KIT | KIT-Bibliothek | Impressum | Datenschutz

Review of Process Monitoring and Anomaly Detection Applications for CNC Milling Machines in Highly Fexible Production Environments

Ströbel, Robin ORCID iD icon 1; Mau, Marcus 1; Diebold, Marcel 1; Puchta, Alexander 1; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The rapid individualization of milling operations have introduced unprecedented complexity and variant diversity, necessitating adaptive process monitoring under scarce-data conditions. This systematic literature review (SLR) takes a comprehensive look at machine learning (ML)-based approaches for process monitoring and anomaly detection in highly flexible milling processes, focusing on single-part and rapidly changing production scenarios. The fourteen most relevant studies published since 2019 were identified by adhering to established SLR frameworks. The methods are evaluated in terms of their flexibility, data efficiency, model quality and cost-effectiveness. It is revealed by the SLR that transfer learning (TL), physics-informed ML and active learning (AL) are frequently used to address the issue of limited training data whilst improving the robustness of the model. However, there a shortcoming in the integration of multiple data-efficient training strategies within holistic frameworks. Additionally, focusing on internal machine signals could reduce the burden of monitoring systems on brownfield machines. Combining monitoring via internal machine signals with AL, TL, physics-informed ML and data augmentation offers promising research directions for scalable, low-cost process monitoring in flexible manufacturing environments.


Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1642-6568, 1895-7595, 2391-8071
KITopen-ID: 1000188187
Erschienen in Journal of Machine Engineering
Verlag Wroclaw Board of Scientific Technical Societies Federation NOT (NOT)
Band 2025
Heft 25
Seiten 1
Vorab online veröffentlicht am 19.11.2025
Schlagwörter Machine Learning, Anomalieerkennung, Fräsprozess
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page