
Are Your GPU Atomics Secretly Contending?
Peter Maucher

Karlsruhe Institute of Technology
Germany

Nick Djerfi
Karlsruhe Institute of Technology

Germany

Lennard Kittner
Karlsruhe Institute of Technology

Germany

Lukas Werling
Karlsruhe Institute of Technology

Germany

Frank Bellosa
Karlsruhe Institute of Technology

Germany

Abstract
GPU applications use atomic operations to coordinate data
access in highly parallel code. However, relying on previous
experiences and due to limited documentation, program-
mers resort to guidelines instead of concrete metrics to limit
potential performance influences.
In this paper, we introduce a GPU memory-subsystem

microbenchmark suite for analyzing GPU atomic operations.
Based on the benchmark results, we discuss two particu-
lar guidelines, namely: “use only one thread per warp to
access an atomic” and “place two atomic variables on differ-
ent cache lines to avoid contention.” We demonstrate where
these guidelines are effective and where actual hardware
behavior diverges.

CCS Concepts: • Computer systems organization →
Processors and memory architectures; • Computing
methodologies → Shared memory algorithms; Graph-
ics processors; • Software and its engineering→Process
synchronization; • General and reference→Measure-
ment.

Keywords: GPU, Atomic Operations, Atomic Contention,
Synchronization, Microbenchmarks

ACM Reference Format:
PeterMaucher, NickDjerfi, Lennard Kittner, LukasWerling, and Frank
Bellosa. 2025. Are Your GPU Atomics Secretly Contending?. In 13th
Workshop on Programming Languages and Operating Systems (PLOS
’25), October 13–16, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3764860.3768338

1 Introduction
GPUs provide highly parallel computing capabilities and
are widely used in high-performance and AI applications
[10]. Various parallel GPU algorithms [3, 13–16, 29, 30, 38]
used in areas such as medicine [17], image processing [9, 11],

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2225-7/25/10
https://doi.org/10.1145/3764860.3768338

AI training [37], or operating systems [25] implement fine-
grained communication between threads with atomic oper-
ations. On GPUs, atomic operations provide read-modify-
write operations on single words (up to 128 bits) [21]. The
design characteristics of atomic operations on GPUs differ
from those on CPUs due to the higher level of parallelism.
For example, modern GPUs incorporate dedicated atomic
units at the global cache level (L2 or L3), which serialize
atomic operations [5, 6, 24, 26]. This unique role means that
the correct usage of atomic operations can strongly influ-
ence the performance of GPU applications, especially since
the degree of parallel accesses and thus contention strongly
influences runtime behavior. Prior works have explored the
performance implications [4, 6, 13, 19, 32]. However, we find
that these studies are limited in scope, with imprecise bench-
marks on outdated hardware.

As a result of both limited vendor documentation and lim-
ited prior work, programmers instead rely on guidelines to
reduce the effects of contention in their programs. We built
a suite of microbenchmarks to evaluate some of these guide-
lines, which we used to construct synchronization primitives
for accelerating operating system components by moving
them to the GPU. We found that these guidelines lack the
nuances that actual hardware exhibits.
In this paper, we present results from our suite of mi-

crobenchmarks executed on both AMD and NVIDIA GPUs.
Our main goal is to help programmers develop a better un-
derstanding of atomic operation performance. The results
in this paper and in the additional benchmarks show some
unexpected behavior with atomic operations and memory
fence operations which can influence design rules. Thus, we
encourage developers to challenge and benchmark their as-
sumptions regarding atomic operations on GPU. We show
how to transfer guidelines into microbenchmarks, and how
to determine whether these guidelines hold.
Together with this paper, we publish our our suite of

benchmarks1: We provide benchmarks for atomic opera-
tions, memory fences and special memory operations. Each
of these categories is tested with different access pattern to
develop a description of the behavior of the memory subsys-
tem. However, we leave the construction of a model of the
underlying hardware for future work.

1https://github.com/KIT-OSGroup/GPUAtomicContention

84

https://doi.org/10.1145/3764860.3768338
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764860.3768338
https://github.com/KIT-OSGroup/GPUAtomicContention
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3764860.3768338&domain=pdf&date_stamp=2025-10-13


PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Maucher et al.

In our discussion, we focus on atomic operations given
their use even without memory fences. In particular, in ad-
dition to measuring baseline performance, we discuss the
following guidelines to increase the performance of atomic
operations:

• Avoid accessing a single atomic variable with multiple
threads in the same warp: On the GPU, multiple threads
work in lockstep in an organizational unit called a
warp [21]. To reduce the number of threads contending
on an atomic variable, previous works build warp-
level synchronization schemes to manually coalesce
accesses [4, 32]. However, hardware units have some
capacity to reduce the serialization costs of parallel
accesses, thus sidestepping this manual work under
certain circumstances.

• To avoid contention, place your atomic variables in differ-
ent cache lines: Atomic operations on GPUs are usually
implemented in atomic units attached to global (L2 or
L3) caches [6, 24, 26]. Therefore, one might assume
that placing atomic variables into different cache lines
routes the requests to different atomic units, which
should avoid contention resulting from requests to
two different atomic variables hitting the same unit.
Again, this common assumption [19, 25, 32] proves
somewhat correct. However, cross-contention between
independent atomic variables spaced at least one cache
line apart can still occur in multiple, unexpected cases.

We present one possible solution when implementing fu-
ture primitives, which exploits an unintuitive speedup when
accessing adjacent atomic variables from the same warp:
Real hardware is able to parallelize these accesses from the
same warp, so distributing the communication over multi-
ple atomic variables densely packed in memory reduces the
number of required accesses while keeping said accesses
fast.

To improve performance without requiring in-depth hard-
ware knowledge, programmers can use higher-level abstrac-
tions. In parallel applications, examples include synchro-
nization primitives like barriers and mutexes [4, 28, 31, 32].
Building such abstractions falls onto the operating systems
and programming languages communities. We also show
some design implications for higher-level abstractions given
the hardware behavior.

The remainder of this paper is structured as follows: First,
we introduce GPU atomics and present prior work on GPU
atomic performance and usage. Afterwards, we show the
benchmarks designed to study the assumptions presented
above. Finally, we show the benchmark results and discuss
the implications for programmers using the aforementioned
guidelines, and conclude this paper.

2 Background
GPUs are much more optimized for throughput than CPUs,
which leads to differences in compute architecture and mem-
ory layout. These differences inform the hardware design as
well as the application usage of GPU atomics.

To facilitate high parallelism with minimal hardware, 32
threads are bundled into a warp, with each thread in a warp
sharing the instruction pointer, thus executing the same
instruction. Classically, inside a warp, no synchronization
was needed as all instructions run in lockstep. However,
NVIDIA recently introduced Independent Thread Schedul-
ing [21], which somewhat relaxed this guarantee. Multiple
warps make up a thread block, an independent unit of work.
Each thread block shares a slice of local memory, a small,
directly addressable, and fast cache, and can synchronize
execution using hardware-assisted barriers. In hardware,
each block is scheduled onto the GPU equivalent of a CPU
core, called a streaming multiprocessor (SM) on NVIDIA
[21] or a compute unit (CU) on AMD [2]. GPU programs,
called kernels, consist of multiple blocks organized into a grid,
which are distributed over the entire GPU. One important
limitation here is that the programming APIs do not expose
synchronization primitives between different thread blocks,
which programmers must construct themselves from atomic
operations and optionally fences [21].
AMD and NVIDIA GPUs both expose a relaxed memory

order consistency model, which requires memory fences for
memory consistency. Additionally, to further reduce mem-
ory traffic, fences and atomic operations have scopes [22]
that limit the set of threads influenced by the fence or that
observe the result of an atomic operation. These scopes are
informed by both the memory and compute hierarchy. Local
scope is limited to a single thread block, Device covers the
whole GPU, including caches and video memory (VRAM),
and System includes the remaining devices in a compute
system, including the CPU DRAM. For consumer GPUs like
the ones we tested, this requires a pass through the PCIe
bus, and not all operations are supported on all GPUs, espe-
cially atomic operations. We focus on device-level atomic
operations, as in-depth local memory studies already exist
[34] and the device level is most important for kernel-level
synchronization. We also exclude fences in this discussion
to reduce complexity and since atomic operations are useful
without fences. However, our benchmark suite does contain
in-depth analysis of fence behavior.

3 Related Work
We present prior work on atomic operations for GPU pro-
grams.
Various previous authors have benchmarked atomic op-

erations on GPUs before. Stuart et al. and Elteir et al. dis-
cuss older architectures that differ significantly frommodern
GPUs [7, 32]. These two, as well as Jia et al., [12] discuss only

85



Are Your GPU Atomics Secretly Contending? PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

a single vendor, and do not go into the specifics of contention
on modern GPUs.
Our work follows a similar approach to McKee et al., as

they study modern GPUs from different vendors using mi-
crobenchmarks [19]. However, the details differ quite signif-
icantly: They use the higher-level Vulkan API [8] instead of
the low-level HIP API [1], and therefore need to use more
coarse-grained timings. Additionally, in Vulkan, compilers
have more influence on the code compared to HIP. Hence,
while they find results supporting the guidelines mentioned
above, they do not identify the complexities we discover.

Given the importance of synchronization, various higher-
level primitives built on GPU atomic operations exist [4, 28,
31, 32]. These works benchmark their implementations, but
on a higher level compared to our microbenchmarks.
Jin et al. discuss the trade-off between inner-warp syn-

chronization and atomic contention [13], and Dalmia et al.
discuss further assumptions that influence GPU program
design using atomic operations [4].

GPUs are an attractive target for offloading operating sys-
tem functionality. Previous works in this space used GPU
atomic operations extensively for synchronization: In BaM [25],
Qureshi et al. use atomic locks to manage a GPU-side SSD
cache for direct storage access. Pandey et al. [23] implement
GPU-side logging and checkpointing to persistent memory
using atomic operations. Yeh et al. [36] incorporate atomic
operations into a warp scheduling algorithm for low-latency
tasks with limited parallelism. Additionally, Silberstein et al.
[27] suggest using atomic operations via the PCIe bus for
CPU-GPU communication. Atomic operations through the
PCIe bus were not available when that paper was published,
but some of our tested GPUs (A1, A2) now support this fea-
ture. Maucher et al. use PCIe atomics in GPU4FS [18], to let
CPU-side clients communicate with the file system, which
is running on the GPU.

4 Microbenchmarks
To study the alignment between programmer assumptions
and actual hardware behavior, we employ microbenchmarks
specifically targeted at the atomic subsystem. We discuss
both the benchmark setup and the challenges inherent in
measuring on the GPU.

4.1 Challenges
To precisely measure the runtime of atomic operations, one
would attempt to time a single access. However, measuring
time on the GPU is difficult: On NVIDIA, a counter of ex-
ecuted instructions is available [21]. While this technique
is used in previous works [20, 35], we require actual timing
information as device-level atomic operations may leave the
clock domain of a single streaming multiprocessor. Addi-
tionally, this functionality is not present on AMD GPUs. An

alternative solution would be to time the complete kernel ex-
ecution using the functionalities offered by the APIs. Again,
this technique is widely used in prior work [7, 13, 16, 33],
but is orders of magnitude less precise than the alternatives.

Instead, we use a hardware feature present in both AMD
and NVIDIA GPUs, which provide real-time clocks in their
hardware. The resolution differs slightly between the manu-
facturers, with 40 ns on AMD and 32 ns on NVIDIA, resulting
in a resolution of approximately 100 clock cycles. However,
the resolution is too coarse to time a single access, with the
fastest we measured being 2.4 ns, so we need to repeat the
accesses multiple times per measurement. To determine the
validity of this approach, we devise a benchmark as described
in Section 4.2. We find that atomic operation timing does not
scale linearly on all GPUs, instead showing self-contention,
where one thread can contend with its own requests. The
best-case results we measure are close to those reported in
literature for similar architectures [12]. However, even in
scenarios showing self-contention in our microbenchmarks,
we expect the same effect to appear in real applications.

4.2 Baseline
To establish trust in our microbenchmarking framework as
well as to quantify the effects of contention, we construct a
baseline test with the aim of being as uncontended as possi-
ble. For this measurement, we use an unrolled loop of 128
and 1024 atomicAdd(1) accesses to a device-level atomic
variable. We run this benchmark with a single thread of a
single warp, as seen in Figure 1 (a). We measure atomic ac-
cesses instead of load/store cycles to avoid interference from
compiler and hardware optimizations. To avoid contention,
a single thread of a single warp accesses a single device-level
atomic variable, with the rest of the GPU being idle. We com-
pare the time per access between 128 and 1024 iterations to
check whether accesses are actually uncontended, as then
both microbenchmarks should show the same result.

4.3 Threads per Warp Scaling
The first guideline we study is Avoid accessing a single atomic
with multiple threads in the same warp. However, some GPUs
may implement optimizations and access coalescing in hard-
ware, as suggested by Dong et al. [6], in which case, pro-
grammers can avoid manual coalescing. To investigate this
guideline, we test a fixed number of atomic operations on
the same atomic variable for all threads of all warps. We vary
the access distribution between the number of warps, as pre-
sented in Figure 1 (b). Hence, by timing the accesses, we can
infer the slowdown due to contention. Crucially, we include
the case of one warp and one thread repeatedly accessing
the atomic variable, which extends the data points given by
the baseline. To avoid race-conditions with threads finishing
before others start and thus not actually contending, we use
multiple accesses per thread.

86



PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Maucher et al.

(a) Baseline (b) Threads per Warp (c) Direct Cross-Contention

A128×

A1024×
A

w
ar
p
1

w
ar
p
N

A

w
ar
p
1

w
ar
p
3

w
ar
p
2

A

A

stride

stride

A

w
ar
p
1

w
ar
p
3

w
ar
p
2

A

A

stride

A

stride

stride

(d) Scattered Cross-Contention

Figure 1. Overview over our microbenchmarks.

4.4 Atomic Cross Contention
In addition to contention tests on a single atomic variable, we
also investigate cross-contention between multiple atomic
variables, depending on their placement in memory. Again,
we use a fixed number of atomic operations, but we change
the access pattern: We distribute the atomic variables in
memory with a given stride, and assign each thread to access
a single atomic variable. On all of our GPUs, a cache line
is 128 B, so the access time should decrease for a stride of
at least 128 B. We execute this test in two configurations as
shown in Figure 1 (c) and (d): First, with adjacent threads
accessing the same atomic (c), and second, with adjacent
threads always accessing different atomic variables (d) as
initially suggested by McKee et al. [19].

4.5 Benchmarks Not Discussed in this Paper
Our benchmark suite includes more benchmarks than we dis-
cuss in this paper. First, we implement all benchmarks in this
paper for all applicable scopes, typically both local scope and
system scope through the PCIe bus. We optionally add mem-
ory fences for acquire or sequential memory consistency and
thread fences to synchronize the warp. We also include a
study of a simple lock constructed from atomic operations,
implemented both using bitwise or and compare and swap.
These two options enable comparisons in performance and
hardware behavior. We found that our initial implementa-
tion deadlocked on GPUs A1 and A2, possibly due to missing
Independent Thread Scheduling [21], and so our implemen-
tation contains a version working on all our tested GPUs.
We benchmark these locks with added fences for acquire and
release consistency to gather some understanding of fence
performance in scenarios containing in-memory IPC.

To work out whether our GPUs correctly support atomic
operations through the PCIe bus [27], we built a simple test
that accesses the same memory location in DRAM atomically

from both the GPU and the CPU, which we also include in
our released code.

Other than fences, we provide benchmarks for additional
memory operations.We implement two features implemented
by the GPUs but not directly exposed in the programming
APIs: store operations with explicit relaxed or sequential
memory consistency semantics and an MMIO store opera-
tion, which bypasses the caches and disables write combin-
ing, allowing for proper device interaction from the GPU
(e.g., as used by BaM [25]). Lastly, we also time accesses to
memorymarked as volatile to explore the actual performance
impact.

5 Results
We show the results of the benchmarks introduced above.

5.1 Test Systems
We test on four different GPUs, two from AMD and two
from NVIDIA, with each having a different GPU architecture
to get results that are transferable. We pick consumer-class
GPUs due to their abundance, which we list in Table 1.

Table 1. Evaluated GPUs

ID GPU #SM/CU max clock
A1 AMD RX 6950 XT 80 2310 MHz
A2 AMD RX 7900 XTX 96 2500 MHz
N1 NVIDIA RTX A4500 56 1650 MHz
N2 NVIDIA RTX 4070 46 2475 MHz

We distribute the GPUs over two different host systems
to enable parallel benchmarking of all GPUs, even with a
limited number of PCIe slots per system. We do not expect
the different hosts to influence the results, as all benchmarks
run completely on the GPU. System H1 with an AMD EPYC

87



Are Your GPU Atomics Secretly Contending? PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

9124 CPU and 64 GB of DRAM hosts GPUs A1 and N1, and
system H2 with an Intel Xeon Silver 4215 CPU and 128 GB
of DRAM hosts GPUs A2 and N2.

5.2 Baseline
In Figure 2, we establish a baseline: We show 1024 different
measurements in the order that they were conducted. In each
measurement, a single thread issues either 128 or 1024 atom-
icAdd(1) operations on a single atomic variable as described
in Section 4.2. The two manufacturers show very different
behavior here: On NVIDIA, an uncontended access takes
between 2.4 ns (N1) and 3.5 ns (N2), with no measurable
difference between 128 and 1024 accesses. Additionally, the
results are very stable, with only a small increase in runtime
possibly related to downclocking.

On AMD, however, the measurements for 128 repetitions
are higher on average, at about 6.5 ns (A1) and 7 ns (A2)
respectively, but the measurements are quite noisy and can
fall below 3 ns for both GPUs. Surprisingly, when using 1024
repetitions, the GPUs take significantly longer per access,
about 85 ns and 100 ns respectively, and the results are again
noisy. These results suggest some form of self-contention in
the AMD GPUs that also appears in later plots.

Figure 2. Baseline timing over 1024 measurements on our
four GPUs, with 128 (x) and 1024 (•) iterations of one thread
accessing one atomic variable (see Figure 1 (a)).

From these results, we draw three conclusions: First, un-
contended atomic operations are quite fast on both studied
manufacturers, so uncontended accesses to atomic variables
alone do not hurt performance significantly. Secondly, there
is an apparent possibility for a thread to contend with itself,
an effect that NVIDIA’s GPUs will also show in later exper-
iments. Third, while somewhat noisy for AMD, the results
are still within a few nanoseconds, so we will show means
over 10 runs for the remainder of this paper.

5.3 Threads per Warp Scaling
We present results for both A2 in Figure 3 and N2 in Figure 4,
as these are the faster GPUs per vendor in our test set, with
the other two closely following these results. Except with
very few threads, the runtime is proportional to the number
of threads, but is independent of the thread distribution into
warps. Both GPUs reach an upper limit in contention at about
4096 active warps, which we attribute to the GPU limit of
warps that can be concurrently scheduled. As GPU threads
run to completion, later scheduled threads do not contend
with earlier threads and the timing stays constant.

For 32 or fewer threads, both AMD and NVIDIA GPUs
show a flat line, which hints at a hardware mechanism hiding
serialization costs for parallel accesses of up to 32 requests.
Given that this behavior is warp-independent, we assume
this mechanism is located in the atomic unit, not in the GPU
core. Additionally, the plots suggest self-contention also for
NVIDIA: The baseline established earlier was approximately
3 ns, however the lower limit (for both GPUs) here is 30 ns.
The plots also show some unexpected behavior, demon-

strating that simple models do not suffice for a complete
performance picture. N2 is somewhat slower for very few
threads, a pattern not observed in N1. A2 shows two notable
characteristics: Firstly, one warp with 32 threads is slower
than one warp with 16 threads, but four warps with eight
threads each are as fast as one warp with 16 threads. A1
shows a similar behavior with 64 threads, where two warps
with 32 threads are slower than one warp with 32 threads
but as fast as four warps with 32 threads. We conclude that
A2 and A1 indeed have 32 or 64 independent atomic units,
respectively, but experience difficulty distributing these re-
sources to very few warps. Additionally, both AMD GPUs
show similar groupings of 32, 64 and 128 warps which do not
scale as linearly as other warp groups. When special-casing
for AMD GPUs, one can exploit this grouping behavior as
an area of relatively consistent contention independent of
the number of warps.

Using these plots, we mostly confirm the common wisdom
of reducing contention on the programmer side. However,
the hardware includes some optimizations that we can ex-
ploit: In the case of lightly contended atomic variables, taking
extra care to manually consolidate and later spread accesses
may not be worth the additional time, especially if only a
few threads in the warp take part in the access.

5.4 Atomic Cross Contention
Having studied the effects of a single atomic variable, an
additional consideration for synchronization primitives is
to avoid cross-contention between otherwise independent
atomic variables. We show our results in Figure 5 as the
mean of 10 runs. We observe measurement noise of approxi-
mately a factor of two per measurement, but the results are
stable across repeated executions. We expect the access time

88



PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Maucher et al.

Figure 3. Timing per atomic access on GPUA2, with varying
numbers of threads per warp accessing the same atomic
variable (see Figure 1 (b)).

Figure 4. Timing per atomic access on GPUN2, with varying
numbers of threads per warp accessing the same atomic
variable (see Figure 1 (b)).

to decrease for a stride of 128 B between atomic variables
as they are then located on different cache lines. However,
contention actually only decreases for a stride of 256 B, with
128 B showing the same behavior as 0-64 B. Similarly, con-
tention between four atomic variables only decreases for a

stride of 128 B. This implies that only warps 0 and 1 as well
as 2 and 3 contend with each other, but not all four.
Another unexpected result is that contention on AMD

GPUs rises again with a stride of 4096 B for two warps, with
more warps showing an increase in contention as soon as
two warps have a memory offset of 4096 B. Our explanation
is that the GPU uses the least significant 12 bits as a key to
select the respective atomic unit, with each warp accessing
the same unit and leaving the other units unused, an effect
also described by van den Braak et al. [34]. We verify this
assumption by rerunning one benchmark for non-power-of-
two memory strides, where the load is spread evenly and the
timings are as low as expected.

In conclusion, two atomic variables should be at least 256 B
apart to avoid cross contention between them. Additionally,
on AMD hardware, avoid using high powers of two as the
stride to distribute the load over all available atomic units.

Figure 5. Timing for an atomicAdd on GPU A2 when ac-
cessing one to many atomic variables with different memory
strides (see Figure 1 (c)).

We also study the same number of atomic variables with
each thread in a warp accessing different atomic variables,
as shown in Figure 6. First, note that for a memory stride
of zero, in both Figure 5 and Figure 6, all threads contend
on the same atomic variable, and the results shown are in
fact identical. However, for a stride of four and eight bytes,
the access time is quite a bit faster per thread as compared
to the linear case. This behavior implies that the atomic
unit can parallelize accesses by one warp if the accesses hit
different memory areas. This hardware optimization evident
in all four GPUs offers the possibility for fast communication:
one warp can efficiently communicate individual state to

89



Are Your GPU Atomics Secretly Contending? PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

other warps in dedicated atomic variables, as long as each
atomic operation hits the same unit, and other warps can
then request this information. By limiting the amount of
atomic units each warp accesses and by communicating via
other warps using a shared atomic variable, the overall level
of contention decreases.

Figure 6. Timing for an atomicAdd on GPU A2 when ac-
cessing one to many atomic variables with different memory
strides, but each warp accessing multiple atomic variables
(see Figure 1 (d)).

6 Discussion and Future Research
We study two guidelines, none of which prove to be entirely
correct or entirely incorrect.

First, using more threads in a warp does lead to increased
contention. However, there is a base level where a small
number of threads use hardware acceleration and show no
slowdown. This observation is interesting when designing
primitives that are not expected to be highly contended, like
spinlocks for short critical sections.

Second, we disprove the common assumption that atomic
variables on different cache lines do not contend, but show
that maintaining sufficient distance does indeed decrease
contention. However, even though a distance of 256 B con-
sistently avoids contention for our four tested GPUs, we
encourage testing the proper alignment for other GPUs. Ad-
ditionally, we emphasize taking care to avoid other, unex-
pected sources of cross-contention, like placing an atomic
variable at the same offset on different memory pages.

Third, we show that accessing multiple atomic variables
with the same warp is fast, so using multiple atomic variables

and spreading the work is an important building block for
future primitives.
Having shown these results, we see directions for future

research. Our analysis focuses on consumer GPUs, but evalu-
ating the benchmarks on enterprise GPUs will showwhether
the behavior discussed in this paper is universal, as we would
expect given that the microarchitectures are documented
to be similar. Additionally, our work aims to highlight is-
sues with the performance of atomic operations on the GPU.
While we investigate some phenomena, we leave a microar-
chitectural deep dive, possibly including performance coun-
ters and hardware-specific microbenchmarks, as future work.

We see another direction for future research in using the
results of this paper. First, given the obscurity and scarcity
of proper documentation, conduct an extended study of as-
sumptions and their real-world performance to offer a full
set of applicable, nuanced guidelines. Additionally, our re-
sults can help to properly implement higher-level atomic
primitives. We show that such a primitive should contain
a fast path for uncontended atomics, should spread their
communication over multiple atomic variables and should
spread these variables in particular patterns: to reduce con-
tention, spread atomic variables 256 B apart, and to increase
the amount of information communicated without perfor-
mance cost, use multiple threads in a single warp to access
adjacent atomic variables. Our benchmarking suite already
contains a straightforward spinlock implementation as a
starting point.

7 Conclusion
We investigate common programmer guidelines regarding
GPU behavior of atomic operations on bothAMDandNVIDIA
GPUs. We show that, while not entirely incorrect, real hard-
ware exhibits different behavior. We hope that this paper
spawns better abstractions tuned to actual hardware. Further-
more, our results emphasize the need to benchmark atomic
interactions in GPU applications intensely.

References
[1] AMD. 2025. Heterogenious Interface for Portability. https://rocm.

docs.amd.com/projects/HIP/en/latest/index.html
[2] AMD. 2019. RDNA 1 White Paper. https://web.archive.org/web/

20190821193406/https://www.amd.com/system/files/documents/
rdna-whitepaper.pdf

[3] Federico Busato and Nicola Bombieri. 2016. An Efficient Implementa-
tion of the Bellman-Ford Algorithm for Kepler GPU Architectures. 27,
8 (2016), 2222–2233. doi:10.1109/TPDS.2015.2485994

[4] Preyesh Dalmia, Rohan Mahapatra, Jeremy Intan, Dan Negrut, and
Matthew D. Sinclair. 2023. Improving the Scalability of GPU Synchro-
nization Primitives. 34, 1 (2023), 275–290. doi:10.1109/TPDS.2022.
3218508

[5] Preyesh Dalmia, Rohan Mahapatra, and Matthew D. Sinclair. 2022.
Only Buffer When You Need to: Reducing on-Chip GPU Traffic with
Reconfigurable Local Atomic Buffers. In 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA) (2022-04).
676–691. doi:10.1109/HPCA53966.2022.00056

90

https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://web.archive.org/web/20190821193406/https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://web.archive.org/web/20190821193406/https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://web.archive.org/web/20190821193406/https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://doi.org/10.1109/TPDS.2015.2485994
https://doi.org/10.1109/TPDS.2022.3218508
https://doi.org/10.1109/TPDS.2022.3218508
https://doi.org/10.1109/HPCA53966.2022.00056


PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Maucher et al.

[6] Rongcui Dong and Sreepathi Pai. 2025. Modeling Utilization to Iden-
tify Shared-Memory Atomic Bottlenecks. In Proceedings of the 17th
Workshop on General Purpose Processing Using GPU (New York, NY,
USA, 2025) (Gpgpu ’25). Association for Computing Machinery, 14–20.
doi:10.1145/3725798.3725801

[7] Marwa Elteir, Heshan Lin, and Wu-Chun Feng. 2011. Performance
Characterization and Optimization of Atomic Operations on AMD
Gpus. In 2011 IEEE International Conference on Cluster Computing
(2011-09). 234–243. doi:10.1109/CLUSTER.2011.34

[8] Khronos® Group. 2022. Khronos Vulkan Registry. https://registry.
khronos.org/vulkan/

[9] Juan Gómez-Luna, José María González-Linares, José Ignacio Bena-
vides, and Nicolás Guil. 2013. An Optimized Approach to Histogram
Computation on GPU. 24, 5 (2013), 899–908. doi:10.1007/s00138-012-
0443-3

[10] John L. Hennessy and David A. Patterson. 2019. Computer Architecture:
A Quantitative Approach. Elsevier.

[11] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and
Cosmin Oancea. 2020. Compiling Generalized Histograms for GPU.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (2020-11). 1–14. doi:10.1109/SC41405.
2020.00101

[12] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza.
2018. Dissecting the NVIDIA Volta GPU Architecture via Microbench-
marking. arXiv:1804.06826 [cs.DC] https://arxiv.org/abs/1804.06826

[13] Zheming Jin, Jeffrey Vetter, and Jeffrey Vetter. 2023. A Study on
Atomics-Based Integer Sum Reduction in HIP on AMD GPU. In
Workshop Proceedings of the 51st International Conference on Par-
allel Processing (Bordeaux, France and New York, NY, USA, 2023)
(ICPP Workshops ’22). Association for Computing Machinery, Arti-
cle 6. doi:10.1145/3547276.3548627

[14] Mohamed Esseghir Lalami and Didier El-Baz. 2012. GPU Imple-
mentation of the Branch and Bound Method for Knapsack Prob-
lems. In 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (2012-05). 1769–1777.
doi:10.1109/IPDPSW.2012.219

[15] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,
Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep
Dubey. 2010. Debunking the 100X GPU vs. CPU Myth: An Evaluation
of Throughput Computing on CPU and GPU. In Proceedings of the
37th Annual International Symposium on Computer Architecture (Saint-
Malo, France and New York, NY, USA, 2010) (Isca ’10). Association for
Computing Machinery, 451–460. doi:10.1145/1815961.1816021

[16] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2020. Why Gpus Are
Slow at Executing Nfas and How to Make Them Faster. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Lausanne,
Switzerland and New York, NY, USA, 2020) (Asplos ’20). Association
for Computing Machinery, 251–265. doi:10.1145/3373376.3378471

[17] William Chun Yip Lo, Tianyi David Han, Jonathan Rose, and Lothar
Lilge. 2009. GPU-accelerated Monte Carlo Simulation for Photody-
namic Therapy Treatment Planning. In Therapeutic Laser Applications
and Laser-Tissue Interactions IV (2009) (Therapeutic Laser Applications
and Laser-Tissue Interactions IV). Optica Publishing Group, 7373_13.
doi:10.1364/ECBO.2009.7373_13

[18] Peter Maucher, Lennard Kittner, Nico Rath, Gregor Lucka, Lukas Wer-
ling, Yussuf Khalil, Thorsten Gröninger, and Frank Bellosa. 2024. Full-
Scale File System Acceleration on GPU. In Tagungsband Des FG-BS
Frühjahrstreffens 2024 (2024). Gesellschaft für Informatik eV, 10–18420.

[19] Devon McKee, Tylor Sorensen, Ishita Chaturvedi, Gurpreet Dhillon,
and Sean Siddens. 2024. GPU Atomic Performance Modeling with
Microbenchmarks. (2024). https://vulkan.org/user/pages/09.events/
vulkanised-2024/vulkanised-2024-devon-mckee.pdf

[20] Xinxin Mei and Xiaowen Chu. 2016. Dissecting GPU Memory Hier-
archy through Microbenchmarking. arXiv:1509.02308 [cs.AR] https:
//arxiv.org/abs/1509.02308

[21] NVIDIA. 2025. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide

[22] NVIDIA. 2025. CUDA Memory Model. https://nvidia.github.io/cccl/
libcudacxx/extended_api/memory_model.html

[23] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM:
Leveraging Persistent Memory from a GPU. In Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New York, NY, USA,
2022) (Asplos ’22). Association for Computing Machinery, 142–156.
doi:10.1145/3503222.3507758

[24] David Patterson. 2009. The Top 10 Innovations in the New NVIDIA
Fermi Architecture, and the Top 3 Next Challenges. The Top 10 Inno-
vations in the New NVIDIA Fermi Architecture, and the Top 3 Next
Challenges. https://www.nvidia.com.tw/content/PDF/fermi_white_
papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf

[25] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon
Min, Amna Masood, Jeongmin Park, Jinjun Xiong, C. J. Newburn,
Dmitri Vainbrand, I-Hsin Chung, Michael Garland, William Dally, and
Wen-mei Hwu. 2023. GPU-initiated on-Demand High-Throughput
Storage Access in the BaM System Architecture. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (New York,
NY, USA, 2023) (Asplos 2023). Association for Computing Machinery,
325–339. doi:10.1145/3575693.3575748

[26] Tamal Saha, Abhishek Rawat, and Minh Le. [n. d.]. Fermi - A Complete
GPU Compute Architecture by NVIDIA. ([n. d.]). https://www.cs.
virginia.edu/~skadron/cs6354_f09_processors/Fermi.pptx

[27] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013.
GPUfs: Integrating a File System with GPUs. 41, 1 (2013), 485–498.
doi:10.1145/2490301.2451169

[28] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Het-
eroSync: A Benchmark Suite for Fine-Grained Synchronization on
Tightly Coupled GPUs. In 2017 IEEE International Symposium on Work-
load Characterization (IISWC) (2017-10). 239–249. doi:10.1109/IISWC.
2017.8167781

[29] Erik Sintorn and Ulf Assarsson. 2008. Fast Parallel GPU-sorting Using
a Hybrid Algorithm. 68, 10 (2008), 1381–1388. doi:10.1016/j.jpdc.2008.
05.012

[30] Rafał Skinderowicz. 2016. The GPU-based Parallel Ant Colony System.
98 (2016), 48–60. doi:10.1016/j.jpdc.2016.04.014

[31] Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakr-
ishnan, and Zvonimir Rakamarić. 2016. Portable Inter-Workgroup
Barrier Synchronisation for GPUs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Amsterdam, Netherlands and
New York, NY, USA, 2016) (Oopsla 2016). Association for Computing
Machinery, 39–58. doi:10.1145/2983990.2984032

[32] Jeff A. Stuart and John D. Owens. 2011. Efficient Synchronization
Primitives for Gpus. arXiv:1110.4623 [cs.OS] https://arxiv.org/abs/
1110.4623

[33] Ryan Taylor and Xiaoming Li. 2010. A Micro-Benchmark Suite for
AMD Gpus. In 2010 39th International Conference on Parallel Processing
Workshops (2010-09). 387–396. doi:10.1109/ICPPW.2010.59

[34] Gert-Jan van den Braak, JuanGómez-Luna, HenkCorporaal, JoséMaría
González-Linares, and Nicolás Guil. 2013. Simulation and Architecture
Improvements of Atomic Operations on GPU Scratchpad Memory. In
2013 IEEE 31st International Conference on Computer Design (ICCD)
(2013-10). 357–362. doi:10.1109/ICCD.2013.6657065

[35] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi,
and Andreas Moshovos. 2010. Demystifying GPU Microarchitecture
through Microbenchmarking. In 2010 IEEE International Symposium on

91

https://doi.org/10.1145/3725798.3725801
https://doi.org/10.1109/CLUSTER.2011.34
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://doi.org/10.1007/s00138-012-0443-3
https://doi.org/10.1007/s00138-012-0443-3
https://doi.org/10.1109/SC41405.2020.00101
https://doi.org/10.1109/SC41405.2020.00101
https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1145/3547276.3548627
https://doi.org/10.1109/IPDPSW.2012.219
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/3373376.3378471
https://doi.org/10.1364/ECBO.2009.7373_13
https://vulkan.org/user/pages/09.events/vulkanised-2024/vulkanised-2024-devon-mckee.pdf
https://vulkan.org/user/pages/09.events/vulkanised-2024/vulkanised-2024-devon-mckee.pdf
https://arxiv.org/abs/1509.02308
https://arxiv.org/abs/1509.02308
https://arxiv.org/abs/1509.02308
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://nvidia.github.io/cccl/libcudacxx/extended_api/memory_model.html
https://nvidia.github.io/cccl/libcudacxx/extended_api/memory_model.html
https://doi.org/10.1145/3503222.3507758
https://www.nvidia.com.tw/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf
https://www.nvidia.com.tw/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf
https://doi.org/10.1145/3575693.3575748
https://www.cs.virginia.edu/~skadron/cs6354_f09_processors/Fermi.pptx
https://www.cs.virginia.edu/~skadron/cs6354_f09_processors/Fermi.pptx
https://doi.org/10.1145/2490301.2451169
https://doi.org/10.1109/IISWC.2017.8167781
https://doi.org/10.1109/IISWC.2017.8167781
https://doi.org/10.1016/j.jpdc.2008.05.012
https://doi.org/10.1016/j.jpdc.2008.05.012
https://doi.org/10.1016/j.jpdc.2016.04.014
https://doi.org/10.1145/2983990.2984032
https://arxiv.org/abs/1110.4623
https://arxiv.org/abs/1110.4623
https://arxiv.org/abs/1110.4623
https://doi.org/10.1109/ICPPW.2010.59
https://doi.org/10.1109/ICCD.2013.6657065


Are Your GPU Atomics Secretly Contending? PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

Performance Analysis of Systems & Software (ISPASS) (2010-03). 235–246.
doi:10.1109/ISPASS.2010.5452013

[36] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and
Timothy G. Rogers. 2017. Pagoda: Fine-grained GPU Resource Virtu-
alization for Narrow Tasks. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Austin,
Texas, USA and New York, NY, USA, 2017) (PPoPP ’17). Association for
Computing Machinery, 221–234. doi:10.1145/3018743.3018754

[37] Huan Zhang, Si Si, and Cho-Jui Hsieh. 2017. GPU-acceleration for
Large-Scale Tree Boosting. arXiv:1706.08359 [stat.ML] https://arxiv.
org/abs/1706.08359

[38] Yongpeng Zhang, FrankMueller, Xiaohui Cui, and Thomas Potok. 2009.
GPU-accelerated Text Mining. InWorkshop on Exploiting Parallelism
Using GPUs and Other Hardware-Assisted Methods (2009). ACM Press
New York, 1–6.

92

https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1145/3018743.3018754
https://arxiv.org/abs/1706.08359
https://arxiv.org/abs/1706.08359
https://arxiv.org/abs/1706.08359

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Microbenchmarks
	4.1 Challenges
	4.2 Baseline
	4.3 Threads per Warp Scaling
	4.4 Atomic Cross Contention
	4.5 Benchmarks Not Discussed in this Paper

	5 Results
	5.1 Test Systems
	5.2 Baseline
	5.3 Threads per Warp Scaling
	5.4 Atomic Cross Contention

	6 Discussion and Future Research
	7 Conclusion
	References

