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Abstract—The behavior of grid-connected converters is de-
fined by their control systems over a wide frequency band.
Understanding the impact of the control design on the converter
output impedance is thus essential. In the lower frequency
range, asymmetric control elements such as the phase-locked
loop (PLL) or DC link control introduce frequency coupling,
resulting in a multiple-input multiple-output (MIMO) system
structure. Deriving the MIMO converter impedance model can be
a complex and demanding task. This paper presents a structured
approach to model the converter output impedance based on its
signal-flow graph that accounts for asymmetric control loops
and frequency coupling. The technique is applied to analyze
the impedance of a real converter system, focusing on the low-
frequency range. The obtained analytical impedance curves are
validated by experimental impedance measurements that capture
frequency coupling. Finally, the validated converter impedance
matrix is used to assess and mitigate a low-frequency instability
observed in a power hardware-in-the-loop (PHIL) setup.

Index Terms—Converter control, stability analysis, harmonic
stability, converter impedance measurement, frequency coupling

I. INTRODUCTION

The ongoing energy transition includes a shift towards more
power electronic components in the electrical grid. This affects
both the generation and the load side, as well as the integration
of storage systems. All of these new installations contain
control systems that have been found to interact with each
other and with the grid under certain circumstances [1]. The
impedance-based stability criterion is used to assess unstable
system conditions and has already been studied extensively
[2], [3]. Knowledge about the converter output impedance and
how it is affected by the control system is therefore highly
relevant. As the converter controls act on multiple timescales
with different control loops, oscillations may occur in a wide
frequency range [1]. In the high-frequency range, the converter

impedance is defined by the grid filter components and the
current controller. These elements show symmetric behavior in
the dq-frame and can be transformed into decoupled positive
and negative sequence impedances [4]. In contrast, the phase-
locked loop (PLL) and the DC link voltage control are
asymmetric control elements that impact the impedance in the
low-frequency range. This results in a converter impedance
that introduces couplings between the positive and nega-
tive sequences at different frequencies. Hence, the converter
impedance needs to be described using a transfer matrix to
model the sequence and frequency coupling [5]. In previous
works, the impedance matrix is derived by first formulating
a state-space model [6], by reformulation and substitution of
the system equations [5], or directly derived from the control
structure without further detail [7]. All of these methods result
in valid converter impedances, but may be complex to use
without sufficient experience and without clear instructions
on how they need to be adapted according to the investigated
system. Related works have shown the benefit of using signal-
flow graphs (SFG) to determine converter impedances and
system transfer functions in the single-input single-output case
[8]–[10]. However, when sequence and frequency couplings in
the converter impedance are considered, these techniques are
no longer valid.

The contribution of this paper is a structured approach
to model the converter impedance based on its signal-flow
graph. The method lists explicit step-by-step instructions and
results in an impedance matrix that models the frequency
coupling. The procedure is applied to derive the impedance
for a 50 kHz SiC grid-connected converter with a focus on
the low-frequency range with asymmetric outer control loops.
The obtained impedance matrix is then validated with exper-
imental impedance measurements that capture the frequency



coupling. Finally, the validated impedance matrix is utilized
to assess and mitigate a low-frequency instability observed in
a laboratory PHIL setup.

II. CONVERTER IMPEDANCE MODEL

A. Converter System and Signal-Flow Graph

The converter system considered in this paper is depicted in
Fig. 1. It consists of a two-level converter connected to the grid
using an LCL filter. Relevant system parameters are listed in
Table I. The investigated converter control implemented in the
grid-aligned dq-frame is shown in Fig. 2. The park transform is
applied using the grid phase angle θ identified by the PLL. The
DC link voltage controller Gvc(s) = kvc,p + kvc,i/s defines
the d-component of the current setpoint iset,d, while the q-
component iset,q can be selected as desired for reactive power
exchange. The setpoints for the grid current ig are tracked
by the current controller Gcc(s) = kcc,p + kcc,i/s, which
for the sake of simplicity does not include decoupling terms.
Additionally, a proportional PCC voltage feed-forward with
Gff = kff is added to the current controller output in the
stationary αβ-frame. The resulting voltage output is affected
by the control and PWM delay Gd(s) = e−Tds.

In Fig. 3, the signal-flow graph of the presented control
structure is shown. The graph also includes the LCL filter
and DC link dynamics. Note that the path gains are 2x2
transfer matrices to describe the couplings between the d-
and q-components, as well as control parts that do not act
symmetrically on both components. These include the PLL
effects on the park transform in both directions, which are
modeled according to [5], and the DC link dynamics:

GDC(s) =

[
1/(sCDC) 0

0 0

]
gDC (1)

GPLL(s) =

[
0 −HPLL(s)Iq,op

0 HPLL(s)Id,op

]
(2)

(3)

YPLL(s) =

[
0 −HPLL(s)Vcq,op

0 HPLL(s)Vcd,op

]
(4)

HPLL(s) =
GPI,PLL(s)

s + GPI,PLL(s)
(5)

GPI,PLL(s) = kPLL,p +
kPLL,i

s
(6)

Idq,op are the steady-state operating point values of the grid
current and Vcdq,op the steady-state control output voltages.

TABLE I
RELEVANT SYSTEM PARAMETERS

Parameter Symbol Value
Converter-side LCL inductance Lfi 100 µH

Grid-side LCL inductance Lfg 50 µH
LCL filter capacitance Cf 13.5 µF
DC link capacitance CDC 1.4mF

DC link voltage setpoint vDC,set 650V
Switching and sampling frequency fsw 50 kHz
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Fig. 1. Converter with LCL filter and DC link
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Fig. 2. Converter control structure

Note that this control output voltage differs from the steady-
state grid voltage when using PCC voltage feed-forward. To
model the DC link dynamics, the steady-state q-component of
the grid voltage VPCC,q is assumed to be zero such that the
DC current is linearized to

iDC = gDC ii,d with gDC =
3

2

VPCC,d

vDC,set
. (7)

B. Impedance Derivation using Matrix Signal-Flow Graph

Mason’s gain formula provides a convenient way to de-
termine transfer functions based on a signal-flow graph, es-
pecially for systems with multiple and nested loops. For
MIMO systems, the noncommutative property of the transfer
matrices requires a generalized form called forward return
loop (FRL) method [11], [12]. It consists of the following
steps to determine the desired transfer matrix T :

1) Collect all forward paths from the input node a to the
output node b.

2) Determine the loop gain Sk
i for each node i along path k.

First, split all nodes on path k between node i and the
output node b. The loop gain Sk

i is thus path-dependent.
Then split node i into an input and output node and
recursively compute the transfer matrix between them.

3) Determine the node factors along each path k to Nk
i =

(I − Sk
i )

−1
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Fig. 3. Signal-flow graph of converter control and dynamics



4) Form the path product Pk. Starting at the output node,
form the product using the SFG edge matrices and the
node factors.

5) Obtain T as the sum all path products Pk.
The procedure can be formally described as:

T =
∑
k

Pk with Pk =

1∏
i=L

Nk
i A

k
i and Nk

i = (I − Sk
i )

−1,

where Ak
i is the ith transfer matrix on path k with length L.

The FRL method is now applied to the SFG shown in Fig. 3
with T = −Yi,dq from node vPCC to node ig:

P1 = NigYLfg(−I) (8)
P2 = NigYLfgNvc ZCf Nii YLfi Gd Gff (9)
P3 = NigYLfgNvc ZCf Nii YLfi Gd GPLL (10)
P4 = NigYLfgNvc ZCf Nii YLfi Gd Gcc YPLL (11)

Nii = (I − YLfi GdGccGvcGDC)
−1 (12)

Nvc = (I + ZCf NiiYLfi)
−1 (13)

Nig = (I + YLfg NvcZCfNiiYLfiGdGcc +

YLfg NvcZCf)
−1 (14)

In this case, the node factors Nk
i are identical for all forward

paths. The converter output impedance Zi,dq is then deter-
mined to

Zi,dq = Y −1
i,dq with Yi,dq = −(P1 + P2 + P3 + P4).

C. Reference Frame Transformations

The converter controls and thus also the signal-flow graph
in Fig. 3 are formulated in the dq-frame. The transfer matrices
for the passive components YLfi, ZCf and YLfg are defined in
the αβ-frame and need to be transformed into the dq-frame.
Similarly, this paper considers the converter output impedance
in the stationary αβ-frame. To this end, the reference frame
transformations described in [4], [5] are applied:

Zi,pn(s) = AZ Zi,dq(s)A
−1
Z with AZ =

1√
2

[
1 j

1 −j

]
(15)

This results in the impedance definition[
Vp(s+)

Vn(s−)

]
=

[
Zpp(s) Zpn(s)

Znp(s) Znn(s)

]
︸ ︷︷ ︸

Zi,pn(s)

[
Ip(s+)

In(s−)

]
, (16)

with s+ = s + ω0, s− = s − ω0 and ω0 as the fundamental
frequency. In this notation, the sequence and frequency cou-
pling become apparent with the off-diagonal entries Zpn(s)
and Znp(s). A drawback of this notation is the possibility
of a negative sequence with a negative frequency, which is
equal to a positive sequence at the same frequency [5]. This
implies that a positive sequence at frequency ω below twice
the fundamental frequency ω0 will result in another positive
sequence at the mirror frequency 2ω0 − ω.
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Fig. 4. Impact of DC link capacitance on analytical positive sequence
converter impedance Zpp

D. Parameter Influence on Analytical Converter Impedance

The derived converter impedance model can be used to
investigate the impact of selected control or hardware param-
eters. For example, Fig. 4 shows the influence of the DC
link capacitance CDC on the positive sequence impedance.
This influence is of interest, as other devices connected to the
DC bus will change the total capacitance and therefore the
converter output impedance Zi seen from the AC side.

III. MEASUREMENT VALIDATION

This section validates the impedance model derived using
the presented method through impedance measurements that
account for frequency coupling effects. Furthermore, instabil-
ities predicted by the model are confirmed in a PHIL setup
and mitigated by control adjustments.

A. Measurement Setup and Impedance Measurement

The measurement setup is shown in Fig. 5. An Egston
Power CSU100 grid emulator provides a 400 V / 50 Hz grid.
Additionally, the voltage contains a superimposed excitation
at the investigated frequencies from 12.5 Hz to 200 Hz in
both the positive and negative sequence with an amplitude of
Ve = 3V. The converter system to be measured is connected
to the emulator, where the control structure shown in Fig. 2
is implemented on an Artix™-7 FPGA. The investigated
control parameters can be tuned online to enable subsequent
measurement runs without reprogramming the FPGA.

The converter impedance is determined based on the con-
verter current response to voltage excitations. The frequency
coupling property requires also considering the relevant mirror
frequency response in the correct sequence. This is demon-
strated in Fig. 6, where the operating point is set to Id,op =
Iq,op = 0A and a positive sequence component at 125 Hz is
excited. It results in a positive sequence current response at
the frequency, but also a negative sequence component visible
in the peaks (ic → ib → ia) at 25 Hz as predicted by the
impedance model in (16). With two orthogonal excitation vec-



Fig. 5. Impedance measurement and PHIL setup
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Fig. 6. Current response to voltage excitation with frequency coupling

tors for every frequency and the definitions from Section II-C,
the converter impedance matrix is calculated as

Zi,pn(s)=

[
Zpp(s)Zpn(s)

Znp(s)Znn(s)

]
(17)

=

[
Vp1(s+) Vp2(s+)

Vn1(s−)Vn2(s−)

] [
Ip1(s+) Ip2(s+)

In1(s−) In2(s−)

]−1

.

For the following impedance measurements, the default
control parameters and operating point values from Table II
are used, if not otherwise specified. Results for the extracted
converter impedances are shown in Fig. 7, where the band-
width of the PLL is varied. The impedance model is depicted
by solid lines and is in good agreement with the impedance
measurements represented by markers, both in phase and in
magnitude for all considered PLL bandwidths. At 50 Hz, the

TABLE II
RELEVANT CONTROL AND OPERATING POINT PARAMETERS

Parameter Symbol Value
Current control proportional gain kcc,p 1

Current control integral gain kcc,i 75
PCC voltage feed-forward gain kff 0

DC link control proportional gain kvc,p 1.5
DC link control integral gain kvc,i 256

PLL proportional gain kPLL,p 0.785
PLL integral gain kPLL,i 3.14

Operating point currents Id,op, Iq,op 0A
PCC voltage VPCC,d 326V
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integral part of the current controller Gcc results in a high
impedance magnitude and multiple phase wraps.

In Fig. 8, the bandwidth of the DC link voltage con-
troller Gvc is varied. Again, the measured positive sequence
impedance shows a good match with the impedance model.
The analytical model and the measurements show the strong
influence of the considered control elements on the output
impedance. In both cases, increasing the bandwidth raises
the magnitude and lowers the phase of the positive sequence
impedance Zpp.

B. Instability Assessment and Mitigation in a PHIL setup

In the following, the converter impedances obtained by
analytical modeling and impedance measurements will be
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used to assess and mitigate an instability in a PHIL setup.
In case the positive and negative sequence impedances can
be approximated to be decoupled, impedance curves in the
positive and negative sequence as given in the preceding sec-
tion suffice for a stability assessment. Due to the asymmetric
controls described in section II-A and the resulting frequency
coupling, this is not valid for the investigated converter system.
To assess the stability of a MIMO system, the generalized
Nyquist criterion (GNC) is used [3]. In a simplified form and
applied to the considered grid-converter system, it states that
the system is stable if the traces of the frequency-dependent
eigenvalues of L(s) = Zgrid,pn(s)Z

−1
i,pn(s) do not encircle the

critical point (−1, 0). Fig. 9 shows the Nyquist diagram for
such eigenvalues, assuming an inductive grid. A resistance of
Rgrid = 4Ω is placed in parallel to the grid inductance to
avoid instabilities in the PHIL setup. The converter DC link
voltage controller Gvc is parametrized for a bandwidth of
fVC = 50Hz. The plot shows that the controller parameters
provide low damping for Lgrid = 5mH, which further dete-
riorates for Lgrid = 5.5mH. The eigenvalue trace is closest
to the critical point at a frequency of fcrit = 17Hz using the
notation in (16). Enabling partial PCC voltage feed-forward
with kFF = 0.25 significantly improves the system stability at

the same grid inductance. Also shown in Fig. 9 is the influence
of frequency coupling effects. For the critical configuration,
the dashed red line shows the resulting eigenvalue trace when
neglecting the frequency coupling by setting the off-diagonal
terms in Zi,pn(s) to zero. The curve erroneously indicates a
stable system and highlights the need to include frequency
coupling for the stability assessment.

The stability assessments for the grid and control configura-
tions investigated analytically in Fig. 9 are validated in a PHIL
setup. An Opal-RT OP4510 real-time simulator connected to
the grid emulator is used to emulate the grid impedance.
To excite the system, the grid voltage is stepped down by
30V at t = 0ms. Fig. 10 shows associated measurements
for the considered scenarios. The system response in the
DC link voltage vDC confirms the stability assessments using
the GNC. Increasing the grid inductance to the critical value of
Lgrid = 5.5mH results in oscillations with near-zero damping
at fcrit = 17Hz. The oscillations are effectively damped when
enabling partial PCC voltage feed-forward with kff = 0.25.

IV. CONCLUSION

This paper presents a structured approach to derive the ana-
lytical converter output impedance. Importantly, this method is
applicable to control structures with asymmetric elements, that
result in a MIMO control structure. The proposed impedance
derivation is well suited to systems with multiple forward paths
and feedback loops, formed by passive components, control
loops and indirect effects such as the PLL influence. While the
presented method can result in complex analytical terms, this
is inevitable for MIMO systems with multiple feedback loops
and is effectively handled by computer algebra systems. The
system description based on a signal-flow graph enables ver-
satile integration of modifications to the control structure such
as an additional feed-forward path. By following the outlined
step-by-step instructions, the desired converter impedances
are obtained. Impedance measurements that include frequency
coupling are in good agreement with the analytical converter
impedances both in magnitude and in phase over the inves-
tigated frequency range and for control parameter variations.
The analysis and mitigation of an instability in a PHIL setup
further validate the derived analytical converter impedance and
its frequency coupling characteristics, as well as highlighting
the necessity of considering these coupling effects.
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