KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid Quantum Systems: Coupling Single-Molecule Magnet Qudits with Industrial Silicon Spin Qubits

Schroller, Daniel ; Sitter, Daniel; Koch, Thomas; Adam, Viktor ORCID iD icon 1; Glaeser, Noah; Godfrin, Clement; Kubicek, Stefan; Jussot, Julien; Loo, Roger; Shimura, Yosuke; Wan, Danny; Chen, Yaorong; Ruben, Mario 2; De Greve, Kristiaan; Wernsdorfer, Wolfgang 3
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)

Abstract:

Molecular spin qudits offer an attractive platform for quantum memory, combining long coherence times with rich multi-level spin structures. Terbium bis(phthalocyaninato) (TbPc$_2$) exemplifies such systems, with demonstrated quantum control and chemical reproducibility. In hybrid quantum architectures, TbPc$_2$ can act as the primary memory element, with semiconductor qubits providing scalable readout and coupling. Here we present a step toward such a hybrid system: using an industrially manufactured silicon metal-oxide-semiconductor (SiMOS) spin qubit to detect electronic spin transitions of an ensemble of TbPc$_2$ molecules. The readout is based on a compact and robust protocol that applies a microwave pulse while all gate voltages defining the qubit are held at a fixed operating point. This protocol, which combines simultaneous Rapid adiabatic Passage and Spin- Selective tunneling (RPSS), enables high-contrast resonance detection and avoids repeated $π$-pulse recalibration common in decoupling schemes. By demonstrating ensemble detection, we establish a foundation for integrating molecular quantum memories with industrial qubit platforms and mark an important step toward single-molecule hybrid quantum technologies.


Volltext §
DOI: 10.5445/IR/1000187893
Veröffentlicht am 02.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Physikalisches Institut (PHI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 11.10.2025
Sprache Englisch
Identifikator KITopen-ID: 1000187893
HGF-Programm 47.12.02 (POF IV, LK 01) Exploratory Qubits
Verlag arxiv
Schlagwörter Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Quantum Physics (quant-ph)
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page