KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning Framework for Multi-Class Segmentation of Photovoltaic Systems

Krikau, Svea ORCID iD icon 1; Keller, Sina ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate mapping of photovoltaic (PV) installations supports renewable energy monitoring, capacity assessment, and policy planning. We introduce a deep learning framework for the simultaneous segmentation of rooftop (RTPV) and ground-mounted (GMPV) PV systems from 0.2m aerial imagery. The approach integrates automatically generated labels from registries and crowdsourced geographic information data with a small set of manually refined annotations, enabling scalable training with high spatial fidelity. A dual-head U-Net++ with a ResNet50 encoder jointly performs pixel-wise segmentation and image-level classification, reducing false positives in heterogeneous landscapes. Exemplarily applied to the state of Hesse, Germany, the model achieves a balanced accuracy of 87.52%, precision of 94.74%, and a recall of 82.89%, with F1-scores of 75.75% (RTPV) and 88.65% (GMPV). Coupled with solar suitability data, the results indicate rooftop PV utilization of only 3.24% statewide and 2.5% in the Dietzenbach case study. This implemented deep learning framework is the first high-resolution, single-step multi-class PV segmentation applied at the federal state scale, offering a transferable tool for large-area PV monitoring.


Verlagsausgabe §
DOI: 10.5445/IR/1000188161
Veröffentlicht am 08.12.2025
Originalveröffentlichung
DOI: 10.1109/TGRS.2025.3640268
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0196-2892, 1558-0644
KITopen-ID: 1000188161
Erschienen in IEEE Transactions on Geoscience and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page