KIT | KIT-Bibliothek | Impressum | Datenschutz

Anomalous rotational-symmetry breaking in proton arrangement of surface-confined cyclic hydrogen bonds revealed by atomic force spectroscopy

Gao, Feng; Yang, Chunlei; Lyu, Yuanhao; Zhang, Luhao; Cheng, Peng; Chen, Lan; Wang, En-Ge; Klyatskaya, Svetlana 1; Zhang, Cui ; Ruben, Mario 1; Meng, Sheng ; Wu, Kehui ; Zhang, Yi-Qi
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

In hydrogen-bonded materials and biosystems, microscopic proton ordering, which is strongly influenced by the quantum nature of protons, underpins diverse macroscopic phenomena, including phase transitions, chemical reactions, biomolecular processes and collective proton transfer. Yet resolving proton arrangements and characterizing their quantum behavior at the atomic scale remain challenging due to the small size of protons and the lack of effective approaches. Here, we exploit bond-resolved atomic force microscopy and spectroscopy (BR-AFM/AFS) to probe signatures of proton ordering in surface-confined benzimidazole (BI) assemblies. By performing BR-AFS along the apparent H-bond between proton donor and acceptor nitrogen atoms, we extract information consistent with H-bonding directionality and signatures compatible with quantum proton delocalization. We observe anomalous rotational-symmetry breaking in the proton order of the cyclic hexamers, arising from the coexistence of both localized and quantum-delocalized protons. The chirality of a single hexamer can be reversibly switched by altering its adsorption registry combined with collective transfer of six protons. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187887
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.1038/s41467-025-66848-9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000187887
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Nature Communications
Verlag Nature Research
Bemerkung zur Veröffentlichung in press
Vorab online veröffentlicht am 02.12.2025
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page