KIT | KIT-Bibliothek | Impressum | Datenschutz

Artificial Intelligence Enhanced Scaling Design Database for Electrical Machine Inverse Design

Wang, Yiwei; Yang, Tao; Huang, Hailin; Zou, Tianjie; Chen, Nuo ORCID iD icon 1; Gerada, Chris
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract:

To explore the potential of generative artificial intelligence in electrical machine inverse design, this paper focus on database development as preparation for model fine-tuning and agents developing. A framework is proposed to construct the database spanning a wide range of power ratings, characterized by geometric similarity, using surface-mounted permanent magnet machines as a case study. Python-driven interactions between finite element analysis and optimization algorithms facilitate this process. Scaling and correlation factors are used as variables for finite element model construction and key performance indexes evaluation under multi-physics considerations. These factors, paired with key performance indexes, form the sample set in a single cycle. A metamodel of optimal prognosis based surrogate model is trained using 500 samples collected via Latin hypercube sampling within 23 hours, mapping factors to key performance indexes. Using this surrogate model, a genetic algorithm generates 9900 scaling designs in 10 minutes. 16 designs on the predicted pareto front were validated by finite element analysis, showing strong alignment with predictions and confirming the effectiveness of the proposed framework. ... mehr


Originalveröffentlichung
DOI: 10.1109/ECCE-Europe62795.2025.11238954
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-6752-1
KITopen-ID: 1000188247
Erschienen in 2025 Energy Conversion Congress and Expo Europe (ECCE Europe), Birmingham, 31st August-4th September 2025
Veranstaltung Energy Conversion Congress and Expo Europe (ECCE Europe 2025), Birmingham, Vereinigtes Königreich, 31.08.2025 – 04.09.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Serie Conferences
Schlagwörter Inverse design, artificial intelligence architecture, database, surface mounted permanent magnet machine
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page