KIT | KIT-Bibliothek | Impressum | Datenschutz

Satellite-free droplet formation in material jetting via rheology-driven waveform modelling approach

Chen, Karin J. ORCID iD icon 1,2; Hagenmeyer, Veit ORCID iD icon 2; Elkaseer, Ahmed 2
1 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
2 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Stable, satellite-free droplet ejection is essential for high-resolution material jetting (also known as 3D inkjet printing). Existing “printability windows” often fail to predict satellite formation accurately, as they neglect non-Newtonian fluid behaviour and waveform dynamics. This study presents a fast-track, experiment-driven approach to identify single-droplet waveform parameters, namely pulse width and driving voltage, from rheological data of polymer inks across different jetting temperatures, eliminating tedious drop-watching trials. Three UV-curable acrylate inks are systematically characterized for complex viscosity, viscoelasticity, relaxation time, dynamic surface tension, oscillation and damping behaviour, and density at five temperatures using a high-frequency squeeze-flow rheometer and bubble tensiometer. Cross, Hua & Rosen, Maxwell, Arrhenius, and Eötvös models are applied to extrapolate these properties to the inkjet regime (∼10$^5$ s$^{−1}$ shear rate, <1 ms surface age). A correlation between droplet velocity and driving voltage, dependent on material properties, is established. Satellite formation is governed almost exclusively by droplet velocity, with distinct regimes: <3 m/s (no satellite), 3–3.8 m/s (one satellite). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188015
Veröffentlicht am 09.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 0264-1275
KITopen-ID: 1000188015
Erschienen in Materials & Design
Verlag Elsevier
Seiten 115252
Vorab online veröffentlicht am 02.12.2025
Schlagwörter Material Jetting, 3D inkjet printing, Viscoelastic non-Newtonian polymer Inks, Rheology–driven waveform optimisation, Satellite-free droplet formation, Regression modelling
Nachgewiesen in Scopus
Dimensions
OpenAlex
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page