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 A B S T R A C T

Recently, advanced deep-learning techniques have been successfully applied as deconvolution operators to 
super-resolve the low-resolution data in large-eddy simulation (LES). The super-resolution (SR) operator 
provides an approximate inverse to the filter operators in LES such that the under-resolved and un-resolved sub-
grid information can be reconstructed from the resolved scales. In this work, a particle-aware attention-based 
conditional super-resolution generative adversarial network (PACASRGAN) is proposed for the fourfold SR of 
gas field scalars which are generated by the pyrolysis process in a hot turbulent flow laden with pulverised 
biomass particles. Multiple carrier-phase direct numerical simulations (DNS) of two-way coupled particle-laden 
flows with heat and mass transfer, that mimic the near-burner field of pulverised biomass combustion (PBC) 
systems, are carried out to build the training/testing datasets. The model performance is assessed in an a priori
manner by investigating statistical quantities of interest for the modelling in LES of PBC. The results show 
that the proposed model can super-resolve the temperature and mixture fraction fields to a good accuracy 
and outperforms unconditional GAN models. Particles create localised sources/sinks via two-way coupling 
which sharpen scalar gradients in the subgrid. The particle mask and feature vector encode this localisation 
to improve the predictions of the generator. The scalar spectra, the conditional average of unresolved scalar 
variances, the probability density function (PDF), and the conditional average of the square of the mixture 
fraction gradient from the reconstructed fields follow the DNS values well. Slight deviations are observed at 
rich conditions in conditional statistics and at the tail of the PDFs. Nonetheless, the results demonstrate that 
SR is applicable to two-way coupled particle-laden flows with heat and mass transfer, providing reasonably 
accurate high-resolution information for both the entire gas field and particle positions.
1. Introduction

Super-resolution (SR) is a computer vision task which aims at map-
ping a low-resolution (LR) image to the corresponding high-resolution 
(HR) image [1]. In terms of scientific data science, the SR can be 
regarded as a deconvolution operation which reconstructs direct nu-
merical simulation (DNS)-like fields from the filtered data available 
in large-eddy simulation (LES). The outcome can e.g. be used to in-
crease the resolution of PIV measurements or to help sub-grid model 
developments by providing extra sub-grid information. SR has been 
recently shown to have a great potential for the modelling of sub-
grid scale stress [1,2] and combustion [3–5]. Pure convolutional neural 
networks (CNNs) with pixel-wise loss may produce better pixel-wise 
results, however, non-physical and over-smoothed structures may be 
created [6]. Hence, novel CNN training designs based on generative 
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adversarial networks (GANs) [7] have been utilised [4,5,8,9] in scien-
tific SR to create a balance between pixel-wise and statistical errors in 
the regression problem.

The focus of the current study is on SR of turbulent two-way 
coupled particle laden flows in the presence of heat and mass transfer. 
Specifically, the target is the SR of the filtered fields produced by the 
devolatilisation process of pulverised biomass combustion (PBC) from 
Euler–Lagrange (EL) numerical simulations. Euler–Lagrange LES of PBC 
with flamelet approaches have recently gained attention [10]. In such 
models, sub-grid inhomogeneities in the carrier gas due to turbulence 
are often neglected or simple closures for scalars such as mixture 
fraction are used. SR models can be utilised to enhance the sub-grid 
information in these models. The application of SR to the flow fields 
involving particles is scarce [11–14]. In [11] the particles were one-
way coupled, and the SR task was therefore comparable to particle-free 
https://doi.org/10.1016/j.proci.2025.105982
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cases. In [12–14], traditional GANs, originally designed for particle-
free flows, were applied to spray combustion without explicit particle 
feedback to the network. In our recent work [15], we demonstrated 
that particle data can improve SR performance in predicting turbulence 
modulation in two-way coupled flows. However, the coupling was 
restricted to kinematic interactions, i.e. momentum exchange through 
drag only. In fact, a perfect SR model trained on particle-free turbu-
lence fails to recover particle-turbulence interactions when tested on 
particle-laden data [15].

The present study extends the previous research by addressing 
pyrolysis in turbulent PBC, where particles influence the carrier gas 
not only via drag but also through heat absorption and volatile release. 
Specifically, we aim to super-resolve density, temperature and mixture 
fraction fields, mapping LR inputs from filtered EL-DNS of biomass 
pyrolysis to HR. For this purpose, a particle-aware conditional attention 
super-resolution GAN (PACASRGAN) is proposed, the generation of 
DNS datasets for unsteady devolatilisation under different carrier-gas 
temperatures and mass loadings is described, and the model is evalu-
ated in a priori tests. Results are presented, the model is compared with 
traditional GANs, and the importance of particle data is investigated. 

2. Modelling

2.1. Network design

The goal of the modelling is to conduct SR of density, temperature, 
and volatile mixture fraction fields, viz. 𝝃 = {𝜌, 𝑇 ,𝑍}, which are 
generated by the pyrolysis process in a hot turbulent flow laden with 
pulverised biomass particles. We select these quantities as local infor-
mation is needed for accurate modelling of phase transfer processes that 
determine devolatilisation. The GAN approach [7] has been employed 
which is composed of two competing networks, namely the generator
which is trained to produce fake HR data and the discriminator which 
is trained to distinguish between the real and fake HR data. When 
unsteady particle-gas interactions exist, the generator faces several 
challenges, since particles are localised and sparse, but they interact 
with the turbulent field. The model needs to learn which particle 
information modify the carrier gas. Furthermore, gas SR should work 
without particles in particle-free regions, i.e., the model must ignore 
missing particle regions and only super-resolve gas features. To fulfil 
these goals, we propose a particle-aware conditional attention SRGAN 
(PACASRGAN) model which contains a modified residual-in-residual 
dense block (RRDB) as its generator and a UNet discriminator [16].

As can be seen in Fig.  1 (top), the input data to the generator 
is passed through a first convolutional layer to extract 128 features, 
then it is passed to 16 attention residual-in-residual dense blocks (A-
RRDB). The output is passed through a convolutional layer before 
receiving information from the skip connection. Then, it is passed 
through 2 up-sampling layers which are followed by a convolution, 
non-linearity (Leaky ReLU) and the final convolution to produce the 3 
output channels. Each A-RRDB involves 3 residual dense blocks with 
an augmented convolutional block attention module (CBAM) [17]. 
The CBAM contains a sequence of channel attention (CA) and spatial 
attention (SA) blocks to fuse gas and particle feature maps selectively, 
ensuring that only the most important particle regions contribute to the 
final encoding after each block. CA highlights important feature maps 
across channels, while SA highlights the most important locations in 
the feature map. As depicted in Fig.  1, in CA first the input features 
are average- and max-pooled, they are passed to a shared multilayer 
perceptron (MLP) which is a contraction-expansion MLP (with a factor 
of 16), and a sigmoid function. The output is multiplied element-wise 
to each channel of the original feature map. In SA, the input features 
are average- and max-pooled. The concatenated outcome is passed 
through a convolution layer and a sigmoid function to output a single 
channel, with values between 0 and 1, that are multiplied element-wise 
to each channel of the input feature map. The details of the kernel 
2 
sizes, number of kernels and the strides are mentioned above each 
convolution layer in Fig.  1.

The generator 𝐺 creates SR fields from LR inputs, 
𝝃̂ = {𝜌̂, 𝑇̂ , 𝑍̂} = 𝐺(𝑪 , 𝜈̄, 𝑘𝑠𝑔𝑠,𝑷 ), (1)

where 𝜈̄ is the filtered gas viscosity, 𝑪 = {𝝃LR,𝑀𝑝} contains the LR 
filtered vector of scalars, 𝝃LR = {𝜌̄, 𝑇̃ , 𝑍̃}, and a low-resolution particle 
mask (𝑀𝑝). 𝑀𝑝 is a binary field defined at each LR grid point, indicating 
whether particles are present within the corresponding LR grid cell. 𝑀𝑝
serves as an additional conditioning input to both the generator and the 
discriminator, allowing the model to account for regions influenced by 
particle presence, such as sites where devolatilisation mass is injected. 
Further, we follow [11] and condition the generator on sub-grid kinetic 
energy, which has shown to improve the generator’s prediction of the 
gas fields [11]. The generator is additionally conditioned on particle 
information. The particle information input vector in the generator 
input, 𝑷 , in Eq. (1) is defined as, 

𝑷 = {log(1 +𝑁𝑝), log(1 +
𝑁𝑝
∑

𝑘
𝜌𝑝,𝑘), log(1 +

𝑁𝑝
∑

𝑘
𝑆̇𝑝,𝑘)}, (2)

denoting the sum of number of particles, their mass densities, and the 
mass source term generated by particles at each LR grid point. These 
additional conditioning inputs enhance the physical consistency of the 
super-resolved fields, particularly in regions influenced by local mass 
release from pyrolysis.

The discriminator 𝐷 has a UNet architecture as shown in Fig.  1 
(bottom), containing spectral normalisation layers as in [16], condi-
tioned on high frequency information of the HR data, the LR particle 
presence mask (𝑀𝑝), and the LR gas-phase scalars fields, 𝝃𝐿𝑅. It has 
been shown that conditioning on LR data improves the stability of 
the adversarial training [11]. The input LR data are upsampled by 
the SR factor (4x) using a custom differentiable and locally conserva-
tive upsampling layer. The layer is designed to preserve mass-bound 
properties of the conserved scalars. The high-frequency information 
of the HR data (ground truth DNS or fake SR) are extracted using 
stationary wavelet transform [18] that is applied to the input HR data. 
Although many convolution kernels already exist in the architecture of 
𝐷, constraining the discriminator decision on wavelet-transformed data 
aims at forcing the discriminator to learn the high-frequency patterns. 
Haar wavelets [18] have been employed and only the three bands of 
the second level transformations have been used in the discriminator 
to limit the computational costs. The input HR, its high frequency 
information and upsampled LR are concatenated and passed through 
a series of convolution layers as shown in Fig.  1. The output of 𝐷 has 
a similar resolution as its input with each pixel containing information 
about the decision of the discriminator on that pixel.

2.2. Loss functions

The total generator loss combines the pixel-wise, scalar gradient, 
and adversarial terms, viz. total = 𝜆pixelpixel + 𝜆gradgrad + 𝜆adv𝐺

adv. 
The pixel-wise loss is evaluated as L1-norm error as it tends to produce 
sharper edges and finer details compared to L2-norm [16]. To improve 
the reconstruction of sharp features and gradients, and physical consis-
tency of the super-resolved scalar fields, a gradient loss is used. For each 
scalar field 𝜉 ∈ {𝜌, 𝑇 ,𝑍} at grid point 𝑖, the gradient loss is computed 
as, 

grad =
∑

𝜉∈{𝜌,𝑇 ,𝑍}

1
𝑁

𝑁
∑

𝑖=1

2
∑

𝑛=1

(
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|

|

|

|

𝜕𝜉𝑖
𝜕𝑥𝑛

−
𝜕𝜉𝑖
𝜕𝑥𝑛

|

|

|

|

|

)

, (3)

where 𝑁 is total number of grid points at each slice and 𝑛 is the 
direction. The gradients are computed using the second-order central 
difference method of PyTorch. The adversarial loss for the generator is 
based on a non-relativistic conditional discriminator 𝐷, 
𝐺 = −E

[

log𝐷
(

𝝃̂, 𝑆𝑊 𝑇 (𝝃̂),𝑪
)

]

, (4)
adv
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Fig. 1. The generator (top) and discriminator (bottom) architectures employed in the current study. 
where 𝑆𝑊 𝑇 (𝝃̂) = {𝐿𝐻2(𝝃̂),𝐻𝐿2(𝝃̂),𝐻𝐻2(𝝃̂)}, with 𝐿𝐻2, 𝐻𝐿2, 𝐻𝐻2
the horizontal, vertical and diagonal Haar wavelet coefficients [18] at 
the second level of the stationary wavelet transformation. Finally the 
discriminator 𝐷 is trained by minimising the following loss function,
𝐷
adv = − E

[

log𝐷 (𝝃, 𝑆𝑊 𝑇 (𝝃),𝑪)
]

− E
[

log
(

1 −𝐷
(

𝝃̂, 𝑆𝑊 𝑇 (𝝃̂),𝑪
))

]

− E
[

log
(

1 −𝐷
(

𝝃′, 𝑆𝑊 𝑇 (𝝃′),𝑪
))

]

,

where 𝝃′ is the shuffled version of ground truth HR data (𝝃) [11] in 
the training batch. This means that by shuffling, the HR-LR pairs are 
not matched any more and the discriminator is penalised whenever 
it identifies 𝝃′ as ground truth although it is inconsistent with the LR 
conditions in 𝑪.

2.3. Training procedure

The adversarial training is carried out in one shot with no pre-
training. Training employs a custom data pipeline including random 
batch selection (16 samples/GPU), flips/rotations, Favre filtering with 
a top-hat filter of width 4𝛥𝑥,𝐷𝑁𝑆 and downsampling by a 1/4 ra-
tio, channel-wise normalisation, and paired random cropping to avoid 
overfitting (642 HR and 162 LR from corresponding 1282 and 322
original sizes). A fixed filter type/width is used here, while a posteriori 
applications will require generalisability. This can be achieved by 
retraining with both Gaussian and top-hat filters across multiple widths 
to enhance robustness [11,19,20].  The downsampling factor of four 
(4𝛥𝑥,𝐷𝑁𝑆 ≈ 8𝜂), yields resolved-to-total ratios of 94% for kinetic energy 
and 90% for temperature, consistent with previous studies [19,21]. 
The lower ratio for mixture fraction (76%) reflects subgrid devolatil-
isation effects. Larger factors between HR/LR generally reduce the 
accuracy, though Gaussian filtering at fixed downsampling ratio can 
3 
alleviate such degradation [11].  The chosen patch size corresponds 
to approximately 1.9𝑙𝑡 ≈ 128𝜂, ensuring several large- and small-
scale eddies per sample and consistent with previous studies [19,22]. 
Here, 𝑙𝑡 is the integral length scale. While larger patches increase the 
receptive field and may in theory improve performance, we found they 
reduced small-scale fidelity. The discriminator tends to prioritise large-
scale features, an effect amplified in particle-laden cases.  The Adam 
optimiser is utilised with the learning rates of 10−4, 10−5 for generator 
and discriminator, respectively, that are decreased by half after 200 K, 
300 K, and 400 K iterations. The hyper-parameters in the total loss 
function are 𝜆pixel = 0.1, 𝜆grad = 0.05, 𝜆adv = 0.012, in such a way 
that after the first 100 iterations the losses have comparable values 
within the same order of magnitudes. The code is implemented in the 
basicSR [16] framework using PyTorch 2.3. The training is performed 
on four A100 GPUs for 525000 iterations which takes approximately 
48 h.

Inference benchmarks are performed on a single NVIDIA RTX 6000 
Ada GPU with input tensors of shape [1, 9, 32, 32] and output of shape 
[1, 3, 128, 128]. The inference time is 20.5 ms with peak allocated mem-
ory of 221 MB. The intended application of PACASRGAN is to act 
as a deconvolution operator in a posteriori LES of two-way coupled 
particle-laden flows. To provide a first estimate of the scalability to 
3D, we implemented the 3D extension of the generator network with 
randomly initialised weights. For an input/output with previous shapes, 
the average latency over 20 runs is 247.4 ± 2 ms with a peak allocated 
memory of 5.1 GB. For multi-patch inference [22] with [1, 9, 16, 16, 16]
input, latency and peak memory reduce to 38.5±0.05 ms, and 1.16 GB, 
respectively. To estimate training costs, we scale the 2D training time 
by the ratio of forward inference times (≈ 12), corrected by a factor 
of 0.25, an estimation to account for the larger voxel content per 
3D sample. The numbers are feasible using current GPU clusters. Fur-
ther, multi-CPU/GPU training and a posteriori LES deployment can be 
followed [22]. 
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Table 1
Specifications for particle-laden forced DNS setups used for training/testing.
 Case LT1 LT2 LT3 MT1 MT2 MT3 HT1 HT2 HT3 OT1 OT2  
 Initial gas temperature [K] 1100 1100 1100 1300 1300 1300 1500 1500 1500 1200 1200 
 Particle mass loading 0.15 0.3 0.6 0.15 0.3 0.6 0.15 0.3 0.6 0.15 0.6  
 Averaged kinetic energy [m2∕s2] 32 27 25 57 52 42 84 80 63 43.5 32  
 Averaged dissipation rate × 104 [m2∕s2] 2.0 1.6 1.0 4.5 3.5 2.3 9.0 7.1 4.8  2.9 1.5  
 Particle diameter (𝑑𝑝) [μm] 29.5 29.5 29.5 27.2 27.2 27.2 25.3 25.3 25.3 28.2 28.2  
 Particle number density × 109 [m−3] 5.4 10.8 21.5 5.6 11.7 23.4 6.3 12.6 25.1  5.6 22.4  
3. Dataset generation

3.1. Direct numerical simulation

Three-dimensional Euler–Lagrange carrier-phase DNS [23] of pul-
verised biomass particle pyrolysis in a forced turbulence are carried 
out in different environments to generate the training/testing datasets. 
The homogeneous reactions are suppressed to only focus on the heat 
and mass transfer between the two phases. The turbulence is linearly 
forced [24] to a target Taylor Reynolds number of a particle-free 
flow (𝑅𝑒𝜆 = 53). The Kolmogorov length scale (𝜂) is 10−4 m and the 
grid resolution is 1283. A cloud of pulverised walnut shell biomass 
particles [23] with initial mass density of 650 kg∕m3 are injected into 
a hot turbulent environment in a box-shaped domain with a length of 
0.0256m where pyrolysis occurs.

Four groups of DNS setups with different carrier gas tempera-
tures are considered which are denoted by LT (low temperature), 
MT (medium temperature), HT (high temperature), OT (out-of-sample 
temperature) labels in Table  1. The first three groups are used to build 
training/testing datasets while the last group is only used for testing. 
The initial conditions of the turbulent carrier gas are obtained by 
preliminary particle-free stationary forced turbulent simulations with 
a similar Taylor scale Reynolds number. Since small and large scales 
are set by design, the forcing parameters are changed to account for 
different viscosities. Particles are allowed to interact with the turbulent 
carrier-phase kinematically, i.e., without heat exchange, for one eddy 
turn over time before heat- (and thereby mass-) transfer is switched on. 
This relaxation time period is important for the kinematic turbulence-
particle interaction to be settled and for the carrier gas to reach a 
new stationary state. The new state is different for each temperature 
group and each case within each group as particles extract kinetic 
energy from the carrier gas and decrease the dissipation rate in forced 
turbulence which can be seen in Table  1 by comparing time-averaged 
statistics, i.e, kinetic energy and the dissipation rates between the cases 
in each group. The observations are consistent with the findings in [25] 
for pure kinematic interactions between particles and turbulence. In 
the current study we have limited the parameter space to carrier gas 
temperature and particle mass loading variations, while the Stokes 
number and target (particle-free) Reynolds number are fixed. The 
Stokes numbers based on Kolmogorov and Taylor length scales are 
𝑆𝑡𝜂 = 10 and 𝑆𝑡𝜆 = 1.6, respectively. This can be achieved by varying 
initial particle diameter, number density, and turbulence intensity as 
can be seen in Table  1. Note that in the simulations the particle 
diameter (𝑑𝑝) remains constant during devolatilisation while its mass 
density changes [23]. The simulations cover the whole devolatilisation 
process for each case and further pure mixing.

The main governing equations are mentioned in [10,23] and are 
only briefly described here. The mass loss of an individual particle 
is governed by d𝑚𝑝 = −(𝑚̇𝑝,𝑣𝑜𝑙)d𝑡, with the devolatilisation rate being 
𝑚̇𝑝,𝑣𝑜𝑙 = (𝑚𝑝,𝑉 𝑀,0 − 𝑚𝑝,𝑉 𝑀 )𝐴e−𝐸∕(𝑅𝑢𝑇𝑝), where 𝑇𝑝, 𝑚𝑝,𝑉 𝑀,0(= 0.76𝑚𝑝,0), 
and 𝑚𝑝,𝑉 𝑀  are the particle temperature, the initial and instantaneous 
mass of volatile matter, respectively. The rate coefficients (𝐴 = 7 ⋅
105 s−1, 𝐸 = 5⋅107 J∕Kmol) are calculated in [23]. The drag force is con-
sidered to be the only volume force on the particle and modelled by a 
non-spherical drag model with a shape factor of 0.75 [23]. The particle 
temperature is governed by [10], d𝑇 ∕d𝑡 =(𝑇 − 𝑇 )∕𝜏 +𝑄̇ ∕𝑚 𝑐 , 
𝑝 𝑝 𝑐𝑜𝑛 𝑑𝑒𝑣𝑜𝑙 𝑝 𝑝,𝑝
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with 𝜏𝑐𝑜𝑛 =
(

Pr𝜌𝑝𝑑2𝑝 𝑐𝑝,𝑝
)

∕
(

6Nu𝑐𝑝𝜇
) the time scale of heat transfer by 

convection. Nu is the Nusselt number, and Pr is the Prandtl number 
(= 0.7). 𝑑𝑝, 𝜇 and 𝑐𝑝 are the particle diameter, gas viscosity and heat 
capacity at the particle position, respectively. 𝑐𝑝,𝑝 is the heat capacity 
of the particle, expressed according to [10] and 𝑄̇𝑑𝑒𝑣𝑜𝑙 is the heat of 
devolatilisation [23]. The two-way coupling between the two phases is 
governed by the exchange of mass from devolatilisation, momentum 
from drag force, and enthalpy from convection, as well as the heat 
of devolatilisation, which have been described in detail in [10]. The 
particle properties are similar to the ones in [23] with the exception 
that CH4 is considered to be the sole volatile species to reduce the 
complexity. The volatile mixture fraction 𝑍, that is transported for 
analysis purposes, is initially zero and receives a two-way coupling 
mass source term, 𝑆̇𝑝 = − 1

𝛥𝑉
∑𝑁𝑝

𝑘

[ d𝑚𝑝,𝑘
d𝑡

]

, from the particles, with 𝛥𝑉
being the volume of the grid cell where the particle resides, and 𝑁𝑝 is 
the number of particles present in the local cell volume.

3.2. Training/validation/testing datasets

Eighteen 3D snapshots from each case in LT, MT, and HT groups 
are selected randomly and uniformly, with respect to the cumulative 
mass generated by the particles to account for the unsteadiness of the 
devolatilisation process.  This is carried out by binning the cumula-
tive devolatilisation mass into equally distanced bins from which the 
training data is sampled. In this way it is ensured that enough data 
is sampled at each devolatilisation step, in addition to the final pure 
mixing process. From the remaining un-selected snapshots available 
from the DNS, we randomly select eight snapshots from each case to 
build the validation/testing (50%–50%) datasets. Since the SR model 
is a 2D SR network, we use all 2D 𝑥 − 𝑦-slices at 128 𝑧-locations of 
each selected DNS snapshots. This will result in 20736 two dimensional 
128 × 128 samples for training and 3456 samples for testing.

4. Results and discussion

In Fig.  2, the reconstructed mixture fraction (𝑍̂) and temperature 
(𝑇̂ ) are compared with the DNS and LR input data for a randomly 
selected slice from the test dataset. Particles have been removed from 
the figures for the sake of clarity, however, their effects are obvious; 
In the DNS, the local peaks of 𝑍 and local reduction of temperature 
are clear signs of the devolatilisation of individual particles. The loss 
of high-frequency details can be clearly observed in 𝑍̃ and 𝑇̃  while the 
model has recovered small scale details in 𝑍̂ and 𝑇̂  qualitatively well.

In Fig.  3, the one-dimensional energy density spectra of mixture 
fraction and temperature for the snapshots shown in Fig.  2 are depicted. 
The energy density spectrum of a scalar, i.e., 𝐸1𝐷

𝜉 (𝜅𝑥𝜂), is computed as 
a function of wavenumber along the 𝑥-direction, 𝜅𝑥, by first applying 
a discrete Fourier transform along the 𝑥-direction for each 𝑦-location 
and further averaging along the 𝑦-direction. As can be seen in Fig. 
3, in the LR fields the variances are under-resolved before the cut-off 
(= 𝜋∕(4𝛥𝑥,𝐷𝑁𝑆 )), shown by the vertical dashed lines, while in the SR 
fields both under-resolved and un-resolved variances (after the cut-off) 
are reconstructed well. This shows that the model captures the average 
contribution of each spatial scale to the scalar field variance well.

To assess the performance of the model on the whole test dataset 
which contains unseen data from various temperature and mass loading 
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Fig. 2. Snapshots of mixture fraction (top) and temperature (bottom) of low-
resolution input (left) vs. DNS (middle) vs. SR (right) from a randomly selected 
slice in test dataset.

Fig. 3. Energy density spectra of mixture fraction (top) and temperature 
(bottom) normalised by the DNS variances. The vertical dashed lines show 
the LR cut-off.

Fig. 4. Conditional average of unresolved sub-grid scalar variances evaluated 
on the whole test dataset.

conditions, the conditional averages of reconstructed unresolved scalar 
variances have been compared with the DNS counterparts. The unre-
solved variance of a scalar 𝜉 at filter scale 𝛥, is defined by 𝜎2(𝜉;𝛥) =
𝜉2 − 𝜉𝜉. The conditional averages are computed by conditioning on the 
filtered mixture fraction. In Fig.  4 it can be seen that the conditional 
mean of unresolved temperature variance from SR matches very well 
with the DNS. Both DNS and SR profiles show an increasing trend with 
respect to the mixture fraction. At low 𝑍̃, the temperature variance 
is caused solely by the variance in the turbulent carrier gas. High 𝑍̃
values denote the cells where particles extract heat and release mass 
which causes the temperature variance to increase.

In Fig.  4, the statistics of the unresolved mixture fraction variance 
are shown as well. Similar to the profiles of temperature, the con-
ditional mean of both SR and DNS increase with increasing mixture 
5 
Fig. 5. Conditional average (a) and PDF (b) of the square of mixture fraction 
gradient evaluated on the whole test dataset.

fraction. With increasing the devolatilisation, 𝑍 increases and since the 
devolatilisation occurs at sub-grid levels, sub-grid variance increases. 
Since 𝑍 is initially zero and it is only produced by the devolatilisation 
process, the variance increases monotonically by increasing the injected 
mixture fraction from the particles. It can be seen that the statistics of 
the unresolved reconstructed field, 𝑍̂, matches very well with the DNS 
statistics. Slight deviations at high mixture fractions can be observed 
which is due to the slight overshoots of 𝑍̂ at cells with no particle 
and high mixture fraction which will be explained in more detail later. 
Nonetheless, the predictions around stoichiometry (≈ 0.055) show good 
agreement with the DNS.

In Fig.  5, the PDF and conditional average of the square of the 
mixture fraction gradient is shown. This quantity is proportional to 
the scalar dissipation rate which is of interest in turbulent combustion 
models and determines whether a flame can establish itself in the 
vicinity of the particle or whether group combustion would be a more 
likely combustion scenario.

As can be seen in Fig.  5b, the PDF computed by LR fields is bounded 
by much lower peak gradients compared to the DNS. Furthermore, the 
number of nearly zero-gradient cells is about one order of magnitude 
higher than the DNS counterpart. This is due to the generated smoothed 
fields by the filtering in the LR. On the other hand, the distribution 
of the square of the gradients from the SR field follows the DNS PDF 
up to probabilities of around 10−7 with slight over-estimations for rare 
events at the tail of the PDF. Note that such an over-estimation of the 
rare high gradients has been observed in previous GAN models for the 
velocity gradients as well and is thought to be related to the balance 
coefficients in the loss functions, namely 𝜆pixel, 𝜆grad, and 𝜆adv [19]. 
Another reason could be the lack of training data points at rare events 
which can be mitigated by artificially increasing the number of training 
samples which have such properties. In Fig.  5a, the conditional average 
of dot products of the mixture fraction gradient is shown. The gradients 
from the LR field (𝜉 = 𝑍̃) are lower than the ones in the DNS and SR 
across the whole mixture fraction space which is due to the smoothing 
effect of filtering on the gradients. The SR fields, however, can recover 
the vanishing gradients of the LR field and match well with the DNS 
counterparts. Slight deviations can be observed at rich conditions which 
highlight the point that the over-estimations observed and discussed in 
the PDF actually occur in rich conditions.

In Figs.  6 and 7a the performance of the model when reconstructing 
the scalar fields at particle positions is evaluated. The reconstruction 
of the particles’ neighbour information is important as this data can 
be used to improve the Lagrangian particle heat and mass transfer 
modelling. The PDF is obtained by restricting the test samples to the 
ones with maximum 𝑍 exceeding 0.055 and further masking the data 
points in each slice based on the presence of particles. In this way 
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Fig. 6. PDF of temperature at the particle positions. 

Fig. 7. PDF of mixture fraction from the samples restricted to the grid points 
where particles are present (a) and not present (b).

the test is restricted to particle-containing cells and later stages of 
the devolatilisation. In both figures it can be seen that the PDF of 
LR temperature has overshoots and undershoots which is the result 
of the filtering. On the other hand, there is a very good agreement in 
temperature predictions from the SR field compared to the DNS (Fig.  6). 
However, discrepancies can be observed in mixture fraction predictions 
in Fig.  7a. The generator detects LR overshoots and undershoots in lean 
and rich conditions, respectively, in Fig.  7a and tries to improve the 
reconstructed fields at particle locations by decreasing/increasing the 
mixture fraction in the corresponding regions. However, the network’s 
confidence in the reconstruction is moderate only and this is why the 
final solution in SR lies in-between the DNS and the LR. Hence, the 
final distribution is biased towards low mixture fraction values when 
compared to the DNS in Fig.  7a. This behaviour is again attributed to 𝜆
values in the loss function. These coefficients aim at balancing the re-
gression minimisation process between pixel-wise errors and statistical 
errors, e.g. PDF distributions. The deconvolution task is a one-to-many 
problem. A balance should be made between choosing the averaged 
solution among all possible solutions and choosing a single solution 
from a specific distribution which has the best statistical match. The 
choice made in this study is to balance the loss contributions such 
that all have comparable values in the order of magnitudes at the 
start of the training process. However, these hyper-parameters can be 
tuned via e.g. Bayesian hyper-parameter optimisation techniques which 
is the focus of future studies. Overall, the predictions are satisfactory 
considering the underdetermined nature of the deconvolution problem.

In Fig.  7b the same sample slices as in Fig.  7a have been used, 
however, the PDF of mixture fraction at the computational cells where 
no particle is present has been evaluated. It can be seen that the 
predictions with the SR data are matched perfectly with the DNS, 
except at very rich conditions. Comparing Fig.  7a and Fig.  7b shows 
that the overshoots observed at high mixture fraction values in Fig.  4 
and Fig.  5 are caused by slight over predictions in particle-free cells.

We now compare the model performance against traditional GAN 
models with their generator only receiving low-resolution scalars, with-
out conditioning and particle information input. The generator and 
discriminator architectures follow [2,19]. The model is pre-trained with 
pixel and gradient losses for 600 epochs, fine-tuned with an adversarial 
loss for 120 extra epochs, using the same loss weights as in [19], 
labelled ‘‘tradGAN’’, and optimised weights (𝜆𝑎𝑑𝑣 = 6 ⋅ 10−2), labelled 
‘‘tradGAN,opt’’ in Fig.  8. As can be seen, while the PACASRGAN (green 
line) recovers both under-resolved and un-resolved parts of the spectra, 
the other models fail, especially in recovering the unresolved part. 
6 
Fig. 8. Energy density spectra of mixture fraction. The test slice was randomly 
selected from the test dataset.

Fig. 9. Conditional averages of scalar dissipation rate (a) and sub-grid vari-
ance of mixture fraction evaluated on the whole test dataset using different 
models. The line labels are similar to Fig.  8.

Fig. 10. PDF of subgrid variance of temperature (a) and mixture fraction (b) 
evaluated on OT1 and OT2 datasets.

Furthermore, it can be seen in Fig.  8 that when additional particle 
data, i.e. particle mask (𝑀𝑝), and the vector containing particle-related 
information (𝑷 ), are masked (zeroed out) from the PACASRGAN during 
the inference, the results become considerably worse (‘‘maskedPrt’’). 
This shows that the network effectively utilises such information.  The 
underlying mechanism is that, at the finite Stokes numbers considered 
here, particles create localised sources/sinks via two-way momentum 
and heat/mass-transfer coupling. These processes sharpen scalar gradi-
ents and modulate subgrid variability. The particle mask and feature 
vector encode this localisation to improve the predictions. 

In Fig.  9, the conditional averages of scalar dissipation rate and sub-
grid mixture fraction variance are shown. The large under-prediction 
by the traditional GAN model (blue line) in Fig.  9(a) is due to the 
over-smoothed fields generated by this model which is also seen in Fig. 
9(b). The performance can be improved by changing the loss weights 
(grey lines), however, it is still worse than the PACASRGAN. Moreover, 
the masking analysis shows that particle information is indeed used to 
improve both sub-grid variances (cyan line in Fig.  9(b)), and overall 
scalar dissipation rate (cyan line in Fig.  9(a)). 

Finally, in Fig.  10, the generalisability of the model with out-of-
sample tests for the devolatilisation process in an environment which is 
not seen during the training is assessed. The PDF of subgrid variances 
of both scalars computed over 1024 randomly selected samples from 
OT1 and OT2 DNS cases are recovered reasonably well. The spectra of 
mixture fraction and temperature (not shown for the sake of brevity) 
were found to also match reasonably well with the DNS. 
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5. Summary and conclusions

In this work, a particle-aware conditional attention-based
super-resolution GAN (PACASRGAN) model is proposed for the super-
resolution of density, temperature (𝑇 ) and mixture fraction (𝑍) fields, 
generated in the devolatilisation process in a hot turbulent environment 
which is the initiating process of turbulent pulverised biomass com-
bustion. Carrier-phase DNSs of pulverised biomass particles pyrolysis 
at various carrier-gas temperatures, and particle mass loadings, with 
fixed target Reynolds (Re𝜆 = 53) and Stokes (St𝜂 = 10) numbers 
are carried out to generate the training/testing datasets.  A modified 
RRDB generator network augmented with channel and spatial attention 
modules receives LR gas scalar fields, as well as particle information 
mapped to the LR grid. A UNet discriminator is conditioned on high 
frequency information of the HR input data, the LR counterparts, 
and the particle existence in a cell map at the LR level and decides 
whether the generated data by the generator are fake or real. Both 
networks are trained simultaneously in an adversarial manner with 
weighted pixel-wise, gradient, and adversarial losses. The results show 
that the proposed model can super-resolve the scalar fields of interest 
with a good accuracy and outperforms unconditional GAN models 
by effectively utilising particle information. Specifically, the scalar 
spectra, conditional averages of unresolved scalar variances, PDF and 
conditional average of the square of the mixture fraction gradient 
from the reconstructed fields follow the DNS values reasonably well. 
Deviations from the DNS are observed at rich conditions and for rare 
events at the tail of the square of 𝑍 gradient PDF. The investigation 
of the reconstruction of 𝑍 and 𝑇  in the particles neighbourhood 
shows that the PDF of 𝑇  predictions follows the DNS values very 
well. However, over-/under-estimation at lean/rich mixtures exists for 
the PDF of mixture fraction at particle positions. Such a behaviour is 
attributed to the weight of individual loss function components. These 
hyper-parameters can be tuned via e.g. Bayesian hyper-parameter 
optimisation techniques which is the focus of future studies.

Novelty and significance statement

1. Super-resolution (SR), an advanced deconvolution method based 
on machine-learning, is applied for the first time to turbulent 
two-way coupled particle-laden flows.

2. A new SR model is proposed to consider particle-flow interac-
tions.

3. The pyrolysis in pulverised biomass combustion (PBC), an ap-
pealing option for sustainable energy transition, is considered.

4. Multiple pulverised biomass particle-laden DNSs are conducted 
to create the training/testing dataset, which is a valuable particle-
laden dataset for future ML studies.
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