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d Motivation
d Modeling of plastic pyrolysis
o Single-particle model (OD)
o Particle-resolved simulation (3D)
o Eulerian-Lagrangian simulation of fluidized bed (3D)
o Homogeneous reactor model (reduced-order, OD)

O Summary
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I Why modeling plastic pyrolysis

Plastic waste

0 460 Mt plastic waste per year, 9% recycled
O Chemical recycling: converting plastic waste into secondary raw materials
= Capable of mixed/contaminated plastics
O Challenges
= High cost for large-scale experiments Pyrolysis oil

http://dx.doi.org/10.1039/d3ra08150h

= Real-flow effects
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| 1. single-particle model (OD)

Q Ideal, thermally-thin/homogeneous

O Heat transfer vs. pyrolysis reaction
Heat
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F. Zhang et al. Numerical simulation of thermal decomposition of
polyethylene with a single-particle model. In “Advances in
Computational Heat and Mass Transfer”, vol. 1, Springer Cham, 2024.
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I 2. Particle-resolved simulation (3D)

O Non-ideal, thermally-thick O Large deviations between particle-resolved
O Eulerian-Eulerian simulation and Lagrangian methods for large particles
O Resolution of particle-internal gradients O Significant impact of particle shape

and boundary layers
dP =

Sphere
Cyl./transv.

Cyl./vertical
Shell
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Zhang et al., Particle-resolved simulation of pyrolysis process of a single plastic particle. Heat Mass Transf. 2025.
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I 3. Eulerian-Lagrangian simulation of fluidized bed - setups

Fluidized bed
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I 3. Eulerian-Lagrangian simulation of fluidized bed - hydrodynamics

0 Good agreement with experiments for pressure drop & bed height
Specific kinetic energy
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0.35 Zhang et al. Assessment of dynamic characteristics of fluidized beds via

numerical simulations. Phys. Fluids 2024.
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I 3. Eulerian-Lagrangian simulation of fluidized bed - up-scaling

O Transition from single- to multiple-column bubbling while up-scaling
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I 3. Eulerian-Lagrangian simulation of conical spouted fluidized bed

BFB
® Conical reactor wall ® Higher kinetic energy than BFB
® High gas velocity Ug csrg >> Ug grs — Avoid defluidization and clogging
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I 4. Homogeneous reactor model (reduced-order, OD)

Heat
transfer

—)

Particle phase

= Spherical/thermally-thin

= Continuous feeding

= Mass & energy balance for
each individual particle

Plastic

mG,outJ TR

Plastic

Reactor phase

» Fluidized bed or
stirred reactor

= External heating

= Energy balance

Significantly reduced
computing time while
retaining overall
accuracy

Energy balance of reactor
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I Conclusion

® Progresses

® Challenges

® Future trends
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Homogeneous particle
Resolved particle
Fluidized bed
Homogeneous reactor

Particle morphology
Thermo-physics
Reaction kinetics
Multi-scale

Reduced-order model
Data-driven/ML model

heat transfer vs. chemical reaction

particle morphology

hydrodynamics, scale-up, conical spouted bed
improved computing efficiency

shape, agglomeration, attrition, breakage ...
melting, heat transfer, thermo-physical data ...
random chain break, heterogeneous reaction ...
disparity between length and time scales

mixed plastics, size distribution, oscillatory feeding ...
hydrodynamics/heat transfer/pyrolysis, scale-up ...

Thank you for listening!
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