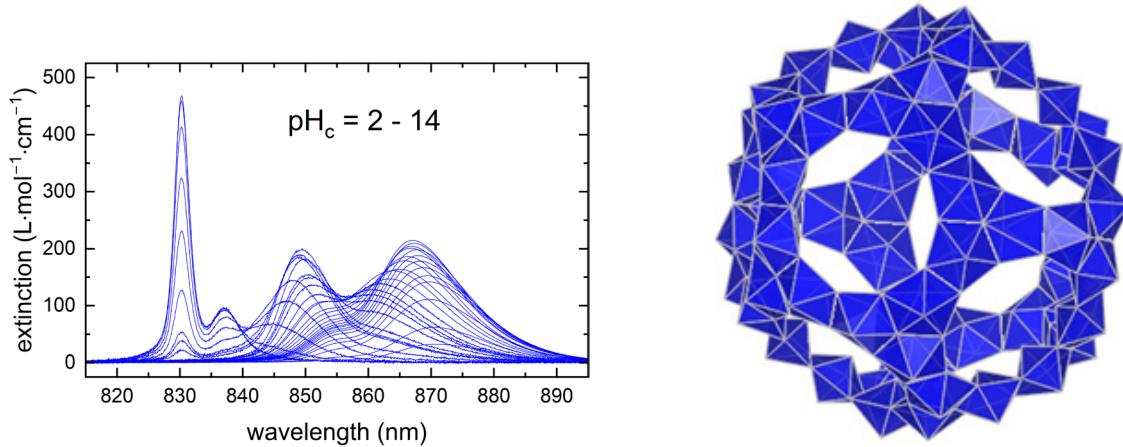


## Pu(VI) HYDROLYSIS IN AQUEOUS NaCl-NaOH SOLUTIONS

David Fellhauer <sup>(1)</sup>, Olaf Walter <sup>(2)</sup>, Roland Meier <sup>(1)</sup>, Jörg Rothe <sup>(1)</sup>, Kathy Dardenne <sup>(1)</sup>, Dieter Schild <sup>(1)</sup>, Yongheum Jo <sup>(3)</sup>, Timo Schramm <sup>(1)</sup>, Anastasiia Kuzenkova <sup>(1)</sup>, Manuel Schorer <sup>(1)</sup>, Philipp Müller <sup>(1)</sup>, Xavier Gaona <sup>(1)</sup>, Marcus Altmaier <sup>(1)</sup>, Horst Geckeis <sup>(1)</sup>

<sup>(1)</sup> Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Germany

<sup>(2)</sup> Joint Research Centre Karlsruhe, European Commission, Germany


<sup>(3)</sup> Department of Nuclear Engineering, Hanyang University, Republic of Korea

**Abstract** The hydrolysis behavior of Pu(VI) in aqueous solution shows some unique features amongst the An(VI) series. One example is the observation that U(VI) and Np(VI) readily form sparingly soluble An(VI)-(hydr)oxide solid phases in neutral to alkaline solutions, whereas the hydrolytic behavior of Pu(VI) is dominated by the formation of dissolved polynuclear hydrolysis species  $(\text{PuO}_2)_y(\text{OH})_x^{2y-x}(\text{aq})$ . The latter are metastable, even at relatively high  $[\text{Pu(VI)}]_{\text{tot}}$ , which becomes evident in the kinetically unfavored formation of Pu(VI)-(hydr)oxides. Most of the available experimental studies on Pu(VI)-OH speciation focus on systems with acidic and near-neutral  $\text{pH}_c$  values [1], fewer also covered alkaline  $\text{pH}_c$  conditions, *e.g.*, [2, 3]. Still, a (halfway) clear pictures of the polynuclear  $(\text{PuO}_2)_y(\text{OH})_x^{2y-x}(\text{aq})$  speciation arises only for acidic to neutral conditions, leaving clear gaps in the chemical understanding and thermodynamic description. In this work we have evaluated the Pu(VI)-OH speciation in 1.0 M NaCl-NaOH up to high alkalinity by Vis/NIR spectroscopy, and highlight the great importance of polynuclear Pu(VI)-OH species.

All experiments were performed under inert Ar atmosphere at  $T = 23 \pm 3^\circ\text{C}$ . Oxidation state pure  $^{242}\text{PuO}_2^{2+}$  stock solutions were used as Pu starting material. About 200 independent Pu(VI) samples with  $V = 1.5\text{--}5.0$  mL and  $I = 1.0$  M (aqueous NaCl-NaOH) were prepared and analysed by UV-Vis/NIR absorption spectroscopy (Agilent Cary 6000i, Perkin Elmer Lambda 1050+),  $\text{pH}_c$  (glass combination electrode or, for highly alkaline samples, calculated from the analytical  $[\text{OH}^-]$ ), and  $[\text{Pu(VI)}]$  after equilibration (liquid extraction, LSC). These samples were implemented in a systematic experimental framework, namely i) two  $\text{pH}_c$  dependent series where  $[\text{Pu(VI)}]$  was kept (approx.) constant at  $2.2 \cdot 10^{-4}$  M and  $5.0 \cdot 10^{-4}$  M with  $\text{pH}_c$  varied between 2.0 and 13.7, and ii) 14 concentration dependent series where  $[\text{Pu(VI)}]$  was typically varied from  $\approx 10^{-5}\text{--}10^{-3}$  M at fixed  $\text{pH}_c$  between 5.3 to 13.7. All data were systematically evaluated including the use of model-based and model-free fitting tools. An additional set of four samples with high  $[\text{Pu(VI)}]$  and selected  $\text{pH}_c$  values were investigated by Pu L<sub>3</sub>-edge XANES and EXAFS at the *INE Beamline for Radionuclide Research at the Karlsruhe Research Accelerator (KARA)* to determine structural parameters of the predominant Pu(VI)-OH species. Crystalline precipitates that occasionally formed in some of the most alkaline samples were analyzed by SEM-EDX, solid state Vis/NIR, Raman, single crystal XRD (at *JRC Karlsruhe*) and Pu L<sub>3</sub>-edge XAFS.

Figure 1a shows exemplarily the 40 absorption spectra of the pH dependent series with  $[\text{Pu(VI)}] = 2.2 \cdot 10^{-4}$  M and  $\text{pH}_c = 2.0\text{--}13.7$  in the region of the prominent Pu(VI) NIR absorption band at  $\lambda = 820\text{--}900$  nm. Under the experimental boundary conditions, unhydrolyzed Pu(VI), *i.e.*, the aquo ion  $\text{PuO}_2^{2+}$  with  $\lambda_{\text{max}} \approx 830$  nm and minor contributions from  $\text{PuO}_2\text{Cl}^+$  with  $\lambda_{\text{max}} \approx 836$  nm, is predominant for  $\text{pH}_c \approx 2\text{--}5$ . The onset of Pu(VI) hydrolysis occurring at  $\text{pH}_c \geq \approx 5$  is apparent from the decrease of the aquo ion absorbance and the formation of new peaks at  $\lambda = 840\text{--}900$  nm. Systematic evaluation of all data provided a comprehensive chemical model for the Pu(VI) hydrolysis. The initial Pu(VI)-OH species is

the dimer  $(\text{PuO}_2)_2(\text{OH})_2^{2+}$ . While its stability field is rather small, we can show that four trimeric species of the type  $(\text{PuO}_2)_3(\text{O})(\text{OH})_x^{4+x}$  with  $x = 3-6$ , briefly (3,5), (3,6), (3,7), (3,8), are dominating the aqueous Pu(VI) over wide ranges of  $\text{pH}_c \approx 6-13$  and  $[\text{Pu(VI)}]$ . Finally, the mononuclear complex  $\text{PuO}_2(\text{OH})_4^{2-}$  (1,4) starts forming at  $\text{pH}_c > 12$  representing the limiting complex for the present system. The chemical speciation and the corresponding equilibrium constants evaluated in the present work significantly enhance the present NEA-TDB model [1]. Structural parameters of the trimeric solution species were derived from the results of Pu L<sub>3</sub>-edge EXAFS measurements. Brownish needle-like crystals formed in certain samples with very high  $[\text{Pu(VI)}]$  and most alkaline  $\text{pH}_c$  values. The results from single crystal analysis reveals that this material is exclusively built from  $\text{Na-(PuO}_2)_{60}\text{-O(H)}$  cage-clusters, see Figure 1b. The formation of the latter can be understood as a self-assembly (condensation) of twenty trimers of the type  $(\text{PuO}_2)_3(\text{O})(\text{OH})_6^{2-}(\text{aq})$  which are the predominant species under the building conditions of these crystals. Additional results from SEM-EDX, solid state Vis/NIR and Raman are discussed in the presentation.



**Figure 1.** a) NIR spectra of  $2.2 \cdot 10^{-4}$  M Pu(VI) in 1.0 M NaCl-NaOH with  $\text{pH}_c = 2.0-13.7$ , b) depiction of the  $\text{Na-(PuO}_2)_{60}\text{-O(H)}$  buckyball building up needle-like  $\text{Na-Pu(VI)-O(H)}$  crystals.

The present work provides for the first time a comprehensive picture of the Pu(VI) hydrolysis and thermodynamics in aqueous solutions valid over the entire pH range, and describes a novel structural type of M-Pu(VI)-O(H) compounds. It also closes a cold case tracing back to the Manhattan project reports from 1949 where formation of the same type of crystal was initially reported without revealing its chemical nature [4].

## References

- [1] Grenthe, I., Gaona, X., Plyasunov, A. V., Rao, L., Runde, W. H., Grambow, B., Konings, R. J. M., Smith, A. L. and Moore E. E. (2008) Chemical Thermodynamics Volume 14 – Second Update on the Chemical Thermodynamics of U, Np, Pu, Am and Tc. OECD Publishing, Paris.
- [2] Reilly, S. D. and Neu, M. P. (2006). Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. Inorg. Chem. 45: 1839-1846
- [3] Rao, L., Tian, G., Di Bernardo, P. and Zanonato, P. (2011). Hydrolysis of plutonium(VI) at variable temperatures (283–343 K). Chem. Eur. J. 17: 10985-10993
- [4] Connick, R. E., McVey, W. H. and Sheline, G. E. (1949). Note on the stability of plutonium(VI) in alkaline solution. Paper 3.150 in The Transuranium Elements, McGraw-Hill, New York.