KIT | KIT-Bibliothek | Impressum | Datenschutz

Advancing Electronic Application of Coordination Solids: Enhancing Electron Transport and Device Integration via Surface‐Mounted MOFs (SURMOFs)

Xu, Zhengtao ; Wöll, Christof 1; Bräse, Stefan ORCID iD icon 2
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)

Abstract:

The layer-by-layer (LbL) assembly of coordination solids, enabled by the surface-mounted metal–organic framework (SURMOF) platform, yields thin films with well-defined orientation, tunable thickness, low density of defects, and editable crystalline heteroepitaxy. Such high-quality thin films are suited for integrating metal-organic framework (MOF) materials into devices used in electronics and optoelectronics technologies. However, the potential of the SURMOF platform has not been fully realized due to its instability, poor electronic interaction/transport, and limited intercalation/heteroepitaxy functions. Leveraging the longstanding efforts in processing and functionalizing coordination networks, four directions are highlighted for fully unleashing the technological potential of the SURMOF platform: 1) cascade cyclization to form polycyclic aromatic, nanographene-like scaffolds with strong electron polarizability and electroactivity; 2) crosslinking by fused-aromatic and metal–thiolate bridges for improved charge transport and structural stability; 3) covalent-ionic heteroepitaxy of conductive metal–thiolate layers alternating with metal-aqua-hydroxide layers to emulate the transport layer and the charge storage layer in high-temperature superconductors of cuprates and iron pnictides; and 4) machine learning (ML)-based methods to optimize synthesis conditions.


Verlagsausgabe §
DOI: 10.5445/IR/1000187899
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.1002/adfm.202425091
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000187899
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Seiten Art.-Nr. e25091
Vorab online veröffentlicht am 04.10.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page