KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated detection of potential artifacts in machine learning based bio-image segmentation

Jain, Saiyam B. 1; Shao, Zongru; Hecht, Michael
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Image segmentation algorithms, while powerful, are inherently prone to artifacts, making perfect segmentation theoretically and practically impossible. We propose an automated artifact identification scheme for posterior rapid manual re-correction to address this challenge. Hereby, our contribution is twofold: We extend our previous work, delivering polynomial defenses (PDs). These defenses mimic noise distributions that significantly improve segmentation quality when removed from the training images. In practice, we perturb unseen images with PDs and demonstrate that the resulting segmentation differences achieve promising precision in artifact detection compared to traditional Gaussian and Poisson noise perturbations. This automated guidance is our essential contribution. Beyond improving the reliability of image-processing outputs, our approach provides a valuable tool for enhancing manually segmented training datasets. Hereby, the automated guidance massively decreases manual cross-checking time.


Verlagsausgabe §
DOI: 10.5445/IR/1000187879
Veröffentlicht am 02.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Karlsruher Institut für Technologie (KIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.12.2025
Sprache Englisch
Identifikator ISSN: 2632-2153
KITopen-ID: 1000187879
Erschienen in Machine Learning: Science and Technology
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 6
Heft 4
Seiten Art.-Nr. 045029
Vorab online veröffentlicht am 31.10.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page