KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning Framework for Multi-Class Segmentation of Photovoltaic Systems

Krikau, Svea ORCID iD icon 1; Keller, Sina ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate mapping of photovoltaic (PV) installations supports renewable energy monitoring, capacity assessment, and policy planning. We introduce a deep learning framework for the simultaneous segmentation of rooftop (RTPV) and ground-mounted (GMPV) PV systems from 0.2m aerial imagery. The approach integrates automatically generated labels from registries and crowdsourced geographic information data with a small set of manually refined annotations, enabling scalable training with high spatial fidelity. A dual-head U-Net++ with a ResNet50 encoder jointly performs pixel-wise segmentation and image-level classification, reducing false positives in heterogeneous landscapes. Exemplarily applied to the state of Hesse, Germany, the model achieves a balanced accuracy of 87.52%, precision of 94.74%, and a recall of 82.89%, with F1-scores of 75.75% (RTPV) and 88.65% (GMPV). Coupled with solar suitability data, the results indicate rooftop PV utilization of only 3.24% statewide and 2.5% in the Dietzenbach case study. This implemented deep learning framework is the first high-resolution, single-step multi-class PV segmentation applied at the federal state scale, offering a transferable tool for large-area PV monitoring.


Verlagsausgabe §
DOI: 10.5445/IR/1000188161
Veröffentlicht am 08.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0196-2892, 1558-0644
KITopen-ID: 1000188161
Erschienen in IEEE Transactions on Geoscience and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 63
Seiten 1–12
Vorab online veröffentlicht am 04.12.2025
Schlagwörter Classification, photovoltaic (PV), remote sensing, semantic segmentation, solar energy potential, supervised learning
Nachgewiesen in OpenAlex
Scopus
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page