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Abstract 

The large number and diversity of chemicals currently in use present significant challenges in assessing their human and 
environmental health risks due to a paucity of toxicological data. To address this shortage, high-throughput screening technologies 
are used to rapidly evaluate the toxicity of these chemicals. Suitable chemical libraries are crucial to evaluate the performance of 
these technologies and generate the cognate toxicity data. Unlike traditional chemical libraries designed for specific disease targets 
or receptor interactions, the PrecisionTox collection prioritizes diversity in targets and mechanisms of toxicity to ensure broad 
applicability in toxicity predictions to test the concept of phylotoxicology. Phylotoxicology proposes that mechanisms of toxicity are 
evolutionarily conserved among distantly related species. Furthermore, the application of phylotoxicology can contribute to the 
reduction of mammalian species in toxicity testing. Here, an approach for generating a chemical library based on chemical 
properties—physicochemical, biomolecular, and toxicological—as well as practical considerations, including compound availability, 
cost, purity, and shipping regulations, is reported. From an initial pool of over 1,500 nominees, a set of 200 chemicals was selected 
based on multiple criteria, including organ toxicity, environmental exposure, structure, modes of action, and toxicological relevance. 
Additionally, information on baseline toxicity, Absorption, Distribution, Metabolism, and Excretion properties and utility for in vitro 
testing was collected. This work underscores the necessity of thoughtful chemical selection to refine toxicological models, improve 
hazard identification, and support regulatory efforts to protect human and environmental health.

Keywords: chemical libraries; new approach methodologies; adverse outcome pathways; physicochemical properties; baseline-tox
icity prediction model

An estimated 350,000 chemicals are being used both commercially 
and globally (Wang et al. 2020). Humans and other species are 
exposed to many of these chemicals, for which frequently little to 
no toxicological information is available (Wang et al. 2020; Persson 
et al. 2022). To address this gap in chemical risk and hazard infor
mation, methods have been developed to measure a variety of toxi
cological endpoints using in vivo and in vitro high-throughput 
screening (HTS) technologies (Richard et al. 2016). At the same 
time, New Approach Methodologies (NAMs) offer a sustainable 
alternative to animal testing (Colbourne et al. 2025). NAMs enhance 
human relevance and can reduce costs and resources, facilitating 
the rapid screening of large numbers of chemicals and the identifi
cation of potential hazards. In vitro HTS platforms acquire data at 

rates of millions of chemicals per week (Wunder et al. 2008), 
whereas in vivo platforms can examine tens to a few thousand 
chemicals per week (Murphey and Zon 2006).

The ability to rapidly measure toxicological effects of large 
numbers of chemicals using different endpoints and analyze the 
cognate data continues to develop. Chemical libraries have been 
created using an array of criteria to test toxicological endpoints. 
For instance, compounds have been selected to target specific 
organs (liver, kidney, heart), disease endpoints (cancer, develop
mental neurotoxicity, fibrosis), receptors or enzymes (serotonin 
transporters, G-protein coupled receptors, acetylcholinesterase), 
biological pathways (fatty acid oxidation, protein kinase, endo
crine/androgen), chemical classes (metal/metalloids, pesticides), 
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or chemical structures (bisphenols, perfluorooctanoic acids, pol
ycyclic aromatic hydrocarbons) (Richard et al. 2021).

A variety of approaches have been used to collect compounds 
for testing with known or anticipated toxicities into training sets 
or reference libraries. The simplest approach is to use chemicals 
contained in predefined lists. Agencies throughout the world, 
such as the Joint Research Centre (JRC), the Organization for 
Economic Co-operation and Development (OECD), and ToxCast 
and the Partnership for the Assessment of Risks from Chemicals 
(PARC) (Snapkow et al. 2024), are constantly assembling lists of 
chemicals that meet different criteria (e.g. JRC validation sets, 
OECD Test Guidelines or Guidance documents). Other methods 
include literature mining to identify compounds with specific 
toxicological characteristics (Canham et al. 2020), generating and 
subsequently synthesizing compounds based on Quantitative 
structure–activity relationship (QSAR) models, and synthesizing 
congeners of known drugs (Ashenden 2018). The number of com
pounds in these libraries can range from 10’s for small projects 
to >10,000 for larger projects such as Tox21 (Richard et al. 2021).

PrecisionTox is an international consortium formed under the 
European Commission Horizon 2020 program with the goal of iden
tifying toxicity pathways and cognate biomarkers associated with 
chemical exposure using NAMs (PrecisionTox Consortium 2023). 
To achieve this goal, PrecisionTox is testing the concept of phylo
toxicology, which proposes that many biomolecular and toxicologi
cal responses to chemical exposure are shared among distantly 
related species by evolutionarily conserved processes and path
ways. Thus, screening chemicals in a suite of phylogenetically 
diverse species, including biomedical and ecologically relevant 
models, can be used to assess chemical hazards to wildlife and 
humans without the use of traditional mammalian species 
(Colbourne et al. 2022). To evaluate this concept, a collection of 200 
compounds was assembled and tested in a human cell line, 
Caenorhabditis elegans, Daphnia magna, Drosophila melanogaster, and 
embryos of Danio rerio and Xenopus laevis. Unlike other libraries and 
smaller test sets, the defining characteristic of the PrecisionTox 
collection is its diversity in target organs, receptor binding, affected 
biological pathways, and chemical class. Consequently, there are 
hundreds of thousands of potential candidates.

To choose 200 chemicals for this collection, a chemical selec
tion strategy was established to select compounds that target 
specific organs, have environmental relevance, particular chemi
cal structures, and/or modes of action (MoA). This collection was 
designed to be a community resource that contains potential 
“MOA anchor chemicals” (OECD 2017). Here, the rationale for 
choosing chemicals for the PrecisionTox collection is presented. 
To define the characteristics of this collection, experimental and 
theoretical data on physicochemical, toxicological, and 
Absorption, Distribution, Metabolism, and Excretion (ADME) 
characteristics were collected. For easier access to this informa
tion, the data has been incorporated into the PrecisionTox Data 
Visualization Tool. Ultimately, this chemical collection and cog
nate data will be combined with transcriptomic- and 
metabolomic-based toxicological data from the 6 alternative test 
models to test the phylotoxicology hypothesis with the goal of 
advancing the use of NAMs (PrecisionTox Consortium 2023).

Materials and methods
Selection of chemicals for the PrecisionTox 
collection
Several overall considerations were maintained during the chem
ical selection process. This included identifying reference 

compounds, well-studied chemicals with large amounts of asso
ciated toxicological and mechanistic data. Similarly, chemicals 
with limited or poorly understood mechanistic data were 
selected to test future toxicity predictions. General and taxon- 
specific toxicants, which targeted taxa from various parts of the 
phylogenetic tree, were selected. These were used to test the phy
lotoxicology hypothesis. Assembling the chemical collection also 
considered identifying and addressing issues in the logistics of 
obtaining and shipping chemicals to international partners. 
Additionally, it enabled the various groups in PrecisionTox to 
develop Standard Operating Procedures for toxicity testing, data
base development, and analysis processes.

Chemical nominations
The first step in building the chemical collection was to define its 
chemical space. From discussions within PrecisionTox, stake
holders, and partner EU projects, including Animal-free Safety 
Assessment of Chemicals: Project Cluster for Implementation of 
Novel Strategies (ASPIS), priority was given to several chemical 
groups (Table 1). ASPIS has a strong focus on hepatotoxicants, 
nephrotoxicants, and developmental neurotoxicants (DNTs). 
Thus, the phylogenetic approach of PrecisionTox is synergistic 
and mutually beneficial to the project cluster by including these 
chemical groups. Chemical structure-specific toxicants were 
selected, including conazoles, acrylamides, and imidazoles. This 
group of chemicals was selected as part of collaborative case- 
study projects investigating the grouping of substances based on 
bioactivity data from multiple testing platforms between 
PrecisionTox, chemical regulatory agencies (acrylamides and 
imidazoles), and PARC (conazoles). Furthermore, environmen
tally relevant chemicals were prioritized (Finckh et al. 2022; 
Scholz et al. 2022; Finckh et al. 2024). To maintain diversity in the 
PrecisionTox collection, a target number of 20 to 30 chemicals 
per group was chosen.

After defining the toxicological space in Table 1, the next step 
was to compile chemical nominees for inclusion into the collec
tion. Nominees were obtained from consortium members and by 
manually mining available datasets from the US National 
Toxicology Program, the JRC (Sund and Deceuninck 2021), and the 
literature. Additional nominees were obtained from other interna
tional projects involved in developing NAMs and non-animal test
ing paradigms (Westmoreland et al. 2022; De Castelbajac et al. 
2023). These were included to maximize collaborative efforts 
among these projects (Fig. 1). Some chemicals were excluded from 
nomination because of the biological limitations of the 
PrecisionTox test organisms. For example, pulmonary and dermal 
toxicants were not considered because none of the test species 
have systems analogous to lungs or mammalian skin.

Table 1. Groups used in chemical selections.

Organ-specific toxicants Reference

Hepatotoxicants (Albrecht et al. 2019)
Nephrotoxicants (Su et al. 2016)
Developmental  

neurotoxicants
(Aschner et al. 2017; Blum et al. 2023)

Cardiotoxicants (Sirenko et al. 2017)
Chemical class-specific  

toxicants
Conazoles (Peyton et al. 2015)
Acrylamides (Koszucka et al. 2020)
Imidazoles (Sharma et al. 2021)
Environmentally  

relevant chemicals
(Finckh et al. 2022; Scholz et al. 2022;  

Finckh et al. 2024)
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Triaging process
Preliminary lists of several hundred chemical nominees within 
each group of toxicants were subjected to a tiered selection 
approach. First, following the compilation of physicochemical 
properties of the nominees, those with physicochemical proper
ties outside the applicability domain or resulting in reduced bioa
vailability in the bioassays were removed. Those properties 
included volatility and hydrophobicity, as well as stability and 
solubility in aqueous media and/or DMSO. Volatile chemicals 
were removed based on an empirical threshold of ionization- 
corrected air–water partition constant Daw >10−4 (Escher et al. 
2019a). Hydrophobic chemicals with log Dlip/w (pH 7.4) > 4 were 
avoided to meet the criteria of in vitro assays, as they are chal
lenging to dose in the small organism bioassays (see below). 
These criteria avoided potential declines in chemical test concen
trations during exposure. Exceptions were made, however, for 
the inclusion of some compounds with a specific MoA if repre
sentatives within the defined range of physicochemical proper
ties were unavailable. The first triaging step excluded 
approximately 75% of the original nominees.

The second step of the triaging process focused on pragmatic 
logistic aspects of obtaining and shipping of the compounds: 
Availability, amounts, cost, purity, inter/national regulations, 
and human safety. After compiling logistic data including poten
tial manufacturers/providers, price per gram, purity, UN num
bers, transport toxicity and packaging groups, International Air 
Transport Association classification, and exempted amounts 
allowed for shipping, the following restrictions were imple
mented. Generally, only chemicals with purities >98% were con
sidered. Based on the available experimental and theoretical 
toxicity information and the experimental design for each model 
species, calculations were performed to determine the amount of 
each chemical required. Depending on amounts needed and cost, 
economically non-affordable chemicals were omitted, and a limit 
of 1,000e per chemical was imposed for practical reasons. 
Additionally, some chemicals were not commercially available 
nor in the required amounts or formats. Nominees were also dis
carded if they were classified as a prohibited/restricted chemical 
(e.g. potential for misuse or addiction, chemical warfare agents, 
explosives). Chemicals considered too toxic to be used in the lab
oratory without special training and precautions (e.g. gases, 
potent inhalable carcinogens, potent toxicants, etc.) were also 
discarded. A summary of the exclusion list criteria is presented 
in Fig. 1. The second level of triaging excluded an additional 
�45% of the candidates from the first step.

Final selection and considerations
For several of the chemical groups, the first 2 triaging processes 
reduced the nominees to 20 to 30 compounds. In these cases, no 
further selection was necessary. In situations where a larger 
number of nominees remained, a third triaging step was intro
duced. Chemicals were selected based on additional toxicological 
parameters and their applicability in the identification of con
served toxicity pathways and biomarkers. These parameters 
included relevance to human exposure, in vivo and in vitro toxic
ities in multiple species, chemical transformation via metabo
lism, and molecular mechanism of toxicity. Information on these 
endpoints was collected by literature mining and from multiple 
databases (see Supplementary Material 2). Chemical identifiers 
including chemical name, CAS number, DSSTox substance iden
tifier (DTXSID), or InChiKey were used in database searches and 
literature mining.

To maintain diversity in chemical space, only 1 or 2 chemicals 
that affect a specific mechanism of toxicity, Key Event, receptor, or 
Molecular Initiating Event per group were included. Finally, higher 
priorities for inclusion were given to chemicals identified in the 
human exposome (Barupal and Fiehn 2019; Neveu et al. 2020).

It was deemed crucial to minimize possible bias during the 
preparation of sample material for toxicity testing and omic anal
yses (PrecisionTox Consortium 2023). Therefore, each chemical 
used in the project was purchased from a single vendor and the 
same manufacturer’s lot. To maintain consistency across the 
laboratories, chemicals were shipped from the manufacturer to a 
single location, where they were stored under controlled condi
tions. Based on the solubility and stability of the test compound, 
chemical aliquots were distributed as dry powder or as a DMSO 
stock solution (see Supplementary Material 1) to the toxicity test
ing groups in Europe, United Kingdom, and the United States to 
allow them to expose each corresponding model organism to the 
same chemical batch, including its possible impurities. As noted 
above, local and international shipping regulations/restrictions 
were also considered part of the triaging process and during the 

Fig. 1. Chemical selection process. Diagram of the PrecisionTox 
chemical collection selection process. Briefly, chemical nominees are 
obtained from multiple sources from within and without the 
consortium. After collecting physicochemical and toxicological data, 
nominees are selected for purchase based on the triage criteria.
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aliquoting process (e.g. maximum amount per vial allowed by 
regulation) (Fig. 1).

We included 3 known baseline toxicity compounds—N-meth
ylaniline, diphenylamine, and butoxyethanol—in the compound 
selection (Kluver et al. 2016). They served as negative controls for 
specific, reactive, or uncoupling interactions. Furthermore, com
pounds selected for specific organ toxicity can serve as negative 
controls for other organ-specific interactions.

Physicochemical properties
Physicochemical properties of each nominee were collected from 
public databases or calculated de novo using the methods and 
models described in Supplementary Material 3 using the cognate 
data listed in Supplementary Material 4. Physicochemical data 
were derived from various experimental and prediction sources 
potentially associated with uncertainty. Hence, for the interpreta
tion of toxicity data derived from the nominees, the uncertainty 
and potentially a re-measurement of physicochemical data to 
avoid any bias in data interpretation have to be considered.

Henry coefficients (KH) were estimated using OPERA version 
2.6 or obtained from the CompTox Chemicals Dashboard 
(Williams et al. 2021; US Environmental Protection Agency 2023). 
They were then converted to air–water partition coefficients 
(Kaw) and corrected for ionization at a given pH to obtain the ion
ization-corrected air-water distribution ratio Daw (pH).

Octanol–water partition constants (Kow) were retrieved from 
experimental data in original publications or CompTox. If experi
mental data were not available, the Kow was predicted using a 
poly-parameter linear solvation energy relationship (LSER) using 
the UFZ-LSER database (Ulrich et al. 2021). Alternatively, the mean 
Kow was determined from the predicted values using KOWWIN 
v1.67 and ACD/Labs consensus data obtained from CompTox.

Experimental acidity constants (pKa) were obtained from the 
literature or experimentally measured using a Sirius T3 titrator 
(Pion, Inc.) (Niu et al. 2022; Huchthausen et al. 2024). If experi
mental data were not available or the prediction indicated that 
speciation did not change in the pH range relevant for the bioas
says, pKa values were predicted with ACD pKa/GALAS (ACD/ 
Percepta 2015). Fractions of all neutral or zwitterionic (¼ fneutral), 
negative, double negative, positive, or double positive species 
were calculated using the Henderson–Hasselbalch equation 
(Escher et al. 2020).

Prediction of in vitro and in vivo properties
Membrane–water partition constants
The uptake of chemicals into biological membranes is important 
in understanding bioavailability and baseline toxicity, the mini
mal toxicity that every chemical exhibits (Huchthausen et al. 
2024; Qin et al. 2024). The distribution ratio between liposomes, 
which are typically used as proxies of biological membranes, and 
water (Dlip/w) is composed of the Klip/w of all species, including 
neutral and multiple charged species that can be measured or 
predicted with LSER or from the Kow (Lee et al. 2021; Ulrich et al. 
2021).

Protein–water partition constants
Bovine serum albumin (BSA) serves as surrogate for protein bind
ing in medium. If experimental data were available, the distribu
tion ratio between BSA and water, DBSA/w at pH 7 to 7.4, served as 
a proxy for protein binding. If experimental data were not avail
able, the KBSA/w of the neutral species was calculated with a LSER 
or was predicted from log Kow (Endo and Goss 2011). The KBSA/w of 

cations was assumed to be the same as for neutral chemicals. 
Because anionic chemicals have a higher affinity to BSA, the pre
diction model for the non-specific portion of the sorption iso
therm of anionic polyfluoroalkyl substances was used (Qin et al. 
2024). The KBSA/w was fixed at 1.31 for hydrophilic chemicals (log 
Kow < 2) (deBruyn and Gobas 2007).

For chemicals where experimental data or LSER parameters 
were unavailable for cellular proteins, the KSP/w was predicted from 
Kow (Endo et al. 2012). Anion binding to structural proteins (SPs) is 
weaker than to BSA, and equations analogous to those for DBSA/w 

(pH) were used to predict DSP/w (pH) (Henneberger et al. 2016).

In vitro distribution modeling to estimate in vitro chemical 
availability
Various in vitro chemical distribution models for cell-based bio
assays exist (Proença et al. 2021). They typically describe proc
esses of binding to medium components, plastic, and cells, as 
well as volatility. Volatile chemicals were not included in the 
PrecisionTox chemical collection. Media of the cellular bioassays 
are typically supplemented with 2% to 10% fetal bovine serum 
(FBS). Under such circumstances, binding to the plastic is negli
gible (Fischer et al. 2018). This is different for water-based media 
where dosing solutions may have to be renewed (depending on 
physicochemical properties) or concentrations measured 
(Fischer et al. 2018). The remaining processes are binding to 
medium components (proteins and lipids) and cells. The freely 
dissolved fraction ffree can be calculated with Equation 1

ffree ¼
1

1þDmedium=w ×
Vproteinþ lipid;medium

Vmedium
þDcell=w × Vcell

Vmedium

(1) 

The partition constant between medium components and 
water Dmedium/w can be predicted by mass balance models 
assuming that proteins and lipids are the dominant sorptive 
phases. Their volume fractions of proteins (VFprotein, medium) and 
lipids (VFlipid, medium) in the medium are considered in the mass 
balance equation (Equation 2). BSA is typically used as a surro
gate for medium proteins. 

Dmedium=w¼DBSA=w × VFprotein;mediumþDlip=w × VFlipid;medium (2) 

The VFprotein, medium is the ratio of volume of proteins Vprotein, 

medium to the sum of the volume of both sorptive phases, pro
teins, and lipids, Vproteinþlipid, medium (Equation 3), and analogously 
for VFlipid, medium (Equation 4) 

VFprotein;medium ¼
Vprotein;medium

Vproteinþ lipid;medium
(3) 

VFlipid;medium ¼
Vlipid;medium

Vproteinþ lipid;medium
: (4) 

Analogously, Dcell/w can be predicted by Equation 5. The most 
abundant proteins in cells are SPs, for which muscle proteins are 
better surrogates than BSA (Henneberger et al. 2016). In cells, the 
volume of water Vwater, cell is also considered. 

Dcell=w ¼DSP=w ×
Vprotein; cell

Vcell
þDlip=w ×

Vlipid; cell

Vcell
þ

Vwater; cell

Vcell
(5) 
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Baseline toxicity
The nominal baseline cytotoxicity concentration for mammalian 
cell lines can be calculated from the mass balance model from 
the critical baseline-toxic membrane concentration IC10, membrane 

(Equation 6). 

IC10;nom;baseline¼
IC10;membrane

Dlip=w

× 1þDBSA=w ×VFprotein;medium þDlip=w ×VFlipid;medium þDcell=w ×
Vcell

Vbioassay

 !

(6) 

IC10, membrane varies little across species and cell types, but is 
dependent on the measured toxicity endpoint. The IC10, membrane 

for cell lines used in PrecisionTox, for a 10% reduction of cell pro
liferation as endpoint, was estimated to be approximately 
26 mmol/Llip (Huchthausen et al. 2024). For a medium supple
mented with 10% FBS, the volume fraction of proteins in 
medium, VFprotein, medium, was 0.3% and of lipids. VFlipid, medium 

was 0.007%. The volume fraction of proteins in cells VFprotein, cells 

was 3% and of lipids VFlipid, cell was 0.5%, which are means of typ
ical experimental data (Huchthausen et al. 2024).

The freely dissolved chemical concentration IC10, free 

(Equation 7) can be used to compare the in vitro cytotoxicity with 
lethal effects in vivo. 

IC10; free¼
IC10;membrane

Dlip=w
(7) 

The baseline toxicity lethal concentration for 50% of the test 
organisms in vivo, LC50, was predicted using linear regression 
QSAR models given in Equation 8. 

� logLC50 ¼ a log Dlip=w þ b (8) 

The use of the Dlip/w as a QSAR descriptor, rather than Kow, 
allows one to also apply QSAR to ionizable compounds.

The baseline toxicity prediction model for C. elegans was 
rescaled from a Kow-based model using of Equation 4 in 
Supplementary Material 3 and the descriptors are a¼0.81 and 
b¼ 1.15. The model for D. magna (a¼ 0.82, b¼ 1.48) was derived 
from the Kow-based model using 48-h LC50 (Zhao et al. 1998). The 
QSAR for D. rerio was directly developed with Dlip/w and has 
a¼ 0.99 and b¼0.78 (Kluver et al. 2019). There are no baseline 
toxicity prediction models for X. laevis and Drosophila. Therefore, 
experimental LC50 data for 22 chemicals in the PrecisionTox col
lection that were identified as baseline toxicants in both cell lines 
and zebrafish were used to derive new regressions. For both spe
cies, the baseline toxicants correlated linearly with the log Dlip/w, 
yielding a¼0.61 and b¼ 2.12 (r2 ¼ 0.690) for X. laevis (n¼22). For 
Drosophila, only the BMD50 (mol/Lfeed) of 11 baseline toxicants 
were causing effects resulting in a regression with a¼ 0.83 and 
b¼ 0.52 (r2 ¼ 0.724). These QSARs are considered preliminary, but 
they serve to define the dosing concentrations in the 
PrecisionTox experiments.

ADME information
The values of in vitro measured intrinsic hepatic clearance (CLint) 
and unbound fraction available in plasma (Fu) were retrieved 
from the Integrated Chemical Environment database version 4.1 
(Bell et al. 2020). Human values have been reported where avail
able. In the case of CLint when human values were unavailable, 
rodent values were reported. Finally, OPERA-calculated values 

were reported in the absence of experimental data (see 
Supplementary Material 5). This information enables further 
downstream biokinetic analyses to allow for species extrapola
tion and human-relevant estimations by employing physiologi
cally based toxicokinetic modeling for reverse and forward 
dosimetry.

Data visualization
The PrecisionTox Data Visualization Tool (PDVT) is a web-based 
tool developed as a Flash application using Cytoscape.js (Franz 
et al. 2016) for network visualization (https://dex.precisiontox. 
org/chem/). The source code is freely available at: https://github. 
com/precisiontox/chem-viz.

Results
Selection of chemicals for the PrecisionTox 
collection
Utilizing the protocols for chemical nomination, triaging, and 
purchasing presented in Fig. 1, a collection of 200 chemicals was 
selected from >1,500 candidates for subsequent toxicological 
and omics analyses (see Supplementary Material 6). As an exam
ple of the process, a list of 188 unique DNTs was assembled from 
information collected by the NTP, ECVAM, and ASPIS. 
Physicochemical and toxicological data were collected for nomi
nees from public databases (see Supplementary Material 2). This 
was a semi-automated process; therefore, all types of data were 
collected for all nominees, independent of their use in the final 
chemical selection.

Some nominees were deselected based on physicochemical 
properties. For example, trichloroethylene has an air–water par
tition constant of Daw ¼ 0.40, which is greater than the 10−4 cut- 
off; PBDE 47 with a Kow ¼ 6.8 is too hydrophobic for testing in our 
systems (Kow > 4). Information on availability, cost, and other 
shipping restrictions for the remaining candidates were then col
lected and used to deselect from the remaining candidates. 
Several of the nominees are restricted substances (e.g. cocaine, 
heroin) or too toxic to use under normal laboratory conditions (e. 
g. methylmercury). Additional nominees were removed based on 
the calculated amounts needed for testing in the PrecisionTox 
model systems and associated costs. For example, thapsigargin, 
domoic acid, and thalidomide would have cost e78,000, e19,000, 
and e1,400, respectively, making their incorporation into the col
lection problematic. For instance, the triaging protocol outline in 
Fig. 1 reduced the original 188 DNT nominees to 30 chemicals, 
which were included in the collection.

Characteristics of the PrecisionTox chemical 
collection
The chemicals in this collection, including identifiers (CAS num
ber, DSSTox substance ID, SMILES and InChIKey) and Toxicity 
Groups are presented in Supplementary Material 6. Additionally, 
Chemical and Products Database (CPDat) use categories are 
included (Dionisio et al. 2018; US Environmental Protection 
Agency 2025). CPDat is a database maintained by the US EPA that 
catalogues commercially sourced chemicals, using standard 
product categories, based on how they are used. The value of pro
viding use categories is to avoid a bias by a focus on a certain 
group of chemicals. For example, industrial chemicals are typi
cally not designed for biological activity. Therefore, a focus on 
such chemicals could limit the applicability domain of NAMs 
developed with a focus on such chemicals.

Toxicological Sciences, 2025, Vol 208, Issue 2 | 321  
D

ow
nloaded from

 https://academ
ic.oup.com

/toxsci/article/208/2/317/8314243 by Forschungszentrum
 Karlsruhe H

BM
 user on 08 D

ecem
ber 2025

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaf126#supplementary-data
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaf126#supplementary-data
https://dex.precisiontox.org/chem/
https://dex.precisiontox.org/chem/
https://github.com/precisiontox/chem-viz
https://github.com/precisiontox/chem-viz
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaf126#supplementary-data
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaf126#supplementary-data
https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaf126#supplementary-data


Chemicals in the PrecisionTox collection are associated with 
300 CPDat use categories, with the majority identified as drugs, 
industrial manufacturing compounds, pesticides, and food addi
tives. Additionally, they mapped to 1 of 6 use categories that are 
associated with chemicals found in human plasma (Braun et al. 
2024) (Fig. 2A).

Toxicology properties
Toxicological properties, including toxicity category and baseline 
toxicity predictions for all test animal species and Adverse 
Outcome Pathways (AOPs) of the chemical collection, are pre
sented in Supplementary Material 7. AOPs, Key Events, and 
Molecular Initiating Events associated with each chemical were 
identified by searching the EPA’s Adverse Outcome Pathway 
Database (AOP-DB) (Mortensen et al. 2021). The AOP-DB was 
searched with the DTXSIDs of the PrecisionTox chemicals. Of the 
200 chemicals in the collection, all except 24 are assigned to 1 or 
more of 8 toxicity categories (Fig. 2B). The majority of the chemi
cals are assigned to multiple categories, with hepatotoxicants 
and neurotoxicants being the most populated. Of the 200 chemi
cals, 87 were associated with 1 or more unique AOPs (Fig. 3) (see 
Supplementary Material 7).

Baseline toxicity predictions
The predicted baseline toxicity represents the minimal toxicity 
associated with any chemical (Qin et al. 2024). It can be used for 
planning of the dosing concentrations as well as the interpreta
tion of the data. The specificity ratio, the ratio of the predicted 
IC10 or LC50 to the corresponding experimental data, indicates 
which chemicals are toxic because they are hydrophobic and 
have a high baseline toxicity or if they are reactive or have spe
cific targets. QSAR predictions for the PrecisionTox in vivo mod
els varied within a factor of 100 per chemical (Fig. 4; see 
Supplementary Material 7). The predicted in vitro IC10(free) was 
similar to the predicted in vivo LC50. In general, hydrophobic 
chemicals were less sensitive in vivo, and hydrophilic chemicals 
have a similar sensitivity.

ADME information
To provide additional information on the chemical collection, 
potential hepatic clearance rates were calculated. Results show 
intrinsic hepatic clearance values above 10μl/min/106 cells for 75 
compounds. Four substances have rapid clearance values above 
100μl/min/106 cells, as determined by human in vitro assays: 
Propofol (CAS No. 2078-54-8), methylparaben (CAS No. 99-76-3), 

Fig. 2. Distribution of chemicals in toxicity and use categories. Chemicals were assigned to toxicity A) or use B) categories. Values in the pie sections are 
the number of chemicals in that category. Use and toxicity values for each chemical can be found in Supplementary Materials 6 and 7.
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bisphenol E (CAS No. 2081-08-5), and chlorpromazine (CAS No. 
69-09-0), with clearance rates of 107, 107.5, 119, and 195.1 μl/ 
min/106 cells, respectively. Based on experimental in vitro 
human and rodent data, approximately one-third of the chemi
cals in the PrecisionTox collection have clearance values below 

2.5μl/min/106 cells. This observation indicates a very slow rate of 

metabolism in mammalian test systems. An IA clearance value 

of 0 indicates little to no metabolism, a potential for bioaccumu

lation, or a lack of data. This highlights the need for a thorough 

review of existing data and potentially additional testing to better 

understand the metabolic fate of these chemicals (Gouliarmou 

et al. 2018). Human plasma protein-unbound fraction values for 

133 compounds were ≥50%, indicating a high availability of the 

free chemical in plasma. This could lead to an increased poten

tial for interaction with molecular targets, including enzymes or 

receptors. Additionally, metals and inorganic compounds are out 

of the model’s applicability domain, and data for tunicamycin, 

cadmium chloride, sodium arsenite, tributyltin, triethyltin bro

mide, sodium perchlorate, and lithium (cation) were unavailable 

(see Supplementary Material 5).

Physicochemical properties
The Kow of the neutral species range from −4.63 to 8.50, covering 

12 orders of magnitude with a mean of 2.31 (Fig. 5A). Over 80 of 

the chemicals are 75% to 100% in neutral form, almost 60 are 

more than 80% charged, with the remainder having multiple 

charges at pH 7.4 (Fig. 5B). The Dlip/w (pH 7.4) of the collection 

ranges from −1 to 8.5, with more than 80% of the compounds 

between −1 and 4 (Fig. 5C). The lowest value was set to −1, 

because according to Gobas et al. (1988), that is the empirical 

lowest distribution ratio. Additionally, the QSAR is not valid if the 

affinity to membrane bilayers is too low. We also predicted bind

ing to plasma (albumin) and SPs. As most were derived from the 

log Kow or Dlip/w, the distributions look similar to Fig. 5C (see 

Supplementary Material 4).

Fig. 3. Distribution of chemicals in adverse outcome pathways. Chemicals were mapped to AOPs using the EPA AOP-DB and the number of chemicals 
in each AOP presented. To simplify the figure and minimize redundancy, several AOPs were combined into a single pathway. For example, 5- 
hydroxytryptamine transporter (5-HTT) inhibition leading to population increase (AOP ID195); 5-HTT inhibition leading to decreased shelter seeking 
and increased predation (AOP ID98); 5-HTT inhibition leading to population decline (AOP ID97); 5-HTT inhibition leading to decreased reproductive 
success and population decline (AOP ID203); and 5-HTT inhibition leading to increased reproductive success and population increase (AOP ID204) were 
combined to the group labeled “5-hydroxytryptamine transporter inhibition.” Values in the sections are the number of chemicals in that category. AOP 
information can be found in Supplementary Material 7.

Fig. 4. In vitro–in vivo comparison between the baseline toxicity 
predictions for mammalian cell cytotoxicity IC10(free) normalized to 
freely dissolved concentrations (in vitro) and in vivo LC50 values for D. 
melanogaster (circle), D. rerio (square), C. elegans (triangle), D. magna 
(diamond), and X. laevis (hexagon).
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In vitro distribution modeling to estimate availability
The fraction of freely dissolved chemical in the bioassay medium 

(ffree) decreases with increasing hydrophobicity (Fig. 6). 

Chemicals with log Dlip/w <3 are typically fully dissolved, and 

those with logDlip/w >5 are almost completely bound. Fulvestrant 

(CAS No. 129453-61-8) is extremely hydrophobic, logDlip/w >8, 

which is outside the domain of the selection criteria, so the pre

diction should be treated with caution.
As the serum protein binding dominates the reduction of ffree, 

the relationship between ffree and DBSA/w is much more uniform 

than the relationship between ffree and Dlip/w (Fig. 6). This is 

because logDlip/w and DBSA/w are only proportional for neutral 

and positively charged chemicals, but anions bind stronger to 

proteins than to lipids.
In a medium that is supplemented with 10% FBS, the fraction 

taken up into the cells is negligible, and as the freely dissolved 

concentrations are low for the very hydrophobic chemicals, the 

binding to the plastic plates is also negligible. In addition, many 

test chemicals are partially or fully charged, and charged chemi

cals do not diffuse into the polymers. However, many cell culture 

plates are treated to make cells better adherent, and the tissue 

culture treatment makes the plastic surfaces anionic, allowing 

cations to bind. Unfortunately, there are no binding constants 

available yet for treated plate materials.
Uptake into cells and zebrafish embryos can be predicted reli

ably using established models (Grasse et al. 2024; Proença et al. 

2021), but for all other assays, such prediction models do not 

exist because baseline toxicity QSARs are based only on empirical 

correlations with Dlip/w and not on a mechanistic disposition 

model.

PrecisionTox data visualization tool
The PDVT is a web-based application developed to facilitate the 

exploration and analysis of the PrecisionTox chemical collection: 

https://dex.precisiontox.org/chem. Currently, the database con

tains all of the physicochemical and toxicological data reported 

in this manuscript and supplemental materials. The database 

and PDVT are open-ended, and in the future will include novel 

experimental data generated by PrecisionTox.

The PDVT features an interactive network that allows users to 
visualize how chemicals are classified according to 2 main cate
gories: Use and Toxicity Endpoint (Fig. 2). PDVT has the ability to 
toggle between these classification systems. The differently col
ored nodes represent specific subcategories within each classifi
cation. For example, under the Use classification, nodes include 
pesticide, pharmaceutical, industry, consumer goods, and others 
(Fig. 7A). Each node can be clicked to reveal all chemicals associ
ated with that particular subcategory, which will be shown con
nected to it via edges (Fig. 7B). These chemicals are 
simultaneously displayed in a table below the graph, providing a 
clear and organized view of the corresponding entries (Fig. 7C).

The web application has a search functionality that allows 
users to focus on individual chemicals. The single chemical view 

Fig. 5. Physicochemical properties of the PrecisionTox chemical collection. A) Distribution of octanol–water partition constants Kow of the neutral 
species of all test chemicals. B) Distribution of fractions of neutral species of all test chemicals derived from the acidity constants pKa. C) Distribution 
of the ionization-corrected liposome water distribution ratio (Dlip/w) of all species at a pH 7.4. Detailed data can be found in Supplementary Material 4.

Fig. 6. Freely dissolved fraction ffree in the bioassay medium (Equation 1) 
as a function of liposome–water distribution ratio (Dlip/w [pH 7.4]) (light 
gray dots) or protein–water distribution ratio (DBSA/w [pH 7.4]) (dark gray 
dots).
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page comprises a new network graph that displays all collected 
information for that compound. This includes its use and toxic 
endpoint categories, physicochemical properties, mechanisms of 
action, baseline toxicity data, molecular targets, and adverse out
come pathways. Each of these main attributes is represented as a 
node that can be clicked to display all specific data as additional 
child nodes (Fig. 8A). For example, physicochemical properties 
comprise up to 14 different attributes, including molecular 
weight, density, Henry coefficient, etc., whereas mechanisms of 
action contain relevant available annotations obtained from 
DrugBank and T3DB. For further convenience, chemical informa
tion is also displayed in a structured table format beneath the 
graph (Fig. 8B). A snapshot of the current network view can be 
obtained at any time in image or vector graphics formats. Finally, 
the web application includes a comprehensive table listing the 
entire chemical collection. This table consolidates all available 
data for each chemical into clearly defined columns, encompass
ing physicochemical properties, use, toxicity classifications, 
mechanisms of action, and other relevant information. Users can 

filter and sort the table as needed to support targeted analysis, as 
well as download it in different formats.

Discussion
Over the past several decades, the ability to screen large numbers 
of chemicals for their biological effects has become an integral 
part of the discovery of new drugs, pesticides, and other commer
cial products, as well as toxicity testing. Additionally, HTS and 
associated data analysis workflows have contributed to the 
development of novel test methods. This has been accomplished 
by assessing their biological relevance via the interrogation of 
large numbers of chemicals to identify applicability domains and 
potential limitations, such as chemical space coverage and/or 
the range of expected responses. High-throughput screens also 
assess the reliability of a test method to increase reproducibility 
and minimize variability.

The starting point for the utilization of any HTS is the creation 
of a chemical library. There are 2 basic components in the 

Fig. 7. General view on PDVT. A) An interactive diagram shows the different categories for chemical classification according to 2 different classification 
systems: “use” and “toxicity endpoint,” which the user can toggle between. B) Clicking on 1 or more of these nodes will display all the chemicals 
included in those categories as additional child nodes. Chemical can be associated to more than 1 category, which is represented by differently colored 
edges. C) In addition to the network, dynamically changing table will show the full list of chemicals associated to the last clicked category (https://dex. 
precisiontox.org/chem).
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creation of a chemical library. First is to define the parameters or 
chemical space of the collection: Targets for a specific protein/ 
receptor, pathway/mechanism of response, disease/health end
point, or to test a variety of responses (Richard et al. 2021). 
Multiple approaches have been used to create chemical libraries, 
which include synthesizing congeners of biologically active com
pounds (Sahoo et al. 2022), designing virtual libraries based on 
QSAR (Nowak et al. 2024), collecting chemicals with known 
responses (Sund and Deceuninck 2021), and pooling compounds 
of interest selected by various parties (Attene-Ramos et al. 2013). 
The second component in the creation of a chemical library are 
logistic and practical considerations: Can a compound be pur
chased or synthesized in the required amount, at the necessary 
purity, and at an acceptable cost? Also, can the chemical be 
tested in the selected biological system under available labora
tory conditions?

Here, we report on the creation of a unique, fit-for-purpose 
chemical library designed to test the phylotoxicology hypotheses 
(Colbourne et al. 2022; PrecisionTox Consortium 2023). In con
trast to other libraries, the PrecisionTox chemical collection was 
not created to target a specific disease, protein, or pathway. 
Rather, diversity was at the center of its design. To select and 
subsequently test this chemical collection, a robust chemical 
identification and logistics protocol was developed (Fig. 1). From 
>1,500 nominees, 200 compounds were selected, purchased, and 
distributed to PrecisionTox testing laboratories in the EU, the 
United Kingdom, and the United States. Nominations were col
lected to reflect compounds with a variety of potential MoA. 
Problematic nominees were removed based on physicochemical 
properties obtained from public databases or calculated de novo. 
Practical considerations (cost, purity, availability, and the ability 
to send the compounds to the international PrecisionTox testing 
laboratories) were also important deciding factors. Ultimately, 
diverse representation throughout chemical space determined a 
nominee’s inclusion in the collection.

With a few exceptions, the protocol functioned as anticipated. 
One problem occurred due to an unforeseen chemical property. 
N-(hydroxymethyl)acrylamide (CAS No. 924-42-5) unexpectedly 
oligomerized in solution and therefore was removed from testing. 
Logistical challenges related to regulatory restrictions affected 
the inclusion of pentobarbital (CAS No. 76-74-4), which is subject 

to export prohibitions due to its potential use in certain jurisdic
tions. As a result, it was also removed from the collection to com
ply with applicable laws and regulations.

Based on the selection criteria, the final PrecisionTox collec
tion is diverse, but due to the limited number of chemicals that 
could be tested, it is not inclusive. Chemicals in the collection 
target several of the organs typically associated with human tox
icity, including the liver, kidney, heart, and the nervous and 
immune systems (Table 1, Fig. 2B). Chemicals that target the 
lung, skin, and the visual apparatus were excluded during selec
tion. As each of these organ targets are not present in several or 
all of the PrecisionTox model species, they were not suitable for 
testing the phylotoxicology hypothesis.

This chemical collection is biased toward pharmaceuticals 
and pesticides (Fig. 2A). This is consistent with the nomination 
process and selection protocol, as large amounts of physico
chemical, toxicological, and exposure data are available for 
chemicals in these categories. These use categories typically 
comprise compounds with a specific MoA, which make them 
suitable as reference compounds. These reference compounds 
can be used to define MoA, mechanism of toxicity, biomarkers, 
and ethology for chemicals. In contrast, non-specifically acting 
compounds (e.g. with toxicity driven by hydrophobic interaction 
with cellular membranes) would result in effect concentration 
close to QSARs predictions (e.g. Huchthausen et al. 2023, 2024) 
and similar effect concentrations across phylogenetically distant 
groups. Hence, for the development of alternative approaches for 
the screening of chemicals based on NAMs and reduced reliance 
on animal tests (Sewell et al. 2024), particularly methods captur
ing specific modes of interactions (e.g. binding to specific target 
molecules) are needed. This is also a prerequisite to use the bio
logical effect patterns in a read-across approach beyond the simi
larity of chemical structure (Escher et al. 2019b).

The retrieval of information on the physicochemical proper
ties and baseline toxicity predictions helped the testing labora
tories handle such a diverse set of chemicals and dose them 
appropriately. A large number of the chemicals have a specific 
MoA. Three compounds that were expected to show no specific 
MoA were intentionally included as reference compounds to 
demonstrate that experimental effect concentrations for these 
compounds would be close to QSAR predictions. It can be 

Fig. 8. Single chemical view on PDVT. A) The network shows the selected chemical surrounded by nodes that represent the collected chemical 
information categories. Each can be expanded individually by clicking to show additional nodes displaying the associated data. B) All this information 
is also displayed below in a more typical knowledge base format including the diverse chemical identifiers and a table where users can toggle between 
the different types of annotations.
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expected that, specific to the in vivo model, more compounds 
will exhibit effect concentrations close to QSAR prediction, e.g. 
when the specific target may not be available in the corre
sponding model. Additionally, compounds included due to 
their environmental occurrence and to obtain missing toxicity 
information also may represent non-specifically acting com
pounds. By comparing the experimentally observed effects (i.e. 
cytotoxicity, mortality, mechanism-specific endpoints) to the 
predicted baseline toxicity, it is possible to quantify and esti
mate the reliably to detect specific effects of NAMs and bench
mark them with respect to traditional animal-test-based 
approaches.

It should be noted that compounds with difficult physico
chemical properties (volatility, hydrophobicity) were excluded 
for practical reasons. Such compounds require special exposure 
regimes. Excluding such compounds increases the throughput 
for benchmarking the approach(es) targeted with our library. 
Given the availability of special testing routines for difficult 
compounds, however, this does not limit per se the application 
domain for these compounds. Testing of volatile or hydropho
bic chemicals is a regulatory requirement (see OECD 2019). 
Testing these compound in the context of PrecisionTox, how
ever, would require additional efforts that would reduce the 
number of compounds included in the chemical collection to 
develop NAMs. It is therefore advisable to avoid these com
pounds during NAM development. Using appropriate guidance 
on testing difficult compounds, they can, however, be tested 
using developed NAMs.

One issue that needs to be taken into account when building a 
chemical library is the amount of available data for any individ
ual compound. Experimental and theoretical data are readily 
available on the physicochemical properties through PubChem, 
CompTox, and other databases (see Supplementary Material 2). 
Where data are missing from public databases, de novo calcula
tions can be used to fill these gaps. All of the chemical nominees 
for this collection had sufficient physicochemical data for triag
ing. Additionally, the selected compounds are also readily avail
able at high purities, low cost, and international shipping 
regulations are well defined.

In vivo and in vitro toxicity, AOP, exposure, and toxicity mech
anism data are generally not as complete. For example, of the 
200 chemicals in the PrecisionTox collection, only 87 have been 
assigned to an AOP; less than half of the collection are found in 
DrugBank, and <50 have human exposome information. This 
paucity of toxicological information reflects the need for addi
tional data and justifies its inclusion in this multipurpose library 
for toxicity testing. The ADME in vitro parameters, CLint and Fu 

(human and rat), were extracted from the Integrated Chemical 
Environment database only after the chemical selection process 
had been completed, with the purpose of enabling further down
stream analysis, such as PBK modeling to estimate effective 
dose-extrapolation assumptions to humans.

To summarize, from over 1,500 nominees, a collection of 200 
chemicals was obtained for the PrecisionTox Consortium with 
diversity in chemical space as its core principle. This collection is 
a well-characterized set of compounds that will be used to test 
the phylotoxicology hypothesis. Selections are based on physico
chemical and toxicological properties, as well as practical consid
erations. This report highlights the need for strategic selection 
criteria for any chemical library development, ensuring the 
appropriate level of coverage within chemical space while bal
ancing practical constraints.
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