution (black dots) for the fit
to W(WH) for the nuisance parameters that have the highest impact on the fit result. All
nuisance parameters are within one standard deviation of the ;.

To evaluate impacts, two fits for each 0 are performed: 0y is fixed to its post-fit value
shifted by + oy p, while all other nuisance parameters are profiled. The corresponding

shifts of the POI p;,

Allik = w0k = Ok £ oxp) — (1, (4.34)
define the positive and negative impacts displayed in the impact plot (the bar spans
[Ap;k, A}i}: ]). These impacts identify the nuisances with the largest effect on the
measured value and illustrate correlations with the POL For L(WH) the nuisance parameter
with the highest impact is related to the uncertainty in the VV cross section followed by
uncertainties related to the Fr method to estimate the reducible background.

64



4.5. Towards improved Sensitivity

4.5. Towards improved Sensitivity

Several possible developments of this analysis could not be addressed in the scope of this
work and are therefore left for future studies. These developments can be divided into
technical refinements of the current analysis and broader developments that extend the
physics reach of the analysis. The possible technical improvements were all considered as
lower priority due to their limited contribution to the sensitivity and not followed in favor
of a preliminary publication of the measurements, through the CMS Collaboration [65].
These tasks are:

+ The use of double-lepton triggers would lower the pt threshold of the selected light
leptons and increase the overall signal acceptance. The expected gain in sensitivity
is low.

« Inclusion of di-# final states with opposite charge light leptons and a veto on the Z
boson mass window. The expected gain in sensitivity is low.

« For the background modeling, a splitting of the WZ sample by charge would allow
for a more precise treatment of asymmetries and their uncertainties.

« Tighter charge reconstruction requirements on light leptons could reduce mis-
reconstruction effects, although this would require new scale factors to be derived.

« The reconstruction of m(tT) could be improved by using an NN-based estimator,
which may provide better resolution and discrimination power.

« The uncertainty model of the light lepton reconstruction, identification, and I
could be improved. This requires a measurement of the systematic and statistical
uncertainties on the SFs derived within the Tag-and-Probe framework. This is work
in progress.

+ The uncertainty model of the Fr method could be refined. The motivation for the
uncertainties on the (leading) light lepton pr and p7*** is based on failed GoF tests.
An introduction of corrections could make those uncertainties obsolete.

Beyond these technical improvements, several broader developments could further
enhance the physics reach of the analysis in the future. A natural extension is the inclusion
of the ZH process, as the analysis strategy and uncertainty model would be similar. In
addition, the measurement could be interpreted within the Simplified Template Cross
Section [96] framework and combined with results from other production modes, such
as ggF and VBF. In this context, the analysis would need to be differential in pr(V) and
it must be ensured that the phase spaces to analyze the different production modes are
orthogonal to each other. Furthermore, an interpretation of the measurement in the context
of the charm quark Yukawa coupling would require additional statistical precision and is
therefore expected to benefit from the larger datasets of future LHC runs, as well as from
combinations with other Higgs boson decay channels, such as WH(WW) and WH(yy).
Such combinations exploit correlations between systematic uncertainties and maximize
the statistical power of the dataset.
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Figure 4.26.: Post-fit distributions of y; of the three NN output categories split by charge of
the light lepton associated with the W boson decay in the £¢Ty, final state. The
gray band corresponds to the post-fit statistical and systematic uncertainties.

Taken from .
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Figure 4.27.: Post-fit distributions of y; of the three NN output categories split by charge
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state. The gray band corresponds to the post-fit statistical and systematic

uncertainties. Taken from .

67



4. Towards the WH Cross Section and Charge Asymmetry Measurements

Events

Events

Events

data/pred.

data/pred.

data/pred.

CMS Preliminary 138 fbo (13 Tev) CMS Prefiminary 138 fo (13 Tev)
30— T T 1 T 71 T 1) T3
L B X WH-WW X W H-WW il 'E L B X WH-WwW X W H-ww ]
COXWH-TT I xW'H-TT @ 250 CIXWH-TT I XW'H-TT —
B . W 2z b > C . W. /zz ]
L I rare [ other H 4 | r I rare [ other H ]
I Jet fakes m Bkg. tot. unc. L [ Jet fakes I Bkg. tot. unc. 4
r —&— Data 7 200 —&— Data -
L 7 150}~ .
100 1
501 B
E T Bl b= F 1 T T E
1.5F #Data I Bg. tot. unc. - - 2 15F eDaa 1 Bkg. tot. unc. 3
1E * [ Fy b s — % 1 Y ) £ I I E|
3 * * T T E| © £ Y ® Y b I E
0.5¢ ] 05E -
o] — — P oF g g
0.4 0.6 0.8 1 0.4 0.6 0.8 1
WZ, WZ,
yA(+) y()
CMS Preliminary 138 b (13 TeV) CMS Preliminary 138 fb™ (13 TeV)
— T ———— %) — T —
400? X W H-WW X W H-WW E’ r X WH-WW X W HoWW
[ CIXWH-Tt O xW'H-TT @ 300 CIXWH-TT I XW'H-TT
L [ WL .2z > L = W —zz
I rare [ other H ¥} I rare [ other H
B I Jet fakes B Bkg. tot. unc. B [ Jet fakes B Bkg. tot. unc.
300— —a8— Data r —e— Data
[ 200~
200— r
L 100~
100— r
SR —— T — ] 5 L B e e A — ]
1.5 #Data I Bkg. tot. unc. | g 150 #Dama I Bkg. tot. unc. . =
£ E 3 E T E
C e I = C J
e . . . . E g I v . ‘ ¢ ¢ L
0.5F 1 0.5F ]
oF ‘ ! S oF ‘ ; ! S
0.4 0.6 0.8 1 0.4 0.6 0.8 1
Fe Fe
y'(+) y' ()
200 CMS Preiminay 138 fbo (13 TeV) CMS Prefiminary 138 fo (13 TeV)
A T — %) — T —
= B X WH-WW X W HoWW e 150 B X WH - WW X W H-WW =
r COXWH-TT O XxW'H-TT B ] L COXWH-TT O XWH-TT 4
r =N =z B S L = W2 [pd |
L I rare [ other H 4 T} I rare [ other H
150+ [ Jet fakes = Bkg. tot. unc. - r [ Jet fakes i Bkg. tot. unc. 1
L —&— Data 4 L —&— Data b
[ ] 100— =
100— = r ]
[ ] 50~ B
50— = r 7
F 1 T 3 = I B e =
1.5 @ Data [ Bkg. tot. unc. 4 g 1.5 -@-Data [ Bkg. tot. unc. 4
= 7 3 £ B
E é é F - g £ . ) .
i ’ ¢ E S ¢ ¢ * ¢ E
05F . 05E :
o] S— S R S ] S S S
0.4 0.6 0.8 1 0.4 0.6 0.8 1
WH WH
yH() yHe)

Figure 4.28.: Post-fit distributions of y; of the three NN output categories split by charge of
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the W boson decay product candidate integrated over both final states. The
gray band corresponds to the post-fit statistical and systematic uncertainties.

Taken from .
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Figure 4.29.: Profile likelihood scan of A (left) and ¢(WH) (right). Both POIs scanned,
either with the other POI fixed or floated. In the latter scenario boundary
effects in both scans become visible. In the scan of A, the asymptotic behavior
for small 0(WH) is present, and in the scan of ¢(WH), the boundary of
o(WH) = 0 pb leads to a pronounced peak. Taken from .
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Figure 4.31.: Feldman-Cousins scan to compute confidence intervals for A (left) and
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w(W~H) (right), which are measured outside their physical boundaries. The
y-axis shows P, = Prob[q,, > qﬁl]’_sluj] while the one-sided confidence
interval is given by P, > 0.05, with u; € {A, W(W™H)}. The central vertical
red dashed line indicates the nominal result, while the flanking dashed lines

illustrate the uncertainty from the finite number of toy experiments.
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5. Summary and Outlook

The Run 2 of the LHC has provided an unprecedented opportunity to study the properties
of the Higgs boson in great detail. With the complete CMS dataset with an integrated
luminosity of 138 fb™! collected between 2016 and 2018, a measurement of the production
cross sections and charge asymmetry of the associated WH process has been performed
in the H— 77 final state. The analysis focused on final states with at least one of the T
leptons decaying hadronically, and the associated W boson decaying into an electron or a
muon.

The selected events were classified using a neural network into signal- and background-
enriched categories. With extensive studies, the data description of the neural net input
variables was studied. Each distribution was validated through goodness-of-fit tests,
considering both one-dimensional and two-dimensional distributions. This procedure
ensures that the background estimation provides an accurate description of the data
within the assigned uncertainties. Special attention was given to variables with high
discriminating power, where systematic effects could most strongly bias the classification.
The validation confirmed that the chosen set of input features is robust and suitable for
the event classification, thereby minimizing the risk of model-induced biases in the final
measurement.

A simultaneous fit to the resulting categories allowed for the extraction of the cross
section of the inclusive WH process, as well as the first measurements of W*H, W™H and
the associated charge asymmetry A. In the background-dominated categories, excellent
agreement between data and the prediction was achieved, and uncertainties related
to major background processes could be constrained. Backgrounds arising from jets
misidentified as light leptons or hadronic T lepton decays are estimated with the Fr
method. This data-driven technique uses control regions enriched in misidentified objects
to measure the probability of a jet being reconstructed as a light lepton or a hadroncially
decaying T lepton. The measured fake rates are then applied to events in the application
regions to predict the jet-induced background in the signal regions. This reduces the
reliance on simulation and provides a more accurate description of beam conditions and
detector performance. In the signal categories, sensitivity to the separate production
modes was obtained, leading to the independent measurement of the charge-dependent
cross sections and their asymmetry. All results were found to be compatible with the
Standard Model within uncertainties.

The presented measurement demonstrates that charge-sensitive observables in associated
Higgs boson production can be probed with the current LHC data. The charge asymmetry
provides a handle on the charm Yukawa coupling complementary to direct H — cc
searches. This makes it a promising strategy for future analyses with larger datasets.

A natural next step beyond this work is the combination of the analysis with the
complementary H — WW analysis. Both analyses share a similar final-state topology.
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5. Summary and Outlook

Their combination will increase the statistical power and help constrain systematic
uncertainties more effectively. Furthermore, the Run 3 of the LHC is expected to deliver
more than twice as much data compared to Run 2 at a higher center-of-mass energy of
13.6 TeV. The inclusion of this dataset will significantly improve the precision of the
measurement and will allow for an enhanced sensitivity to possible deviations from the
Standard Model, in particular in the study of charge asymmetry and charm quark Yukawa
coupling effects.
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Figure A.1.: Inclusive control distributions of a selection of input variables for the NN
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Figure A.2.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.3.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.4.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.6.: Inclusive control distributions of a selection of input variables for the NN

training. Shown are statistical uncertainties only.
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Figure A.7.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.8.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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training. Shown are statistical uncertainties only.
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Figure A.13.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.14.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.15.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.16.: Inclusive control distributions of a selection of input variables for the NN

training. Shown are statistical uncertainties only.
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Figure A.17.: Inclusive control distributions of a selection of input variables for the NN
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A.1. Inclusive Control Distributions
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Figure A.18.: Inclusive control distributions of a selection of input variables for the NN

training. Shown are statistical uncertainties only.
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Figure A.19.: Inclusive control distributions of a selection of input variables for the NN
training. Shown are statistical uncertainties only.
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Figure A.20.: Inclusive control distributions of a selection of input variables for the NN

training. Shown are statistical uncertainties only.
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A.2. Goodness-of-Fit tests of the Neural Net Input Variables

CMS data 19.5 fb~1, 2016preVFP (13 TeV)
pr(jetz) +
pr(jety) -+
number of jets +
pr(W) -+
visible pr(TT) +
m+(t, MET) L
mr(u, MET) +
mr(e, MET) =+
m(tT) +
MET (PUPPI) +
Lt =+
visible m(TT) =+
n(u) +
pr(u) +
n(e) +
pr(e) +
AR(e, p) +
AR(u, T) +
AR(e, T) ==
n(t) +
pr(T) +
pr(e +u+ t+ MET) =+
0.0 02 0.4 0.6 0.8 1.0

Saturated GoF p-value

Figure A.21.: Results for the 1D GoF tests for the input variables used for the NN
classification in the eyt final state using 2016preVFP data.
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A.2. Goodness-of-Fit tests of the Neural Net Input Variables

CMS data 19.5 fb~1, 2016preVFP (13 TeV)
pr(jetz) +
pr(jety) =+
number of jets +
pr(W) +
visible pr(TT) +=
m+(T, MET) +=
m+(e, MET) 0.018
mr(p, MET) +
m(TT) +
MET (PUPPI) +
Lt +
visible m(TT) +
n(e) +
pr(e) +
n(w) +
pr(p) ==
AR(u, e) +
AR(e, T) -+
AR(u, T) =+
n(t) +
pr(T)
prle +u+ T+ MET) =+
0.0 02 04 06 08 1.0

Saturated GoF p-value

Figure A.22.: Results for the 1D GoF tests for the input variables used for the NN
classification in the peTy, final state using 2016preVFP data.
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CMS data 19.5 fb=1, 2016preVFP (13 TeV)
pr(jetz) +
pr(jets) b
number of jets +
pr(W) E
visible pr(TT) =+
mr(t, MET) 0.023
mr(p2, MET) +
mr(p1, MET)
m(TT)
MET (PUPPI)
Lt
visible m(tT)
n(u2)
pr(u2)
n(u1)
pr(p1)
AR(u1, 42)
AR(H2, T)
AR(u1, T)
n(t) +
pr(T) +
pr(u1 + H2 + T+ MET) ' ' -I- ' '
0.0 0.2 0.4 0.6 0.8 1.0

Saturated GoF p-value

Figure A.23.: Results for the 1D GoF tests for the input variables used for the NN
classification in the puty, final state using 2016preVFP data.
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A.2. Goodness-of-Fit tests of the Neural Net Input Variables

CMS data 19.5 fb~1, 2016preVFP (13 TeV)
pr(jetz) +
pr(jety) +
number of jets =+
pr(W) =
visible pr(T1T2) -+
m+(t2, MET) +
mr(T1, MET) o
mr(u, MET) +
m(T172) +
MET (PUPPI) 0.044
Lt =+
visible m(T1T>) =+
n(t1) 0.029
pr(T1) +
n(u) +
pr(u) =+
AR(u, T1) =+
AR(T1, T2) +
AR(y, T2) +
n(tz) +
pr(72) +
pr(p+ Ty + T2 + MET) +
0.0 0.2 0.4 0.6 0.8 1.0

Saturated GoF p-value

Figure A.24.: Results for the 1D GoF tests for the input variables used for the NN
classification in the pty, Ty, final state using 2016preVFP data.
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CMS data 19.5 fb~1, 2016preVFP (13 TeV)
pr(jetz) +
pr(jety) -+
number of jets -+
pr(W) +
visible pr(T172)
mt(T,, MET)
m(t1, MET) +
m+(e, MET) =+
m(T172) +
MET (PUPPI) +
Lt =+
visible m(t1T2)
n(t1)
pr(T1)
n(e)
pr(e)
AR(e, T1)
AR(Tq, T2)
AR(e, T3)
n(tz)
pr(T2)
pr(e + t1 + T2 + MET)

+ +

0.2 0.4 06 08 1.0
Saturated GoF p-value

Figure A.25.: Results for the 1D GoF tests for the input variables used for the NN
classification in the ety Ty, final state using 2016preVFP data.
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A.2. Goodness-of-Fit tests of the Neural Net Input Variables

CMS data 16.8 fb~1, 2016postVFP (13 TeV)
pr(jetz) 0.010
pr(jety) =+
number of jets +
pr(W) +
visible pr(TT) =+
m+(T, MET) +=
mr(p, MET) +
m+(e, MET) -+
m(TT) +
MET (PUPPI) +
Lt =+
visible m(tT) =
n(y) +
pr(u) +
n(e) +
pr(e) +
AR(e, p) +
AR(u, T) +
AR(e, T) -+
n(t) +
pr(T) +
pr(e +u+ t+ MET) -
0.0 02 04 06 08 1.0

Saturated GoF p-value

Figure A.26.: Results for the 1D GoF tests for the input variables used for the NN
classification in the eyTy, final state using 2016postVEP data.
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CMS data 16.8 fb~1, 2016postVFP (13 TeV)
pr(jetz) +
pr(jety) +
number of jets +
pr(W) -+
visible pr(TT) =+
m+(t, MET) +
m+(e, MET) =
mr(u, MET) +
m(TT) +
MET (PUPPI) +
Lt =+
visible m(tT) =+
n(e) +
pr(e) +
n(u) +
pr(u) +
AR(u, €) +
AR(e, T) o
AR(u, T) -+
n(T) +
pr(T) +
prle +u+ T+ MET) =
0.0 0.2 04 06 0.8 1.0

Saturated GoF p-value

Figure A.27.: Results for the 1D GoF tests for the input variables used for the NN
classification in the peTy, final state using 2016postVFP data.
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CMS data 16.8 fb~1, 2016postVFP (13 TeV)
pr(jetz) +
pr(jety) +
number of jets +
pr(W) +
visible pr(TT) =+
mr(T, MET) +
mr(uz, MET) o
mr(u1, MET) +
m(TT) =+
MET (PUPPI) +
Lt =+
visible m(TT) =+
n(ua2) +
pr(uz) +
n(u1) +
pr(u) +
AR(U1, 42) +
AR(2, T) +
AR(u1, T) =+
n(t) +
pr(T) +
priuy + pa + T+ MET) ‘-|- ‘ | | |
00 02 04 06 08 10

Saturated GoF p-value

Figure A.28.: Results for the 1D GoF tests for the input variables used for the NN
classification in the puTy, final state using 2016postVFP data.
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Figure A.29.: Results for the 1D GoF tests for the input variables used for the NN
classification in the pty, Ty, final state using 2016postVFP data.
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CMS data 16.8 fb~1, 2016postVFP (13 TeV)
pr(jetz) =
pr(jet:) =

number of jets ==
pr(W) =
visible pr(T1T2) 4=
my(T2, MET) ==
mt(Ty, MET) +
mr(e, MET) 0.015
m(T1T2) +
MET (PUPPI) =
Lt +
visible m(T1T>) =+
n(t1) +
pr(T1) ==
n(e) +
pr(e) =
AR(e, T1) ==
AR(T1, T2) ==
AR(e, T2) +
n(t2) ==
pr(12) ==
pr(e + 11 + T2 + MET) +
0.0 0.2 0.4 06 08 1.0

Saturated GoF p-value

Figure A.30.: Results for the 1D GoF tests for the input variables used for the NN
classification in the ety T}, final state using 2016postVFP data.

115



A. Appendix

CMS data 41.5fb~1, 2017 (13 TeV)
pr(jetz) +
pr(jety) +
number of jets =+
pr(W) +
visible pr(TT)
m+(T, MET) =+
mr(u, MET) +
m+(e, MET) =+
m(tT) +
MET (PUPPI) 0.035
Lt
visible m(tT) =+
n(w) +
pr(u) +
n(e) +
pr(e) -+
AR(e, u) +
AR(u, T) +
AR(e, T)
n(t)
pr(T) +
prle +u+ T+ MET) L
0.0 02 04 06 0.8 1.0

+ +

Saturated GoF p-value

Figure A.31.: Results for the 1D GoF tests for the input variables used for the NN
classification in the eyTy, final state using 2017 data.
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A.2. Goodness-of-Fit tests of the Neural Net Input Variables

CMS data 41.5fb=1, 2017 (13 TeV)
pr(jetz) +
pr(jety) =+
number of jets +
pr(W) +
visible pr(TT) 0.010
m+(T, MET) +=
m+(e, MET) =+
mr(u, MET)
m(TT)
MET (PUPPI) +
Lt =+
visible m(tT) -+
n(e) +
pr(e) 0.040
n(w) +
pr(p) -+
AR(u, e) +
AR(e, T) 3=
AR(u, T) +
n(t) 0.015
pr(T) +
prle +u+ T+ MET) ==
0.0 02 04 06 08 1.0

+ +

Saturated GoF p-value

Figure A.32.: Results for the 1D GoF tests for the input variables used for the NN
classification in the peTy final state using 2017 data.
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Figure A.33.: Results for the 1D GoF tests for the input variables used for the NN
classification in the puty, final state using 2017 data.
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CMS data 415 b1, 2017 (13 TeV)
pr(jetz) e
pr(jety) =+
number of jets =+
pr(W) +
visible pr(T1T2) -+
m(T2, MET) +
mr(t1, MET) +
mr(u, MET) +
m(T172) +
MET (PUPPI) +
Lt e
visible m(t113) =+
n(ty)
pr(T1) +
n(u) +
pr(u) =+
AR(u, T1) E
AR(T1, T2) +
AR(y, T2)
n(tz)
pr(72) +
pr(u + 11 + T2 + MET) +
0.0 02 04 06 08 1.0

++

Saturated GoF p-value

Figure A.34.: Results for the 1D GoF tests for the input variables used for the NN
classification in the pty Ty final state using 2017 data.
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CMS data 415 fb=1, 2017 (13 TeV)
pr(jetz) +
pr(jety) +
number of jets =+
pr(W) +
visible pr(T1T2) ==
mt(T2, MET) +
m(t1, MET) +
m+(e, MET) +
m(T1T2) +
MET (PUPPI) =+
Lt +
visible m(t1T2)
n(t1)
pr(T1)
n(e)
pr(e)
AR(e, T1)
AR(Tq, T2)
AR(e, T3)
n(tz)
pr(T2)
pr(e + t1 + T2 + MET)

+

+

+
0.2 0.4 0.6 0.8 1.0

Saturated GoF p-value

Figure A.35.: Results for the 1D GoF tests for the input variables used for the NN
classification in the ety Ty, final state using 2017 data.
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Figure A.36.: Results for the 1D GoF tests for the input variables used for the NN
classification in the eyt final state using 2018 data.
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Figure A.37.: Results for the 1D GoF tests for the input variables used for the NN
classification in the pety, final state using 2018 data.
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Figure A.38.: Results for the 1D GoF tests for the input variables used for the NN
classification in the pputy, final state using 2018 data.
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Figure A.40.: Results for the 1D GoF tests for the input variables used for the NN
classification in the ety T}, final state using 2018 data.
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Figure A.41.: Results for the 2d GoF tests for the input variables used for the NN
classification in the eyt final state using 2016preVFP data.
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Figure A.42.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pety final state using 2016preVFP data.
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Figure A.43.: Results for the 2d GoF tests for the input variables used for the NN
classification in the puty, final state using 2016preVFP data.
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Figure A.44.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pty, Ty final state using 2016preVFP data.
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Figure A.45.: Results for the 2d GoF tests for the input variables used for the NN
classification in the ety Ty, final state using 2016preVFP data.
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Figure A.46.: Results for the 2d GoF tests for the input variables used for the NN
classification in the euTy final state using 2016postVFP data.
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Figure A.47.: Results for the 2d GoF tests for the input variables used for the NN
classification in the peTy, final state using 2016postVFP data.
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Figure A.48.: Results for the 2d GoF tests for the input variables used for the NN
classification in the puty, final state using 2016postVFP data.
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Figure A.49.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pty, Ty, final state using 2016postVFP data.
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Figure A.50.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pty Ty final state using 2016postVFP data.
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Figure A.51.: Results for the 2d GoF tests for the input variables used for the NN
classification in the euTy, final state using 2017 data.
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Figure A.52.: Results for the 2d GoF tests for the input variables used for the NN
classification in the peTy final state using 2017 data.
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Figure A.53.: Results for the 2d GoF tests for the input variables used for the NN
classification in the puty, final state using 2017 data.
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Figure A.54.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pty, Ty final state using 2017 data.
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Figure A.55.: Results for the 2d GoF tests for the input variables used for the NN
classification in the ety Ty, final state using 2017 data.
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Figure A.56.: Results for the 2d GoF tests for the input variables used for the NN
classification in the eyTy final state using 2018 data.
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Figure A.57.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pety, final state using 2018 data.
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Figure A.58.: Results for the 2d GoF tests for the input variables used for the NN
classification in the puty, final state using 2018 data.
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Figure A.59.: Results for the 2d GoF tests for the input variables used for the NN
classification in the pty Ty final state using 2018 data.
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Figure A.60.: Results for the 2d GoF tests for the input variables used for the NN

classification in the ety T}, final state using 2018 data.
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