KIT | KIT-Bibliothek | Impressum | Datenschutz

Global, multi-scale standing deadwood segmentation in centimeter-scale aerial images

Möhring, Jakobus; Kattenborn, Teja; Mahecha, Miguel D.; Cheng, Yan; Beloiu Schwenke, Mirela; Cloutier, Myriam; Denter, Martin; Frey, Julian; Gassilloud, Matthias; Göritz, Anna; Hempel, Jan; Horion, Stéphanie; Jucker, Tommaso; Junttila, Samuli; Khatri-Chhetri, Pratima; Korznikov, Kirill; Kruse, Stefan; Laliberté, Etienne; Maroschek, Michael; ... mehr

Abstract (englisch):

With tree mortality rates rising across many regions of the world, efficient methods to map dead trees are becoming increasingly important to monitor forest dieback, assess ecological impacts, and guide management strategies. Deep learning-based pattern recognition combined with the high spatial detail of aerial images from drones or airplanes provides an avenue for mapping dead tree crowns or partial canopy dieback, collectively referred to as standing deadwood. However, current methods for mapping standing deadwood are limited to specific biomes or image resolutions. Here, we present a transformer-based semantic segmentation model that generalizes across forest biomes and a wide range of image resolutions (1–28 cm) for mapping both dead tree crowns and partial canopy dieback. Our approach combines a SegFormer-based transformer architecture for image feature extraction and Focal Tversky Loss to mitigate class imbalance. We used a globally distributed crowd-sourced dataset of 434 high-resolution aerial images and manual delineations of standing deadwood of vastly varying quality. The orthophotos span all major forest biomes and cover 10,778 hectares. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187956
Veröffentlicht am 03.12.2025
Originalveröffentlichung
DOI: 10.1016/j.ophoto.2025.100104
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 2667-3932
KITopen-ID: 1000187956
Erschienen in ISPRS Open Journal of Photogrammetry and Remote Sensing
Verlag Elsevier
Band 18
Seiten 100104
Schlagwörter Standing deadwood, Aerial images, Orthophotos, Centimeter-scale images, Remote sensing, Tree mortality
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page