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A B S T R A C T

Video Object Segmentation (VOS) is a fundamental and challenging problem in Com-
puter Vision (CV), where the goal is to delimit the spatial and temporal presence of a
collection of objects in a given video sequence at pixel level. Several approaches tackle
VOS, namely automatic, semi-automatic, and interactive, each tailored to specific use
cases and requirements. Here, semi-automatic (sVOS) and interactive (iVOS) approaches
provide the necessary flexibility to segment arbitrary objects by leveraging user cues (to
various degrees), balancing automation and adaptability.

However, their applicability is predominantly limited to short, pre-recorded se-
quences due to their inherent design and the necessary user workload (e.g., reviewing
and annotation effort). This bias makes sVOS and iVOS approaches impractical for
unconstrained video segmentation (or tracking) applications. We consider a video se-
quence unconstrained when it is not pre-recorded (e.g., live-streamed), has no fixed
length, and shows unpredictable content such as appearance changes, clutter, or oc-
clusions. In addition, the robustness of these models is inherently constrained by their
training data. The data distribution learned during training is unlikely to encompass all
possible real-world scenarios, particularly when dealing with unusual applications or
challenging conditions.

We propose through this work to extend VOS approaches to robustly track arbi-
trary objects in unconstrained videos via an efficient human-in-the-loop strategy, where
we simultaneously focus on minimizing the associated user effort. To reduce this user
workload, we design a proactive framework that monitors its predictive uncertainty
and requests user corrections (i.e., clicks) on-the-fly when the method’s uncertainty is
high. Our main idea is to involve the user strategically to resolve challenging or ambigu-
ous situations where the system lacks confidence by leveraging the user’s availability
already at hand in iVOS and sVOS tasks, but in an active manner. Furthermore, we
develop a diversity-driven memory management module that enables segmentation
over unconstrained sequences, overcoming the limitations of previous VOS methods,
tailored for short videos.

We validate each design choice across various datasets and display consistent im-
provement in segmentation robustness and in decreasing the user’s workload. Through
this research, we provide a foundation for proactive, scalable, and user-efficient human-
in-the-loop video segmentation adapted for applications geared toward unconstrained
videos.
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Z U S A M M E N F A S S U N G

Die Segmentierung von Objekten in Videos (Video Object Segmentation, VOS) ist ein
grundlegendes und herausforderndes Problem der Computer Vision (CV), bei dem das
Ziel darin besteht, die räumliche und zeitliche Abgrenzung eines Objekts (oder einer
Objektgruppe) auf Pixel-Ebene in einem gegebenen Video vorzunehmen. Verschiedene
Ansätze adressieren VOS: automatische, semi-automatische oder interaktive Verfahren,
die jeweils auf spezifische Anwendungsfälle und Anforderungen zugeschnitten sind. In
diesem Rahmen bieten semi-automatische (sVOS) und interaktive (iVOS) Ansätze die
notwendige Flexibilität, beliebige Objekte zu segmentieren, indem sie Benutzereingaben
in unterschiedlichem Ausmaß nutzen, um Automatisierung und Anpassungsfähigkeit
auszubalancieren.

Ihre Anwendbarkeit ist jedoch überwiegend auf kurze, vorab aufgezeichnete Se-
quenzen beschränkt, bedingt durch ihren grundsätzlichen Aufbau und den damit ver-
bundenen Benutzeraufwand (z.B. Überprüfung, Annotierungsaufwand). Diese Ein-
schränkungen machen sVOS- und iVOS-Ansätze für die Segmentierung (oder Verfol-
gung) von nicht eingeschränkten Videos weitgehend unpraktisch. Wir betrachten eine
Videosequenz als "nicht eingeschränkt", wenn sie nicht vorab aufgenommen wurde
(z.B. Livestreams), keine feste Länge aufweist und unvorhersehbare Inhalte wie Erschei-
nungsänderungen, Unordnung oder Verdeckungen zeigt. Zusätzlich ist die Robustheit
dieser Modelle inhärent durch ihre Trainingsdaten begrenzt. Die während des Trainings
erlernte Datenverteilung deckt in der Regel nicht alle möglichen realen Szenarien ab,
insbesondere bei ungewöhnlichen Anwendungen oder herausfordernden Bedingungen.

In dieser Arbeit erweitern wir bestehende VOS-Ansätze, um beliebige Objekte in
nicht eingeschränkten Videos robust verfolgen zu können. Dazu entwickeln wir eine
effiziente Mensch-im-Loop-Strategie, die den Benutzeraufwand gezielt minimiert. Kern-
stück unseres Ansatzes ist ein proaktives Framework, das seine prädiktive Unsicherheit
kontinuierlich überwacht und bei hoher Unsicherheit während der Segmentierung Be-
nutzerkorrekturen (z.B. Klicks) in Echtzeit anfordert. Auf diese Weise reduzieren wir so-
wohl den Überwachungs- als auch den Annotierungsaufwand erheblich. Darüber hinaus
entwerfen wir ein diversitätsgetriebenes Speichermanagement-Modul, das eine langfris-
tige Segmentierung ermöglicht und die bisherigen Einschränkungen semi-automatischer
Methoden überwindet. Unsere zentrale Idee ist es, den Benutzer strategisch einzubezie-
hen, um schwierige oder mehrdeutige Situationen aufzulösen, wenn das System wenig
Vertrauen in seine Vorhersagen hat. Wir nutzen die Präsenz des Benutzers, der auch in
modernen sVOS- und iVOS-Szenarien üblicherweise bereits vorhanden ist, um initiale
Hinweise zu geben, finale Ergebnisse zu überprüfen und nachträgliche Korrekturen
vorzuschlagen.
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Wir validieren jede Designentscheidung auf verschiedenen Datensätzen und zeigen
konsistente Verbesserungen hinsichtlich der Segmentierungsrobustheit sowie einer
Reduktion des Benutzeraufwands. Mit dieser Arbeit schaffen wir eine Grundlage für eine
proaktive, skalierbare und benutzerfreundliche Mensch-im-Loop-Videosegmentierung,
die für Anwendungen auf nicht eingeschränkten Videoinhalten ausgelegt ist.
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1
I N T R O D U C T I O N

1.1 Context

Video content creation and consumption have considerably increased in recent years,
fundamentally reshaping the digital media landscape. This growth is supported by: (1)
On-demand streaming platforms (e.g., Netflix, Apple TV+, and Prime Video), which
have seen a steady increase in subscribers, with current market predictions estimating
that the industry will reach approximately 399.05 billion USD by 2032, compared to
today’s 113.78 billion USD [1]. (2) Live broadcasting networks (e.g., ESPN, CBS Sports,
Eurosport, Twitch), with, as an example ESPN reporting nearly 25 million subscribers
in Q1 2025, marking an 18-fold increase over the past five years [2]. (3) Social media
platforms (e.g., Instagram, TikTok, YouTube), which have democratized video produc-
tion and distribution, enabling users worldwide to generate and share content at an
unprecedented scale [3].

Benefiting from this trend are video editing tools, e.g., Adobe Premiere Pro1, DaVinci
Resolve2, iMovie3. The growing demand is reflected in future market projections, which
is expected to reach approximately 5.13 billion USD by 2032, up from 3.09 billion USD
in 2023 [4]. To be more specific, Adobe Premiere Pro’s user base has grown from 5
million in 2019 to approximately 30 million in 2024 [5]. Similarly, DaVinci Resolve grew
from 900 users in 2009 to around 5 million in 2023 [6]. Furthermore, this trend extends
beyond professionals to also include hobbyists [7]. Hence, there is an increasing demand
for video editing tools that are more sophisticated and user-friendly to keep up with
the massive volume and velocity at which content is produced and distributed today.
Ideally, these tools should automate repetitive and time-consuming tasks to reduce user
constraints and facilitate content creation and modification.

One of the many pillars supporting these advancements is Video Object Segmen-
tation (VOS). It is a fundamental problem in Computer Vision (CV), where the goal is
to delineate the spatial (pixel-level) and temporal (frame-level) extent of an object of
interest in a given video sequence.

Note that, beyond entertainment, VOS has significant utility in surveillance and
security applications [8, 9], as evidenced by market projections, rising from an evaluation
of 19.12 billion USD in 2018 to (an estimated) 33.06 billion USD for 2026 [10]. Modern
surveillance systems frequently handle vast volumes of live-streamed video from multi-

1 https://www.adobe.com/products/premiere.html

2 https://www.blackmagicdesign.com/products/davinciresolve

3 https://www.apple.com/ca/imovie/
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ple cameras, making continuous human monitoring impractical. Here, an automated
pipeline using VOS methods can help reduce the user’s workload by tracking objects
of interest and detecting uncertain or suspicious events to alert the user proactively.
Similarly, livestock and wildlife monitoring [11] can benefit from pixel-level tracking.
Farmers and researchers can leverage video sequences from drones or fixed cameras to
monitor animal health and detect abnormal movements. Achieving pixel-level segmenta-
tion enables the identification of individual animals within large herds and facilitates the
tracking of subtle behavioral changes that may signal disease [12]. Naturally, robotics,
autonomous vehicles, and mixed reality also benefit from advancements in VOS [8, 13].
Moreover, as the demand for artificial intelligence-based solutions grows, so does the
need for large amounts of data. To meet this growing requirement, several specialized
tools for video annotation have emerged and expanded in recent years (e.g., label-studio4

(previously LabelImg), Labelbox5, and Dataloop6).
In summary, the need for efficient and flexible tools becomes increasingly important

as video applications continue to expand in scale and complexity, from content creation,
live streaming, robotics and large-scale surveillance.

1.2 Challenges and Motivation

A central challenge for future VOS methods is designing systems that can: (1) Robustly
track arbitrary objects in unconstrained video sequences and (2) Design an efficient
interaction user workload in terms of annotation and the need for constant monitoring
(i.e., reviewing the results), to minimize user workload We refer to video sequences
as unconstrained when they are (i) not necessarily pre-recorded (e.g., live-streamed),
(ii) lack fixed boundaries (i.e., arbitrary length), (iii) and exhibit unpredictable visual
content such as rapid appearance variations, clutter, prolonged occlusions. Hence, un-
constrained videos introduce difficulties related to sequence length, visual variability,
and the inability to access future frames during inference.

An additional limitation found in current VOS methods is that they are tightly
coupled to the data distributions seen during training, which might limit their ability
in complex scenarios (out of distribution), resulting in performance breakdowns. To
mitigate this, occasional human oversight would be beneficial (i.e., Humain-in-the-loop
(HITL) approach), as a user could provide additional cues to correct erroneous predic-
tions (ideally on-the-fly while the method segments the video), and solve ambiguous or
uncertain scenarios.

Among the diverse approaches to VOS [8] (Figure 1.1 present the main subcategories
to solve VOS), semi-automatic and interactive methods stand out for their ability to
balance automation with user control. By contrast, Automatic Video Object Segmentation

4 https://github.com/HumanSignal/label-studio

5 https://labelbox.com/product/annotate/video/

6 https://dataloop.ai/platform/annotation-platform-old/video-annotation/

https://github.com/HumanSignal/label-studio
https://labelbox.com/product/annotate/video/
https://dataloop.ai/platform/annotation-platform-old/video-annotation/
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Figure 1.1: Primary sub categories to VOS, (a) Automatic Video Object Segmentation,
(b) Semi-automatic Video Object Segmentation, (c) Interactive Video Object Segmenta-
tion. Figure adapted from [8].

(aVOS) methods, which require no user input, lack the flexibility to segment arbitrary
objects outside the distribution seen during training. Although Semi-automatic Video
Object Segmentation (sVOS) and Interactive Video Object Segmentation (iVOS), through
user-cues (e.g., initialization, interactions), can track arbitrary objects, they still present
key limitations: (1) Initial annotation cost: sVOS requires significant upfront effort to
create a fully annotated object mask on pixel-level, often taking more than 300 seconds
per object [14] (depending on the object area). (2) User interaction: iVOS mitigates this
effort by relying on sparse annotations (i.e., typically scribbles) but instead requires
multiple rounds of user intervention. While this strategy reduces the upfront burden
of creating a fully annotated object mask, it shifts the workload to reviewing the video
multiple times and increases the number of interactions needed. We provide in Figure 1.2
a visual representation of the user’s workload distribution when segmenting a video.
Note that, in contrast to iVOS, in sVOS no feedback loop from between the segmentation
pipeline and the user is present. (3) Short-term bias: Most sVOS and iVOS methods
are tailored for short, pre-recorded clips and struggle to work on longer sequences. (4)
Pre-recorded bias: The reliance on either a full initial mask (sVOS) or iterative feedback
(iVOS) renders these methods unsuitable for live video, where users cannot necessarily
pause or rewind the sequence. (5) Feedback timing: In iVOS methods, user corrections
are typically applied only after completing an entire interaction round. This delayed
feedback loop is inefficient and problematic for long videos, where errors may propagate
across many frames before being addressed, leading to wasted effort and reduced
segmentation efficiency. Ideally, corrections should be triggered early based on model
uncertainty, preventing the propagation of errors across long sequences.

Beyond these design-level constraints, there is also an evaluation-related limitation.
(6) Monitoring assumptions: Evaluation protocols either ignore the monitoring aspect
from the user’s perspective (as in sVOS) or only partially consider it (as in iVOS). How-
ever, as video datasets grow in size and duration, so does the burden of continuous user
oversight becomes significantly impractical. (7) Workload metrics: Current evaluation



6 I N T R O D U C T I O N

Annotation effort

~ 300 seconds ~ 8-11 seconds ~ 1-3 seconds

Fine-grained

High user effort

Sparse

Low user effort Review effort

- Long video

- Multiple reviews
- Passive approach

High user effort

- Short video

- Single review
- Active approach

Low user effort

Video

Figure 1.2: User workload dispersion for VOS tasks can be categorized into annotation
effort and reviewing effort. (1) Annotation effort is directly influenced by the interac-
tion type used to specify the object of interest. Pixel-level annotations represent the
most intensive approach, while click-based inputs require the least effort. (2) Review-
ing effort depends on several factors, including sequence length, the number of review
rounds, and the method’s ability to actively guide the user by suggesting frames or
regions for correction.

metrics rarely reflect the user’s workload, making it difficult to assess the true workload
from a user’s side.

In summary, while sVOS and iVOS methods represent a significant first step toward
scalable and user-adaptive segmentation, they remain at their current state, ill-suited for
unconstrained, long-form or streaming applications. To address the above challenges,
we frame our central research question (CRQ) as follows:

How can we design a scalable, robust, and user-efficient VOS approach for uncon-

strained video sequences that ensures minimal user effort?

To help us answer this question, we decompose the CRQ into the following sub-
questions, which are explored throughout this thesis:

➢ (RQ1) User Interaction Efficiency: How can we efficiently optimize the user’s
required workload (e.g., initialization, monitoring, reviewing, corrections) typ-
ically required in VOS tasks while maintaining segmentation performance for
unconstrained scenarios?

➢ (RQ2) Scalability to unconstrained video: How can we reliably and efficiently
support unconstrained videos (not assuming offline access, fixed video duration
nor object type) in a viable HITL approach for VOS methods?

1.3 Contributions and Thesis Outline

Conceptually, we propose a hybrid framework that fuses sVOS with iVOS (see Figure 1.3).
Similarly to sVOS, we would like to rely only on a single segmentation pass but avoid
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Figure 1.3: A conceptual overview of our proposed baseline for a robust VOS approach
suited for unconstrained videos. Note that, in this figure we assume the method to
be already initialized to the object to track. Since we treat segmentation as a step-
by-step process, where frames are segmented one after another, we illustrate our
concept using a single frame from the video. Importantly, in our proposed solution,
the segmentation is performed in a single forward pass. Our pipeline includes: (1) A
segmentation module (feature matching and segmentation with an external memory)
that automatically predicts object masks. (2) An uncertainty estimation module that
requests user interaction when confidence is low. Finally, (3) a user feedback loop
that incorporates corrective inputs into our method’s memory to improve future
predictions.

the cumbersome up-front initialization process. Instead of following the traditional
iVOS approach, which passively waits for user input at the end of an interaction, we
would like our approach to actively monitor its predictive uncertainty and request user
corrections on-the-fly when necessary. Hence, have the user engage actively with the
method during the segmentation process. This shift toward proactivity would allow the
method to maintain segmentation accuracy over long and not necessarily pre-recorded
sequences with ideally minimal human effort.

We address our CRQ through the following chapters, with our contributions sum-
marized as follows:

➢ Chapter 4: Minimizing User Effort in Interactive Video Object Segmentation with
Click based Interactions
We present a lightweight interaction scheme using clicks instead of scribbles (the
standard format) to reduce annotation effort in iVOS as a proof-of-concept. We
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decouple mask prediction and propagation into separate modules and introduce a
complementary hardware-independent evaluation metric. Our approach achieves
competitive results against scribble approach based, but at a lower interaction cost.

➢ Chapter 5: Extending Semi-Automatic Video Object Segmentation for Uncon-
strained Video Scenarios
We propose a training-free memory management scheme to adapt contemporary
sVOS methods for unconstrained videos. We address the continuous accumulation
of intermediate frames typically found in recent sVOS approaches, which bloats
memory and degrades prediction capabilities over time. To this end, we limit
the memory growth and update the memory whenever an incoming frame (i.e.,
embedding) improves the diversity of the stored representations. We quantify
the diversity of the embeddings stored in the memory by computing the corre-
sponding Gram matrix. This enables us to have a generalized update strategy, thus
eliminating the need for a meta-parameter to control the memory update frequency.
In all sVOS baselines extended with our module, we consistently improve the
performance and achieve competitive results to State-of-the-Art (SOTA).

➢ Chapter 6: Introducing Proactive and Scalable Interactive Video Object Segmenta-
tion for Unconstrained Videos
We introduce Lazy interactive Video Object Segmentation (ziVOS), a new sub-task
that bridges sVOS and iVOS for unconstrained video segmentation with minimal
user effort by interacting only on a single segmentation pass. We present a corre-
sponding baseline, which proposes a trade-off between automation and robustness
by computing its prediction uncertainty on the fly (on pixel level) and inquiring
the user for help when its uncertainty is too high. Depending on how quickly
the uncertainty degrades, the system can request a user correction, generate a
pseudo-correction, or proceed without intervention if uncertainty remains low.
Pseudo-corrections help avoid unnecessary user involvement, keeping the system
efficient and reducing user fatigue. In addition, we present complementary metrics
to evaluate the robustness of existing sVOS methods and introduce new metrics to
assess user workload.

To summarize, this thesis is organized as follows: we begin in Chapter 2 with a re-
view of existing approaches with a particular emphasis on sVOS and iVOS. In Chapter 3
we introduce the fundamental concepts behind sVOS methods, which is the backbone of
this thesis. In Chapter 4, we explore the feasibility of click-based interactions in iVOS to
reduce user workload. Chapter 5 presents our diversity-driven memory management
module to extend existing SOTA sVOS approaches to unconstrained videos. Chapter 6
introduces our new sub-task ziVOS, along with a tailored baseline that estimates its
confidence while segmenting to request user help or to provide self-corrections when
possible. Finally, Chapter 7 summarizes our key contributions and outlines potential
avenues for future research.
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2
R E L A T E D W O R K

In the literature [8, 15], VOS approaches are typically divided into three sub-categories
(see Figure 1.1), each addressing distinct requirements and needing varying degrees
of user intervention: (i) aVOS (or unsupervised) performs video object segmentation
without user input. These methods follow a model-based approach, where the method
already has prior knowledge about the set of objects to track, either through offline
training or by using an object detector. (ii) sVOS (or semi-supervised) requires a single
user interaction at the beginning of the video sequence to indicate which object to track.
Typically, this involves initializing the sVOS method with a fine-grained annotated mask
of the target object in the first frame of the video. Note that sVOS is closely related to
Visual Object Traking (VOT) but on pixel-wise level. (iii) iVOS approaches rely on sparse
user annotations, usually in the form of scribbles. However, object masks generated from
sparse annotations are less likely to be perfect, hindering performance. To mitigate this,
multiple rounds of user interaction are allowed. A typical interaction round includes
(a) generating a segmentation mask based on the user’s sparse input (i.e., scribbles), (b)
propagating the mask to the remaining frames, and (c) reviewing the results to provide
additional annotations if needed. The user repeats the process until they are satisfied
with the final output.

Recent advances in VOS have also introduced new sub-tasks (which we present
briefly for completeness): (iv) Referring Video Object Segmentation (RVOS), segments
a target object based on natural language descriptions. (v) Few-shot Video Object
Segmentation (FSVOS), segments objects based on a support set (several images of the
object of interest taken from other datasets) that contains the associated fine-grained
annotations. (vi) Promptable Video Object Segmentation (PVOS), recently introduced
by Ravi et al. [16] (i.e., SAM 2), extends sVOS by incorporating sparse annotations while
enabling corrections in a single interaction round. Note that PVOS closely resembles our
proposed sub-task ziVOS (refer to Chapter 6).

In this chapter, we provide an overview of recent SOTA approaches that tackle
Semi-automatic Video Object Segmentation (sVOS) in Section 2.1, and in Section 2.2
Interactive Video Object Segmentation (iVOS) approaches. In Section 2.3, we present
popular datasets found in the field to evaluate VOS approaches. Note that we focus
mainly on Deep Learning (DL) based solutions, which have yielded more robust and
accurate segmentation in recent years.

11
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2.1 Semi-automatic Video Object Segmentation

We can divide most sVOS approaches into three subcategories, as outlined by Zhou et

al. [8]: (i) Online Fine-Tuning, (ii) Propagation-Based, and (iii) Matching-Based methods
(the most prominent in recent years). Note that these subcategories only serve as a loose
guideline to organize the landscape of the sVOS field. In practice, some methods may
exhibit characteristics that span through multiple groups.

In addition, through the introduction of the Segment Anything Model (SAM) by
Kirillov et al. [17], we nowadays have several recent pipelines relying on it for mainly
refinement purposes. Given its growing adoption and impact on the field, we include it
here as a fourth subcategory.

2.1.1 Online Fine-Tuning

Online fine-tuning approaches, often referred to as one-shot video object segmentation,
dynamically adjust network parameters in response to an initial mask that defines the
object of interest [18–24]. The pioneering work in this domain, OSVOS [18] proposed
by Caelles et al., fine-tunes a pre-trained segmentation model using the ground-truth
mask from the first frame, enabling it to predict the object masks in the subsequent
frames. Building on this foundation, OnAVOS [19] enhances OSVOS by incorporating
online fine-tuning, which allows the model to adapt to appearance variations that arise
after the initial frame. Further advancements are seen by Maninis et al. [20] and by
Luiten et al. [23], which integrate object detectors as auxiliary components. This strategic
addition helps define the location and spatial extent of the object, thereby narrowing
the image regions where segmentation is performed. Another notable approach, by
Meinhardt et al. [24] extends the capabilities of Mask R-CNN [25] by fine-tuning its
appearance model for the object of interest in real time. This method not only aims for
faster convergence through the learning of meta-parameters but also seeks to enhance the
alignment between predicted and ground-truth masks. However, these improvements
come with a trade-off in flexibility.

Despite these innovations, online fine-tuning approaches are often hindered by slow
inference speeds and limited generalization capabilities [8].

2.1.2 Propagation-Based

In contrast, propagation-based methods leverage strong priors from previous frames
(i.e., the adjacent frame) to effectively propagate masks and to enhance their ability to
manage rapid appearance changes [26–30]. A seminal contribution in this area is by
Jampani et al. [31], who introduced a novel propagation-based approach in 2017. This
method combines a bilateral network with a spatial network, primarily a Convolutional
Neural Network (CNN), to learn the properties of a bilateral filter, used to transfer
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object information from all previously observed frames to the current one. Expanding
on this, Khoreva et al. [26] utilize the previously predicted mask from adjacent frames to
guide the current frame’s object mask prediction. Their approach also includes on-the-fly
optimization, enabling the model’s weights to learn a coarse representation of the target
object. Xiao et al. [21] further enhance this design by introducing an optical flow branch
that serves as a prior to refine the segmentation mask generated by the baseline branch.
Continuing this trajectory, Khoreva et al. [32] incorporate data augmentation in the first
frame to specifically adapt a set of weights in the neural network to the target object. Ci et

al. [33] explicitly learn to encode location and appearance embeddings of the current
frame, improving the refinement of the predicted mask. Chen et al. [34] employ advanced
tracking techniques that introduce a state estimation process, leading to remarkable
performance improvements.

However, these methods tend to implicitly encode target-specific information into
the network weights, which can reduce flexibility. Additionally, they are susceptible
to error accumulation and often lack long-term context for re-identifying objects after
occlusions [8].

2.1.3 Matching-Based

Matching-based methods [8] learn to construct an embedding space, where the distance
between two embedding vectors from different frames are near each other if they encode
similar information (e.g., appearance, texture) and otherwise are further apart. Here, an
initial frame is encoded into an embedding space, which indicates the user’s interest
for an image region (this initial frame is important, as it’s purpose is to guide the
segmentation for the subsequent frames). Given a new frame, which the network also
encodes in the same embedding space, the goal for the network is to robustly associate
resembling feature vectors from both encoded images. This matching is the key process
to identify the new image regions that is relevant for the segmentation. In [35–40], the
embeddings of the initial frame and adjacent frames are matched with the embeddings
of the query frame through global and local matching, while Zhou et al. [41] also combine
online fine-tuning approaches.

However, leading sVOS methods rely primarily on the external memory design
introduced by Oh et al. [42], which uses features from the initial frame along with
previously processed frames (i.e., intermediate frames) as references during feature
matching. Using a non-local approach, these methods match the embeddings from the
query frame with the embeddings of reference frames. Based on STM [42], Xie et al. [43]
and Seong et al. [44] perform local-to-local matching to alleviate distractor-induced
mismatches. Seong et al. [45] also introduce multi-scale memory matching. To enhance
pixel discrimination, Yong et al. [46] explore a unique approach that leverages both
frequency and spectral domains. To reduce noisy predictions caused by ever-expanding
memory, Cheng et al. [47] introduce a top-k filtering strategy during non-local matching
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and propose an efficient extension [48] that decouples feature extraction of the frame
and corresponding mask, while improving the matching process. Park et al. [49] depart
from the frame-to-frame propagation scheme and instead adopt a clip-to-clip approach
to accelerate the propagation process.

However, as many of these methods are primarily tailored for short-term videos,
recent works have sought to address this limitation. For instance, Li et al. [50] propose a
compact global module to summarize object segmentation information within a fixed-
size memory. Similarly, Liang et al. [51] apply a weighted average to the extracted
features to merge new features with existing ones in memory and discard obsolete
information using a least frequently used (LFU) mechanism. Liu et al. [52] explore the use
of a quality-aware module (QAM) (based on the seminal work of Huang et al. [53]) to
assess the quality of the predicted mask on-the-fly before integrating it into memory. Li et

al. [54] introduce a spatio-temporal aggregation module to maintain a fixed-size memory
bank. Cheng and Schwing [55] adopt the Atkinson-Shiffrin model [56] for their sVOS
pipeline (XMem), which comprises: a sensory memory [57] that learns an appearance
model for each incoming frame, a working memory based on STCN [48], and a long-term

memory that consolidates working memory embeddings into a compact representation.

2.1.4 Segment-Anything

Contemporary works [58–60] leverage Segment Anything Model (SAM) [17] or its
variants [61–63] to refine the original mask predicted by an sVOS baseline [39, 55],
typically matching-based. However, in contrast to our framework, these methods refine
every n-th mask predicted by the sVOS backbone using a SAM-based approach [17,
61–63], and require continuous user monitoring to determine when interventions are
necessary. Furthermore, they limit the impact of refinements on subsequent frames, as
they do not update the memory with the refined masks, thereby reducing the potential
to improve future predictions. Other approaches have moved away from mask-based
propagation as a backbone, shifting instead to tracking dense points [64], which are then
used as prompts for SAM, as proposed by Rajič et al. [65].

Recently, Ravi et al. [16] introduced SAM21, performing on average 10% better than
contemporary works on popular datasets. In addition, the authors define a new sub-task
for VOS, i.e., (PVOS), where the goal is to provide click-based inputs to indicate which ob-
ject to segment in a given video sequence while allowing users to also provide corrections
during the segmentation process to refine the model’s prediction. Since its introduction,
newer methods have tackled the memory management of SAM2, which relied primarily
on a FIFO (First-In First-Out) based update. Here, most notably SAM2Long [66], which
extends SAM2 for long-term applications by replacing the FIFO update strategy with
training-free by viewing the memory as a tree structure. The authors maintain a set of
pre-defined branches that should each include diverse hypotheses and prune over the

1 Meta Blog Post regarding SAM2: https://ai.meta.com/sam2/

https://ai.meta.com/sam2/
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ones that are likely to fail and create new ones to replace the pruned ones to maintain
the same potential in diversity. However, each branch contains a separate set of memory.
Yang et al. [67] extends SAM2 to better handle the presence of distractors by targeting
the memory management aspect. The authors introduce a motion-aware memory (i.e.,
Kalman Filter), to update the memory by taking into account an affinity score and a
motion score.

2.2 Interactive Video Object Segmentation

To briefly restate, the goal in iVOS is to reduce the user’s workload during video anno-
tations [14], compared to sVOS, by relying on multiple user interaction rounds. Early
methods for addressing iVOS use hand-crafted features (e.g., click-based interactions [68,
69]), but they require a large number of user interactions, making them impractical at a
large scale [8]. With the release of the DAVIS interactive benchmark [14], a standardiza-
tion for the evaluation of iVOS methods has been introduced, where a key aspect is to
identify methods that can be used in real-world applications.

2.2.1 Related Work

The most common practice in SOTA methods is to tackle the problem following the
Interaction-Propagation design introduced by Benard et al. [70], where they combine two
separate networks: an interactive segmentation network based on [71] that predicts
and refines segmentation masks based on the interactions of the user as well as a sVOS
network [18] which propagates the predicted masks derived from the interaction module
to the remaining video frames.

Oh et al. [72] connect the interaction and propagation module with an additional com-
ponent (i.e., feature aggregation), which requires a joint training of all modules. Heo et

al. [73] use a global and local transfer mechanism during propagation for conveying seg-
mentation results specifically to adjacent and distant frames. A more efficient approach
is explored by Miao et al. [74] by using a single backbone network for the interaction and
the propagation modules. A modular architecture on the popular Interaction-Propagation

design is proposed by Cheng et al. [75] and where a third neural network (Difference-

Aware Fusion) is added to capture and integrate masks differences between each round.
An alternative to the Interaction-Propagation design was explored by Chen et al. [76],
who approached the problem by describing it as a pixel-wise classification task (i.e.,
k-nearest neighbors in an embedding space) using convolutional neural networks. Re-
cently Chen et al. [77] presented an interactive annotation tool, where the user annotates
objects using tracked boxes and scribbles.

A persistent bottleneck is determining which frame to annotate for the next round.
Hence recent works focus on the applicability of iVOS methods for real-world scenarios
by designing networks that automatically determine suitable frames for the user to
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annotate. Recent approaches address this by identifying a quartet of candidate frames for
the user to annotate [78], estimating which frame would yield the most improvement [79],
or using a weakly supervised method to indicate the frame and type of interaction [80]
to the user. To determine which frame or set of frames to annotate, these methods map
each frame in the sequence into an embedding space, restricting them to short videos,
as it requires storing the embedding of every frame. Here, each embedding encodes
the frame’s representation and the quality of the corresponding predicted mask. The
best candidate frame is selected by comparing each embedding w.r.t. others and against
those of annotated frames, either through an agent [79] or by choosing the embedding
that is furthest from any previously annotated embedding [80].

A majority of recent methods focus on scribble-based interactions as it is the default
user annotation provided by the DAVIS benchmark. However, since the introduction of
SAM [17] more methods have been incorporating additional types of interactions (e.g.,
clicks, masks. bounding boxes), where previous studies [68, 69], in addition to ours [81],
have focused solely on click-based interactions [75, 76].

2.3 Datasets

Several datasets are available to evaluate sVOS approaches, each addressing specific
challenges. One of the most established benchmarks in the field is DAVIS [82, 83],
providing high-quality and densely annotated video sequences for every single frame.
In addition, it also provides the corresponding attributes per sequence (only for the
2016 version [82]), such as occlusions, motion blur, and out-of-view, to cite a few. While
initially introduced in 2016 [82] and expanded in 2017 [83], it remains a widely used
benchmark for VOS-related tasks, due to its structured format and strong evaluation
protocol. Another popular benchmark introduced in 2018 is YouTube-VOS (Y-VOS) [84],
which offers a larger set of video sequences compared to DAVIS. However, in contrast to
DAVIS, it provides annotated masks only every sixth frame. Note that, unless otherwise
stated, most of the datasets discussed below also offer annotations only every sixth
frame.

In the last couple of years (essentially since 2023), complementary datasets have
been introduced in an attempt to expand the coverage of more complex scenarios.
For instance, MOSE [85], OVIS [86], which focus on sequences containing multiple
occlusions and clutter situations, making them particularly relevant for evaluating sVOS
method’s robustness under challenging conditions. VOST [87] introduces sequences
where objects undergo extreme shape and appearance variations, making it a strong
benchmark for evaluating models beyond standard appearance-based segmentation.
In contrast to the other datasets, PUMaVOS [88] targets a niche application, where the
goal is to predict partial mask, for example, only the right-hand side of a woman’s
face. Meanwhile, BURST [89] compiles a large-scale dataset (i.e., highest number of
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sequences) by aggregating existing object tracking benchmarks and converting the
classical bounding-boxes into corresponding object masks.

Although some of these datasets provide a few long sequences, they are outweighed
by the shorter videos, as the average duration of the above datasets ranges from 3 to 35
seconds [90]. Hence, a couple of datasets specifically tailored for the long term setting
have been proposed by the community. The first dataset introduced that follows this
direction is LV1 [51], providing an average video length of 1.3 minutes. However, LV1
only contains three video sequences, where only every 30 frames are annotated. More
recently, Hong et al. introduced the LVOS datasets (version 1 [91] and version 2 [90]) in
2023. This dataset is an aggregation of existing datasets from VOS and VOT fields but
where shorter sequences were removed. It provides an alternative to LV1, with more
sequences (50 sequences for the validation set in the first version), where the average
video length is circa 1.59 minutes. The dataset also provides a more diverse set of videos
and presents mask annotations for every sixth frame. Similarly to DAVIS, the authors
also provide corresponding attributes to each video (version 2).

Note that the popular VOT challenge, which focused in the past on bounding box
level tracking, has pivoted to pixel level tracking, i.e., sVOS, namely since the VOTS2023
challenge2 [92]. Here, access to the ground-truth data is limited to the validation set
(composed of only two videos), so that participants of the challenge avoid to fine-tune
their approach to the test data.

Recently, Meta published an open-source SA-V dataset, used to trained their latest
foundational model for video object segmentation, SAM2 [16], providing now the largest
dataset for training VOS approaches.

2 https://www.votchallenge.net/vots2023/

https://www.votchallenge.net/vots2023/
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F U N D A M E N T A L S

In this chapter, we provide a detailed blueprint of the popular memory-based paradigm [42,
47, 48], which lies at the core of this thesis. We begin in Section 3.1 by describing its
architectural components and overall workflow. In Section 3.2, we outline the typical
training regimes used in memory-based sVOS methods. Finally, Section 3.3 introduces
standard evaluation metrics in the literature.

3.0.1 Problem Definition

Formally, given a video sequence V = {It | t ∈ {0, 1, . . . , T}}, where It ∈ R
3×HR×WR

denotes the image at index t. Here HR and WR denote the image resolutions in height
and width. Our goal with an sVOS approach is to predict for each image a corresponding
mask Mt ∈ {0, 1}|O|×HR×WR , which delineates the spatial extend for each object o ∈ O
the user would like to track. We initialize sVOS methods (for t = 0) with a fine-grained
annotated mask, defined as a user cue Ut ∈ {0, 1}|O|×HR×WR , to specify which objects to
track in the given video V . For practical evaluations, this cue is set to the ground-truth
mask Gt (Ut=0 = Gt=0). After the initialization, no additional user cue is provided, and
the method segmented autonomously the remaining frame It>0 ∈ V . Note that, while
we broadly define the mask dimensions for Mt and Ut, only one object mask o ∈ O can
have a value of 1 at any given pixel location (h, w). This guarantees that object masks
are mutually exclusive and non-overlapping.

To summarize, for a given video sequence V and an initial user cue Ut, our seg-
mentation pipeline denotes by f predicts a segmented sequence (a set of masks), such
that S = {Mt | t ∈ {1, . . . , T}}, to delineates the spatial and temporal presence of a set
of objects O the user is interested in. Conceptually, we can visualize the segmentation
process task as the following mapping function

f : V × Ut=0 → S . (3.1)

Note that, we exclude t = 0 from the prediction in S , since it’s associated ground-
truth mask G0 is already available and used as the initial cue to initialize the method.
In Figure 3.1 we visually represent the segmentation process.

3.1 Backbone Architecture

For clarity, we assume a single-object tracking scenario throughout this chapter (|O| = 1),
which simplifies the notations and explanations. In addition, we view the segmentation
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Figure 3.1: Visual representation of the sVOS process. Given a video sequence, the user
first indicates the object of interest, typically through a fine-grained mask, to initialize
the segmentation pipeline. Afterwards, the method automatically tracks the object by
predicting a mask for each frame in a step-wise manner.

of a given video V as a sequential process, where each frame is processed in temporal
order, i.e., one after the other. More precisely, given a frame It ∈ V \ I0, our segmentation
sVOS backbone fθ , parameterized by θ (i.e., a Deep Neural Networks (DNN)), predicts a
dense probability map Pt ∈ [0, 1]HR×WR through

Pt = fθ

(
It,Mk,Mv

)
, (3.2)

where Mk and Mv denote external memory banks that store intermediate representa-
tions from previously processed frames. The role of these memory components is further
detailed in Section 3.1.4. In summary, at each time step t > 0, the segmentation of It>0 is
conditioned on the stored information of previously processed frames inside the external
memories.

Each value on the probability map Pt(h, w) describes the Bernoulli parameter for a
pixel at location (h, w), describing it’s probability to belong to the foreground as

P

(
Mt(h, w) = 1 | It,Mk,Mv; θ

)
= Pt(h, w). (3.3)
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We convert the probability map Pt to a binary object mask Mt ∈ {0, 1}HR×WR by applying
a threshold (i.e., τ = 0.5), as follows

Mt(h, w) =





1, if Pt(h, w) ≥ τ,

0, otherwise,
∀ h ∈ {1, . . . , HR}, w ∈ {1, . . . , WR}. (3.4)

3.1.1 Overview

Before examining each component in detail, we provide a high-level overview of the
main architectural elements illustrated in Figure 3.2, along with their respective roles:

1. Encoders (Subsection 3.1.3): The network consists of two encoders. The first en-
coder (i.e., key encoder enck

θ) processes only a given image It during tracking. The
second encoder (i.e., value encoder encv

θ) considers It together with the associ-
ated predicted object mask Mt to jointly encode appearance and segmentation
information.

2. External Memory (Subsection 3.1.4): An external memory module is utilized to
store intermediate feature representations. These features, generated by the key
and value encoders, are stored in a key memory Mk and a value memory Mv.

3. Space-Time Matching (Subsection 3.1.5): A cross-attention operation between the
stored intermediate features and the features of the current frame to be segmented
(i.e., the query frame), used to identify relevant object regions.

4. Decoder (Subsection 3.1.6): Finally, a decoder decθ processes the output of the
cross-attention operation to predict Pt, and finally Mt.

3.1.2 Initialization

As highlighted previously, the first step is to initialize the method.The network leverages
the ground-truth annotation G0, which serves as the initial reference cue to help the
method identify the target object in subsequent frames t > 0. During initialization: (1)
the key encoder enck

θ processes I0 to extract key embeddings. (2) In parallel, the value
encoder encv

θ encodes jointly I0 and G0 into value embeddings. Next, the key and value
embeddings are stored respectively in the external memories i.e., Mk and Mv. The
stored information serves as a the initial reference to identify relevant object regions for
segmentation (i.e., guiding the matching process). In the following, we assume that the
initialization is complete and focus solely on the tracking process (i.e., t > 0).
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Figure 3.2: Overview of an sVOS pipeline based on the memory-based matching
paradigm. We assume that initialization has already been performed. Note that, this
figure provides a more detailed view of the segmentation process when performed
on a single frame It at step t, complementing the overview in Figure 3.1. The pipeline
takes an image It as input and computes internal embeddings, namely the key Kq and
the value Vq embeddings, through the query encoder enck

θ and value encoder encv
θ .

These embeddings are either saved or discarded in their respective memory banks Mk

and Mv, depending on the memory update strategy. The method leverages the mem-
ory banks embeddings together with the predicted key embeddings Kq through
cross-attention (i.e., space-time matching) to generate pseudo-value embeddings Ṽq,
which the decoder decθ uses to predict the corresponding object mask Mt.

3.1.3 Encoders

The network fθ consists of two encoders: (i) a key encoder enck
θ and (ii) a value en-

coder encv
θ . The key encoder enck

θ : R
3×HR×WR → R

Ck×HW processes a query frame It

and maps it to a key feature tensor Kq as

Kq = enck
θ (It) . (3.5)

We denote the channel dimension of the key features as Ck and use the exponent q

to indicate an embedding conditioned on the query frame It. The original image res-
olution is given by HR × WR, while H × W represents the spatial dimensions of the
features after passing through the encoder. Importantly, the Ck-dimensional column vec-
tors kq

i = Kq(•, i) for all i ∈ {1, 2, . . . , HW} encode high-level semantic information that
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is robust to appearance variations. This will be particularly useful during cross-attention,
as in Subsection 3.1.5. Intuitively, we select a Ck-dimensional vector at a given spatial
location in the encoder’s (H × W) resolution.

Similarly, the value encoder encv
θ : R

3×HR×WR × {0, 1}HR×WR → R
Cv×HW jointly

processes the input frame Iq
t with its associated object mask Mt, to generate a value

feature tensor Vq by
Vq = encv

θ (It, Mt) , (3.6)

where we denote with Cv the channel dimensions of the value features. Note that, the
Cv-dimensional column vectors vq

i = Vq(•, i) for all i ∈ {1, 2, . . . , HW}, capture both
appearance and spatial object information (crucial for guiding future segmentation
predictions) [42].

In summary, the key and value embeddings serve complementary roles: key embed-
dings act as “selectors,” guiding the model to relevant regions, while value embeddings
act as “carriers,” providing information required for accurate mask prediction.

3.1.4 External Memories

A defining component of space-time memory-based networks, is the use of external
memories, which enables the segmentation model fθ to retain and reuse information
from processed past frames seen during segmentation. This provides a richer context for
segmentation compared to previous approaches (i.e., Online Fine-Tuning or Propagation-
Based methods).

Note that, to differentiate previously processed frames from the query frame, we
will refer to them as key-memory and value-memory features, and denote them using
the exponent m. We let N indicate the memory size and n ∈ {1, 2, . . . , N} the index
of a memory slot. The network stores the key-value pairs of intermediate frames, i.e.,
previously observed frames {I0, I1, . . . , It−1}, in the sets

Mk = {Km
n | n ∈ {1, 2, . . . , N}} , and Mv = {Vm

n , | n ∈ {1, 2, . . . , N}} . (3.7)

Depending on the memory management strategy, not all previously processed frames
will have their key-value features stored. A common approach is to use a modulo-based

update rule with a meta-parameter u ∈ N
∗, which stores the representation of a frame Iz

only if z ≡ 0 (mod u), for z ∈ {0, 1, . . . , t − 1}. Recall that the segmentation is a step-
wise process; hence, the memory is updated incrementally. Consequently, (important
for Chapter 5) the memory size N is proportional to the video’s length T, i.e., N ∝ T. Note
that, the initialization frame I0 and the associated ground-truth mask G0 embeddings
are always stored in the first memory entry n = 1.

In addition, several methods [42, 47, 52] also include the key-value features of
the preceding adjacent frame It−1 (if not already present inside the memories Mk

and Mv). This leverages the idea that the most recent frame It−1 typically undergoes
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fewer appearance changes relative to It, and thus its representation can be particularly
beneficial for accurate segmentation, especially for locating the object.

Based on the memory key and value embeddings, we construct two memory matri-
ces KM and VM by concatenating the stored memory representations along the columns,
such that

KM = [Km
1 Km

2 . . . Km
N ] and VM = [Vm

1 Vm
2 . . . Vm

N ] , (3.8)

resulting in KM ∈ R
Ck×NHW and VM ∈ R

Cv×NHW .
By retaining intermediate frame representations, the network benefits from a larger

pool of reference features for cross-frame matching, which enhances the stability and
robustness of matching-based methods under prolonged occlusions.

3.1.5 Space-Time Matching

To segment the query frame It, the model retrieves relevant information from previously
stored frames (inside the external memories) using a non-local cross-attention operation
(no spatial or temporal constrains), referred to as space-time matching [42]. The goal of
this operation is to compute a pseudo value-feature matrix Ṽq ∈ R

Cv×HW . In essence, we
aim to determine "which" and by "how much" the memory value vectors vm

i = VM(•, i),
for all i ∈ {1, 2, . . . , NHW}, should contribute to the construction of Ṽq.

To this end, we first compute an affinity matrix A ∈ R
NHW×HW between every

query key vector kq
j = Kq(•, j), for all j ∈ {1, 2, . . . , HW} and every memory key

vector km
i = (KM)T(i, •), for all i ∈ {1, 2, . . . , NHW}. Hence, the (i, j)-th entry for A is

computed through

A(i, j) = sim
(

km
i , kq

j

)
, (3.9)

where sim : R
Ck × R

Ck → R denotes a similarity function (e.g., dot-product, cosine
similarly) that computes a similarity score between two vectors. Intuitively, A(i, j)

quantifies how well the i-th memory key matches the j-th query key. To convert the
similarity scores into attention weights, the network applies a column-wise softmax
over A, which yields an affinity matrix W ∈ [0, 1]NHW×HW by

W(i, j) =
exp

(
A(i, j)

)

NHW

∑
k=1

exp
(
A(k, j)

)
. (3.10)

This normalization ensures that for each query element, the attention weights over all
memory elements sums to 1. Finally, the pseudo value-feature embedding matrix Ṽq ∈
R

Cv×HW for the query frame It is computed by

Ṽq = VMW. (3.11)
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Hence, each column vector is generated by a weighted combination (based on similarity)
of the memory value columns vectors.

This is the core element of the approach, which enables the network fθ to retrieve
features from past frames and construct a first prediction towards the final segmentation.

3.1.6 Decoder

The final element of the network is the decoder decθ : R
Ck×HW ×F skip → [0, 1]HR×WR ,

which transforms the aggregated pseudo value features Ṽq into a dense probability
map Pt by

Pt = decθ

(
Ṽq, {Fl}

L
l=1

)
, (3.12)

where F skip =
{

Fl ∈ R
Cl×Hl×Wl | l ∈ {1, . . . , L}

}
denotes a set of intermediate feature

maps extracted from the key encoder enck
θ . These features are passed to the decoder via

skip connections to guide the upsampling process. Finally, we obtain the corresponding
binary object mask Mt by thresholding Pt at τ = 0.5, as described in Equation (3.4).

3.1.7 Multi-Object Segmentation

While the core pipeline is designed for single-object tracking, several applications often
involve tracking multiple objects simultaneously. Hence, given a set of multiple objects
O = {1, 2, . . . , O} to track in V , the network stores independent groups of memory
values {Mv

o | o ∈ O}, each dedicated to a different object indexed by o. This is necessary
since value features are conditioned on object masks. In contrast, only a single key
memory Mk is maintained, as its features depend solely on the input image, allowing
the network to compute the affinity matrix W only once [48] (see Equation (3.10)),
regardless of the number of objects |O|.

Due to the decoder structures, a set of independent probability maps is computed
PO

t = {Po
t | o ∈ O}, each representing a Bernoulli distributions over the foreground

class of a specific object. However, this independence can lead to inconsistencies in
overlapping regions e.g., a pixel may be classified as foreground in two different prob-
ability maps. To resolve this, Oh et al. [93] propose to adopt a soft aggregation, where
the multiple Bernoulli distributions are converted into a single categorical distribution
(taking into accounts the background class). Thus, the network needs to compute a
probability map that is exclusive to the background region (o = 0) by

P0
t (h, w) = ∏

o∈O

(
1 − Po

t (h, w)
)
, ∀ h ∈ {1, . . . , HR}, w ∈ {1, . . . , WR}. (3.13)

Next, we concatenate the multiple probability maps along the channel dimension (object
indices) to perform tensor operations, which results in PO

t = concat
(
P0

t , P1
t , . . . , PO

t

)
,

where PO
t ∈ [0, 1](1+O)×HR×WR . Note that, since the individual probability maps in PO

t
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are obtained via a sigmoid activation, applying a softmax along the channel dimension
of PO

t simplifies the operation to computing a ratio of probabilities. Hence, for a pixel
located at (h, w), the normalized probability map along the channel axis c ∈ {0} ∪ O is
given by

P̃O
t (c, h, w) =

Qc
t (h, w)

∑
l∈{0,1,...,O}

Ql
t(h, w)

, where Qc
t = Pc

t ⊘ (1HR×WR
− Pc

t ) , (3.14)

⊘ defines the Hadamard division and where the network constructs P̃O
t by concatenating

(along the channel axis) P̃O
t = concat

(
P̃0

t , P̃1
t , . . . , P̃O

t

)
, with P̃O

t ∈ [0, 1](1+|O|)×HR×WR .

Finally, the multi-object segmentation mask is computed by assigning each pixel (h, w)

to the object class with the highest normalized probability through

MO
t (h, w) = argmax

c∈{0,1,...,O}

P̃O
t (c, h, w). (3.15)

With this strategy, the network resolves conflicting regions, converting the multiple
masks predicted independently at first into a coherent single mask. This allows the final
prediction to consistently assign each pixel to a single object (or background), even in
regions where objects overlap.

3.2 Training Regime

At a high level, our objective is to train the segmentation network fθ to track an object
(at pixel level) across a video sequence V , given an initial user cue. To do so, the model
must learn to (i) extract meaningful visual features from individual frames, (ii) store
and retrieve relevant information through memory, and (iii) produce accurate pixel-wise
segmentation masks over time.

Formally, we aim to optimize the network parameters θ using Supervised Learning
(SL) by minimizing the empirical risk Remp(θ) over a training set Dtrain. Let Θ ⊆ R

|θ| be
the parameter space, such that we define the optimization problem as

θ̂ = argmin
θ∈Θ

Remp(θ), (3.16)

where Remp(θ) measures the discrepancy between the predicted masks and the ground-
truth annotations.

Intuitively, this training regime encourages the different modules to specialize in
complementary roles:

1. The key encoder enck
θ learns to encode robust embeddings invariant to visual

appearance changes (e.g., object motion, deformation, lighting changes), while
remaining temporally consistent. This consistency is essential for reliable cross-
attention across frames (see Equation (3.9)).
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2. In parallel, the value encoder encv
θ produces rich, object-centric embeddings (e.g.,

shape, boundary, and texture cues) that are projected into a feature space that the
decoder decθ can effectively leverage to reconstruct accurate segmentation masks.

3. In addition, the decoder decθ learns to exploit high-resolution spatial features from
the skip connections of enck

θ (see Equation (3.12)), to guide the upsampling process.

3.2.1 Simulating the Tracking Process

A crucial aspect to account for, as highlighted in Equation (3.2), is that the network’s
prediction depends not only on the current input frame Is

t ∈ V s, but also on previously
processed frames encoded in the memory banks Mk and Mv (see Subsection 3.1.4).

To reflect this temporal dependency during training, a tracking scenario is simulated
by using synthetic video clips V s = {Is

0, . . . , Is
T} along with the corresponding sequence

of ground-truth masks Gs = {Gs
0, . . . , Gs

T}, such that each (Is
t , Gs

t) pair is sampled from
a training dataset Dtrain. We provide further details on how to generate synthetic clips
from various datasets (e.g., [26, 84, 94–98]) in Subsection 3.2.4. Note that, we use the
superscript s to indicate synthetic data samples generated for training purposes.

Hence, for each synthetic video clip V s we train the network fθ , by replicating the
process we would have during inference. Hence, for each synthetic clip V s, we initialize
the key and value memory KM = enck

θ(I
s
0) and VM = encv

θ(I
s
0, Gs

0) as we would during
inference. Note that the memory banks are reset for each new synthetic clip.

This sequential training regime implicitly encourages the key encoder enck
θ and

value encoder encv
θ to encode their embeddings consistently across time.

3.2.2 Empirical Risk Minimization

Formally, we train the network by minimizing the standard empirical risk over the
training set Dtrain, which quantifies the average discrepancy between the predicted
probability maps and the ground-truth annotations. We define the empirical risk as

Remp(θ) = EV s∼Dtrain

[
1
T

T

∑
t=1

ℓ

(
fθ

(
Is

t ,M
k,Mv

)
, Gs

t

)]
, (3.17)

where ℓ : [0, 1]HR×WR × {0, 1}HR×WR → R denotes the loss function that quantifies the
discrepancy between the network’s predictions Pt and the ground-truth annotations Gs

t .
In practice, we approximate the expectation over the entire training set Dtrain using

mini-batches B ⊂ Dtrain, to allow for efficient computation and the use of stochastic opti-
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mization methods, e.g., Stochastic Gradient Descent (SGD), Adam [99], or RMSProp [100].
Therefore, we rewrite the empirical risk in Equation (3.17) as

Remp(θ;B) =
1
|B| ∑

(V s
b ,Gs

b)∈B

(
1
T

T

∑
t=1

ℓ

(
fθ

(
Is

b,t,M
k,Mv

)
, Gs

b,t

))
. (3.18)

Each mini-batch B = {(V s
b ,Gs

b) | b = {1, . . . , B}} consists of synthetic video clips and
their respective ground-truth. Here, Is

b,t and Gs
b,t denote the frame and ground-truth

annotations respectively of the b-th video clip for the t-th frame. Hence, for all subsequent
frames belonging to the same synthetic clip Is

b,t ∈ V s
b \ {Is

b,0} and Gs
b,t ∈ Gs

b \ {Gs
b,0},

we predict the corresponding probability map Pb,t as in Equation (3.2). Note that we
exclude the first image-mask pairs (Is

b,t=0, Gs
b,t=0) of each synthetic video clip V s from

Equations (3.17) and (3.18), as (Is
b,t=0, Gs

b,t=0) are only meant to initialize the memory
and no prediction is performed by the network for it.

Following prior works [42, 47], to stabilize the network’s training and prevent the
accumulation of prediction errors when predicting on a synthetic clip V s, we update
the value memory Mv using the corresponding ground-truth Gs

b,t ∈ Gs
b rather than the

predicted masks Ms
b,t. Thus, we compute the value embeddings by Vm

b,t = encv
θ(I

s
b,t, Gs

b,t)

and store them in the value memory bank Mv.
By minimizing the empirical risk over synthetic sequences and stabilizing memory

updates with ground-truth masks, we train the network to effectively encode and
leverage prior frame information for consistent object segmentation.

3.2.3 Loss Function and Optimization

In practice, Binary Cross Entropy (BCE) is used as the primary loss function ℓ to measure
the discrepancy between the predicted probability map Pt,b and the corresponding
ground-truth annotation Gs

t,b, such that

ℓ (Pt,b, Gt,b) =
− 1

HRWR

HR

∑
h=1

WR

∑
w=1

gs
h,w log (ph,w) +

(
1 − gs

h,w

)
log (1 − ph,w) , (3.19)

where gs
h,w ∈ {0, 1} is the ground-truth label and ph,w ∈ [0, 1] is the predicted Bernoulli

parameter at pixel location (h, w) for the b-th video of the t-th image in V s
b . We compute

the total training loss as defined in Equation (3.18).
While BCE serves as our primary loss function, other losses can be employed to

address specific challenges, for example, bootstrapped cross-entropy or Focal Loss [101],
which place more emphasis on hard examples and mitigates class imbalance. Moreover,
combining BCE with region-based metrics such as the Dice loss [102] allows the model
to capture object-level structure and boundaries better.

After computing the empirical risk Remp(θ;B) over a mini-batch B, we update the
model parameters θ via backpropagation. We compute the gradients ∇θRemp(θ;B) ∈ R

|θ|
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over the entire batch, which leads to more stable updates compared to per-video super-
vision. To optimize the network, we use the Adam optimizer [99], which adapts learning
rates during training and supports robust convergence across diverse scenarios.

3.2.4 Creating Synthetic Video Clips

Following the methodologies outlined in prior works [26, 72, 93], the network is trained
through a two-stage training strategy to progressively enhance its ability to segment
objects in videos.

In the first stage, we leverage static datasets Dstatic
train [94–98] to construct synthetic

video clips V s and their corresponding mask sequences Gs. We begin by sampling a single
image and its corresponding mask (ID , GD) ∼ Dstatic

train , and apply a set of transformations
to generate T+1 augmented pairs. We group the resulting T+1 image-mask pairs into
a synthetic clip V s = {IAt }

T
t=0 and its corresponding mask sequence Gs = {GA

t }
T
t=0. We

generate each pair (IAt , GA
t ) independently for each frame and batch index by applying

spatial transformations ψstatic
b,t ∼ Ψstatic to the original image-mask pair. Hence, through

these augmentations, we simulate temporal variations (e.g., motion blur, rotations, shear-
ing) derived from a single sampled image-mask pair. Figure 3.3 illustrates the static
images from which a synthetic video sequence V s and its ground-truth counterpart Gs

were generated.
In the second stage, we leverage real videos from DAVIS [26] and Y-VOS [84] to

generate synthetic training sequences. We form each synthetic clip V s = {IAt }
T
t=0 and its

corresponding mask sequence Gs = {GA
t }

T
t=0 by sampling T+1 image-mask pairs from

a real video and its ground-truth annotation (V r,Gr) ∼ Dreal
train. To encourage sample

diversity within a batch, we construct each synthetic sequence (V s
b ,Gs

b) from a different
real video. To avoid a bias toward early frames, the initial frame-mask pair (ID0 , GD

0 )

(used to initialize the model during training) is sampled by selecting a random starting
index uniformly from the available frames in the real video. However, this starting index
must ensure that we can still draw T additional frames from the same video, that can
allow for an adequate temporal spacing between each subsequent frame drawn [48].
To progressively increase the difficulty throughout the training, we gradually expand
the allowed spacing between two successive samples in the latter training iterations
(curriculum learning). This is presumably helpful as including more temporally distant
frames in a synthetic clip, trains the network with more challenging examples. Similarly,
as in the first stage, each sampled frame and its corresponding mask are augmented
with spatial transformations parameterized by ψreal

b,t ∼ Ψreal, applied independently for
each frame and batch index. Figure 3.4 displays examples of a synthetic video clip V s

and its corresponding ground-truth sequence Gs. These synthetic clips are generated by
sampling three images from a real video and applying augmentation techniques.
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By first learning from synthetic clips, the model establishes strong feature represen-
tation, enabling the network to gradually adapt to more complex scenarios encountered
in real-world videos.

3.3 Evaluation Metrics

Following the standard protocol [82], we evaluate sVOS methods using two primary
metrics: the region similarity J and the contour accuracy F . Note that, to ease the
ranking of different methods in the literature, we also report the average J &F score,
by J &F = 1

2 (J +F ).
Given an evaluation dataset D, we compute the global score MD (MD acts as a

placeholder for J or F ) by averaging over all objects present in the D by

MD =
1
|O| ∑

o∈O

1
To

To

∑
to=1

Mo
t , (3.20)

where o ∈ O denotes the indices of an object and to the frame index where the corre-
sponding object is present is a video sequence V . Here, Mo

t represents the per-frame
metric of J o

t or F o
t (depending on whether we want J or F ) for the o-th object in Deval.

More specifically, for a given binary object mask prediction Mo
t ∈ S , for a frame t

object indices o and its corresponding ground-truth annotation Go
t ∈ G we compute

the per-frame metrics as follows (note that numerical stability is ensured using a small
constant δ > 0 in the denominator, though not shown here for brevity):

➢ The per-frame Jaccard Index J o
t , also known as the intersection-over-union (IoU),

quantifies the region overlap between a predicted mask Mo
t and its corresponding

ground-truth Go
t by

J o
t =

|Go
t ∩ Mo

t |

|Go
t ∪ Mo

t |
. (3.21)

Hence, with J o
t we measure the ratio of correctly classified pixels w.r.t. the total

region covered by both masks.

➢ The F-measure F o
t captures contour alignment (i.e., accuracy) and is defined as the

harmonic mean of contour precision cp and recall cr by

F o
t = 2

cp · cr

cp + cr . (3.22)

To compute cp and cr, we define a function cont : {0, 1}HR×WR → P(N∗ × N
∗) to

extract a set of contour pixel coordinates (i.e., (w, h)) for a given binary mask. Note
that, here P indicates a power set, meaning it represents the set of all possible
subsets of contour pixel coordinates. Hence, let cm ∈ cont(Mo

t ) and cg ∈ cont(Go
t )
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denote individual contour points from the predicted and ground-truth masks. We
obtain cp and cr by

cp =

∣∣{ cm ∈ cont(Mo
t )
∣∣ ∃ cg ∈ cont(Go

t ), ∥cm − cg∥2 ≤ ϵ
}∣∣

| cont(Mo
t )|

,

cr =

∣∣{ cg ∈ cont(Go
t )
∣∣ ∃ cm ∈ cont(Mo

t ), ∥cg − cm∥2 ≤ ϵ
}∣∣

| cont(Go
t )|

,

(3.23)

where two contour points cm and cg are considered a match if their Euclidean
distance satisfies ∥cm − cg∥2 ≤ ϵ. Here, ϵ is a fixed spatial tolerance defined by the
benchmark [82].

To summarize, J , F , and J &F constitute the standard metrics in several sVOS
benchmarks, where higher values indicate better segmentation accuracy. Notably, the
metrics reflect model performance over all annotated objects rather than over the se-
quences for a given dataset D.
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Source image Synthetic Clip

Static image
Synthetic
frame t=0

Synthetic
frame t=1

Synthetic
frame t=2

Figure 3.3: Illustration of static images [94–98] augmented into a three-frame synthetic
video sequence during training. We blend and outline the contours of the correspond-
ing ground-truth masks in green for better visualization.
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Source clip (samples) Synthetic clip

#240 #235 #225

#30 #21 #14

#31 #34 #35

#00 #04 #12

#26 #30 #31

#10 #06 #04

Sample
frame 0

Sample
frame 1

Sample
frame 2

Synthetic
frame t=0

Synthetic
frame t=1

Synthetic
frame t=2

Figure 3.4: Example of source videos [26, 84] used to generate a three-frame synthetic
video sequence during training. For each synthetic clip, only three frames are randomly
sampled from a longer original video. We indicate the original position of these
sampled frames above each image to highlight the temporal jumps between them. We
blend and outline the contours of the corresponding ground-truth masks in green for
better visualization.
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C L I C K - B A S E D I N T E R A C T I V E V I D E O O B J E C T
S E G M E N T A T I O N

One of the overarching goals of this thesis is to explore more efficient user interactions
(related to RQ1) when segmenting a video sequence. In this chapter, we explore the use
of click-based interactions as a lightweight and intuitive medium for users to indicate
which arbitrary object a VOS method should track in a given video sequence. In this
context, iVOS approaches provide an initial starting point, as they leverage scribbles to
define which object to segment in a video.

Our first objective is to assess whether click-based interactions are a viable option to
guide and correct a VOS pipeline while preserving segmentation quality. We explore
a click-based solution that aims to balance segmentation performance with interaction
effort on the iVOS task. Our pipeline, CiVOS, comprises two decoupled modules, each
responsible for a specific subtask. First, a interaction module, which transforms sparse
user clicks into an object mask. Secondly, a propagation module, that propagates the mask
to the remaining frames of the video. We evaluate CiVOS on the popular interactive
DAVIS dataset [26], and propose three strategies for converting its default scribble-based
annotations into click-based counterparts for fair comparison.

This chapter is based on our ICIP 2022 paper [81], and is structured as follows. We
outline the motivation behind CiVOS in Section 4.1. We formalize our problem Sec-
tion 4.2 and review related work in Section 4.3. We describe our pipeline in Section 4.4.
In Section 4.5, we detail our click generation strategies and adapt the DAVIS evaluation
metric for hardware-independent comparisons. We present our experimental results
in Section 4.6. Finally, we conclude the chapter with a discussion and summarize our
key contributions in Section 4.7.

4.1 Motivation

At the time this research was initiated, most existing iVOS [70, 72–75] approaches
relied predominantly on scribble-based interactions to fully segment a given video
sequence. While faster than full mask annotations, scribbles still require significant
user effort, around 11 seconds per object instance [14, 103] (depending on the level of
detail). Moreover, we have to take into account the average number of times a user
might need to interact (i.e., interaction rounds) with the method to achieve satisfactory
results or similar performance to sVOS approaches. By taking 8 as our average number
of interaction rounds (as used in the DAVIS benchmark [14]), the total time required
to segment a single object (excluding the review process) is actually much closer to

37
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90 seconds. As the primary goal of iVOS approaches is to segment an arbitrary object
instance with ideally minimal user effort, a natural question arises: Why not rely on
click-based input to reduce the user’s workload? As highlighted by Bearman et al. [103]
and Benenson et al. [104], click-based annotations can reduce the interaction time from
11 seconds (scribbles) to just 1–3 seconds per object, allowing users to designate target
objects more rapidly and intuitively [105].

Here, Interactive Image Object Segmentation (iIOS) methods are presumably helpful,
as they have demonstrated impressive performance using solely click-based interactions
to generate accurate masks for arbitrary objects in single images [71, 106–114]. To extend
these benefits to video, we introduce a novel Click-based interactive Video Object Segmenta-

tion (CiVOS) framework, which aims to simplify the annotation process in iVOS without
sacrificing segmentation quality. We adopt the popular decoupled Interaction-Propagation

design introduced by Benard et al. [70]: (1) an interactive image segmentation pipeline [17,
111, 112] that converts sparse user clicks into an initial object mask, (2) and an sVOS-
based mask propagation module [38, 48, 72] that extends the mask across the rest of the
video.

4.2 Problem Definition

Given a video sequence V ∈ {It | t ∈ {0, 1, . . . , T}}, our goal with iVOS approaches
is to predict a set of masks Mr

t ∈ {0, 1}|O|×HR×WR , where Sr = {Mr
t | t ∈ {0, 1, . . . , T}}

denotes the set of predicted masks across all frames at round r.
We can decompose each interaction round into three steps as shown in Figure 4.1.

Thus, given a round r, the first step leverages (1) user interaction, where the user
provides a sparse interaction map Ur

t ∈ {0, 1}(1+|O|)×HR×WR (based on scribbles [47, 72–
74, 78]) for the t-th image It ∈ V . Expect for the first round (r = 1), a user typically
provides false positive and false negative annotations, each instructing the method
which pixel regions belong to the background or foreground region (the set of objects
O to track). For the first round, only false negative annotations are expected, hence
Ur=1

t ∈ {0, 1}|O|×HR×WR (2) In the second step we have the model inference, where the
method predicts a new segmented video sequence based on the user input Ur

t and the
current results Sr. Conceptually, we can visualize the iVOS prediction as the following
mapping

f : V × Sr × Ur
t → Sr+1, (4.1)

where Sr+1 is the next’s rounds refined segmented sequence and f denotes a complete
iVOS pipeline. Note that in Equation (4.1), we visualize the segmentation for a given
video V as a batch-like process under the iVOS perspective. Finally, (3) the Review and
selection step, where the user reviews the resulting output Sr+1, and selects a new frame
to interact with. Steps (1), (2) and (3) are repeated over a total of R interaction rounds,
i.e., until the user is satisfied with the final results.
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Figure 4.1: Overview of a typical interaction round, as defined by the DAVIS bench-
mark [14] for the iVOS task. We can decompose a round into three steps, firstly a user
interaction, secondly the model’s prediction and thirdly the reviewing process.

In this setup, the most popular type of interaction to generate sparse interactions
maps Ur,o

t ∈ {0, 1}HR×WR , are based on scribbles ur,o
t ∈ P(N∗ × N

∗), where P denotes
the power set describing the scribbles position as point coordinates in the image space.
However, in this chapter, we address the challenge of maintaining high segmentation
quality under an extreme form of user input, i.e. click-based interactions, such that
ur,o

t ∈ N
∗ × N

∗ describes only a point in the image space.

4.3 Related Work

Here, we briefly highlight prior iVOS approaches, as a more detailed review of related
work in for this field is already provided in Chapter 2.2.

4.3.1 Interactive Video Object Segmentation

Early methods for addressing iVOS use hand-crafted features (e.g., click-based inter-
actions [68, 69]), but they require a large number of user interactions, making them
impractical at a large scale [8]. With the release of the DAVIS interactive benchmark [14],
a standardization for evaluating iVOS methods has been introduced, where a key aspect
is to identify methods that can be used in real-world applications. A majority of recent
methods focus on scribble-based interactions as it is the default user annotation provided
by the DAVIS benchmark, with the exception of two studies allowing for click-based
interactions [75, 76].
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The current practice in state-of-the-art methods is to tackle the problem following the
Interaction-Propagation design introduced by Benard et al. in [70]. The authors combine
two separate networks: an iIOS network based on [71] that predicts and refines segmen-
tation masks based on the interactions of the user as well as an sVOS network [18], which
propagates the predicted masks derived from the interaction module to the remaining
video frames.

As we already presented popular iVOS approaches in Chapter 2 along with the
sVOS methods that compose the second component in iVOS methods, we will focus our
attention on the other element composing iVOS methods, the "interaction-to-mask" part,
which in our use case is based on iIOS as they convert clicks to mask.

Note, to ease up notations and explanation, we assume a single object to be seg-
mented for a given video V in the following section.

4.3.2 Interactive Image Object Segmentation

The goal in iIOS is to predict an accurate mask of an arbitrary object instance using
minimal user annotations (eg, clicks [71, 108, 110, 111, 113–115], extreme points [116–118],
or bounding boxes [119–121]).

Note that clicks are the most intuitive interaction type, as pointing to an object (i.e.,
hand, arm, fingers) is the most intuitive [103, 104] from for humans to convey infor-
mation on an image and the most cost-efficient. Xu et al. [71] introduce deep learning
in the context of iIOS to extract salient features. By relying on click-based interactions,
the authors can simulate user inputs and generate a large number of training samples.
Liew et al. [106] extend the previous work by exploiting the context of local regions
around user interactions. Mahadevan et al. [107] introduce iterative training for inter-
active segmentation networks. Li et al. [108] consider the multi-modal nature of iIOS
and propose a network to infer multiple masks in order to cover all plausible solutions
as well as a second network to select a result from the set of potential object masks.
Song et al. [109] use a Markov Decision Process trained with reinforcement learning to
automatically generate interactions based on the initial interactions of the user. Jang et

al. [110] propose the Back-propagation Refinement Scheme (BRS) to constrain their network
to predict correct labels at user-specified locations by optimizing the interaction maps
(i.e., the input of the network) through forward and backward passes. Sofiuuk et al. [111]
elaborate the idea further and introduce feature-BRS (f -BRS). Instead of optimizing the
interaction maps, f -BRS optimizes auxiliary parameters in the last layers of the network.
This reduces the computational time during the forward and backward passes. Lin et

al. [112] emphasize the role of the first interaction by introducing a first click attention
module, which leverages the first click as guidance for the following interactions. Kon-
togianni et al. [113] treat user corrections as training samples to update the network
parameters, which also enables cross-domain adaptation. Sofiiuk et al. [114] expand
upon the iterative training strategy proposed in[107] by introducing a new loss function
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and an encoding layer that allows for the integration of additional external information
without affecting the pre-trained weights of the backbone encoder. In this work, they also
replace the previous f-BRS backbone with an HRNet [122] combined with an OCR [123]
network, which helps maintain high-quality features throughout the network and results
in a more precise segmentation mask.

Since the introduction of SAM [17] by Kirillov et al., a plethora of SAM-based
methods have been proposed to solve the task in medical imaging [124] and natural
images [125]. For instance, SAM-HQ [61] by Ke et al. improves upon SAM by better
handling complex shapes, such as thinner structures and objects with holes. Additionally,
faster approaches like FastSAM [62] and MobileFast [63] have been developed to enhance
performance and efficiency.

4.4 Framework

Our proposed method (i.e., CiVOS), to reduce the annotation effort on iVOS, relies on a
modular design [47]. We have essentially an interaction module (see Subsection 4.4.2)
and a propagation module (see Subsection 4.4.3). We provide in Figure 4.2 an overview
of our pipeline.

4.4.1 Click-based Interactive Video Object Segmentation

As VOS can be defined as a binary classification problem that aims to distinguish pixels
of a specific object from other (background) structures, incorrectly classified pixels can be
regarded as either false positives or as false negatives. Hence, to rectify the misclassified
pixel regions, the user would indicate false negative and false positive regions with
corresponding interactions. As illustrated in Figure 4.2, we build on the modular concept
introduced by MiVOS [75] for the proposed CiVOS framework, which comprises two
fundamental deep learning architectures, an interaction and a propagation module. To
simplify explanations and notations, we assume a single-object scenario.

Given a click-based user input Ur
tr

(i.e., false positive and false negative interactions)
for a frame Ir

tr
∈ R

3×HR×WR , the interaction module predicts a corresponding segmenta-
tion mask Mr

tr
∈ {0, 1}HR×WR . Here, r ∈ R = {1, 2, . . . , R} denotes the interaction round,

and tr ∈ {0, 1, . . . , T} is the index of the frame t annotated at round r. The superscript r

in both Ir
tr

and Mr
tr

explicitly indicates the interaction round.
Subsequently, the propagation module propagates the mask Mr

tr
bidirectionally

(backward and forward) starting from the annotated frame Ir
tr

. In each direction, the
propagation is applied to all frames between tr and the nearest previously annotated
frame tr⋆ ∈ TR for that direction, where r⋆ < r, and TR = {t1, t2, . . . , tr} denotes the set
of all annotated frames. If no such annotation exists in a given direction, the propagation
proceeds to the beginning (t = 0) or end (t = T) of the video sequence, respectively.
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Figure 4.2: Illustration of our CiVOS pipeline, where the user corrects the results of
a previous round prediction. To maintain clarity, we illustrate the process only for
the forward propagation t+r of round r. The user reviews the current segmentation
results of round r, and decides to annotate frame Ir

tr
by corrective clicks (i.e., positive

and negative) denoted by a yellow star and red star respectively to indicate false
positive and false negative region. The user input Ur

t and the mask predicted in a
previous round r∗, M∗

t are passed through by the interaction module, which predicts
a corresponding object mask (refined mask) Mr

t . This mask initializes the Propagation
Module, which processes the set of frames indexed by s+r to first predict intermediate
mask, where are then fused with the mask from the previous round to obtain the final
results.

More formally, we define the forward propagation boundary t+r , i.e., the last frame
to which the mask is propagated in the forward direction as

t+r = min ({tr⋆ − 1 | r⋆ < r, tr⋆ > tr} ∪ {T}) , (4.2)

and the backward propagation boundary t−r as

t−r = max ({tr⋆ + 1 | r⋆ < r, tr⋆ < tr} ∪ {0}) . (4.3)

Note that we subtract and add 1 respectively to t+r and t−r as otherwise we would propa-
gate mask information to an annotated frame. These definitions ensure that the mask
is propagated from frame tr in both directions, up to the closest previously annotated
frame tr⋆ . If no such annotation exists in a given direction, propagation extends to the
beginning or end of the video sequence, respectively.
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4.4.2 Interaction Module

We consider RITM [114] as our interaction module, to generate object masks based on
click-based inputs. Here, HRNet [122] and OCR [123] serve as the backbone for the
segmentation network.

As illustrated in Figure 4.2, the inputs for the interaction module are: the current
frame used for interactions Ir

tr
two encoded interaction maps [104, 114]; i.e., Ur

tr
∈

{0, 1}2×HR×WR ∈ that represent incorrectly segmented or missing mask areas and the
latest available mask Mr⋆

t , predicted in round r⋆ < r. We use a convolutional block (i.e.,
Conv1S [114]) as illustrated in Figure 4.2 to take additional external inputs into account
without affecting the pre-trained weights of the backbone segmentation network (i.e.,
HRNet [122]). Here, the mask Mr⋆

t is concatenated channel-wise with the interaction
maps Ur

t , before passing through a convolutional layer. The output of the convolutional
layer (i.e., Conv1S) is a tensor with the same dimensions as the tensor given by the first
layer of HRNet, such that an element-wise summation can be applied along the channel
axis. As in f -BRS [111] the predicted mask is optimized to predict the user-specified
labels at the locations where the interactions occurred.

4.4.3 Propagation Module

We consider the propagation branch of MiVOS [75] (i.e., sVOS approach), inspired by [72]
as the mask propagation component, which relies on a two-encoder- and one-decoder-
structure as illustrated in Figure 4.2. Note that, since MiVOS bases its design on STM [72],
we already covered the conceptual fundamentals of how MiVOS works in Chapter 3.
However, for completion we include a small but more technical recap with the particular
fusion module for the iVOS task, which allows the network to refine the prediction by
fusing the masks of a previous round Mr⋆

t , with the latest prediction Mr
t .

The backbone feature extractor for both encoders (i.e., the target encoder and the
memory encoder) use ResNet50 [126] up to and including the fourth stage (i.e., resnet
layer conv4_5), which computes 1024 different feature channels. Two separate convolu-
tion layers are added at the end of each encoder, as shown in Figure 4.2, to extract key
and values embeddings, such that the keys K ∈ R

Ck×HW and the values V ∈ R
Cv×HW .

The propagation is a step-wise process, where only one frame is segmented at
a time, as illustrated. Note that for the forward direction, we have the following
range in steps s+r ∈ {1, 2, . . . , t+r − tr}, and vice versa for the backward direction with
s−r ∈ {1, 2, . . . , tr − t−r }. For ease of notation, we consider both indices s+r and s−r as an
index denoted by s in the subsequent notation, as the process is the same regardless
of the propagation direction. Hence for a given frame Ir

t , in each step s we propagate
to all remaining frame Ir

tr−s−r
< Ir

tr
< Ir

tr+s+r
is given to the target encoder (the addition

or subtraction depends on the direction of the propagation). In contrast to the target
encoder, the memory encoder encodes the images with their respective masks, referred
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to as memory frames and stores them inside an external memory Mr
s. The memoriza-

tion of key and value embeddings follows the same congruence condition described
in Chapter 3, based on the segmentation’s direction (i.e., forward or background) relative
to the interacted frame tr. Note that the memory is re-initialized for each round, for each
direction, and that the embeddings stored on memory slot n = 1 in KM ∈ R

Ck×NHW

and VM ∈ R
Cv×NHW are conditioned on the interacted frame, i.e., Ir

tr
and Mr

tr
.

A similarity matching between the query key embeddings (current frame to segment
for step s) Kq and the memory key embeddings KM as described in Section 3.1.5, to
infer a weight matrix W ∈ [0, 1]NHW×HW , indicating which features from KM show
the highest similarity to Kq. The attentional weight matrix W allows us to weight the
memory values VM only at relevant feature positions. With Vq encoding which features
belong to the foreground or background. The weighted memory values VM are then
concatenated with the target values Vq, which encode appearance information of the
frame Ir

tr+s to segment at a given step s. The resulting concatenation is given to the
decoder to predict a corresponding mask of Mr

tr+s. The decoder is based on [72] and
employs several refinement modules [93] as building blocks. At each stage, a refinement
module takes the up-sampled feature output from the previous refinement module
along with the feature maps of the corresponding target encoder via skip connections.

Since the propagation process is independent of the masks inferred in previous
rounds Mr⋆

t , the information contained in those masks and, thus, the intent of the
previous user interactions may be lost. To prevent this, a learnable fusion component
(Difference-Aware Fusion) based on [75] , infers a new mask Mr

t . A fusion between Mr
t and

Mr⋆
t .

4.5 Interactive Benchmark

4.5.1 Interactive DAVIS

To evaluate CiVOS, we utilize the popular interactive 2017 DAVIS benchmark [14, 82,
83, 127] containing high-quality segmentation annotations [83]. Here, a robot agent
simulates scribble-based user interactions. Since the process is round-based, the robot
annotates at the beginning of each round r a single frame with one or several scribbles.
At the end of the round, the evaluation algorithm compares the predicted results Sr

w.r.t. the ground-truth sequence G to determine the frame index t∗ with the worst
segmentation and provide corrective scribbles. Formally, our goal is as follows

t∗ = argmin
t∈{0,1,...,T}

∑
o∈O

IoU(Mo
t , Go

t ), (4.4)

where Mt ∈ Sr and Gt ∈ G. Here O denotes the set of objects to segment in the video,
and IoU(·, ·) is a function that computes the Jaccard index for two binary masks.

The benchmark uses a maximum of 8 interactions rounds while evaluating the
submitted iVOS approaches with a time budget (which is set to 30 seconds per round
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for each object in the sequence). We also use these values in our evaluations reported
in Table 4.1 and Table 4.2. Here, the standard metrics [82] are the region similarity J (i.e.,
the Jaccard index) and the contour accuracy F . To aggregate the results of several succes-
sive interactions, the DAVIS benchmark uses the area under the curve of J &F (denoted
as AUC-J &F ). The required time to predict the masks is used as x-axis. The bench-
mark further introduces the J &F@60s metric to denote the obtained J &F score at
60 seconds.

For the iVOS setting, an additional metric is introduced by Caelles et al. [14]: R-AUC-
J &F , which considers the time taken to reach a certain level of accuracy.

In this setup, the goal is to promote VOS for real world applications in an video
editing perspective. Hence to promote fast and practical methods, the authors introduce
the AUC–J &F metrics, which integrate the J &F scores after each round (8 rounds in
total), under the area, where the abscise is the time required to achieve these result.

4.5.2 Metric Adaptation and Click Simulation

The AUC-J &F , as well as the J &F@60s metric, incorporate the processing time to
promote fast methods suitable for real-world applications. Thus, the evaluation scores
are hardware-dependent and not reproducible on different systems. The metrics favor
high-end machines as they are able to achieve high J &F scores faster in the allowed
time budget. To enable a fair and reproducible comparison across different systems,
we propose R-AUC-J &F that adapts the AUC-J &F metric by incorporating the
accumulated interaction rounds instead of the processing time.

As we consider a click-based approach to tackle iVOS, we propose three new click-
based interaction generation strategies denoted as a1, a2, a3 for the interactive DAVIS
framework. We illustrate each strategy in Figure 4.3. The strategies a1 and a2 rely on the
generated scribbles of the robot agent to extract click-based inputs. In the case of a1, in
each round, a single click is generated for each object based on all assigned scribbles to
the corresponding object. In contrast, a2 computes a click for each scribble.

(a) Click Generation a1 (b) Click Generation a2 (c) Click Generation a3

Figure 4.3: Visualization of our click generation strategies. For (a) and (b) a colored
star ⋆ indicates the position of a generated click based on the corresponding colored
scribble. For (c) we leverage the mask information directly to compute the central
position.
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More formally, let ur
t = {(hi, wi)}

N
i=1 denote the set of individual coordinates belong-

ing to provided scribbles at frame index t and round r. We define the central coordinates
(hc, wc), constrained to lie on the scribble ur

t , as

(hc, wc) = argmin
(hi ,wi)∈ur

t

(√(
h − hi

)2
+ (w − wi)

2

)
, where

h =
1
|ur

t |
∑

(hi ,·)∈ur
t

hi and w =
1
|ur

t |
∑

(·,wi)∈ur
t

wi .

(4.5)

We generate a point based on the a1 strategy, by treating all individual scribbles belonging
to the same object as a single set ur

t . In contrast, when generating a point through the a2

strategy, each scribble is treated as an independent set ur
t , even if they correspond to the

same object.
Lastly, we exploit directly the erroneous regions between prediction and ground-

truth to emulate novel user interactions (a3) at the center location of the region. For this
strategy, the simulated clicks are located at the center of the corresponding regions.

4.6 Experiments

4.6.1 Quantitative Results

To provide a fair comparison of CiVOS against current SOTA methods, we generate
click-based interactions from the scribbles provided by the DAVIS robot agent following
the a2 strategy presented in Section 4.5.2. Since the first interaction round only includes
one scribble per object, we also utilize only one click per object regardless of the click
generating strategy used (i.e., a1, a2, a3).

We compare CiVOS against SOTA methods relying on scribble-based interactions
on the interactive 2017 DAVIS benchmark [14, 82, 83, 127] in Table 4.1. Specifically, we
compare our approach against a MiVOS [75] variation that accepts click-based interac-
tions. CiVOS achieves competitive results (i.e., R-AUC-J &F = 0.76, AUC-J &F = 0.83)
to scribble-based methods despite relying only on click-based interactions.

Table 4.2 displays the R-AUC-J &F results of CiVOS on the DAVIS 2017 validation
set by taking into account different click-based interaction strategies (i.e., a1,a2,a3). The
number of interactions allowed per object per round depends on the extent of the
erroneous regions, i.e., small incorrectly classified areas are not considered during this
process. We are able to boost the performance of CiVOS (i.e., R-AUC-J &F = 0.78)
by extracting directly the central coordinates of the misclassified regions rather than
arbitrarily placed points (points generated from scribbles might be located on the object
edge or far from the object center) of the erroneous regions. Also, we do not observe
any improvement of the R-AUC-J &F score after a third interaction on the same object
within the same round of interaction. Thus, limiting the number of interactions up to
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a maximum of three interactions per round and per object provides a good trade-off
between user workload and mask accuracy.

Methods
Training Testing R-AUC- AUC- J &F

Interaction Interaction J &F ↑ J &F ↑ @60s ↑

MANet [74] (CVPR 20) Scribble Scribble 0.72 0.79 0.79

ATNet [73] (ECCV 20) Scribble Scribble 0.75 0.80 0.80

MiVOS [75] (CVPR 21) Scribble Scribble 0.81 0.87 0.88

GIS-RAmap [78] (CVPR 21) Scribble Scribble 0.79 0.86 0.87

MiVOS [75] (CVPR 21) Click Click 0.70 0.75 0.75

CiVOS (ours) Click Click 0.76 0.83 0.84

Table 4.1: Quantitative evaluation on the interactive DAVIS 2017 validation set. We
evaluate current SOTA scribble-based iVOS methods with the newly presented R-AUC-
J &F metric for reproducible comparison and test CiVOS and MiVOS on click-based
interactions (using the a2 strategy).

Maximal Number
1 2 3 4 5 6 7

of Clicks

Interaction Strategy a1 0.69 − − − − − −

Interaction Strategy a2 0.72 0.76 0.76 0.75 0.75 0.75 0.76

Interaction Strategy a3 0.74 0.77 0.78 0.78 0.78 0.78 0.78

Table 4.2: R-AUC-J &F results on the DAVIS 2017 validation set by using different
click generating strategies. CiVOS achieves the best result by incorporating at most
three clicks for each object per round and by relying on the central coordinates of
erroneous regions.

4.7 Discussion

In this chapter, we introduced CiVOS, a modular iVOS framework that reduces an-
notation effort by leveraging click-based interactions while maintaining competitive
segmentation performance compared to scribble-based alternatives. We proposed a
complementary hardware-independent metric, R-AUC-J &F , to support reproducible
evaluation and introduced several strategies to convert scribble annotations into equiva-
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lent click-based inputs. To foster future research in this area, we make our code publicly
available1.

These results provide an initial answer to RQ1, where we assess the feasibility of
using clicks as an effective form of interaction in VOS systems. Specifically, we estab-
lished that such sparse inputs can reduce user effort without significantly compromising
segmentation quality (in the context of pre-recorded, and short video sequences). Despite
these results, several challenges remain before we can establish a definitive answer to
RQ1, as reducing user effort is not limited to minimizing interaction time or improving
intuitiveness. For instance, it also involves decreasing the cognitive load associated with
monitoring and reviewing the segmentation process, which we will explore in Chapter 6.

Note that the current iVOS setting, which assumes access to the full video sequence,
works well for short, pre-recorded videos where users can interact at optimal frames
and freely rewind. However, this paradigm is ill-suited for long-term or streaming video
sequences, where delayed feedback can allow errors to propagate, increasing the cost
and complexity of reviewing. While manageable in short clips, this effort becomes a
significant bottleneck as sequence length increases.

To summarize, while this chapter demonstrates that click-based interactions are a
viable and efficient alternative to scribbles for iVOS, the current approach remains limited
to pre-recorded, short video sequences. It assumes full access to the video in advance
and does not account for the reviewing effort. These constraints highlight the need to go
beyond the traditional iVOS setting and explore how video object segmentation systems
can operate in unconstrained environments, i.e., where interaction opportunities are
limited and no review is possible. These limitations motivate our Chapter 6, where we
investigate how to make interaction more efficient and proactive, enabling segmentation
systems to decide when and how to involve the user during ongoing video analysis.

1 https://github.com/Vujas-Eteph/CiVOS

https://github.com/Vujas-Eteph/CiVOS
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This chapter addresses the scalability challenge posed in RQ2, where we aim to extend
VOS methods to operate effectively on unconstrained video sequences. Unlike the previ-
ous chapter, we omit user interactions and focus solely on improving the segmentation
aspect. This allows us to work within the sVOS setting, where no user input is provided
after initialization.

As a proof of concept, we adapt and extend several state-of-the-art sVOS pipelines
to handle unconstrained scenarios. Central to our contribution is READMem (Robust
Embedding Association for a Diverse Memory), a training-free, plug-and-play module
designed to enhance the memory update strategy for SOTA sVOS methods. Rather than
following standard heuristics, READMem estimates the diversity of memory samples
and updates the external memory only when a new frame adds ideally novel and
non-redundant information. We demonstrate that READMem successfully extends all
sVOS baselines to operate on unconstrained videos by evaluating them on LV1 [51] and
VOTS2023 [92] while not hindering performance on short-term videos like DAVIS [26].

This chapter is based on our BMVC 2023 paper [128], and is structured as follows:
We outline the motivation in Section 5.1, define our problem in Section 5.2 and provide
a small overview of related work in Section 5.3. We describe our READMem module
in Section 5.4, present our quantitative and qualitative results in Section 5.5 and 5.6.
Finally, we discuss the limitations of our approach in Section 5.7 and provide concluding
remarks in Section 5.8.

5.1 Motivation

When this research was initiated, most sVOS approaches were designed for short, pre-
recorded video clips, with limited attention given to their applicability in long-term
or streaming scenarios. Current sVOS methods [46–48, 52, 54, 55, 129] predominantly
utilized the space-time memory network design [42], which stores deep representations
of previous frames and their estimated masks in an external memory for the segmenta-
tion of a query image. Although some attention has recently been given to the memory
update strategy [52, 55, 129], most methods rely on a simple frame aggregation approach,
which inserts every t-th frame into an ever-expanding memory. This approach works
well for short sequences but fails on longer videos due to the saturation of the GPU
memory and increasing computational demands.

49
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As an example, let us consider a practical application, where we leverage the popular
sVOS framework MiVOS [47] to track on pixel level an object of interest in a given video
(with a resolution of 480 by 960 pixels) using an Nvidia GeForce GTX 1080 Ti (which
we use in our experiments). The GPU offers about 11 GiB in VRAM, and MiVOS needs
around 0.9 GiB of VRAM without taking into account the external memory. When saving
the combined memory key and value in the external memory of MiVOS, the network
adds approximately 18 MiB to the GPU’s memory footprint. This memory footprint
grows linearly under the following space complexity O(N · H · W · (Ck + Cv)), where
N denotes the memory size, H and W the strided resolution of the image after passing
through an encoder, and Ck with Cv denotes the channel dimension of the key and value
embeddings. Hence, we can hypothetically store around 560 frames representations into
the GPU in addition to the base network MiVOS. Note that, in our thought experiment
we only considered the allocated GPU memory (effectively used by the network) to
estimate the number of frames we can save before reaching an out-of-memory (OOM)
error in the GPU. However, in practice, the actual bottleneck often stems from the
reserved GPU memory. This is influenced by factors such as the framework’s internal
pre-allocation strategies for efficiency, memory fragmentation, concurrent workloads
from other processes or networks, and the specific CUDA runtime version. This makes it
difficult to accurately estimate its growth compared to the allocated memory. Hence, our
original estimates of 560 frames presents mainly a theoretical bound given the GeForce
GTX 1080 Ti. Moreover in our experimental evaluations we could only store up to 140
frames. Now considering that the long-term VOS datasets [90] for the long-term setting
present an average sequence length of 2470 frames for LV1 [51], 2073 for VOTS 2023 [92],
and 574 for LVOS [91], the theoretical bound is barely sufficient to allow us to evaluate
MiVOS on LVOS if we would like to aggregate every frame representation in the external
memory.

Moreover, the specificity of the sVOS approach, i.e., space-time operation (see Sub-
section 3.1.5), induces a time complexity that scales based on the memory size N, leading
to an overall complexity1 of O(N · H2 · W2 · (Ck + Cv)), which stems from the cross-
attention in Equation (3.9) (i.e., O(N · H2 · W2 · Ck)) and the value aggregation in Equa-
tion (3.11) (i.e., O(N · H2 · W2 · Cv)). We do not include the base network in this analysis,
as its time complexity is uncorrelated to the memory size N. As the framework contin-
uously accumulates memory embeddings, N grows linearly. Through the continuous
memory aggregation scheme, this dependence on N causes the method to slow down
proportionally to the duration it tracks an object (refer to Table 5.8 in Subsection 5.7).
Beyond the continuous increase in memory footprint and the resulting slowdown with
growing memory, Cheng et al. [47] show that, past a certain point, the memory contains
redundant information. This redundancy adds noise and dilutes the significance of more
pertinent information.

1 We exclude the column-wise softmax operation from the final Big O notation because its complexity is
asymptotically negligible compared to the dominant terms involving the key Ck and value Cv dimensions.
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Figure 5.1: Performance comparison of sVOS baselines (MiVOS [47], STCN [48],
QDMN [52]) with and without the READMem extension on the LV1 [51] dataset
(composed of long videos) when varying the sampling interval sr.

Hence, this continuous frame aggregation strategy neither considers redundancies
nor novel information while adding new embeddings to the memory. A naive approach
to better deal with long videos is to increase the sampling interval sr, which dictates how
frequently the memory’s state is updated by saving only every t-th frame representation.
As shown in Figure 5.1, increasing the sampling interval SOTA methods [42, 47, 48]
leads to improved performance. Due to a higher sampling interval, the memory stores
embeddings of frames that are further apart in time from each other. These embeddings
are more likely to reflect appearance variations resulting in a more diverse set of em-
beddings in the memory, contributing to better predictions. However, a high sampling
interval may lead to the omission of potentially useful frames [51, 55], which is partic-
ularly detrimental for short sequences. Moreover, as noted by [55], a higher sampling
interval leads to unstable performance.

To address the aforementioned points, we propose a simple yet effective extension in
the form of a module named READMem for updating the memory. Drawing inspiration
from [130] in the visual object tracking field, our approach focuses on increasing the
diversity of the embeddings stored in the memory rather than simply aggregating every
t-th frame. This selective approach allows us to save only key embeddings in the memory,
thus alleviating the memory saturation faced by previous methods on long videos and
even unconstrained video lengths.

5.2 Problem Definition

To briefly restate, sVOS methods rely on an initial user cue Ut=0 to specify which object
to track throughout a video V = {It | t ∈ {0, 1, . . . , T}}, where It denotes an RGB
image. This cue is typically provided as a fully annotated mask Mt=0 ∈ {0, 1}HR×WR

(the ground-truth Gt=0) of the first frame It=0 ∈ R
3×HR×WR . The method then segments

the subsequent frames in V in a step-wise process, resulting in a segmented sequence,
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denotes as S = {Mt | t ∈ {1, 2, . . . , T}}. A more detailed description of the general
sVOS framework is provided in Chapter 3.

In our use case, we target the ever-growing memory issue in STM-based approaches
by considering their application to unconstrained video sequences V (i.e., unbounded
length, unpredictable object variations), where T → ∞. Indeed, as N ∝ T this leads to a
memory size N → ∞, which is impractical in unconstrained scenarios (e.g., streaming
scenarios, unbounded sequence length). Hence, in this chapter, we focus on limiting the
memory growth in SOTA methods Me

t , where e acts as a placeholder for key k or value v

embedding, while simultaneously preserving the memory’s representation capabilities.
To approximate unconstrained sequences in our evaluations, we will rely on long videos.
To this end, we fix the size of the memory to N slots, such that |Me

t | = N and introduce
a diversity criterion to retain only embeddings e that positively enhance the memory’s
diversity. We can formulate the memory selection process as the following optimization
problem

Me
t = argmax

Me
t⊆Me

t−1∪{et},
|Me

t |=N

div(Me
t), (5.1)

where div(·) denotes a diversity measure over the selected embeddings, which we will
further elaborate in Subsection 5.4.2. Conceptually, the memory from the previous step
Me

t−1, which has a fixed size of N, is combined with the new embedding et to form a
temporary candidate pool of N + 1 embeddings. The optimization problem then selects
the top N embeddings from the N + 1 candidate pool to the ones that yield the highest
diversity score.

However, solving the global maximization problem in Equation (5.1) is computa-
tionally infeasible, as it would require storing and evaluating all past embeddings up
to time t, which contradicts our goal of maintaining a bounded memory. Therefore, we
adopt a greedy strategy, where at each time step t, upon receiving a new embedding et,
we decide whether to add or replace an existing embedding to optimize Equation (5.1),
based on its contribution to the overall diversity.

5.3 Related Work

Online fine-tuning approaches [18–22, 24] adapt the network parameters on-the-fly based
on an initial mask indicating the object of interest, but suffer from slow inference and
poor generalization [8].

In contrast, propagation-based methods [26–30] utilize strong priors offered by pre-
vious (adjacent) frames to propagate the mask, allowing them to better deal with fast
appearance changes. However, they are prone to error accumulation and lack long-term
context for identifying objects after occlusion [8].

Matching-based methods [35–40, 42, 47, 48, 55] encode all frame representations in the
same feature space to facilitate the matching process during cross-attention. Most SOTA
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Figure 5.2: Overview of READMem-MiVOS (MiVOS [47] using READMem) after
initialization. We omit the temporary memory for simplicity.

approaches follow the design proposed by Oh et al. [42] (Space-Time-Memory (STM)),
where they encode features of the initial frame along with previously processed frames
(intermediate frames). However, while STM-based methods [42, 47–49, 55] methods
display incredible performance on short-term benchmarks [83, 84], they are hampered
in real-world applications by their ever-expanding memory.

To address memory limitations, Li et al. [50] proposes a compact global module
to summarize object segmentation information within a fixed memory size. Similarly,
Liang et al. [51] apply a weighted average on the extracted features to merge new
features with existing ones into the memory and discard obsolete features through a
least frequently used (LFU) approach. Liu et al. [52] explore the use of a quality-aware-
module (QAM) [53] to assess the quality of the predicted mask on-the-fly before integrat-
ing it in the memory. Li et al. [54] use a spatio-temporal aggregation module to update
a fixed-sized memory bank. Cheng and Schwing [55] follow the Atkinson-Shiffrin [56]
model for their sVOS pipeline (XMem), which comprises: a sensory memory [57] that
learns an appearance model for every incoming frame, a working memory based on
STCN [48], and a long-term memory that consolidates the working memory embeddings
in a compact representation.

5.4 Framework

This section presents our READMem module – an extension for space-time memory-
based sVOS pipelines [42, 47, 48]. Figure 5.2 illustrates our READMem module embed-
ded in MiVOS [47].

5.4.1 Backbone

Since READMem is built upon the popular space-time memory network paradigm [42,
47, 48, 52], we provide a brief description of the corresponding sVOS backbone elements,
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more specifically for MiVOS [47]. We provide a more detailed overview of the funda-
mental concepts in Chapter 3, but for completeness we present a brief description of
MiVOS’s [47] key components.

(1) A query encoder (an extension of ResNet50 [126]) that encodes a query frame
It ∈ R

3×HR×WR seen at time step t into a query key feature Kq ∈ R
Ck×HW and a query

value feature Vq ∈ R
Cv×HW . With Ck and Cv we denote the number of feature channels,

while H and W indicate the spatial image dimensions using a stride of 16, while HR and
WR denote the initial image resolution. Here, the exponent q denotes the embeddings
conditioned on the query image It, which we are currently processing through the query
encoder.

(2) A memory encoder that extracts latent feature representations from a query
frame It and its corresponding segmentation mask Mt ∈ {0, 1}HR×WR into a pair of a
memory key Km ∈ R

Ck×HW and a memory value Vm ∈ R
Cv×HW . Here, the exponent m

denotes the embeddings conditioned on the query image It and Mt, we are processing
through the memory encoder.

(3) An external memory that maintains a set of memory keys Mk =
{

Km
n

}N

n=1 and

a set of memory values Mv =
{

Vm
n

}N

n=1. The variable N denotes the total number of
memory slots, while n represents the index of a slot. In addition, some methods [42, 47,
52] use a temporary memory that only contains the latent representation (i.e., memory
key and value features) of the previous adjacent frame. Note that our READMem
extension targets this specific aspect in each STM-based architecture.

(4) The Space-Time Memory (STM) operation (i.e., cross attention) to determine rele-
vant memory information. It matches the channels of the query key Kq with all channels
of every memory key KM ∈ R

Ck×NHW , which is the concatenated version of Mk, to
infer an affinity matrix A ∈ R

NHW×HW . Concretely, the channel level similarities of the
query Kq and every memory key in KM are computed through

A = (KM)TKq. (5.2)

Note that MiVOS [47] introduced a noise reduction, which filter’s out low affinities
in the affinity matrix A through a top-k filter applied along the columns (memory
dimension). This produces a sparse matrix (filtered) F ∈ R

NHW×HW by

F(i, j) =





A(i, j) , if A(i, j) ∈ argmax
Aj⊂{a|a∈A(•,j)},|Aj|=k


 ∑

a∈Aj

a




0 , otherwise

, (5.3)

where i and j denote the row and column indices respectively, and • refers to either the
complete row or column of a matrix. Based on the sparse affinity matrix F, the method
computes soft-weights W ∈ R

NHW×HW through a softmax applied along the memory
dimension (i.e., column axis in this case) as in Equation (3.10).
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All the channels of every memory value feature Vm
n ∈ Mv are weighted with W to

compute a pseudo memory feature representation Ṽm ∈ R
Cv×HW through Ṽm = VMW,

where VM ∈ R
Ck×NHW is the concatenated form of the memory values Vm

n along the
columns.

(5) Lastly, a decoder inspired by [42], that predicts a segmentation mask Mt for the
query frame It using refinement modules [93], skip-connections and bilinear upsampling.

5.4.2 READMem

Diversification of Memory Embeddings (DME): As mentioned, contemporary methods
insert the embeddings of every t-th frame into the memory, along with the corresponding
mask. This leads to an inevitable memory overload when accumulating embeddings of
unconstrained sequences. In contrast, READMem proposes an alternative frame inser-
tion scheme, maximizing the diversity of latent representations stored in the memory
by only adding frames that enhance information. This allows us to limit the number of
memory slots without degrading the performance and avoid GPU memory saturation
when processing long videos.

In pursuit of enhancing the diversity of the memory embeddings Mk = {Km
n }

N
n=1,

we require a mean to quantify this diversity. If we conceptually consider the embeddings
to form a parallelotope, where the key embeddings {Km

n }
N
n=1 act as edges, we can

quantify the diversity by calculating the volume of this geometric object. A conventional
approach to estimate the volume involves concatenating the keys vec(Km

n ) ∈ R
Ck HW×1

(we take a flattened representation, where vec(·) flattens Km
n ∈ R

Ck×HW following a
column-major ordering) into a matrix X ∈ R

Ck HW×N and inferring the determinant of
X, where X = [vec(Km

1 ) vec(Km
2 ) · · · vec(Km

n )]. However, since N ≪ Ck HW, X is a
non-square matrix, which prevents the computation of the determinant. To circumvent
this issue, we leverage the Gram matrix Γ ∈ R

N×N , computed through

Γ = XTX. (5.4)

As demonstrated by Ernest Vinberg [131] (pages 195-196) the determinant2 of the Gram
matrix (i.e., Gramian) allows us to compute the square volume (vol) of the parallelotope,
such that (vol P({Km

n }
N
n=1))

2 = det(Γ). Therefore, we can quantify the diversity of our
memory with det(Γ). We use the set of memory keys Mk = {Km

n }
N
n=1 to compute the

2 In the paper, we compute the determinant of Γ by performing an LU decomposition [132] and then
multiplying the diagonal elements of the upper triangular factor U. However, since the Γ is positive-definite,
we can leverage the Cholesky decomposition [133] instead, known to be more efficient for such matrices.
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diversity of the memory, as they encode visual semantics that are robust to appearance
variation [42]. Hence, we construct Γ by

Γ(Mk) =




⟨vec(Km
n=1), vec(Km

n=1)⟩ · · · ⟨vec(Km
n=1), vec(Km

n=N)⟩
...

. . .
...

⟨vec(Km
n=N), vec(Km

n=1)⟩ · · · ⟨vec(Km
n=N), vec(Km

n=N)⟩


 . (5.5)

The size of the memory N is bounded by the dimension of the feature space since
otherwise det (Γ) = 0 [134]. However, this is not a relevant limitation since in practice,
N is several magnitudes smaller than the dimension of the feature space Ck × HW (i.e.,
N ≪ Ck × HW).

To increase the diversity of the embeddings stored in the memory, we want to
maximize the absolute Gramian |det (Γ(Mk))|. As the annotated frame It=0 provides
accurate and controlled segmentation information [42, 52], the corresponding memory
key Km

n=1 and value Vm
n=1 are exempt from the following update strategy:

(1) For each memory slot n ∈ {2, . . . , N}, we substitute the respective memory
key Km

n with the query-memory key Kq,m (memory key of the current query frame Iq and
mask Mq) and construct a temporary Gram matrix Γ

t
n. Using the temporary matrices Γ

t
n,

we build a set E t containing the absolute values of the determinants, such that we

have E t =
{
|det (Γt

n)|
}N

n=2.
(2) The memory is updated based on whether the highest value in E t surpasses

the absolute value of the current Gramian |det (Γ)|. If this condition is met, then the
corresponding memory slots n (position of the highest value in E t) is replaced with the
query-memory key Kq,m and value Vq,m embeddings.

Robust Embeddings Association (REA): Given that we compute an inner product
between two embeddings (enforced by the Gram matrix), we capture the global similarity
of two frames in a single score. However, as two frames, It and It+∆t are further apart in
time, it becomes more likely for the object of interest to experience in-between: motion,
ego-motion, or size variations. Consequently, a channel-wise embedding may encode
different information (specifically foreground vs. background) for the same image region
in frame It and frame It+∆t due to the spatial disparity in the object’s location. As a result,
the resulting similarity between the two frames is inherently low when comparing their
embeddings. To address this issue and dampen positional variation without relying
on a motion model or fixed-sized search region (which would introduce additional
hyper-parameters), our proposal utilizes transition matrices {Tn}N

n=1. Wherein the core
idea is to leverage the cross-attention already at hand in the memory-based networks
(i.e., A and W) to identify the best channel-wise mapping between two embeddings.
Specifically, through the transition matrix Tn ∈ R

HW×HW , we project the n-th memory
embedding Km

n ∈ R
Ck×HW from its original Frame of Reference (FOR) to the query’s

FOR (see Figure 5.3) by
K̂m

n = Km
n Tn, (5.6)
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Figure 5.3: Inference of a transition matrix Tn and the corresponding pseudo-memory
embeddings K̂m

n for robust embeddings association (REA).

where K̂m
n ∈ R

Ck×HW denotes the pseudo-embedding of the embedding Km
n , but ex-

pressed in the query’s frame of reference. This approach effectively compensates for the
target’s spatial disparity between two distant frames (refer to Table 5.3 and 5.4).

Thus, we compute the similarity w.r.t. Kq,m not with the memory keys {Km
n }

N
n=1

but with the pseudo memory keys {K̂m
n }

N
n=1. Figure 5.3 depicts the operation that maps

key embeddings from the memory’s FOR to the query’s FOR through the transition
matrix Tn. We use W, the filtered and adapted version of A (see Equation (3.10)), to only
consider strong affinities between the point-wise embeddings (channels) of the query
and memory key which are more likely to encode similar information. This ensures that
the corresponding mapping matrix Tn is constructed based on relevant channels (refer
to Table 5.4). Although W entails strong similarities, using Wn as transition matrix Tn

potentially leads to the aggregation of multiple memory channels onto a single pseudo
memory channel – which is certain to degrade the similarity. Hence, to avoid the summa-
tion, we need to map at most one element from the memory FOR to the query FOR, i.e.,
filtering Wn. Generating a bijective mapping between the memory key Km

n and the cor-
responding pseudo query key K̂m

n would constraint the foreground-background ratio of
K̂m

n based on Km
n . However, it is unlikely that the area taken by the object in the image is

unchanged from one frame to the other. To avoid this foreground-background restriction,
we should allow point-wise embeddings from the memory key Km

n to be re-used for the
creation of the pseudo memory key K̂m

n , as long as they are sufficiently similar. Thus,
an appropriate function that validates the aforementioned criteria is argmax applied
along the columns of W to maximize the re-usability of point-wise embeddings when
producing the pseudo memory key K̂m

n on the query FOR. We obtain Tn ∈ R
HW×HW

by dividing W ∈ R
NHW×HW into N-square matrices, such that Wn ∈ R

HW×HW , and by
applying argmax along the columns by
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Tn(i, j) =





1 , if i ∈ argmax
i∈{1,...,HW}

({w | w ∈ Wn(i, j)})

0 , otherwise

. (5.7)

Lower Similarity Bound of Memory Embeddings (LSB): To ensure the presence
of the foreground object in a candidate frame, we set a lower bound on similarity
lbs = 0.5. We validate object presence in the query image It by computing a similarity
score between its key embeddings Kq and the annotated frame’s key embeddings Km

1 ,
such that we consider storing Kq only if ⟨Kq, K̂m

n=1⟩ > lbs. Otherwise, the memory
would simply integrate the most diverse set of frames seen in the segmentation process,
however, if a subset includes multiple views of the object of interest, the remaining
subset of the memory would likely be filled with embeddings where the object is not
present.

Initialization: We integrate every t-th frame (that satisfies the lower similarity
bound) into the memory – until the memory is completely filled. Afterward, the method
only integrates embeddings of frames that enhance the diversity of the memory.

5.5 Quantitative Experiments

In our experiments, we use the Long-time Video [51] (LV1) and VOTS2023 [92] datasets
to demonstrate the scalability and versatility of our approach for long-term sequences.
We include the D17 dataset [83] in our evaluations to encompass scenarios with shorter
sequences. Importantly, we want to clarify that our method is originally designed for
managing the memory of sVOS task and, as such, is not modifying the underlying
architecture of the sVOS baselines [47, 48, 52], which are not tailored towards handling
specific challenges found only in VOT datasets (e.g., small object-to-image ratio, presence
of numerous distractors). We perform all experiments on an Nvidia GeForce GTX 1080
Ti.

5.5.1 Quantitative Results

Table 5.1 presents the quantitative results of recent sVOS methods (MiVOS [47], STCN [48]
and QDMN [52]) with our READMem extension along with (at the time) the state-of-
the-art sVOS method XMem [55] on the LV1 [51] and the D17 [83] datasets. We use
the J (intersection over union) and F (contour accuracy) metrics (higher is better) intro-
duced by [83], with both metrics are averaged into the J &F to quantify the performance
on the LV1 and D17 benchmarks.

To ensure a fair comparison, we keep the default settings for XMem [55] and use
the same sampling interval (i.e., sr = 10) for all other methods (in contrast to previous
works [51, 55] that use dataset-specific sampling intervals). In our experiments, we
follow the evaluation of [52] and limit the number of memory slots of the baselines and
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LV1 [51] (Long Sequences) D17 [83] (Short Sequences)

Method J &F J F J &F J F

Sampling Interval sr = 10

XMem† [55] (ECCV 22) 89.8 88.0 91.6 85.5 82.3 88.6

XMem [55] (ECCV 22) 83.6 81.8 85.4 86.7 83.0 90.1

MiVOS [47] (CVPR 21) 64.3 63.6 65.0 84.3 81.4 87.1

READMem-MiVOS (ours) 83.6↑19.3 82.1↑18.5 85.1↑20.1 84.3 81.4 87.1

READMem-MiVOS⋆ (ours) 86.0↑21.7 84.6↑21.0 87.4↑22.4 84.6↑0.3 81.8↑0.4 87.3↑0.2

STCN† [48] (NeurIPS 21) 71.8 69.4 74.3 83.7 80.7 86.6

READMem-STCN† (ours) 82.6↑10.8 81.5↑12.1 83.7↑9.4 83.7 80.7 86.6

READMem-STCN†⋆ (ours) 81.8↑10.0 80.8↑11.4 82.8↑8.5 83.7 80.7 86.6

QDMN⋆ [52] (ECCV 22) 80.7 77.8 83.6 86.0 83.2 88.8

READMem-QDMN⋆ (ours) 84.0↑3.3 81.3↑3.5 86.7↑3.1 86.1↑0.1 83.3↑0.1 88.9↑0.1

Sampling Interval sr = 1

XMem† [55] (ECCV 22) 61.5 60.4 68.4 84.1 81.1 90.8

XMem [55] (ECCV 22) 79.3 77.3 84.2 83.9 80.6 87.1

MiVOS [47] (CVPR 21) 27.4 27.4 27.4 84.3 81.3 87.3

READMem-MiVOS (ours) 83.6↑56.2 82.3↑54.9 85.0↑57.6 84.3 81.4↑0.1 87.1↓0.2

STCN [48]† (NeurIPS 21) 26.2 22.9 29.4 83.2 79.9 86.5

READMem-STCN† (ours) 80.8↑54.6 78.4↑55.5 83.2↑53.8 83.8↑0.6 80.4↑0.5 87.2↑0.7

QDMN [52] (ECCV 22) 65.7 63.5 67.9 85.1 82.2 88.0

READMem-QDMN (ours) 84.3↑18.6 81.9↑18.4 86.7↑18.8 85.3↑0.2 82.4↑0.2 88.1↑0.1

Table 5.1: Quantitative evaluation of sVOS methods [47, 48, 52, 55] with and without
READMem on the LV1 [51] and D17 [83] datasets. The symbol † denotes no pre-
training on BL30K [47], while ⋆ indicates the use of a flexible sampling interval as
in QDMN [52].

the corresponding READMem counterparts to 20. Note that this value differs from the
memory slot limit (i.e., 50) used by [51, 55]. In contrast to [51, 55], we do not adapt the
sampling interval to the sequence length when dealing with long videos as we argue that
the sampling interval should not be correlated to the video’s length and is not a standard
practice when dealing with short videos (D17 [83] and Y-VOS [84]). Instead, we opt for a
first-in-first-out (i.e., FIFO) replacement strategy when updating the memory [16] of the
mentioned baselines.

Our results in Table 5.1 demonstrate that READMem improves long-term perfor-
mance while preserving good short-term capabilities. Moreover, by setting sr = 1
we minimize the likelihood of omitting key frames and enhance the stability of the
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method [55]. As a result, we attain competitive results against the state-of-the-art
method (i.e., XMem [55]). We do not employ READMem on XMem [55], as a long-term
memory is already present, consolidating the embeddings of the working memory [48]
and updated by a least-frequently-used (LFU) approach [51, 55].

To enhance the soundness of our READMem extension, we conduct additional
experiments on the VOTS2023 dataset [92]. We tabulate in Table 5.2 the results of sVOS
baselines [47, 48, 52] with and without READMem on the VOTS2023 tracking benchmark.
In contrast to previous VOT challenges [135–137], VOTS2023 introduced new evaluation
metrics split into: (i) a primary performance metric: The Tracking Quality (Q) and (ii)
secondary metrics: the Accuracy (ACC), Robustness (ROB), Not-Reported Error (NRE),
Drift-Rate Error (DRE) and Absence-Detection Quality (ADQ). We refer the reader to
the VOTS2023 [92] paper for more details about the metrics. For the evaluation, we use
the same settings as described above and rely on the official VOT evaluation toolkit3.
We observe from Table 5.2 that the READMem variants consistently outperform their
baseline counterpart.

(Higher is better) (Lower is better)

Method Q ACC ROB ADQ NRE DRE

MiVOS [47] (CVPR 21) 0.38 0.55 0.54 0.75 0.41 0.06

MiVOS [47] (sr = 50) (CVPR 21) 0.39↑0.01 0.55 0.58↑0.04 0.67↓0.08 0.35↓0.06 0.07↑0.01

READMem-MiVOS (ours) 0.43↑0.05 0.57↑0.02 0.60↑0.06 0.67↓0.08 0.33↓0.08 0.06

STCN [48] (NeurIPS 21) 0.40 0.55 0.62 0.67 0.29 0.08

STCN [48] (sr = 50) (NeurIPS 21) 0.40 0.55 0.61↓0.01 0.61↓0.06 0.29 0.10↑0.02

READMem-STCN (ours) 0.42↑0.02 0.56↑0.01 0.66↑0.04 0.57↓0.10 0.25↓0.04 0.09↑0.01

QDMN [52] (ECCV 22) 0.44 0.59 0.62 0.69 0.28 0.10

QDMN [52] (sr = 50) (ECCV 22) 0.42↓0.02 0.59 0.60↓0.02 0.63↓0.06 0.30↑0.02 0.11↑0.01

READMem-QDMN (ours) 0.45↑0.01 0.59 0.63↑0.01 0.67↓0.02 0.27↓0.01 0.09↓0.01

Table 5.2: Quantitative evaluation of sVOS methods [47, 48, 52] with and without
READMem on the VOTS2023 [92] datasets. We use the same settings as described
in Section 5.5.1 and the official VOT evaluation toolkit. Note that these results were
obtained on rescaled videos, where the height of each video in the datasets was
standardized to 480 pixels (as in DAVIS [83]) and the width correspondingly to retain
the same aspect ratio.

We display the performance of MiVOS [47], STCN [48] and QDMN [52] with and
without the READMem extension when varying the sampling interval sr on the D17 [83]
dataset, using the same configuration as in Section 5.5.1.

In Figure 5.4, we observe that increasing the sampling interval generally improves
the performance of all methods on long videos, regardless of the baseline employed.

3 https://github.com/votchallenge/toolkit – version 0.6.4

https://github.com/votchallenge/toolkit


5.5 Q U A N T I TAT I V E E X P E R I M E N T S 61

LV1 [51]

1 5 10 20 30 40 50
Sampling Interval sr

0

20

40

60

80

100

&
LV
1

27.4

83.6

58.0

81.0

64.3

83.6

65.9

85.3

67.4

84.6

64.2

75.3
72.1

80.7

MiVOS
READMem-MiVOS

1 5 10 20 30 40 50
Sampling Interval sr

26.2

78.7

52.8

83.9

71.8

82.6

73.3

81.6
82.1

86.2
82.7

87.1

83.1

87.3

STCN
READMem-STCN

1 5 10 20 30 40 50
Sampling Interval sr

65.7

84.3

80.3

84.4
80.7
84.0

82.8
85.6

84.3
86.1

84.8
85.6

86.9
87.6

QDMN
READMem-QDMN

D17 [83]

1 5 10 20 30 40 50
Sampling Interval sr

80

82

84

86

88

90

&
D
17

84.2

84.4
84.5
84.5

84.3

84.6

82.9

83.0
83.1
83.1

82.7
82.7

82.6
82.6

MiVOS
READMem-MiVOS

1 5 10 20 30 40 50
Sampling Interval sr

84.0

84.3

84.2
84.2

84.0
84.0

83.2
83.2

83.0
83.0

82.7
82.7

82.7
82.7

STCN
READMem-STCN

1 5 10 20 30 40 50
Sampling Interval sr

85.1

85.2
85.5
85.5

86.0

86.1

85.2
85.2

85.1
85.1

84.6
84.6

84.2
84.2

QDMN
READMem-QDMN

(a) MiVOS vs.
READMem-MiVOS

(b) STCN vs.
READMem-STCN

(c) QDMN vs.
READMem-QDMN

Figure 5.4: Performance comparison of sVOS baselines (MiVOS [47], STCN [48],
QDMN [52]) with and without the READMem extension on the LV1 [51] and D17 [83]
datasets when varying the sampling interval sr.

However, this trend does not hold when working with short video sequences. It is
essential to utilize a sampling interval that does not negatively impact the performance
on both long and short video sequences. This is where our READMem extension becomes
valuable, as it enables the sVOS pipeline to use a small sampling interval (typically
sr ∈ [1 − 10]) that achieves and maintains high performance for the long and short video
settings.

5.5.2 Ablation Study

For clarity and to isolate the benefits of each design decision, we present our ablation re-
sults solely for READMem-MiVOS in Table 5.3. We observe that integrating embeddings
of frames that diversify the memory (DME) and enforcing a lower bound on similarity
(LSB) results in a significant performance improvement for long videos. Moreover, using
the robust association of memory embeddings (REA) also leads to a substantial perfor-
mance increase. Although including the adjacent frame leads to a slight improvement
for long videos, it is particularly important when dealing with short sequences as the
previous adjacent frame provides recent information (not guaranteed by our module).

In Table 5.4, we compare different approaches for inferring the transition matrix Tn.
Our results indicate, as expected that using the weight matrix W to generate the transition
matrices Tn leads to better performance compared to the affinity matrix A. Furthermore,
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Configuration J &FLV1 J &FD17

MiVOS [47] + adj. frame (baseline) 64.3 84.3

MiVOS [47] + DME (ours) 69.5↑5.2 81.3↓3.0

MiVOS [47] + DME + LSB (ours) 75.0↑10.7 81.3↓3.0

MiVOS [47] + DME + LSB + adj. frame (ours) 77.4↑13.1 84.3↑0.0

MiVOS [47] + DME + LSB + adj. frame + REA (ours) 86.0↑21.7 84.6↑0.3

Table 5.3: Demonstrating the benefits of our memory extension, i.e., diversity of the
embeddings (DME), robust embedding association (REA) and lower similarity bound
(LSB).

Computation of the transition matrix Tn J &FLV1 using Wn J &FLV1 using An

Hungarian Method [138] 76.8 75.1

argmax along the columns 86.0 73.4

argmax along the rows 79.8 77.1

Table 5.4: Performance comparison on the LV1 [51] dataset when computing the
transition matrix Tn through different methods. As a reminder, the baseline (i.e.,
MiVOS [47]) achieves a J &F score of 64.3 on LV1 [51] using the same configuration.

we note that using the argmax function along the columns axis (memory) leads to the
best performance in comparison to applying argmax along the rows axis (query) or
when using a bijective mapping (Hungarian Method [138]).

Table 5.5 tabulates the J &F score and Gramian of READMem-MiVOS on the three
sequences of LV1 [51] for three different sampling interval sr. In Figure 5.5, we record
the Gramian (diversity of the memory) for MiVOS with and without our READMem
extension on blueboy, dressage and rat sequences from LV1 [51] with different sampling
intervals (i.e., 1, 5 to 10). We note that with READMem, the diversity is effectively
enhanced throughout the segmentation process as the gramian continuously grows
with the percentage of sequence processed. Note that this leads to an overall better
segmentation as indicated in Table 5.6, where a high Gramian generally correlates to
higher performance. Interestingly, the memory reached full capacity later than expected
for the rat sequence with sampling intervals of 5 or 10. This behavior likely results from
the lower similarity bound, as in many frames, the rat is only partially visible, i.e., either
occluded or out of view.
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blueboy dressage rat

sr J &F |Γ| J &F |Γ| J &F |Γ|

1 89.5 14.6 × 10−7 83.7 3.36 × 10−8 77.7 4.22 × 10−10

5 87.0 6.35 × 10−7 83.7 9.38 × 10−8 74.9 1.39 × 10−10

10 88.1 4.31 × 10−7 84.0 18.0 × 10−8 86.0 82.3 × 10−10

Table 5.5: Performance and Gramian of READMEm-MiVOS for different sampling
intervals sr on LV1 [51]. Note that high J &F scores correlate with high Gramian
values.
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Figure 5.5: Evolution of |Γ| for different sampling interval on the LV1 [51] dataset for
MiVOS without and with our READMem extension. Note that we start recording the
memory’s diversity only when we reached full capacity, as before this, the only criteria
to store embeddings in the memory is based on the lower similarity bound.

0.0% − 26.20% 26.20% − 57.64% 57.64% − 83.63%

sr J &F |Γ| J &F |Γ| J &F |Γ|

1 94.3 0.61 × 10−7 72.5 4.80 × 10−7 95.6 6.93 × 10−7

5 93.3 1.46 × 10−7 59.3 2.34 × 10−7 92.2 3.45 × 10−7

10 90.4 1.69 × 10−7 66.1 2.44 × 10−7 95.4 3.09 × 10−7

Table 5.6: Relative performance and Gramian (i.e., |Γ|) evolution for three sections on
the blueboy sequence [51]. The final Gramian and J &F score is reported in Table 5.5.
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Figure 5.6: We compare the performance of sVOS baselines (MiVOS [47], STCN [48],
QDMN [52]) with and without the READMem extension on the LV1 [51] dataset while
varying the size of the memory (i.e., N). A general tendency is that increasing the
memory size, leads to better performance.

5.5.3 Performance as a Function of Memory Size

We explore the impact of the size of the memory on the performance of MiVOS [47],
STCN [48] and QDMN [52] with and without our READMem extension on the LV1 [51]
dataset. We follow the same experimental setup as in Section 5.5.1 (with sr = 10), except
for the varying memory size N, which ranges from 5 to 50.

From Figure 5.6, we observe that the performance of the baselines improves as the
memory size increases. Similarly, although to a lesser extent, the READMem variants also
demonstrate improved performance with larger memory sizes. However, the READMem
variations consistently outperform their respective baselines, especially when using a
smaller memory size. This is desired as a smaller memory requires less GPU resources.

Comparing Figure 5.6 with Figure 5.4, we notice that increasing the sampling interval
(i.e., sr) of the baselines leads to a significant boost in performance compared to increasing
the memory size (i.e., N). Hence, storing a diverse set of embeddings in the memory is
more beneficial than including additional ones.

5.5.4 Initialization of the Memory

We investigate the performance variation when employing two different initialization
for READMem in Table 5.7. The strategies are as follows: (1) Integrates every t-th frame
into the memory until full, while (2) Fills the memory slots with the embeddings of the
annotated frame and includes a new frame to the memory if the conditions on the lower
bound on similarity and the Gramian are met (follows a greedy approach). The second
strategy yields worse results on the short scenarios and is slightly below the performance
of strategy (1) on LV1 [51]. We argue that with longer sequences the memory has more
opportunities to integrate decisive frame representations in the memory to use as a
reference. Hence, initialization plays a crucial role in short videos, but as the method
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READMem-MiVOS READMem-STCN READMem-QDMN

Initialization J &FLV1 J &FD17 J &FLV1 J &FD17 J &FLV1 J &FD17

(1) 83.6 84.6 82.6 84.0 84.0 86.1

(2) 82.7 73.7 85.3 73.6 72.5 73.3

Table 5.7: Performance variation when leveraging two different initialization strategies
for READMem-MiVOS. Besides the initialization strategy, the remaining parameters
are consistent to Section 5.5.1 (we set sr = 10).

observes longer videos and has access to a larger pool of frames to select from, the
importance diminishes.

5.6 Qualitative Results

We display qualitative results for the READMem variations of MiVOS [47], STCN [48]
and QDMN [52] along with their baseline on the LV1 [51] dataset. We also provide the
results for XMem [55], which represents the state-of-the-art.

In Figure 5.7, Figure 5.8 and Figure 5.9 we display the results for the blueboy, dressage

and rat sequences in LV1 [51] respectively when setting the sampling interval to sr = 1.
Moreover we provide in Figures 5.10, 5.11 and 5.12 the results for a sampling interval
sr = 10. The estimated segmentation mask of the baselines (MiVOS [47], STCN [48], and
QDMN [52]) are visualized in red, while the results of the READMem-based variations
(READMem with a baseline) are highlighted in blue. The intersection between the
prediction of a baseline and its corresponding READMem variation is depicted in
turquoise. The ground-truth contours are highlighted in yellow. We depict XMem [55]
results in purple.

5.6.1 Qualitative Results on LV1 [51] with sr = 1

In this subsection we present the results of all baselines without and with our extension
(along the ground-truth) when setting the sampling interval to sr = 1. This effectively
eliminates the need for a meta-parameter that controls the update frequency of the
memory and solely relies on a diversity criterion to update the memory. For completeness
we also provide the results of XMem [55], i.e. the state-of-the-art approach at the time
this research was initiated.
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5.6.2 Qualitative Results on LV1 [51] with sr = 10

Similarly to Subsection 5.6.1 we present the results of all baselines without and with our
extension (along the ground-truth) when setting the sampling interval to sr = 10, while
also providing the results for XMem [55].

5.7 Limitations

We are aware of the limitations imposed by the hand-crafted threshold for the lower
similarity bound lsb, although to avoid any fine-tuning, we set the threshold value
to 0.5. A more thoughtful approach would incorporate a learnable parameter. This
approach could potentially lead to improved performance, albeit at the expense of the
plug-and-play nature of our extension. Another point for improvement is to reduce the
participation of the background when computing the similarity between two embed-
dings. A possible enhancement is to integrate either the segmentation mask estimated
by the sVOS pipeline or use the memory values to estimate a filter that can be applied to
the memory keys before computing a similarity score.

An additional factor to consider is the overhead READMem introduces to an sVOS
backbone, specifically regarding its GPU memory footprint and inference time relative
to performance gains as N grows (not considering the encoder and decoder complexity
as they are not influenced by the memory size). Here, our DME component (refer to Sub-
section 5.4.2), designed to enhance the diversity of the external memory M, adds a total
time complexity of O(N4 + N2 · H ·W ·Ck) to the baseline sVOS approach. This complex-
ity is dominated by two factors: (1) the computation of the similarities in Equation (5.5),
which costs O(N2 · H · W · Ck) as we recompute the similarities for every new query
frame through the REA module; (2) the repeated use of the LU decomposition [132]
(which has a time complexity of O(N3)) for all N Gram matrices Γ variants, to identify
which slot n to replace with the incoming embeddings, adding a further O(N4). Mean-
while, our REA module introduces a time complexity of O(N · H · W · (Ck + H · W)),
which arises from the two-stage process of building and then using a transition matrix T
to remap features for the reference change operation in Equation (5.6). Hence, the total
complexity for REA is the sum of two parts: (1) building N transition matrices T such
that the number of non-zero elements are nnz(T) = H · W via a column-wise argmax
operation, which entails a time-complexity of O(N · H2 · W2); (2) using the transition
matrix T (i.e., acting as a look-up table) to permute key features, inducing a complexity
of O(N · Ck · nnz(T)) = O(N · Ck · H · W).Note that, while other operations like flatten-
ing the key matrices (i.e., vec(·)) are performed, their (O)(N · H · W · Ck) complexity is
negligible and thus absorbed by the higher-order terms. To summarize, when compar-
ing to the initial backbone’s time complexity O(N · H2 · W2 · (Ck + Cv)), to the DME’s
complexity of O(N4 + N2 · H · W · Ck), and to the REA’s O(N · H · W · (Ck + H · W)). In
a purely asymptotic analysis, the dominant term is O(N4). However, given that in practi-
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Method Memory Size (N) J &FLV1 FPS VRAM (MiB)

MiVOS (baseline) 10 53.0 14.5 1092

MiVOS-READMem (ours) 10 85.2↑32.2 9.6↓4.9 1148

MiVOS (baseline) 20 64.3 9.3 1631

MiVOS-READMem (ours) 20 83.6↑19.3 6.0↓3.3 1738

MiVOS (baseline) 30 63.5 6.6 2173

MiVOS-READMem (ours) 30 83.4↑19.9 4.7↓1.9 2312

Table 5.8: Quantitative results of MiVOS [47] and our variant of MiVOS-READMem
on the LV1 [51] datasets regarding the network’s footprint (allocated memory) on the
GPU and inference time w.r.t. to memory size and performance. We use a sampling
interval set to sr = 10. READMem leads to a drop of about 30% in FPS, but allows us
to gain better performance for the same memory size.

cal scenarios with typical parameters values of H = 30, W = 60, Ck = 128 and Cv = 512
(for an image resolution of 480 by 960 pixels), and where the user set’s N ∈ 10 to 30,
the N4 component only becomes the predominant bottleneck (overshadowing all other
terms) when N exceeds approximately 1300. In practice, the selection of N represents a
trade-off between the desired inference time, overall performance gains, and the GPU’s
memory footprint. We provide a quantitative evaluation of READMem’s overhead w.r.t.
the original MiVOS [47] baseline in Table 5.8, showcasing its behavior when varying the
memory size N between 10 and 30.

We can optimize our READMem module, by altering the frame of reference used by
our REA module for the features permutation. Currently we re-project all N memory
keys frames into the frame of reference of the query frame. A more efficient design is
to leverage a fixed frame of reference (e.g., the initialization frame at t = 0). Thus, the
memory features remain in a stable projection, and only the new query key’s needs to
be projected in the reference frame of the initialization frame. This would reduce the
computational overhead of our READMem module such that: (1) our REA module’s
cost would decrease from O(N · H · W · (Ck + H · W)) to O(H · W · (Ck + H · W)), not
dependent on the memory size; (2) and the second part of our DME component would
decrease from O(N2 · H · W · Ck) to O(N · H · W · Ck).

5.8 Discussion

We presented READMem, a modular framework for matching-based sVOS methods, to
improve the diversity of the embeddings stored in the memory for unconstrained videos
and address the expanding memory demand. Our evaluation displays that sVOS meth-
ods [47, 48, 52] using our extension consistently improve their performance compared
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to their baseline the long video sequences (i.e., LV1 [51]) without compromising their
efficiency on shorter sequences (i.e., D17 [83]). Moreover, we achieve competitive results
with SOTA and provide a comprehensive overview of each design decision supported
by an extensive ablation study.

In this chapter, we addressed the scalability challenge posed by RQ2, focusing
on extending sVOS methods to operate effectively on unconstrained video sequences.
Through READMem, we propose a modular, plug-and-play solution designed to en-
hance an arbitrary matching based VOS solutions that relies on an external memory.
By selectively storing frame embeddings based on a diversity criterion, our module
enables existing methods to handle longer sequences in a training-free manner. Our
approach effectively improves the diversity of the embeddings stored in the memory
and performs a robust association with query embeddings during the update process.
Moreover, READMem removes the reliance on a manually tuned meta-parameter to
regulate memory update speed, a common practice in existing approaches, where this
parameter is often adapted for each benchmark to achieve optimal performance. Our
experiments demonstrate that integrating READMem into several SOTA sVOS baselines
(i.e., MiVOS [47], STCN [48], and QDMN [52]) consistently improves performance on
long video sequences (e.g., LV1 [51]), while preserving accuracy on shorter ones like
DAVIS 2017 [83]. Overall, we attain competitive results against the SOTA. These im-
provements are further supported by an extensive ablation study analyzing the effect of
each component in our design. To support reproducibility and future research, we make
our code publicly available4.

In the mean time, other studies have tackled the memory management aspect of
VOS methods. Notably RMem [139] by Zhou et al., which consider the update of the
memory (of limited size) as a multi-armed bandit problem. They goal is to maximize a
given reward function (Upper confidence bound (UCB)) to determine which embedding
to replace in the memory, by considering two parameters: (i) relevance, which denotes
the contribution of each saved embedding during the space-time operation and (ii)
freshness which measures how temporally distant a given memory frame embedding is
from the currently process frame. The least relevant and fresh frame is then replaced
from the memory. While the proposed method ensures regular update through freshness,
its reliance on relevance risks a convergence to a local optimum, as the memory might
favor retaining visually similar frames, potentially leading to a redundant memory
bank. Inspired by SAM2 [16], SAM2Long [66] by Ding et al. manages the memory of
SAM2 through a restrained tree design. Their approach maintains a predefined number
of pathways (alternative memories) for each object tracked. Each memory is update
separately based on the confidence and occlusion score provided by SAM2, while trying
to ensure a diverse set of memory embeddings. A key trade-off of this method is its
substantial memory requirement, as k unique pathways are stored per tracked object.
Recently, DAM4SAM [140] by Videnovic et al. present a memory update strategy that

4 https://github.com/Vujas-Eteph/READMem

https://github.com/Vujas-Eteph/READMem
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focuses on improving sVOS approaches against distractors. The authors propose two
distinct memory: (i) RAM (Recent Appearance Memory), which limits the memory size
to a pre-defined size and updates it’s embeddings in a FIFO fashion (guarantying that
the object is present with SAM2); (ii) DRM (Distractor Resolving Memory), similarly
to RAM but with two additional constraints, updating the memory every 5-th frame
and concatenating anchor frames (frames that are very likely to contain distractors).
This distractors detection takes advantage of the three object masks prediction strategy
by SAM2, as SAM2 predicts preemptively (through a low IoU score) the presence of
a distractors before complete confusion, i.e., where SAM2 completely switches to the
distractors in later frame.

In summary, this chapter provides a partial response to RQ2 (i.e., the scalability issue)
by demonstrating that sVOS methods can be extended to unconstrained video sequences
in an offline setting, without compromising segmentation quality or introducing signifi-
cant computational overhead. However, a key aspect of unconstrained video processing
remains outside the scope of this work: segmentation is initialized using fine-grained
masks, and user interaction is deliberately omitted to focus solely on method scalability.
As a result, the scenario considered, while unconstrained in terms of sequence length
and visual complexity, does not completely reflect the practical constraints of online
applications, where detailed initialization is impractical and prolonged errors may go
unnoticed without timely correction.
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MiVOS [47] vs. READMem-MiVOS

#4941 #6057 #11139 #11895 #18252

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.7: Results on the blueboy sequence of LV1 [51] with sr = 1. We depict the
results of: the baselines in red, the READMem variations in blue, the intersection
between both in turquoise, the ground-truth contours in yellow and XMem [55] results
in purple.



5.8 D I S C U S S I O N 71

MiVOS [47] vs. READMem-MiVOS

#3075 #3639 #4767 #10407 #12711

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.8: Results on the dressage sequence of LV1 [51] with sr = 1. We depict the
results of: the baselines in red, the READMem variations in blue, the intersection
between both in turquoise, the ground-truth contours in yellow and XMem [55] results
in purple.
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MiVOS [47] vs. READMem-MiVOS

#2931 #4485 #4929 #5373 #6039

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.9: Results on the rat sequence of LV1 [51] with sr = 1. We depict the results of:
the baselines in red, the READMem variations in blue, the intersection between both
in turquoise, the ground-truth contours in yellow and XMem [55] results in purple.
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MiVOS [47] vs. READMem-MiVOS

#4941 #6057 #11139 #11895 #18252

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.10: Results on the blueboy sequence of LV1 [51] with sr = 10. We depict the
results of: the baselines in red, the READMem variations in blue, the intersection
between both in turquoise, the ground-truth contours in yellow and XMem [55] results
in purple.



74 D I V E R S I T Y D R I V E N M E M O R Y M A N A G E M E N T F O R V I D E O O B J E C T S E G M E N TAT I O N

MiVOS [47] vs. READMem-MiVOS

#3075 #3639 #4767 #10407 #12711

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.11: Results on the dressage sequence of LV1 [51] with sr = 10. We depict the
results of: the baselines in red, the READMem variations in blue, the intersection
between both in turquoise, the ground-truth contours in yellow and XMem [55] results
in purple.
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MiVOS [47] vs. READMem-MiVOS

#2931 #4485 #4929 #5373 #6039

STCN [48] vs. READMem-STCN

QDMN [52] vs. READMem-QDMN

XMem [55]

Figure 5.12: Results on the rat sequence of LV1 [51] with sr = 10. We depict the results
of: the baselines in red, the READMem variations in blue, the intersection between
both in turquoise, the ground-truth contours in yellow and XMem [55] results in
purple.
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U N C E R T A I N T Y- G U I D E D I N T E R A C T I V E V I D E O O B J E C T
S E G M E N T A T I O N

In this final chapter, we address the joint challenge posed by RQ1 and RQ2 by exploring
how VOS systems can operate effectively in an online unconstrained video context (i.e.,
hypothetical streaming scenario), where user effort must remain minimal, and model
decisions must be made on-the-fly without access to future frames. In earlier chapters,
we explored each research question in isolation. In Chapter 4, we reduced annotation
effort through click-based interactions, partially answering RQ1. However, interactions
occurred in multiple rounds and were evaluated on short sequences, where user moni-
toring and review were still feasible. In Chapter 5, we tackled RQ2 by improving the
scalability of sVOS methods for long, unconstrained videos, but in an offline setting that
assumed detailed initial masks and omitted user feedback entirely.

Building on these contributions, this chapter introduces the task of Lazy interac-
tive Video Object Segmentation (ziVOS), which unifies the goals of scalability (RQ2)
and efficient interaction (RQ1) for unconstrained video segmentation, particularly in
challenging scenarios such as long-term or streaming video. Unlike traditional settings,
ziVOS assumes a single-pass segmentation process, where future frames are inaccessible,
and rewinding is not possible. These constraints render conventional iVOS approaches
ineffective, as they rely on multiple rounds of interaction and retrospective correction,
while sVOS methods lack the ability to recover from drift without supervision.

To address this, we propose Lazy-XMem, a baseline framework that proactively calls
for user help (i.e., interactions) while segmenting a video sequence. Starting from a single-
click initialization (as in Chapter 4), Lazy-XMem estimates segmentation uncertainty
on-the-fly to determine whether to request user input, apply pseudo-corrections, or
continue autonomously. This approach enables the system to maintain segmentation
quality while minimizing unnecessary supervision, making it suitable for unconstrained
applications where user attention is limited. We evaluate our approach on the LVOS
dataset [91] and introduce complementary metrics to measure segmentation robustness
and user workload under streaming constraints.

This chapter is based on our ACCV 2024 paper [128], and is structured as follows:
We outline the motivation in Section 6.1, formulate our problem in Section 6.2, and
discuss related work in Section 6.3. In Section 6.4, we describe Lazy-XMem and our
complementary metric for the ziVOS task in Section 6.5. We present our quantitative
results in Section 6.6, ablation studies in Section 6.7 and qualitative results in Section 6.8.
We conclude this chapter by discussing the limitations of our pipeline in Section 6.9 and
providing a summary in Section 6.10.

77
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6.1 Motivation

When this research was initiated, most state-of-the-art sVOS approaches were designed
for short, pre-recorded video sequences, with limited attention given to their applicability
in long-term or streaming scenarios. Similarly, most interactive segmentation methods
(iVOS) have been constrained to short-form video, where the full sequence is available
for analysis, and embeddings from all frames can be stored and queried to guide user
interaction. These assumptions are incompatible with real-world settings such as live
streams or surveillance, where frames arrive sequentially and future content is unknown.

In this chapter, we introduce a video object segmentation (VOS) variant that bridges
interactive and semi-automatic approaches termed Lazy Video Object Segmentation
(ziVOS). In contrast to both tasks, which handle video object segmentation in an off-
line manner (i.e., pre-recorded sequences), we propose through ziVOS to target online
recorded sequences. Here, we strive to strike a balance between performance and ro-
bustness for long-term scenarios by soliciting user feedback’s on-the-fly during the
segmentation process. By trading-off between automation and reliability, we aim to
maximize the tracking duration of an object of interest while requiring minimal user
corrections to maintain tracking over an extended period. We propose Lazy-XMem as a
competitive baseline that estimates the uncertainty of the tracking state to determine
whether a user interaction is necessary to refine the model’s prediction. We introduce
complementary metrics alongside those already established in the field to quantitatively
assess the performance of our method and the user’s workload. We evaluate our ap-
proach using the recently introduced LVOS dataset, which offers numerous long-term
videos.

VOS is a fundamental challenge involving various tasks, including sVOS and
iVOS [8]. In sVOS, given an initial segmentation mask for the first video frame, methods
classify each pixel in the subsequent video frames as a part of the object of interest (i.e.,
foreground) or the background. Here, a user only interacts at the start of the sequence
by providing the corresponding annotation mask to indicate which object to segment
in the video. In contrast, iVOS methods incorporate user interactions in a multi-round
scheme, where the user interacts with the method before each round to improve the
segmentation quality on the subsequent rounds. Both applications are suited for pre-
recorded sequences, i.e., offline segmentation, as sVOS methods assume that the user
has unlimited time to annotate the initial frame with utmost accuracy, whereas iVOS
approaches expect the user to inspect the segmentation quality of the previous round,
and interact for multiple rounds until the desired segmentation quality is achieved.
However, while sVOS methods demonstrate impressive performances on short-term
datasets [83, 84], their applicability to long-term sequences remains under-explored [39,
51, 52, 55, 88, 91, 128, 141] and yet to be addressed by iVOS methods. This underscores
a gap in methodologies suited for prolonged sequences, where maintaining error-free
segmentation under challenging conditions becomes increasingly difficult.
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Figure 6.1: Visual representation of the ziVOS framework. (1) The user initiates the
segmentation by clicking to identify the object of interest in the video, (2) thus indicat-
ing which object to segment. Only when requested by the method (3) does the user
provides corrective clicks on-the-fly.

In this paper, we explore a hybrid framework, named ziVOS (depicted in Figure 6.1),
that bridges the methodologies of sVOS and iVOS, focusing on maintaining robust
object tracking with minimal user interactions. Unlike iVOS, we discard the round based
scheme and integrate user corrections on-the-fly, refining the model’s prediction as
needed, while the method segments the video. Moreover, distinct from sVOS, in ziVOS
the object of interest is indicated with a user interaction (i.e., click). To achieve this, we
only allow one interaction per frame and object, and solely rely on click-based interac-
tions, as pointing an object is the quickest, most intuitive and predictable interaction
type for humans [105, 142]. Hence, we propose ziVOS to emulate a human-in-the-loop
process when segmenting a video in an online fashion, which is better suited for dy-
namic applications, when user engagement is feasible and where maintaining consistent
object tracking in challenging conditions is more critical than achieving segmentation
accuracy. Concretely, our objective shifts from segmenting an object with high accuracy
to maximizing the number of frames in which the object is segmented above a minimal
alignment ratio (i.e., Intersection over Union (IoU)), denoted as τiou, by integrating user
corrections on-the-fly (only at critical events), while simultaneously reducing the user’s
workload.

We propose Lazy-XMem, as a baseline for future works addressing ziVOS. Lazy-
XMem assess the uncertainty of a predicted object mask on-the-fly and refines it accord-
ingly (through SAM-HQ [61]), if the uncertainty is too high, through either pseudo-
corrections or user-corrections. In our approach, the Shannon entropy [143] serves as
a proxy to estimate the performance of the tracking state – alignment (i.e., IoU) ratio
between the predicted mask and a hypothetical ground-truth. Similarly, recent studies
in iVOS [79, 80] evaluate which frame to interact with at the end of a round. They
compare the embeddings of each frame in the video sequence against all other frame
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embeddings to determine which frame to suggest to the user for new interactions, limit-
ing this strategy to only pre-recorded videos. In contrast, our criterion is solely defined
w.r.t. the tracker’s state, how accurate the prediction is for the current observed frame,
allowing us to work with non-prerecorded sequences. To our knowledge, only QDMN
by Liu et al. [52] also estimates the tracking state in an online fashion by predicting a
quality score through a second head (following a similar design to [53]). However, unlike
prior works [52, 79, 80], we estimate the tracker’s state on pixel level in a post-hoc fashion,
removing the need for training an additional auxiliary network. An additional benefit to
computing the uncertainty on the pixel level is that we can visually indicate ambiguous
regions to the user where an interaction might be the most helpful. Moreover, depending
on the confidence of the predicted mask, Lazy-XMem decides whether the currently
predicted mask will be stored in the memory. Hence, by selectively refining masks based
on entropy-driven uncertainty estimation, we aim to maintain a balance between ro-
bustness and user-workload in ziVOS, specifically in long-term scenarios. Hence, while
on-the-fly interactions may suggest constant user supervision, our approach minimizes
this need by prompting the user (ideally) only at critical events – when Lazy-XMem is
uncertain about its prediction.

Crucially, we did not conduct a user study in this work to estimate cognitive load,
thus not relying on subjective metrics like the NASA Task Load Index (NASA-TLX) [144]
or System Usability Scale (SUS) [145]. Our goal is to explore a user-efficient interactive
design, adapted for long-term user involvement in VOS for continuous and robust object
tracking, where the user would only intervene when necessary (asked by the method),
allowing them to focus on other tasks simultaneously.

6.2 Problem Formulation

Similarly to Chapter 5, for a given video sequence V = {It | t ∈ {0, 1, . . . , T}} where
It ∈ R

3×HR×WR we assume T → ∞. Our goal is still to predict a corresponding segmented
sequence S = {Mt | t ∈ {0, 1, . . . , T}}, where Mt ∈ {0, 1}|O|×HR×WR corresponds to a
predicted object masks computed by a segmentation pipeline.

Analogously to iVOS, ziVOS utilizes sparse user inputs, i.e., interaction maps (sparse
matrices) Ut ∈ {0, 1}|O|×H×W , to indicate which objects to track in a given video se-
quence V by providing user-clicks for the t-th frame. Similarly to sVOS, we perform only
a single segmentation pass and segment the sequence in a step-wise manner. Hence, the
method can only leverage information from previously seen frames when segmenting a
video. However, unlike sVOS, we do not restrict the number of user input to solely the
beginning of a video. Instead, we allow user interactions to be distributed throughout
the sequence V to allow the user to provide corrections on-the-fly. It is important to note
that only a single click per object is allowed for any given frame. In addition, unlike
sVOS the initial user cue is not provided through a full ground-truth mask Gt, but rather
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through sparse user inputs Uo
t like in iVOS. Importantly, in ziVOS, the method actively

calls the user for interaction in an attempt to lower the monitoring effort.
Conceptually, we can summarize the overall segmentation process through an ziVOS

segmentation pipeline, denoted by f as

f : V × {Uo
t | t ∈ TU} → S × C, (6.1)

where TU ⊆ {0, 1, . . . , T} denotes the (dynamically determined) set of frame indices
at which the user is called to interact with the method, which can happen at arbitrary
time steps. Note that, due to the streaming and interactive nature of the problem, user
interactions are not predefined. Instead, the method decides on-the-fly when to request
user assistance by computing an associated internal confidence state. Here, C denotes
the set of per-frame confidence states, such that C = {Ct | t ∈ {0, 1, . . . , T}}. Note
that we denote through C a general confidence space that accommodates scalar values,
spatial maps, or higher-dimensional tensors, depending on the underlying method
design. Finally, depending on the internal confidence state for the t-th frame, Ct, the
method applies a decision function g : Ct → {0, 1}, which calls the user for assistance if
g(Ct) = 1, such that TU = {t ∈ {0, 1, . . . , T} | g(Ct) = 1}.

6.3 Related Work

6.3.1 Semi-Automatic Video Object Segmentation

Early deep learning methods in sVOS follow an online fine-tuning approache [18–22, 24],
which adapts the network’s parameters on-the-fly while segmenting the objects of inter-
est in the video sequence. This results, in slow inference times and poor generalization
capabilities [8]. Concurrently, propagation-based methods [26–30] propagate the masks
from the previous adjacent frame to the current one for segmentation, but they are
prone to error accumulation and often fail during occlusions [8]. Matching-based meth-

ods [35–41] leverage features from the initial and previous adjacent frame to segment
the current frame. The leading methods in the field further integrate features from
in-between frames (previously processed) into an external memory [38, 39, 42–49], using
cross-attention to link features from previous frames to the current frame to segment.
However, these methods are limited in real-world applications due to their expand-
ing memory requirements, making long-term segmentation on consumer-grade GPUs
challenging.

Recent works address this bottleneck by selectively integrating frame representations
into the external memory [52, 54, 128] or by generating compact representations to
summarize similar features together [50, 51, 55, 88, 141]. These methods effectively
manage the memory footprint, enabling more efficient sVOS on long-term videos. Newer
methods [141] also explore improved ways to differentiate similar objects (distractors)
from each other. Additionally, new datasets have recently been introduced [85, 89, 91] to
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provide an alternative to the classical DAVIS [83] and YouTube-VOS [84] datasets, with
some targeted specifically for long-term video segmentation [51, 91] and tracking [92].

Contemporary works [58–60] leverage SAM [17] or a variant [61–63] to refine the
original mask predicted by an sVOS baseline [39, 55]. However, in contrast to our
framework, they refine every n-th mask predicted by the sVOS backbone with a SAM
based approach [17, 61–63], and require continuous user monitoring to identify when
interventions are needed. Furthermore, they diminish the influence to enhance the
predictive accuracy for subsequent frame as they do not update the memory with the
refined mask.

6.3.2 Interactive Image Segmentation

In iIOS, methods predict a mask for an object of interest based on user interactions
for a single image. These approaches aim to reduce the user’s workload by replacing
densely annotated mask for sparse annotations (e.g., clicks [71, 108, 110, 111, 113–115],
extreme points [116–118], or bounding boxes [119–121]). Most notable approach is f-
BRS [111] which optimizes internal auxiliary features of the segmentation network to
align its prediction’s at the clicked position with the user annotated label. A follow up
work by Sofiiuk et al. [114], replaces the previous f-BRS backbone with an HRNet [122]
+ OCR [123] network, to maintain high quality features through out the network to
obtain a preciser segmentation mask. Since the introduction of SAM [17], a plethora of
SAM-based methods have been proposed to solve the task in medical imaging [124] and
natural images [125]. For instance, SAM-HQ [61] improves upon SAM by better handling
complex shapes, such as thinner structures and objects with holes. Additionally, faster
approaches like FastSAM [62] and MobileFast [63] have been developed to enhance
performance and efficiency.

6.3.3 Interactive Video Object Segmentation

Originally intended to reduce the user’s workload during video annotations [14], iVOS
methods integrate user interactions in a round-based process. Most approaches follow
the design introduced by Benard et al. [70], which combines sVOS and iIOS pipelines.
The blueprint process for the iVOS task is as follow: (1) Firstly, the method predicts a
segmentation mask for each frame in the video (through a sVOS baseline), based on an
initial mask provided for a frame. (2) Next, a user scrolls through the resulting masks
and selects a frame to interact with (e.g., through clicks [68, 69, 81], scribbles [47, 72–74,
78]). Based on the provided interaction, a new mask is predicted for the annotated frame,
serving as a new starting point when repeating step (1). Steps (1) and (2) are repeated
one after the other, until the user is satisfied with the final results.

A persistent bottleneck is determining which frame to annotate for the next round.
Recent approaches address this by identifying a quartet of candidate frames for the user
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to annotate [78], estimating which frame would yield the most improvement [79], or
using a weakly supervised method to indicate the frame and type of interaction [80]
to the user. To determine which frame or set of frames to annotate, these methods map
each frame in the sequence into an embedding space, restricting them to short videos,
as it requires storing the embedding of every frame. Here, each embedding encode the
frame’s representation and the quality of the corresponding predicted mask. The best
candidate frame is selected by comparing each embedding w.r.t. others and against those
of annotated frames, either through an agent [79] or by choosing the embedding that
is furthest from any annotated embedding [80]. In contrast, our approach introduces
corrections on-the-fly by directly assessing the tracking state during segmentation,
thereby proposing an online methodology that is also not restricted to short sequences.

6.3.4 Uncertainty Estimation in Video Object Segmentation

Uncertainty estimations is essential to improve the reliability and explainability of a
model, however estimating the uncertainty of DNN, remains a challenging topic. To our
knowledge, only the work by Liu et al. [52] incorporates a confidence score to asses the
tracking state on-the-fly for the sVOS task by leveraging an auxiliary head (i.e., QAM
module), predicting a confidence score on how likely the predicted mask would align
with a ground-truth annotation. Similar to our approach, QDMN manages its memory
updates based on a threshold value that determines whether a predicted mask, given its
confidence level, is reliable enough to be stored in the external memory. However, as the
QAM module only predicts a single score per object, it is unable to guide the user during
an interaction, as to where a correction might be the most valuable. In contrast, we
explore uncertainty estimation through information theory [143] (i.e., Shannon entropy)
and update the memory with the refined mask.

6.4 Framework

We present Lazy-XMem, depicted in Figure 6.2, as a baseline for future works targeting
ziVOS. Lazy-XMem comprises the following key components: (1) An sVOS baseline, to
predict object masks; (2) An uncertainty assessment component; (3) A mask refiner, to
refine the original prediction from the sVOS baseline; (4) An interaction-issuer, to issue
either pseudo- or user-corrections and (5) a memory update mechanism.

6.4.1 Backbone

We rely on XMem [55] as our sVOS baseline. Initialized with an object mask at the
beginning, the network predicts masks for subsequent frames. For simplicity, we assume
the network segments a single object. The key components are:
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Figure 6.2: Overview of Lazy-XMem for Lazy Video Object Segmentation. Our method
is relies on an sVOS baseline (i.e., XMem [55]). We leverage the entropy to estimate
on-the-fly the tracking state. Based on the tracking state’s, the method either uses
the original mask of the sVOS baseline, or refine the original mask by generating
pseudo-interactions, or requesting user interaction.

Convolutional Blocks: (1) Firstly, a query encoder, that extracts query key fea-
tures Kq ∈ R

Ck×HW from the current image to segment. (2) A decoder, which predicts
an object mask Mt ∈ {0, 1}HR×WR for a query frame It ∈ R

3×HR×WR . (3) Lastly, a value

encoder, that extracts value features Vm ∈ R
Cv×HW based on the current image It and the

predicted mask Mt.
Memories: Unlike previous works [42, 47, 48], XMem [55] employs three distinct

memories: a working memory, a long-term memory, and a sensory memory.
(1) The working memory, is updated every n-th frame with query and value represen-

tations Kw ∈ R
Ck×NHW and Vw ∈ R

Cv×NHW , until it reaches full capacity (i.e., we have
N query and value representations).

(2) When the working memory is full, it is distilled into l ∈ {1, 2, . . . , L} prototype
features kp

l ∈ R
Ck and vp

l ∈ R
Cv , based on usage frequency during memory reads.

These prototypes are added to the long-term memory Klt ∈ R
Ck×L and Vlt ∈ R

Cv×L,
with least-frequent-usage (LFU) filtering to remove obsolete features. Where, we denote
through Klt = [ kp

l=1 kp
l=2 . . . kp

l=L ] a concatenated form composed of kp
l vectors, and

similarly Vlt, build by concatenating the corresponding vp
l vectors.

(3) The sensory memory, uses GRU cells [146] to update a hidden representation h f

every frame, where h f ∈ R
Ch×H×W , encodes prior information, i.e., like position [55].

Memory Reading: During the memory read operation, feature representations from
both working and long-term memories are used, totaling Z = NHW + L elements. The
model computes the similarity between memory keys KM ∈ R

Ck×Z and query key Kq

using an anisotropic ℓ2 [55] as a similarity function sim(·, ·), that results in an affinity
matrix A ∈ R

N×HW following Equation (3.9). Note that, we have KM = Kw ⊕ Klt.
Next, the model applies a softmax along the rows yields the weighted matrix W as
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in Equation (3.10). A new value Ṽq ∈ R
Cv×HW is then generated through Equation (3.11),

where VM = Vw ⊕ Vlt is the concatenated working and long-term memories values,
such that VM ∈ R

Cv×Z. The keys provide robust semantic information for matching,
while the values encode boundary and texture cues needed for decoding [42].

6.4.2 Uncertainty Estimation via Entropy

To estimate the uncertainty of the tracking state (i.e., the predicted segmentation mask),
we leverage the Shannon entropy [143], denoted as S. We consider pixels as discrete
random variables whose classes c belong to a set O, contains every object observed
in a given video, including the background (i.e., o = 0). We use the output values of
the softmax layer as an approximation of a probability mass functions pO(o | xh,w) for
each pixel x located at (h, w). Here, o ∈ O denotes the object class of the pixel, and
(h, w) specifies the pixel’s location in terms of height h and width w within a mask
M ∈ {0, . . . , |O|}HR×WR . For notation clarity, we exclude the temporal index t in this
section, even though it remains implicitly present in our computations. As the number of
classes |C| can vary over time (i.e., from one video to another, or one frame to another in
the same video), we normalize the entropy for consistency and comparability. Formally,
we express the entropy of a pixel xh,w by

Sh,w = −
∑o∈O pO(o | xh,w) log (pO(o | xh,w))

log(|O|)
, (6.2)

where S ∈ [0, 1]H×W denotes the corresponding entropy map (i.e., uncertainty map) of
the current frame to segment.

To isolate the uncertainty for a specific object o, we use a dilated mask Md
o based on

the original object mask Mo predicted by the network. Here, the dilated mask allows
us to exclude the background noise, while still considering the uncertainty around the
object’s edges1. We display on the left-hand side of Figure 6.3 the masked entropy results
w.r.t. to the entropy map S. Formally, we compute the total uncertainty for an object
via the joint entropy SRo of a considered object region Ro = {(h, w) | Md

o(h, w) = 1},
through

SRo = ∑
r∈Ro

Sr (xr | xr−1, . . . , x1) ≈ ∑
r∈Ro

Sr, (6.3)

where we essentially sum the conditional entropies of each random variable within the
considered region. This approach captures the inter-dependencies among all variables,
reflecting their collective impact on Ro. However, computing the joint entropy is im-
practical as the network does not provide any joint or conditional distributions for a
formal evaluation. Additionally, the computational cost would grow exponentially with
respect to the number of classes O and the size of the region Ro (i.e., O(|O||Ro |) time

1 Subsequent experiments show that the use of the dilated mask yields similar results to the unmodified
mask version. However, we retained it for consistency.
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Figure 6.3: Left: Predicted object masks for frame It=25 of the judo sequence [26]. Also
shown is the associated entropy map St and its conversion to masked entropy maps for
each object o present, to isolate the object-specific uncertainty. For mask predictions,
the original boundary is shown in green, the predicted mask in yellow, and false
negative regions in blue. The actual IoU and associated SRo

t values are provided for
frame t = 25. Right: Evolution of the IoU per object w.r.t. SRo

t .

complexity). To reduce the computational complexity, we assume zero mutual infor-
mation between the predicted probability distributions of pixels in the region Ro. This
allows us to sum the entropy of each pixel Sh,w belonging to the region of interest Md

o

(refer to Figure 6.3), allowing us to significantly reduce the computational cost (i.e.,
to O(|O| × |Ro|) complexity). Additionally, considering that the object size may vary
from one image to another, we divide SRo by the size of the corresponding region |Ro|.
This dampens the fluctuation of SRo due to object size variations. As an example we
display on the right-hand side of Figure 6.3 the evolution of the associated entropy of
two objects w.r.t. to the actual IoU for a small sequence.

6.4.3 Mask Refinement

For the mask-refinement component, we rely on SAM-HQ [61], which extends SAM [17]
to segment intricate object structures in more details, while preserving its zero-shot
capabilities and flexibility. SAM-HQ [61] introduces two additional components on top
of SAM [17]: (1) An HQ-output token to correct the original SAM’s mask. (2) A global-local

features fusion, which fuses early features with later ones (i.e., after the first and last global
attention block respectively) to enrich the features used by the mask decoder. For more
details about SAM [17] and SAM-HQ [61] we refer the reader to the original sources.
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6.4.4 Issuing Corrections

For a given object c, we record the corresponding masked entropy SRo at each frame,

such that sRo
=
[
SRo

1 , . . . , SRo
t

]
, where t denotes the latest frame processed by the

method. Let s′Ro
denote the derivative of sRo

, such that s′Ro
=
[
∆SRo

2 , . . . , ∆SRo
t

]
, and

where ∆SRo
t = SRo

t − SRo
t−1. Depending on ∆SRo

t we either generate a pseudo- or request
a user-correction. Importantly, we intend through the use of pseudo-corrections and
user-corrections to allow the method to detect when it is about to fail, preventing further
degradation if left unaddressed. This assumes, that the method’s predicted mask is still
partially aligned with the object of interest.

User-Correction (U-C): We prompt a user correction whenever ∆SRo
t ≥ τu, where τu

denotes the user threshold beyond which our approach requests a user interaction. The
user indicates a foreground region of the object to track via a positive click, which is then
processed by the mask refiner to generate a new mask. Note that the original mask is
not used during refinement due to its high uncertainty. This provides the added benefit
of simplifying the user’s task during the initial correction phase, as they only need to
consider a positive interaction rather than also managing negative ones. The user is then
free to continue interacting in subsequent frames to improve the mask further if deemed
necessary, through positive or negative interactions. Note that we follow the definition
in iIOS [26], which denotes a positive or negative click interaction type as a point-wise
indication of a falsely classified region as either foreground or background. To further
ease the user’s workload, we overlay the entropy map directly onto the processed image.
This visual guide directs the user’s attention towards the most uncertain regions in the
model’s predictions, facilitating efficient interaction.

Pseudo-Correction (P-C): Through pseudo-corrections, our goal is to allow for the
method to self correct itself, without directly calling the user for help. By recognizing
whenever the uncertainty is high enough, while also not exceeding τu, such that we call
a pseudo-correction whenever τu > ∆SRo

t ≥ τp, where τp denotes a threshold above
which a pseudo-correction is generated. We argue that this intermediate state strikes a
balance, where we enable the method to preemptively address growing uncertainty in
its prediction and correct it’s state before significant drift. As a result, this allows us to
further reduce the number of user-corrections needed, as tabulated in Table 6.3, thereby
improving the methods interaction efficiency. We generate a pseudo-correction po

t for
object o given a frame t through

po
t = argmax

(h,w)

(
Mo

t ⊙ Eo
t ⊙ ( 1HR×WR

− St )
)
, where (6.4)

Eo
t (h, w) = min

(hbound,wbound)∈Ωt

√
(h − hbound)2 + (w − wbound)2, (6.5)

where Ωt denotes the set of pixel that belong to the boundaries of the object mask Mo
t

(dilated version), Eo
t ∈ [0, 1]HR×WR a distance field, and ⊙ represents the Hadamard
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Figure 6.4: We depict the generation of a pseudo-correction, as defined in Equation (6.4).
For improved visualization, we provide a zoomed-in view in the bottom-right corner
of each heat-map and the image. Though the yellow star ⋆ we indicate the locations
of the generated pseudo-correction.

product. We depict the intuition behind Equation (6.4) in Figure 6.4. The coordinates
of the pseudo-correction are then given to the mask-refiner to produce a new object
mask Mo

t . We limit the generation of pseudo-corrections to one per target object. Also,
note that these pseudo-corrections are inherently positive, as they are always generated
within the boundaries of the previously predicted mask.

Essentially, we operate under the assumption that tracking will eventually fail. Our
objective is to delay this failure for as long as possible before requiring user intervention.
Hence, we leverage this intermediate state of generating pseudo-corrections (between
no interaction and user interaction) to proactively mitigate escalating uncertainty.

6.4.5 Interaction and Uncertainty Driven Memory Updates

At each user-correction, we update the working memory of our sVOS baseline with
the newly refined mask. This update strategy, termed Interaction-Driven Update (IDU),
improves the method’s robustness as the refined mask can influence the segmentation
of the subsequent frames. An additional update mechanism, named Uncertainty-Driven

Update (UDU), prevents updating the working memory with the original representation
when the corresponding uncertainty SRo , exceeds τp (similarly to QDMN [52]).

6.5 Lazy interactive Video Object Segmentation Metrics

Since we introduce ziVOS, we propose complementary metrics to the standard J &F
presented by Perazzi et al. [82] to quantify the user’s workload in providing on-the-fly
corrections and to evaluate the robustness of a given method.
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6.5.1 Robustness Metric

We take inspiration from Kristan et al. [92] and propose R@τIoU (higher is better) to
measure the robustness of a method. Given a threshold value τIoU, we compute the ratio
of frames, in which the predicted object mask attains an IoU above or equal to τIoU for
all objects in a given dataset. More formally, let O be the set of objects in the dataset,
where To is the set of index frames in which object o is present, we define R@τIoU, such
that

R@τIoU =
1
|O| ∑

o∈O

1
|To|

∑
t∈To

1[IoU(Mo
t ,Go

t )≥τIoU ], (6.6)

where Mo
t and Go

t denote respectively the predicted mask and ground-truth annotation
for object o at frame t. Like in [92], whenever the method correctly predicts the absence
of an object we set 1IoU(Mo

t ,Go
t )≥τIoU

to 1, otherwise to 0.

6.5.2 User-Workload Metrics

To quantitatively evaluate the workload for the user we introduce the following metrics:
(1) Number of Correction (NoC) to denote the total number of user-corrections issued
by the model to refine its current prediction. (2) Interaction Density Index (IDI) (higher
is better), is introduced as an intuitive metric that reports the average time between
two user-corrections reported in seconds. Note that some sequences might have no user
interactions; however, to include every sequence in the evaluation, we consider the
initialization and the end of a sequence as user-interactions. (3) As IDI does not reflect
the underlying distribution of the interactions, we provide through Average Correction
Interval (ACI) (which encapsulates both NoC and IDI) a score to indicate this distribution.
In essence, we compute the cumulative count over user interactions and their respective
distance to each other. Consequently, a low ACI score indicates more spread out user
interactions, while a higher score indicates consecutive interactions more closer to each
other within a short period. More formally, let No = {tp=0, · · · , tp=Po | tp ∈ To} denote
the set containing the frame indexes tp where a user prompt p is issued for object o.
Hence, we define ACI, such that

ACI = ∑
o∈O

1
|To|

|To |

∑
i=1

i

∑
j=1

nj, (6.7)

where nj = ∑
No
tp=1 1[j=tp−tp−1] denotes the number of occurrences a user provided correc-

tions at a distance of j frames from one prompt to the next.
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Figure 6.5: Comparison of correlation coefficients across the DAVIS 2017 [83] and
LVOS [91] datasets: i) the QAM module [52] and entropy based QDMN [52] (as Q-S
and Q-SR), ii) entropy results for a single baseline (X-S, X-SR), an ensemble (E-S,
E-SR), and Monte-Carlo methods (M-S, M-SR), and iii) epistemic uncertainty variants
for ensemble and Monte-Carlo (E-V, E-VR, M-V, M-VR).

6.6 Experiments

In Section 6.6.1, we assess the effectiveness of the proposed masked entropy SRc to
estimate the tracking’s state on-the-fly. We present the evaluation protocol for the ziVOS
benchmark in Table 6.6.2, and present our results on the LVOS dataset [91] in Table 6.6.3.
Note that all experiments are conducted on an NVIDIA GeForce GTX 1080 Ti.

6.6.1 Entropy as a Proxy

To evaluate the effectiveness of our entropy based solution to estimate the tracking’s
state, we compare against the following approaches: (1) Using the Quality-Aware Mod-
ule (QAM) from QDMN [52], which predicts a confidence score through an auxiliary
network. (2) Computing the entropy S and its masked version SR for various models:
single models denoted as Q and X respectively for the QDMN[52] and XMem [55]
networks, an ensemble model denoted as E, and a Monte-Carlo dropout model denoted
as M. (3) We also consider for the ensemble and Monte-Carlo dropout variants the
epistemic uncertainty, denoted as V (with the masked version VR, similarly to SR). We
refer the reader to Subsection 6.8.3 for the implementation details of the Ensemble and
Monte-Carlo Dropout approaches.

For each method, we compute the Spearman coefficient [147] to measure the cor-
relation between each variant’s output to estimate its tracking state w.r.t. the actual
IoU. We conduct our evaluations on the DAVIS 2017 [83] and LVOS [91] validation
sets, featuring short and long videos respectively. Figure 6.5 presents the distribution
(i.e., box-plots) of the correlation coefficients when computing the coefficient for every
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object present in a dataset. Aside from the QAM based methods, we expect an inverse
correlation, however, to facilitate the comparison, we invert the correlation results for all
methods except for the QAM version. Consequently, values closer to 1 indicate a higher
correlation, suggesting a more accurate estimate of the tracking state. Across both the
DAVIS 2017 [83] and LVOS [91] datasets, variants employing masked entropy (i.e., SR)
demonstrate notably stronger correlations. This highlights the effectiveness of isolating
uncertainty at the object level using a mask. Among the different model variants – single
(Q and X), ensemble (E), and Dropout (M) – the single models (Q and X) leveraging SR

outperform even the advanced learning-based QAM module [52].
Hence, by examining Figure 6.5, the most effective method for estimating the track-

ing state on-the-fly appears to be the masked entropy approach, particularly the X-SR

variant, as its median value is closer to 1 and the distribution is notably narrower. This
underscores the efficacy of masked entropy as a straightforward yet robust approach to
estimate the tracking’s state on-the-fly.

Throughout this research, we have developed a tool to assess the correlation between
uncertainty estimation and accuracy of sVOS method. To foster further research into this
direction we make our tool publicly available2.

6.6.2 Evaluation Protocol for ziVOS

As our goal is to improve the robustness of video object segmentation methods by
incorporating user corrections on-the-fly, while minimizing the user’s workload, we only
allow one interaction per object per frame. Moreover, we limit the types of interaction
to only clicks, as pointing an object is the quickest and most intuitive interaction type
for humans [105, 142]. As we incorporate interactions on the fly, the user has a limited
time to interact with the frame. Moreover, the corrections mask cannot be improved
iteratively on the same frame, hence if another correction is necessary, the user has to
interact on a subsequent frame to improve the mask.

For practical reasons, we do not rely on real users during the ziVOS evaluation
but rather on a simulated agent3 to automatically simulate user input, similarly to the
DAVIS 2017 [26] interactive robot4. To evaluate ziVOS methods, the agent simulates
a positive user interaction uo

t at frame t at the center of object o, whenever the ziVOS
method requests a user intervention. This single interaction is then processed by the
mask-refiner to generates a new mask. We adopt this simple interaction model for
simulated corrections as this design prevents additional complexity in the evaluation
protocol, and leverages the capabilities of SAM [17] models to accurately estimate the
object of interest from a single interaction. In addition, this evaluation design ensures

2 https://github.com/Vujas-Eteph/ziVOS_Analyis

3 https://github.com/Vujas-Eteph/iVOTS_robot

4 https://github.com/albertomontesg/davis-interactive/tree/master/davisinteractive/robot

https://github.com/Vujas-Eteph/ziVOS_Analyis
https://github.com/Vujas-Eteph/iVOTS_robot
https://github.com/albertomontesg/davis-interactive/tree/master/davisinteractive/robot
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a clear and controlled setting, allowing us to assess our core contribution of improved
robustness through proactive user interaction requests.

6.6.3 Quantitative Results (Lazy interactive Video Object Segmentation)

In Table 6.1, we present quantitative results of Lazy-XMem compared to SOTA methods
on the LVOS validation set [91] by following the ziVOS evaluation process outlined
in Figure 6.6.2. Hence, unlike sVOS, which relies on curated masks, we rely on click to
indicate which object to track in the video. As a results, we employ imperfect masks
generated by the mask refiner (i.e., SAM-HQ [61]), which more closely resembles real-
world scenarios. We provide additional results on LVOS [91] when following the protocol
in sVOS in our supplementary material.

To allow for a better comparability, we also evaluate a modified version of QDMN [52],
that adopts the same design as LazyXMem for integrating user and pseudo-corrections,
with the notable exception that the tracking state estimation is based on the QAM
module [52]. Moreover, we evaluate an alternative approach that simply requests user
corrections at random intervals throughout the sequence (denoted as Rand-Lazy-XMem).
Finally, we introduce Lazy-XMem†, a variant of Lazy-XMem, which operates without

user corrections. Consequently, Lazy-XMem† constitutes an sVOS approach relying only
on the (i) pseudo-interactions, (ii) UDU, (iii) IDU and (iv) mask refinement components.
This facilitates direct comparison w.r.t. sVOS methods and allows us to verify our de-
sign choices for sVOS applications. We report the popular J &F metric, alongside our
complementary metrics (see Section 6.5).

As shown in Table 6.1, our proposed Lazy-XMem† achieves competitive results
w.r.t. to the SOTA sVOS methods. However the robustness is still close to the original
XMem [55] version, despite of the increase in accuracy. By incorporating user corrections
(i.e., Lazy-XMem), we manage to improve the robustness by 13 points on average
over all robustness metrics, while requesting in total 325 interactions from the user for
the entire datasets, averaging one interaction every 18.4 seconds. This corresponds to
approximately 1.05% of the total number of frames in the LVOS validation set, which
contains 30, 876 frames [91].

While Lazy-XMem incorporates user corrections on-the-fly to enhance its robustness,
it requires a continuous participation of the user throughout the segmentation process.
Therefore, we present Lazy-XMem as an alternative to sVOS and iVOS methods to
segment offline and online videos, in scenarios where user engagement is feasible and
where segmenting over an extended period with high reliability is the priority.

6.6.4 Quantitative Results (Perfect Mask Initialization)

Table 6.2 reports the evaluation of sVOS and ziVOS methods on the LVOS validation
set [91], using ground-truth annotations to indicate which object to segment in the
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Robustness User-Workload

Method J &F R@0.1 R@0.25 R@0.5 ACI NoC IDI

sVOS Methods

QDMN[52] (ECCV 22) 44.2 47.8 45.5 36.2 - - -

XMem [55] (ECCV 22) 52.8 57.0 55.0 49.0 - - -

DEVA [148] (ICCV 23) 55.1 63.6 59.3 52.4 - - -

Cutie-base [141] (CVPR 24) 57.0 59.2 57.8 52.4 - - -

Cutie-small [141] (CVPR 24) 57.6 58.6 57.0 52.5 - - -

Lazy-XMem† (ours) 56.4 58.8 56.8 50.6 - - -

ziVOS Methods

Rand-Lazy-XMem (ours) 61.3 67.9 65.8 59.3 5.17 335 17.9

Lazy-QDMN (ours) 52.7 58.2 52.0 42.9 5.64 360 16.7

Lazy-XMem (ours) 64.3 70.2 67.8 62.3 5.02 325 18.4

Table 6.1: Quantitative evaluation of ziVOS and sVOS methods on the LVOS valida-
tion set [91] following the ziVOS framework. Here, we initialize each methods with
an imperfect mask, in contrast to sVOS, to indicate which object to segment in the
sequence.

sequence (as in sVOS). We re-evaluated each method, and compute the robustness
metric R@τIoU , expect for DDMemory [91] as the code is unavailable at the time of
writing. Similarly to Table 6.1, Lazy-XMem† with only pseudo-interaction achieves
competitive results to SOTA sVOS methods. However, by including user interactions
on-the-fly to aid Lazy-XMem, we manage to improve the results robustness for the cost
of 315 interactions (about 1.02% of the total number of frames in LVOS).

6.7 Ablations

6.7.1 Design-Level Ablations

To provide more insights into our pipeline, we detail the influence of each design choice
in Section 6.3. Using the Uncertainty Driven Update (UDU), we achieve improvements
over the baseline by selectively integrating memory predictions that present sufficiently
low uncertainty. By soliciting user interactions to refine the initial mask predicted by
the sVOS baseline (i.e., XMem [55]), we achieve slight improvements at the cost of 507
interactions across the dataset. While, storing the refined masks as references for future
segmentation after a user correction through the Interaction Driven Update (IDU), we
attain substantial improvements in both robustness and user workload. However, using
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Robustness User-Workload

Method J &F R@0.1 R@0.25 R@0.5 ACI NoC IDI

sVOS

QDMN[52] (ECCV 22) 48.2 54.0 50.1 41.5 - - -

XMem [55] (ECCV 22) 53.7 54.6 51.7 41.3 - - -

DDMemory [91] (ICCV 23) 60.7 - - - - - -

DEVA [148] (ICCV 23) 58.2 65.3 62.7 56.8 - - -

Cutie-base [141] (CVPR 24) 60.3 62.9 62.0 58.3 - - -

Cutie-small [141] (CVPR 24) 59.0 61.3 59.0 56.5 - - -

Lazy-XMem† (ours) 57.2 60.3 58.5 49.6 - - -

ziVOS

Rand-Lazy-XMem (ours) 60.3 66.3 64.3 58.8 5.05 320 18.2

Lazy-XMem (ours) 63.5 70.0 68.3 63.1 4.86 315 18.9

Table 6.2: Quantitative evaluation of sVOS and ziVOS methods on the LVOS validation
set [91], when initialized with the ground-truth annotations (curated masks as in
sVOS).

the original mask from XMem [55], associated with a high uncertainty, as an additional
prompt to the user’s interaction for the mask refiner leads to a decrease in performance.

By generating pseudo-interactions following the strategy outlined in Section 6.4.4
to refine XMem’s initial mask, we enhance the robustness even further while slightly
reducing the user’s workload. However, saving the resulting refined mask from a
pseudo-interaction (pseudo-IDU), affect only marginally the robustness, but increases
the user workload considerably. When discarding the user interactions and only relying
on pseudo-corrections, i.e., Lazy-XMem†, we obtain a similar setup to sVOS methods
and manage to improve the results of the XMem [55] baseline, even attain competitive
results against the current SOTA sVOS methods as shown in Section 6.1. Thus, our
extension improves the baseline by: (1) discarding non-confident predictions from being
added to the memory; (2) issuing pseudo-corrections to prompt SAM-HQ [61], thereby
refining the baseline’s initial prediction when the method’s uncertainty increases sharply
(Section 6.4.4); (3) and requests user-corrections on-the-fly as needed to improve the
robustness.

6.7.2 Decision Policies for Mask Refinement

Table 6.4 tabulates the results when relying directly on the masked entropy SRc and its
respective derivative ∆SRc as a condition to request user help. To isolate the influence
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Configuration

Pseudo User Robustness User-Workload

UDU Corr. IDU Corr. IDU J &F R@0.1 R@0.25R@0.5 ACI NoC IDI

- - - - - 52.8 57.0 55.0 49.0 - - -

✓ - - - - 54.7 56.3 54.5 50.0 - - -

✓ ✓ - - - 56.4 58.8 56.8 50.6 - - -

✓ ✓ ✓ - - 53.1 57.0 55.1 49.6 - - -

✓ - - ✓ - 55.6 58.2 56.4 51.8 7.80 507 12.6

✓ - - ✓ ✓ 62.9 67.8 66.2 60.9 5.05 327 18.3

✓ ✓ - ✓ ✓ 64.3 70.2 67.8 62.3 5.02 325 18.4

✓ ✓ ✓ ✓ ✓ 64.3 70.1 68.2 62.1 5.91 352 17.3

Table 6.3: Ablation study for Lazy-XMem on the ziVOS framework. We initialize each
method with an imperfect mask, to indicate which object to segment in the sequence.

each strategy for calling the user’s help, we discard the mask refiner and the pseudo
interaction. We only consider user interactions and rely directly on the ground-truth
annotations to correct the model’s predictions, instead of the mask refiner. We can see
in Table 6.4, that both strategies enhance the robustness and the accuracy, especially
when updating the memory of the sVOS baseline (XMem [55]) with the refined masks
through the Interaction Driven Update (IDU). However, by issuing an interaction based
on the derivative SRc , we manage to significantly reduce the number of user calls from
787 to 327.

6.8 Qualitative Results

In this section we provide qualitative results that highlight both success and failure cases
whenever Lazy-XMem issues either pseudo- or user-corrections to generate a refined
mask. Figures 6.6 and 6.7 displays success and failure cases, respectively, for generating
a refined mask through pseudo-corrections. While figures 6.8 and 6.9 show results when
a refined mask is generated via a simulated user-correction, as described in Table 6.6.2.

We indicate a ground-truth mask in yellow, the original prediction in turquoise, the
refined mask in orange or purple after a pseudo-and user-correction respectively. We
mark the location of a pseudo- or user-corrections through a yellow star .

For small objects, we provide a cropped version to better visualize the different
predictions. In these cases, a small image of the original image is shown on the first
column, surrounded by a red border. Note that in Figure 6.9, we do not display refined
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Robustness User-Workload

Configuration J &F R@0.1 R@0.25 R@0.5 ACI NoC IDI

XMem [55] (baseline) 53.7 54.6 51.7 41.3 - - -

Call user corrections based on SRc

XMem + UDU 54.7 56.3 54.5 50.0 56.1 3647 1.9

XMem + UDU + IDU 63.5 67.6 66.1 61.7 12.1 787 8.5

Call user corrections based on ∆SRc

XMem + UDU 55.6 58.2 56.4 51.8 7.80 507 12.6

XMem + UDU + IDU 62.9 67.8 66.2 60.9 5.05 327 18.3

Table 6.4: Results for Lazy-XMem when requesting user corrections through SRc or
∆SRc (note that for this table we discard the pseudo-interaction). We initialize each
method with perfect masks. UDU denotes Uncertainty Driven Update.

masks for the third, fourth and fifth rows, as Lazy-XMem missed for those instances the
generation of either a user- or pseudo-corrections.

6.8.1 Pseudo-Corrections

Through the pixel wise uncertainty estimation, we are able to identify confusing and
confident regions, helpful for the generation of pseudo-corrections, allowing us to correct
the segmentation whenever a distractors is present and anticipate when the method is
likely to fail as shown in Figure 6.6. We can observe that our proposed pseudo-correction
generation strategy successfully recovers the original object of interest in the presence of
distractors (e.g., rows two, three, and four). Additionally, objects that are about to be lost
are also recovered (e.g., rows one, three, and five).

Note that for small objects (refer to Figure 6.7), the mask refinement incorrectly
generates masks, although the pseudo-correction location’s lies on the target, as seen
in rows two, three, and five. In the first row, the small gorilla (target) is lost in favor to
the adult gorilla, since the uncertainty is lower the method fails to issue correct pseudo-
corrections or request a user-corrections. Ideally, the method should detect the transition
from the small gorilla to the adult gorilla, while the pixel level uncertainty for both
objects is still high, to indicate confusion. In row 6, we note that the pixel uncertainty
for the foot region and the ball (target) are very similar, consequently the method is
unable to find a correct location to generate a pseudo-correction as both object are as
likely considered to be the actual object to track by the sVOS baseline, here the method
failed to actually issue a user-correction.
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Ground-truth Original Mask Entropy Refined Mask

Figure 6.6: Qualitative results on the validation set of LVOS [91] when refining the
mask through pseudo-corrections (Success cases).
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Ground-truth Original Mask Entropy Refined Mask

Figure 6.7: Qualitative results on the validation set of LVOS [91] when refining the
mask through pseudo-corrections (Failure cases).
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As seen in figure Figure 6.6, the actual object of interest, is the little gorilla, however,
during the training process, the method identifies the big gorilla as the target of interests,
as seen in the entropy map.

6.8.2 User-Corrections

In the first and last rows of Figure 6.8, we note that the method correctly issues a user
interactions, as only the ear of the sheep and the back of the zebra are still segmented,
preventing the loss of the target. Similarly, in the second and third rows, the method
manages to issue and interaction to the user while losing the target in favor to a distrac-
tors. Note that in the third row, the method correctly issues a user-correction instead
of a pseudo-correction, as otherwise the pseudo-correction would be generated on the
wrong sheep.

In 6.9, we observe that the method sometimes unnecessarily calls for user interaction
even when a good portion of the object is correctly predicted (i.e., first and second row),
and where a pseudo-correction would be more appropriate (first row).

Additionally, there are instances where a user (or pseudo) correction is missed, as
seen in rows three, four and five. In the fourth row, the tracker confidently segments a
distractor after the disappearance of the object of interest, while indicating the actual
object with some uncertainty. Lastly, when the SVOS backbone loses track of the object
of interest, it is unable to recover it, as shown in the fifth row.

6.8.3 Implementation Details

For our sVOS baseline, we rely on the original weights provided by the authors of
XMem [55], which is trained on the static and DAVIS 2017 training set [83]:

Deep Ensemble variant: We experiment with an ensemble approach that combines
three independently trained XMem models (each initialized with a different seed). The
first model is trained on the static [48] and DAVIS 2017 training set [83]. The second
model (which we use as a baseline in Lazy-XMem) is trained similarly to the first model
but also includes the synthetic dataset BL30K [47]. The third model is trained like the
first model but with the addition of the MOSE [85] dataset. Note that for computational
reason, the ensemble size as limited to three models.

Monte Carlo (MC) variant: We rely on spatial pooling [149] applied to the key-
projection of XMem [55], with a dropout ratio of 0.2 for our Monte Carlo Dropout variant
during training, which is maintained during inference. Hence, during inference we
generate 20 stochastic forward passes per frame. The resulting probability maps are
averaged to compute the final segmentation result.

We seek to isolate the epistemic uncertainty, as it encapsulates the divergence in the
predicted probabilities across the different models forming the ensemble, as it provides
a measure of model disagreement. To quantify the epistemic (model) uncertainty for
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Ground-truth Original Mask Entropy Refined Mask

Figure 6.8: Qualitative results on the validation set of LVOS [91] when refining the
mask through user-corrections (Success cases).
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Ground-truth Original Mask Entropy Refined Mask

Figure 6.9: Qualitative results on the validation set of LVOS [91] when refining the
mask through user-corrections (Failure and miss cases). Here we considered a missed
opportunity to generate a pseudo- or user-correction whenever the IoU between
the original prediction and the ground-truth annotation is below 0.1. These missed
opportunities explain the absence of entries in the Refined Mask columns for the last
two rows.
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our Monte Carlo Dropout (MCD) and Deep Ensemble variant, we decompose the total
predictive uncertainty St into its aleatoric (data) and epistemic components. Intuitively,
to extract the epistemic uncertainty, we consider the total uncertainty of the Ensemble
or MCD model (encapsulating aleatoric and epistemic uncertainty), and subtract the
aleatoric uncertainty to it [150]. The idea is that my having multiple models provid-
ing a prediction for the same input, the aleatoric uncertainty, which is only related
to the data, should be unchanged from one model to another. In contrast, since the
epistemic uncertainty is model-specific it will vary between each model. By averaging
the uncertainty of each individual model, these model-specific variations are down-
weighted, leaving behind the aleatoric uncertainty. Hence, by subtracting the average
uncertainty of each model from the total uncertainty of the whole ensemble, we isolate
the epistemic component. Formally, we compute the epistemic uncertainty Vt for frame t

through Vt = St − E[Sm
t ] where St is the total uncertainty, computed as the entropy of

the ensemble’s average probability maps Pt, such that Pt = E[Pm
t ]. And E[Sm

t ] denotes
the aleatoric uncertainty, where Sm

t designates the entropy of each model individually
such that Sm

t is only computed from Pm
t . Here the exponent m denotes the model index.

Thresholds: We using the training set of the LVOS dataset [91] to identify the values
for τu = 0.5, τp = 0.2 and τm = 0.8. Note that none of the networks used in this work is
trained on the LVOS training set.

6.9 Limitations

Currently, Lazy-XMem generates only click-based pseudo-corrections, which are then
given to the mask-refiner without including the predicted mask, as the empirical results
were not convincing. This is due to some masks being too inaccurate to serve as a
viable prompt for the refinement module. However, this also disregards the impact
that a slightly inaccurate mask could provide to boost the refinement. Another aspect
could also be linked to the inherent bottleneck that SAM-based models do not work
well with mask-based prompts in practice. Instead, an alternative approach, explored
by Delatolas et al. [80], involves iteratively prompting the mask-refiner with pseudo-
prompts generated from the initial mask until a certain level of alignment is achieved
between the SAM-predicted mask and the original sVOS initial mask. For instance, an
IoU reaching 0.8 between the SAM predicted mask and the original mask. However, this
method assumes that the initial mask (from the sVOS pipeline) is accurate enough to
serve as a reliable base for further prompting the mask-refiner with uncertainty-based
prompts. An aspect to take into account in future evaluations is the simulation of user
corrections. Currently we generate these by essentially computing the central coordinates
of the ground-truth mask. However, as recently shown by Antonov et al. [157], real user
interactions are rarely centrally located and tend to be more dispersed. This discrepancy
introduces a performance drop, highlighting the need for a more diverse training strategy
for user correction generation in refinement models.
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Our pseudo-correction (P-C) mechanism currently generates corrections and re-
quests user interaction exclusively within the dilated object mask. This serves as a
pre-emptive measure, effective before the object of interest is entirely lost. If the object is
already lost, the method cannot generate pseudo-corrections or prompt the user for help.
However, it can still recover independently because the stored memory embeddings
retain a representation of when the object was present. As indicated in Subsection 6.4.4,
our current P-C mechanism is restricted to positive pseudo-corrections within the current
object mask, a strategy that has shown improvement over the baseline (refer Table 6.1
and 6.2). To incorporate negative pseudo-corrections in order to cover regions outside
the predicted mask, future work should also consider the uncertainty outside the pre-
dicted masks. This could enable the method to identify and act upon confusing objects
(i.e., distractors) and potentially update it’s memory representation in accordance, to
prevent drift. In addition, extending the P-C mechanism to include negative pseudo-
interactions would also diversify its ability to resolve ambiguous situations, such as
over-segmentation where background pixels are incorrectly included in the object’s
mask.

An important consideration for future research is to complement our proposed
objective user-workload metrics (see Subsection 6.5) by integrating a subjective assess-
ment from the user’s perspective. Here, the NASA Task Load Index (NASA-TLX) [144]
offers a well-established methodology to evaluate mental, physical, temporal, and other
workloads on the user. In addition, we can also leverage the System Usability Scale
(SUS) [145] to provide a complementary measure of perceived usability.

6.10 Discussion

In this chapter, we introduced the ziVOS subtask, a hybrid combination of sVOS and
iVOS specifically designed for online, unconstrained scenarios where on-the-fly correc-
tions by a human user are feasible. This setting reflects real-world applications in which
video frames are processed sequentially, and continuous monitoring is impractical, but
maintaining robust long-term object tracks remains essential.

To address this challenge, we presented Lazy-XMem, a baseline that extends the
capabilities of XMem [55] by dynamically integrating both pseudo and user corrections
whenever the system detects high uncertainty. This mechanism provides an effective
balance between segmentation performance and user workload since corrections are
only requested during critical events, such as occlusions or distractors. Leveraging an
entropy-based measure of uncertainty on pixel-level, our method estimates the tracking
state online and triggers interactions only when they are needed to avert substantial
errors. The pixel-wise uncertainty estimation serves a dual purpose: it facilitates efficient
user guidance to problematic regions (easier to visualize problematic regions), thus
streamlining interactions, and it is also employed to generate pseudo-corrections.
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In addition, this entropy based regulation, allows us also to extend on if we would
update the memory or not of our approach, allowing us to be more robust and allow a
better scalability (RQ2) Building on the standard the J &F metrics [82], we proposed
complementary metrics to evaluate the robustness of the segmentation (i.e., the propor-
tion of frames meeting a minimum IoU threshold) and the user workload associated
with provided corrections on-the-fly. Experiments on the long-term LVOS dataset [91]
confirmed that Lazy-XMem improves the robustness of the baseline, albeit at the cost of
extra interactions. Overall, Lazy-XMem serves as a reference point for practical, online
VOS solutions where maintaining persistent object tracks is often more critical than
achieving the highest accuracy in a single pass.

In summary, this chapter jointly advances RQ1 (by reducing the user’s monitoring
effort through proactive uncertainty estimation and pseudo corrections) and RQ2 (by
demonstrating scalable, long-term tracking in an online setting). The code is publicly
available5 to promote reproducibility and further developments.

5 https://github.com/Vujas-Eteph/LazyXMem

https://github.com/Vujas-Eteph/LazyXMem
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S U M M A R Y A N D O U T L O O K

7.1 Summary

We address throughout this thesis the central research question How can we design

a scalable, robust, and user-efficient VOS approach for unconstrained video sequences that

ensures minimal user effort? Our goal is to enhance the robustness of VOS methods by
designing a Human-in-the-loop approach that permits users to interact on-the-fly with
the segmentation in a single pass while simultaneously minimizing the required effort.

To identify potential avenues, we decomposed our research question into two
sub-questions: RQ1: How can we design an efficient interactive VOS approaches that
reduce the user’s effort? and RQ2: How can we scale VOS methods to robustly handle
unconstrained video sequences (i.e., long, diverse, or streaming videos) in a Human-in-
the-loop environment?

Our answer builds upon two complementary paradigms: semi-supervised VOS
(sVOS) and interactive VOS (iVOS). While sVOS methods propagate (user-provided)
reference masks with no further intervention after initialization, iVOS methods rely
on an iterative user feedback loop to progressively refine segmentation output. By
fusing insights from both paradigms, we aim to achieve a low annotation effort on the
user’s side, alongside an efficient scalable approach that allows us to robustly track on
pixel-level an arbitrary object in unconstrained videos.

In Chapter 2, we extensively reviewed state-of-the-art methods in sVOS and iVOS,
summarizing prevalent approaches and standard benchmarks (i.e., datasets). More-
over, we also highlighted critical shortcomings w.r.t. our central research question.
In Chapter 3, we presented fundamental concepts underpinning matching-based sVOS
architectures, as they form the backbone of this thesis. We detail key architectural ele-
ments (e.g., encoders, decoders, and space-time memory matching), describe the training
process (i.e., leveraging synthetic video clips), and review essential evaluation metrics
for assessing the performances of VOS methods.

We partially addressed RQ1 in Chapter 4 by replacing scribble interactions with
sparse, click-based inputs within the iVOS context to effectively reduce annotations
effort from the user’s side while still achieving reasonable performance compared to
scribbles-based approaches. However, this proof-of-concept (CiVOS) was limited to
short, pre-recorded videos, where multiple reviews and iterative interactions are feasible.

In Chapter 5 we specifically target the scalability concerns of RQ2. We tackled a
prevalent limitation in existing sVOS methods, which were tailored for short video
sequences due to their ever-growing memories. We proposed READMem, a novel plug-
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and-play module (i.e., training-free) for efficiently managing the memory aspect of SOTA
matching-based sVOS approaches. Concretely, we selectively stored frame embeddings
based on a diversity criterion. We demonstrate performance boost across significantly
longer sequences while maintaining high accuracy in short videos.

Finally, in Chapter 6, we jointly addressed RQ1 and RQ2 in an online (i.e., hypo-
thetical streaming) scenario where video rewinding is impossible, sequences are long,
and continuous user monitoring is impractical. To formalize this setting, we introduced
the ziVOS task, aiming for a Human-in-the-loop setup that operates within a single
segmentation pass. We proposed a baseline, Lazy-XMem, which assesses its pixel-level
uncertainty on-the-fly during the segmentation process. This allows us to strategically
request user interactions precisely when the uncertainty is high. Furthermore, to re-
duce user effort, Lazy-XMem generates pseudo-corrections when the uncertainty is
moderately high, enabling the method to self-correct. To evaluate the robustness, we
introduced complementary metrics that specifically capture the segmentation robustness
and the user workload. Our evaluations confirm Lazy-XMem’s effectiveness in minimiz-
ing user interventions while maintaining robust segmentation performance under our
new sub-task.

7.2 Outlook

Let us now discuss interesting directions that could be addressed in future work. With the
introduction of SAM [17] and more recently SAM2 [16], which demonstrated substantial
approximately 10% performance gains over previous methods on popular benchmarks,
the VOS field is currently experiencing a significant shift towards leveraging founda-
tional models. Mirroring the impact of architectures like ResNet [126] and VGG [151],
SAM2, in less than a year, serves as the primary backbone for most VOS applications,
ranging from the medical field, robotics, to track. In addition to SAM2, Rave et al. [16]
also introduced a new subtask: Promptable Video Object Segmentation (PVOS), which
is closely related to our proposed subtask in ziVOS, allowing users to correct the seg-
mentation process in a single pass.

However, areas for improvement remain, such as memory management, explicit
handling of distractors, and pixel-level uncertainty estimation. In particular, the memory
module, which currently relies on a FIFO approach, could be enhanced. Recent studies
have explored better memory management strategies for matching-based approaches,
which SAM2 is based on. Notably, QDMN [52], READMem [128], and RMem [139] (win-
ner of the VOT2024 challenge) offer promising directions. Works, like SAM2Long [66],
have already started to address this aspect specifically. Similarly, DAM4SAM [140] are
exploring memory management solutions to better deal with distractors.

As noted by [52, 66, 152], the quality of stored embeddings can be proxied by esti-
mating the uncertainty of a predicted mask, giving us an indication of the prediction’s
reliability to serve as a reference for future predictions. While some approaches estimate
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uncertainty at the frame level [16, 17, 52], a finer-grained (pixel-level) uncertainty es-
timation would allow us to identify which regions within a frame should be avoided
when saving to memory. Hence, instead of predicting a scalar confidence value, auxiliary
networks or modules could be designed to output pixel-wise confidence heatmaps to
allow also the generation of pseudo-corrections (as in Chapter 6) to improve a method’s
performance. More specifically, one promising direction would be to train an auxiliary
network to predict false positive and false negative maps as proposed by Qin et al. [153]
for the iIOS task but extended for sVOS. These maps could then be directly used to
generate pseudo-positive and pseudo-negative user corrections, potentially leading to
more effective self-correction during segmentation. An additional alternative to Monte
Carlo, Ensemble or Laplace Approximations would also be to rely on evidential deep
learning [154] perspective. Here, instead of directly predicting Bernoulli parameters
for each pixel (in the single-object tracking scenario), the network could predict the
parameters of its conjugate prior, the Beta distribution (or the Dirichlet distribution for
multi-object tracking) [155]. This would allow modeling the probability distribution
of a pixel belonging to the foreground more explicitly, offering a richer uncertainty
representation, particularly for out-of-distribution scenarios [156].

This explicit uncertainty modeling could be further integrated with active and life-
long learning strategies. When the method detects high uncertainty in its predictions, it
could actively solicit user feedback for refinement and update its internal state accord-
ingly. For instance, future work could explore explicitly fine-tuning the SAM2 backbone,
adapting its weights or auxiliary weights based on user feedback, similar to the online
adaptation strategies employed in BRS [110, 111].

Importantly, future work should focus on comprehensive user studies to asses
from a user’s perspective the practicability of VOS approaches for the long-term and
streaming scenarios. Especially since the VOS approaches work in tandem with the
user. This includes conducting comprehensive user studies through NASA-TLX [144] or
SUS [145] as well as testing multiple types (i.e., natural language descriptions, clicks) of
interactions separately or in a combination, to identify the most adapted interaction form
for particular events or use-cases. The objective would be to evaluate which modalities
are perceived as: (i) Easiest to use: Assessing learnability and efficiency for various user
groups; (ii) Most reliable: Achieving consistently the desired result; (iii) Least cognitively

demanding: Estimating the sustained attention demand, decision-making frequency; and
(iv) Requiring minimal physical effort: Evaluating the ergonomic aspects of interaction.

Finally, a major limitation of interactive approaches lies in the absence of realistic user
interaction models for evaluation and potentially for training. While standard interactive
segmentation benchmarks often rely on simplified inputs like center clicks, these do not
fully capture the nuances of real human behavior. To address this, Antonov et al. [157]
recently proposed R-Clicks, a network that predicts more realistic user interactions. The
authors show that in realistic scenarios, networks tend to learn a bias toward central
interactions and display a drop in performance when exposed to real user interactions.
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Integrating such insights into future research is crucial for developing and evaluating
VOS methods that better align with real-world user behavior. This could significantly
influence the design of both the interaction mechanisms and the learning strategies of
future systems.
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[137] Matej Kristan, Aleš Leonardis, Jiří Matas, Michael Felsberg, Roman Pflugfelder,
Joni-Kristian Kämäräinen, Hyung Jin Chang, Martin Danelljan, Luka Čehovin
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