KIT | KIT-Bibliothek | Impressum | Datenschutz

deadtrees.earth — An open-access and interactive database for centimeter-scale aerial imagery to uncover global tree mortality dynamics

Mosig, Clemens ; Vajna-Jehle, Janusch ; Mahecha, Miguel D.; Cheng, Yan; Hartmann, Henrik; Montero, David; Junttila, Samuli; Horion, Stéphanie; Schwenke, Mirela Beloiu; Koontz, Michael J.; Maulud, Khairul Nizam Abdul; Adu-Bredu, Stephen; Al-Halbouni, Djamil; Ali, Muhammad; Allen, Matthew; Altman, Jan; Amorós, Lot; Angiolini, Claudia; Astrup, Rasmus; ... mehr

Abstract (englisch):

Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to map overstory tree mortality in a consistent manner over space and time. However, global-scale machine learning requires broad training data covering a wide range of environmental settings and forest types. Low altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a comprehensive reference dataset to uncover tree mortality patterns from local to global scales using space-based Earth observation data and machine learning models. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187951
Veröffentlicht am 03.12.2025
Originalveröffentlichung
DOI: 10.1016/j.rse.2025.115027
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Institut für Wasser und Umwelt (IWU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 0034-4257, 1879-0704
KITopen-ID: 1000187951
Erschienen in Remote Sensing of Environment
Verlag Elsevier
Band 332
Seiten 115027
Schlagwörter Orthophoto, Drone, Tree mortality, Remote sensing, Database, Citizen science, Forests, Open-access
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page