KIT | KIT-Bibliothek | Impressum | Datenschutz

Spatially dependent f-π exchange interaction within a single-molecule magnet TbPc$_2$

Liao, Xin; Chen, Yun; Xie, Tao; Sun, Rui-Jing; Yang, Lian-Zhi; Liu, Chao-Fei; Wang, Rui; Klyatskaya, Svetlana 1; Ruben, Mario 1,2; Zhang, Wenhao ; Fu, Ying-Shuang
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Electrically probing the spin state of localized f electrons in a rare-earth-based single-molecule magnet, along with understanding its intramolecular magnetic coupling, is of crucial importance for applications in quantum information and advanced spintronics, yet it remains experimentally challenging. Herein, within a single-molecule magnet terbium(III) bis(phthalocyaninato) (TbPc2) double-decker molecule adsorbed on a bilayer graphene epitaxially grown on a SiC(0001) substrate, we experimentally demonstrate a spatially dependent exchange interaction between the magnetic moment of the localized Tb 4f electron and the unpaired spin of the Pc π-radical. The magnetic state of TbPc2, associated with the f-π interaction, is evidently detected through the spectroscopic Kondo resonance and a zero-field Kondo splitting, which can be reversibly switched in a charge/discharge process triggered by the tip-molecule distance. Furthermore, we theoretically describe how the Kondo resonance evolves at the molecular scale, which is mediated by the f-π exchange interaction with its strength varying spatially in a radial decay fashion. Our spatially resolved Kondo characteristics offer a quantitative understanding of the many-body spin correlation, which is coupled with the charge states in a nonuniform and spatially extended system.


Verlagsausgabe §
DOI: 10.5445/IR/1000187883
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.1038/s41467-025-61594-4
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000187883
HGF-Programm 47.12.02 (POF IV, LK 01) Exploratory Qubits
Erschienen in Nature Communications
Verlag Nature Research
Band 16
Heft 1
Seiten Art.-Nr.: 6263
Vorab online veröffentlicht am 07.07.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page