KIT | KIT-Bibliothek | Impressum | Datenschutz

Five years of GOSAT-2 retrievals with RemoTeC: XCO$_2$ and XCH$_4$ data products with quality filtering by machine learning

Barr, Andrew Gerald ; Landgraf, Jochen; Martinez-Velarte, Mari; Vrekoussis, Mihalis; Sussmann, Ralf 1; Morino, Isamu; Strong, Kimberly; Zhou, Minqiang; Velazco, Voltaire A.; Ohyama, Hirofumi; Warneke, Thorsten; Hase, Frank 2,3; Borsdorff, Tobias
1 Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)
3 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Accurately measuring greenhouse gas concentrations to identify regional sources and sinks is essential for effectively monitoring and mitigating their impact on the Earth’s changing climate. In this article we present the scientific data products of XCO$_2$ and XCH$_4$, retrieved with RemoTeC, from the Greenhouse Gases Observing Satellite-2 (GOSAT-2), which span a time range of 5 years. GOSAT2 has the capability to measure total columns of CO$_2$ and CH$_4$ to the necessary requirements set by the Global Climate Observing System (GCOS), who define said requirements as accuracy < 10 ppb and < 0.5 ppm for XCH$_4$ and XCO$_2$ respectively, and stability of < 3 ppb yr$^{−1}$ and < 0.5 ppm yr$^{−1}$ for XCH$_4$ and XCO$_2$ respectively.

Central to the quality of the XCO$_2$ and XCH$_4$ datasets is the post retrieval quality flagging step. Previous versions of RemoTeC products have relied on threshold filtering, flagging data using boundary conditions from a list of retrieval parameters. We present a novel quality filtering approach utilising a machine learning technique known as Random Forest Classifier (RFC) models. This method is developed under the European Space Agency’s (ESA) Climate Change Initiative+ (CCI+) program and applied to data from GOSAT-2. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187962
Veröffentlicht am 03.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1867-1381, 1867-8548
KITopen-ID: 1000187962
HGF-Programm 12.11.13 (POF IV, LK 01) Long-term trends of global atmospheric composition
Erschienen in Atmospheric Measurement Techniques
Verlag Copernicus Publications
Band 18
Heft 21
Seiten 6093–6123
Vorab online veröffentlicht am 04.11.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page