

Retention of $^{14}\text{CO}_3^{2-}$ by hydrated cement and calcite: impact of ISA and chloride

R. E. GUIDONE¹, N. HUBER¹, T. SITTEL¹,
S. BRASSINES², M. ALTMAIER¹, X.
GAONA¹

¹Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, Karlsruhe (Germany)

²ONDRAF/NIRAS, Belgian Agency for Radioactive Waste and Enriched Fissile Materials, Brussels (Belgium)

Presenting Author: rosa.guidone@kit.edu

^{14}C is produced from stable parent isotopes (^{13}C , ^{14}N , ^{17}O) present in different components of nuclear reactors. Steel components containing ^{14}C are disposed in repositories for low and intermediate level wastes (L/ILW). ^{14}C can potentially be released as small organic molecules or $^{14}\text{CO}_3^{2-}$. Retention mechanisms proposed for the uptake of $^{14}\text{CO}_3^{2-}$ in cement-based repositories for L/ILW include adsorption onto cationic surfaces of C-S-H phases or isotopic exchange with non-radioactive carbonate phases present in cement [1]. Calcite itself is considered as the final degradation stage of cement, occurring once C-S-H phases are dissolved. This work investigates the effect of ISA and chloride on the uptake of $^{14}\text{CO}_3^{2-}$.

Batch sorption experiments with hydrated cement CEM I at $\text{pH} \approx 13.6$ were conducted under Ar atmosphere. Sorption experiments with calcite were performed under air at $\text{pH} \approx 8.3$. Experiments were conducted by systematic variation of (i) solid-to-liquid ratios ($1\text{--}50 \text{ g}\cdot\text{L}^{-1}$), (ii) initial concentrations of $^{14}\text{CO}_3^{2-}$ ($8.9\cdot 10^{-11}\text{--}8.6\cdot 10^{-9} \text{ M}$), (iii) equilibration time (2–140 days), (iv) ISA concentrations ($1\cdot 10^{-5}\text{--}0.2 \text{ M}$), and (v) chloride concentrations ($1.0\cdot 10^{-4}\text{--}2.0 \text{ M}$). Phase separation was achieved by ultrafiltration or ultracentrifugation. The concentration of ^{14}C was quantified by liquid scintillation counting.

The uptake of $^{14}\text{CO}_3^{2-}$ by cement is fast and moderately strong, with $R_d \approx 10^3 \text{ L}\cdot\text{kg}^{-1}$. Sorption experiments reflect a strong dependency of the uptake on the initial concentration of $^{14}\text{CO}_3^{2-}$, which is attributed to isotopic exchange processes. Chloride has a negligible impact on the uptake of $^{14}\text{CO}_3^{2-}$. A decrease in R_d related to ISA is observed only at $[\text{ISA}] > 10^{-2} \text{ M}$. In the case of calcite, the overall uptake strongly depends on the equilibration time. At short equilibration times, $^{14}\text{CO}_3^{2-}$ is mainly adsorbed on the surface of calcite particles. A systematic increase of the uptake is observed with time, caused by the recrystallization of calcite and isotopic exchange processes. Chloride and ISA have a negligible impact on the retention of $^{14}\text{CO}_3^{2-}$ under the investigated boundary conditions.

Acknowledgments: This work is funded by ONDRAF-NIRAS.

References

1. M. Ochs, D. Mallants, L. Wang (2016), Springer, 301pp.