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Abstract—The effectiveness of autonomous vehicles relies on
reliable perception capabilities. Despite significant advancements
in artificial intelligence and sensor fusion technologies, cur-
rent single-vehicle perception systems continue to encounter
limitations, notably visual occlusions and limited long-range
detection capabilities. Collaborative Perception (CP), enabled
by Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communication, has emerged as a promising solution to mitigate
these issues and enhance the reliability of autonomous systems.
Beyond advancements in communication, the computer vision
community is increasingly focusing on improving vehicular per-
ception through collaborative approaches. However, a systematic
literature review that thoroughly examines existing work and
reduces subjective bias is still lacking. Such a systematic approach
helps identify research gaps, recognize common trends across
studies, and inform future research directions. In response,
this study follows the PRISMA 2020 guidelines and includes
106 peer-reviewed articles. These publications are analyzed based
on modalities, collaboration schemes, and key perception tasks.
Through a comparative analysis, this review illustrates how
different methods address practical issues such as pose errors,
temporal latency, communication constraints, domain shifts,
heterogeneity, and adversarial attacks. Furthermore, it critically
examines evaluation methodologies, highlighting a misalignment
between current metrics and CP’s fundamental objectives. By
delving into all relevant topics in-depth, this review offers
valuable insights into challenges, opportunities, and risks, serving
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as a reference for advancing research in vehicular collaborative
perception.

Index Terms—Autonomous driving, connected autonomous
vehicles, cooperative-intelligent transportation systems, computer
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I. INTRODUCTION

AUTONOMOUS Vehicles (AVs) are a crucial technol-
ogy for intelligent transportation systems, offering the

potential to significantly enhance road safety and transporta-
tion efficiency. With the emergence of Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication,
Connected Autonomous Vehicles (CAVs) advance this poten-
tial by enabling data sharing not only among vehicles but
also with traffic management systems, thereby adding new
value to Cooperative-Intelligent Transportation Systems (C-
ITS). A critical component of both AVs and CAVs is their
perception capability, which involves using multiple sensors
to recognize and interpret the driving environment, forming
the foundation for subsequent planning and control operations.
Perception tasks include 2D/3D object detection, semantic
segmentation, object tracking, and motion prediction, among
others. Driven by advances in artificial intelligence and multi-
sensor fusion, the perception capabilities of individual vehicles
have significantly improved. However, these capabilities are
still limited by challenges such as visual occlusion and long-
range detection, which are difficult to overcome with onboard
sensors alone. These limitations can lead to reduced situational
awareness, increase the risk of traffic accidents, and reduce the
driving efficiency.

To address the limitations of individual vehicle perception,
Collaborative Perception (CP)1 supported by V2V and V2I
communication has gained significant attention [1]. In the
context of CP, where only vehicles and infrastructure are
equipped with sensors, CP utilizing both V2V and V2I is

1In the context of collaborative perception, the terms cooperative and collec-
tive perception are frequently used. However, in this paper, we specifically use
the term Collaborative Perception to emphasize the dual aspects of information
sharing and coordinated action among agents. In contrast, cooperative percep-
tion focuses on information sharing, while collective perception emphasizes
the distributed nature of shared perception.
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Fig. 1. Illustration of a road traffic scenario for Collaborative Perception (CP):
The green shaded areas represent the ego-vehicle’s (white) and the CAV’s
(red) Field of View (FOV). The ego vehicle cannot perceive the pedestrians
on its right due to the visual occlusion caused by a building, blocking its
line of sight. Additionally, another vehicle (blue) on the opposite side of
the intersection lies outside the ego vehicle’s perception range, presenting as
the long-range problem. However, the CAV and infrastructure roadside unit
can detect the pedestrians and the other vehicle, respectively, and share their
observations with the ego vehicle, thereby enhancing its situational awareness.

widely described as using Vehicle-to-Everything (V2X)2. As
shown in Figure 1, CP allows for the sharing of sensor
data between vehicles and infrastructure, thereby significantly
extending the Field of View (FOV) of individual vehicles
to overcome challenges related to occlusion and long-range
detection, which is critical for enhancing road safety and
improving traffic efficiency across a wide range of use cases.

Initial investigations into CP concentrated on the trans-
mission of object-level information [2] and aspects of the
communication protocol design, such as message generation
rules [3], redundancy mitigation [4] and data congestion
awareness [5], and culminated in the publication of commu-
nication standards in the standard development organizations
(SDOs) ETSI [6] and SAE [7]. As CP evolved, its scope
broadened to include contributions from computer vision,
with particular focus on the design of advanced perception
algorithms and data fusion methods. Research has increasingly
explored diverse data types for CP, ranging from raw sensor
data [8], [9], [10], intermediate neural features [1], [11], [12],
to processed perception results [13], [14], [15].

The different data types correspond to three principal
paradigms of CP: early cooperation, intermediate cooperation,
and late cooperation. In early cooperation, network nodes
exchange raw sensor data, which contain comprehensive envi-
ronmental information but require substantial bandwidth for
transmission. In contrast, late cooperation involves sharing
processed perception results, which is the most bandwidth-
efficient data format. However, this approach is vulnerable
to errors introduced during earlier perception stages, such as
sensor noise, object misclassification, and data synchroniza-
tion issues, and is less resilient to pose inaccuracies [16].

2We note that in communication technology, V2X encompasses a broader
scope, covering V2V, V2I, Vehicle-to-Pedestrian (V2P) and Vehicle-to-
Network (V2N).

Intermediate cooperation is a viable solution to balance the
trade-off between network bandwidth usage and accuracy. It
requires less bandwidth than data-level fusion and is expected
to offer higher accuracy than result-level fusion.

Each CP method offers distinct advantages and dis-
advantages. Nonetheless, all types consistently outperform
single-vehicle perception systems that lack collaboration. CP
has the potential to enhance perception accuracy and address
blind spot issues. However, its practical implementation faces
several significant challenges. Communication bandwidth is a
significant constraint, restricting the amount of data that can be
shared effectively [11], [17]. Localization errors further chal-
lenge data fusion by causing spatial misalignments [18], while
time latency introduces temporal misalignments, undermining
fusion accuracy [19]. Additionally, CP faces other critical
challenges, including communication disruptions [20], domain
shifts [21], modality heterogeneity [22], and susceptibility to
adversarial attacks [23]. Overcoming these barriers is crucial
for scaling CP solutions and unlocking their full potential in
advancing vehicular perception systems.

A. Related Work

Several narrative reviews on CP have been published,
each offering distinct perspectives on the field. For instance,
Bai et al. [24] offer a high-level overview of the architecture
and node structure of CP systems, while Caillot et al. [25]
reviews CP, with a focus on localization, object detection and
tracking. In 2023, Han et al. [26] explore CP methods for both
ideal scenarios and real-world applications, highlighting the
gaps between current research and practical implementation.
Liu et al. [27] introduce issues of CP while Huang et al. [28]
propose a generic framework of CP.

As summarized in Table I, all of these studies are nar-
rative reviews and touch upon several aspects of CP but
lack a transparent, comprehensive, and structured analysis of
CP, particularly from a computer vision perspective. They
do not offer a detailed taxonomy of CP technologies or
fully address the range of perception tasks that benefit from
collaborative approaches. For instance, key tasks such as
semantic segmentation, motion prediction, and lane detection
remain unexamined in prior surveys. Additionally, the role of
different sensing modalities in CP has not been systematically
analyzed, leaving a critical gap in understanding camera-based
CP or fusion-based CP. Moreover, evaluation methodologies,
which are essential for guiding the future development of CP
technologies, are either absent or insufficiently discussed in
previous reviews. This gap makes it difficult for readers to
fully understand the range of CP tasks and to quickly identify
the specific focus of their own research within the field.

To address these shortcomings, this Systematic Literature
Review (SLR) follow the the PRISMA 2020 guidelines and
define five research questions as below:
• RQ1: How can collaborative perception be classified

within a structured taxonomy?
• RQ2: Which methodological approaches are being used

for evaluating collaborative perception?
• RQ3: Which scenarios are covered by evaluation

approaches for collaborative perception?
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TABLE I
SUMMARY OF SURVEYS IN VEHICULAR COLLABORATIVE PERCEPTION. MOD.: MODALITY, CO.: COLLABORATIVE TYPE, OD: OBJECT DETECTION,

OT: OBJECT TRACKING, MP: MOTION PREDICTION, SS: SEMANTIC SEGMENTATION, LD: LANE DETECTION, MT/TA: MULTI-TASK.TASK
AGNOSTIC, LE: LOCALIZATION ERROR, TL: TIME LATENCY, CB: COMMUNICATION BANDWIDTH CONSTRAINT, CI: COMMUNICATION

INTERRUPTION, DS: DOMAIN SHIFT, HETERO.: HETEROGENEOUS SYSTEM, ADV.: ADVERSARIAL ATTACK, DA: DATASET, ES:
EVALUATION SCENARIOS, EM: EVALUATION METRICS, AS: ABLATION STUDY

• RQ4: Which metrics are used to measure the effectiveness
of collaborative perception?

• RQ5: What are the challenges, opportunities, and risks
of collaborative perception research?

This SLR selects relevant works based on predefined inclu-
sion and exclusion criteria and extracts key data terms from the
selected papers to address the research questions. Ultimately,
this review evaluates the current state of CP and highlights
areas requiring further research.

B. Contributions

To minimize bias, enhance transparency, and ensure com-
prehensive coverage, we employ the methodology of SLR and
follow the PRISMA 2020 guidelines. This review examines
106 peer-reviewed papers that meet our selection criteria,
offering a summary of existing research, and a comparative
analysis of critical components in cooperative perception
algorithms, highlighting remaining research gaps. The key
contributions of this review are as follows:
• This systematic literature review distinguishes itself from

existing narrative reviews by selecting relevant works in
accordance with the PRISMA 2020 guidelines, ensuring
transparency and reproducibility. At the conclusion of the
study, five predefined research questions are addressed.

• This review proposes a structured taxonomy for Collab-
orative Perception technology, addressing the limitations
of prior narrow classifications in existing surveys. The
taxonomy categorizes solutions along modality, collab-
oration and task. Furthermore, approaches to address
real-world challenges in CP for autonomous driving,
such as localization errors, latency, communication issues,
domain shifts, heterogeneous setups, and adversarial
attacks, are systematically reviewed, categorized, and
comparatively analyzed.

• In contrast to the limited attention to evaluation methods
in existing surveys, this review systematically exam-
ines the evaluation methodologies, performance metrics,
and ablation studies employed in CP. In particular, the
CP datasets are categorized and analyzed, distinguishing
between synthetic and real-world datasets.

• A comparative analysis is conducted to understand
the advantages and disadvantages of different methods.
Building upon this analysis, the study identifies future

challenges, opportunities, and risks associated with CP
from various perspectives, including advancements in
hardware and software for CP and improvements in
evaluation methods.

C. Structure of Survey

The Sections III to VII address RQ1, beginning with an
overview of a structured taxonomy in Section III. Section IV
and V cover modality type and collaboration type, respec-
tively, while Section VI explores perception tasks addressed
through multi-agent collaboration. Section VII discusses the
issues encountered in real-world applications and the existing
solutions. Sections VIII addresses RQ2 to RQ4 and focuses
on the evaluation methods of CP, with particular emphasis on
the available public datasets and evaluation metrics. Section IX
addresses RQ5, highlighting the challenges, opportunities, and
risks in CP research. Finally, Section X summarizes the
findings of the review and provides conclusions. Figure 2
provides a visual overview of the review’s structure.

II. RESEARCH METHODOLOGY

A Systematic Literature Review (SLR) is a structured and
methodical approach to reviewing and synthesizing existing
research on a specific topic or research question. Unlike tradi-
tional narrative reviews, an SLR follows a predefined protocol
that includes a comprehensive search strategy, clear criterias
for selecting studies, and rigorous methods for analyzing and
synthesizing the findings. The aim is to minimize bias, ensure
transparency, and provide a comprehensive overview of the
current state of knowledge on the topic. Our research process
is following the guideline of the PRISMA 2020 statement [29]
and the methodology presented in Kitchenham and Brereton
[30], which serves as a transparent and uniform systematic
review framework. Fig. 3 illustrates the general procedure of
a SLR, which consists of three phases: Planning, Conduct-
ing, and Documenting. Additionally, the primary reviewers
have diverse backgrounds in AI, computer vision, robotics,
human-robot interaction, and communication, ensuring a broad
range of perspectives in the review process. The applica-
tion of the method to CP literature will be discussed in
Section II-A, while the metadata analysis will be described in
Section II-B.
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Fig. 2. Organization of this systematic literature review.

Fig. 3. The procedure of SLR in three stages: planning (review protocol devel-
opment), conducting (screening and selection of articles), and documenting
(synthesizing of findings).

A. Application of the SLR Method to Cooperative Perception
Literature

This section will outline the practical application of the
above described process. The subsequent subsections will

provide a detailed explanation of each step involved in the
procedure.

1) Definition of Review Protocol: The review protocol
establishes the methodological framework for this study and
comprises four key components: search strategy, selection
criteria, data extraction strategy, and quality assurance strategy.
The search strategy specifies the approach for systematically
identifying relevant literature, while the selection criteria out-
line the criteria for including or excluding studies. The quality
assurance strategy ensures the reliability of the review by
evaluating the quality of the included studies.
• Search Strategy: The search strategy encompasses the

selection of resources to be searched, the formulation
of the search string, and the execution of the search
procedure. In this study, several databases and one search
engine were chosen as resources, as illustrated in Table II.
The search string, provided in Table II, was applied
across these databases and the search engine to gather
relevant literature. To refine the search, appropriate filters
were utilized for each resource. The main steps of the
search procedure include: collecting relevant papers from
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TABLE II
SEARCH RESOURCES AND SEARCH STRING

TABLE III
SELECTION CRITERIA

each resource up to a defined upper limit (1,000 items),
removing duplicates, applying the selection criteria to
the collected papers, performing forward and backward
snowballing3 on the paper set, and finally, reapplying the
selection criteria.

• Selection Criteria: The selection criteria include both
inclusion and exclusion criteria, as detailed in Table III.
These criteria narrow the scope of the review to peer-
reviewed academic articles published within the last five
years, ensuring that the final set of papers is of high
quality. Therefore, preprint papers without peer review
are not included to ensure that the collected papers meet
established academic standards. Specifically, exclusion
criterion 6, which pertains to the level of evaluation detail,
further reinforces the quality of the selected articles. The
criteria are also designed to maintain a specific focus
on cooperative perception techniques, explicitly excluding
studies on roadside perception or ego vehicle perception.

3Snowballing is a technique for expanding a literature search by reviewing
the references of selected papers (backward snowballing) and identifying
papers that cite them (forward snowballing).

TABLE IV

DATA EXTRACTION TERM CORRESPONDING TO
RESEARCH QUESTIONS RQ1

TABLE V

DATA EXTRACTION TERM CORRESPONDING TO
RESEARCH QUESTIONS RQ2-4

TABLE VI

DATA EXTRACTION TERM CORRESPONDING TO
RESEARCH QUESTIONS RQ5

An article is included in the final set only if it satisfies
all the inclusion criteria and does not meet any of the
exclusion criteria.

• Data extraction strategy: The data extraction aims
to gather all relevant information necessary to address
the predefined research questions. Prior to commenc-
ing the process, the specific data term to be extracted
from the articles will be clearly defined and formulated.
Once the final paper set is determined, the extraction
strategy will be reviewed and refined to ensure both
comprehensiveness and the availability of the required
data. The extracted data terms are detailed in Table IV, V
and VI, respectively.

• Quality assurance: The quality assurance process is
designed to mitigate potential biases introduced by indi-
vidual researchers by implementing multi-round reviews,
cross-validation, and establishing consensus on key prin-
ciples. The detailed quality assurance plan is outlined in
Table VII.
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TABLE VII

QUALITY ASSURANCE PLAN

Fig. 4. Number of publications over the past five years.

2) Search and Selection: By applying the search strategy,
3,980 articles were identified after duplicate removal. The
subsequent selection process involved applying the inclusion
and exclusion criteria to the titles, abstracts, conclusions,
and overall structure of the articles, which narrowed the
paper set to 211 articles. Forward and backward snowballing
techniques were then conducted on this set to ensure that no
relevant articles beyond the initial search were overlooked. The
selection criteria were also applied to any articles identified
through snowballing. To further validate the selection, the
criteria were applied to the full text of all remaining articles.
This comprehensive and rigorous process ultimately resulted
in a final set of 106 articles. The detailed procedure is outlined
in Figure 5.

3) Data Extraction and Analysis: The data extraction strat-
egy was initially reviewed and then systematically applied
to all selected articles. The extracted data were subsequently
clustered, examined, summarized, and analyzed. Both quanti-
tative and qualitative analyses were conducted to address the
research questions. These analyses enabled a clear identifica-
tion of the current state of research, existing gaps, and future
research trends.

Fig. 5. Procedure of the search and selection, starting from 4876 items,
reduced to 3980 after duplicates were removed, 249 after screening and
snowballing, and resulting in 106 studies included in the final review.

B. Metadata Analysis

This section presents the metadata analysis conducted to
identify research trends in cooperative perception. Figure 4
visualizes the number of publications from 2019 to 2024,
showing a steady increase, with a pronounced surge in 2023.
This trajectory reflects both the maturation of foundational
research and the rapid expansion of real-world applications,
supported by significant funding initiatives in intelligent trans-
portation and autonomous driving. It also highlights that
cooperative perception (CP) is transitioning from an emerging
topic to a consolidated research domain. Nevertheless, due to
indexing delays (e.g., IEEE Xplore updates) and the cutoff

date for data collection in March 2024, the actual number of
recent publications is likely higher than reported, suggesting
that this upward trend is even stronger than captured here.

1) Regional Distribution: Table VIII shows that Asia (54)
and North America (38) dominate the research landscape.
This concentration reflects the substantial investment in V2X
testbeds, 5G infrastructure, and large-scale smart mobility
projects in countries such as China and the United States.
Europe, while contributing fewer studies (13), plays an
important role in standardization and cross-border research
initiatives (e.g., ETSI standards for cooperative ITS). By
contrast, contributions from other regions, including Africa
(1), are minimal, underscoring the geographical imbalance of
current CP research and highlighting opportunities for more
globally distributed investigations.

2) Publication Venues: The majority of papers are pub-
lished in premier robotics and computer vision venues,
including ICRA (16), and CVPR (8) as summarized in
Table VIII. This distribution indicates that CP has expanded
beyond its original roots in communication and networking,
and is increasingly recognized as a computer vision and AI
challenge. The growing presence in CVPR, NeurIPS, and
ICCV emphasizes the centrality of deep learning and visual
perception methods, while robotics-oriented outlets such as
ICRA and IEEE RA-L demonstrate the integration of CP
into embodied autonomous systems. The shift of publication
venues therefore illustrates both methodological diversifica-
tion and the convergence of perception, AI, and robotics
communities around CP.

3) Modalities: LiDAR-based approaches account for the
majority of studies (63), with only 13 camera-only and
12 LiDAR–Camera fusion papers (Table VIII). LiDAR’s
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TABLE VIII

SUMMARY OF SURVEYED COLLABORATIVE PERCEPTION STUDIES ACROSS MULTIPLE DIMENSIONS

predominance stems from its robustness in capturing precise
3D spatial geometry, which is critical for reliable detec-
tion in cluttered and occluded environments. Camera-based
methods, by contrast, face inherent challenges in depth estima-
tion and performance degradation under illumination changes.
LiDAR–Camera fusion remains underrepresented despite its
potential to combine complementary strengths (texture-rich
visual data and precise depth). This limited adoption reflects
the technical challenges of spatial–temporal calibration and
multimodal fusion complexity. Moreover, the near absence
of alternative modalities (e.g., radar, thermal, event cameras)
underscores a critical research gap and signals promising
directions for future multimodal CP.

4) Collaboration Strategies: Table VIII further reveals that
intermediate collaboration dominates (71 studies), while early
(6), late (15), and hybrid (6) approaches are far less common.
The predominance of intermediate fusion reflects its ability
to balance bandwidth efficiency with perception accuracy by
exchanging processed features rather than raw data or final
outputs. The limited adoption of other schemes underscores
the persistent technical barriers: early fusion faces prohibitive
communication demands, late fusion suffers from information
loss, and hybrid designs increase synchronization and integra-
tion complexity. These findings suggest that while intermediate
collaboration is currently the most practical solution, advanc-
ing adaptive and flexible collaboration schemes will be crucial
for future large-scale deployments.

5) Tasks: Finally, research efforts are heavily skewed
toward object detection (78 studies), with relatively few works
on semantic segmentation (6), object tracking (5), and motion
prediction (3), as shown in Table VIII. The focus on object
detection underscores its central role as a prerequisite for
higher-level reasoning, yet the limited attention to other tasks
reveals important gaps. In particular, tracking and prediction
are essential for safety-critical decision-making, and their
underrepresentation highlights opportunities for future work.
Similarly, multi-task and task-agnostic designs could support
more integrated perception pipelines, but remain at an early
stage of development.

Overall, this metadata analysis demonstrates that while
cooperative perception has become a rapidly growing and

increasingly multidisciplinary field, current research exhibits
clear imbalances across regions, modalities, collaboration
schemes, and perception tasks. These insights provide a
foundation for identifying gaps and charting future research
directions.

III. OVERVIEW OF STRUCTURED TAXONOMY (RQ1)

Collaborative Perception is a complex field of study with
numerous subsets of sensors, collaboration methodologies and
tasks. In this survey, we propose a taxonomy to classify
the multitude of solutions available. We define the taxonomy
based on the modality (sensor type), collaboration type, and
perception task. Through the SLR, we have identified a strong
focus on two types of sensor, LiDAR and camera. While the
usage of LiDAR as the data source is more abundant, there
is also a significant presence of cameras and the combination
of LiDAR and cameras in the surveyed work. Therefore, as
it relates to the modality, we classify the work into LiDAR,
Camera, or a combination of LiDAR-Camera.

CP can be further classified by the collaboration type.
Based on the level of the underlying data fusion algorithm,
we classify work into Early, Intermediate, Late, and Hybrid
Collaboration. Early, Intermediate, and Late Collaboration are
self-explanatory as the data fusion inputs are shared among
participants. Hybrid Collaboration refers to solutions that
share data across multiple fusion levels. Furthermore, the
subcategories within intermediate collaboration are outlined
as follows: traditional feature fusion, attention-based feature
fusion, and graph-based feature fusion.

In addition, we have identified several specific CP tasks
that further classify the solutions, including object detection,
object tracking, motion prediction, semantic segmentation,
lane detection, multi-task approaches, and task-agnostic meth-
ods.

We further analyze the the approaches used in the surveyed
studies to address realistic issues. These issues are categorized
as localization errors, time latency, communication band-
width constraints, communication interruptions, domain shifts,
heterogeneity, and adversarial attacks. For each issue, we
provide the corresponding categories of approaches employed
to address them.
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Due to the challenges associated with conducting a fair
experimental comparison, such as the lack of publicly available
source code for many methods, this review primarily adopts a
qualitative analysis approach.

IV. MODALITY TYPE (RQ1)

In this section, we provide an in-depth examination of the
different modalities in CP. Our systematic review identifies
three primary modalities in the reviewed literature: LiDAR,
camera, and their combination.

A. LiDAR

LiDAR is an acronym for Light Detection and Ranging. It
describes a class of sensors that determine ranges by targeting
an object or surface with a laser and measuring the time for
the reflected light to arrive at the receiver. The sensor used
in vehicular perception performs a multi-point scan across
the environment at high frequencies to accurately measure
the distance from the sensor to objects. The channels of a
LiDAR sensor refer to the number of distinct laser beams
emitted. It affects its resolution and field of view. For example,
compared to a 16-channel LiDAR system, a 128-channel one
captures more vertical slices of the surrounding environment.
By varying the number of channels and their configurations,
LiDAR can achieve different resolutions, ranges, and levels of
detail, suitable for various applications in perception.

Just as deep neural networks can extract features from
images, they can also be used to extract features from LiDAR
data. One intuitive method is point-based feature extraction:
process the raw data and generate a sparse representation,
aggregate the features of adjacent points, and extract the
feature of each point. However, this method poses strin-
gent hardware requirements and is not seen in our surveyed
work. Currently, the main feature-extraction approaches are
voxel-based and pillar-based.

Voxel-based methods first convert point clouds into a struc-
tured, regular grid of 3D cells called voxels. By dividing the
3D space into voxels, the network can leverage 3D or 2D
convolutional neural networks for feature extraction, making
detecting objects more efficient and structured. The VoxelNet
[31] is frequently used [1], [32], [33], [34], often with sparsely
embedded convolutional layers applied to 3D voxel features
to improve the efficiency of object detection [13], [35], [36].

The effort to improve the backbone feature extractor net-
work is still ongoing. Besides VoxelNet, different network
architectures are also proposed [37], [38]. Chen et al. [39] pro-
pose to improve the LiDAR data feature extraction backbone.
They construct voxel pillars on voxel feature maps and encode
them to generate Bird’s Eye View (BEV) features, thereby
addressing the issue of spatial feature interaction lacking in
PointPillars [40] methods and enhancing the semantic infor-
mation of extracted features. A maximum pooling technique
reduces dimensionality and generates pseudo images, skip-
ping complex 3D convolutional computation. In the work of
Ma et al. [41], each vehicle encodes point cloud features
locally using a new feature encoder network with a module
called ConAda.

The pillar-based method offers advantages in real-time
performance due to its efficient handling of 3D point cloud
data. The pillar representation disregards partitioning along
Z-axis and divides the 3D space into fixed size pillars.
Intuitively the pillar is seen as an unbound voxel along
the Z-axis. Pillar-based features are extracted through Deep
Learning models inspired by PointNet [42]. Since pillars are
not partitioned along Z-axis, a pillar-based representation of a
point cloud is seen as a BEV image of multiple channels.

The pillar-based feature extractor often applied DNN on the
BEV-form or raw LiDAR data. In the early phase of using
this approach for LiDAR data in CP (about from 2020 to
2023), several different networks are proposed. Marvasti et al.
propose such a network structure [11], [12]. Luo et al. [43]
adopt the MotionNet, quantizing the 3D points into regular
voxels and representing the 3D voxel lattice as a 2D pseudo-
image, with the height dimension corresponding to image
channels. Qiao and Zulkernine [44] use PointNet instead. The
DiscoNet proposed by Li et al. [45] is later used by others
[19], [46].

The most representative module for pillar-based feature
extraction is PointPillars [40]. It employs a simplified version
of PointNet within each pillar to extract features from the
points. The point-wise features are then aggregated to create a
single feature vector for each pillar. These pillar features are
organized into a 2D grid, allowing leveraging 2D CNN for
feature extraction.

PointPillars is widely used for LiDAR data feature extrac-
tion [9], [10], [16], [20], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62],
[63], [64]. Some studies build on the PointPillars frame-
work by developing structurally similar models that adapt
its core principles without directly replicating it [65], [66].
Wang et al. [67] retain the PointPillars architecture but enhance
it by replacing the 2D backbone with a four-layer residual
network and adding a spatial pyramid pooling module. This
enhancements expand the model’s input area and enable it to
combine information from multiple scales.

Some of the most recent research efforts try to improve the
feature extraction mechanism. Instead of using the standard
backbones, Bai et al. [68] propose a new adaptive feature
encoder named Pillar Attention Encoder, which extracts the
feature data based on the attention mechanism and adaptively
reduces the data amount for sharing based on the exact
communication bandwidth.

B. Camera

Cameras are among the most widely utilized modalities in
perception systems, valued for their ability to capture high-
resolution visual data containing dense semantic information,
which is essential for tasks such as object detection, lane
detection, and scene understanding. Monocular and multi-
view camera setups are the two most common configurations
employed in visual perception systems. Camera-only 3D per-
ception provides an economical alternative to LiDAR-based
systems. However, accurately estimating depth remains chal-
lenging due to the lack of direct 3D measurements. Similarly,
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camera-only CP remains relatively under-explored, encounter-
ing challenges similar to those in single-vehicle camera-only
3D perception. Due to that there are a limited number of
camera-based papers, we will introduce them separately in this
part.

Hu et al. [69] introduce CoCa3D, the camera-only 3D
detection improved by introducing multi-agent collaborations,
while many previous work focus on network designs. The
proposed CoCa3D method first enhances image-based single-
agent depth estimation before the Collaborative detection
feature learning module that enhances 3D detection. In the
later phase, the BEV features that may contain the most
informative cues are exchanged and fused to get a better BEV
feature map.

Huang et al. [70] aims to achieve scalable camera-based
collaborative perception with a Transformer-based architec-
ture. The image information of the vehicles is projected into
features using a BEV encoder backbone such as BEVFormer.
The transformer is trained to take the BEV feature of the ego-
vehicle and the poses of a collaborator and its cameras as
input, and it chooses which part of the collaborator’s feature
map is important and should be transmitted.

Wang et al. [71] propose to address the information loss
and pose errors due to time asynchrony across cameras in
image-based fusion. Thus, it proposes a new fusion network
architecture. It contains an attention and channel masking
mechanism to enhance infrastructure and vehicle features at
scale, spatial, and channel levels to correct the pose error
introduced by camera asynchrony. It also uses feature com-
pression to improve transmission efficiency. The proposed
structure uses ResNet-50 as a backbone and FPN as a 2D
neck to extract image features. Its evaluation is based on the
DAIR-V2X dataset.

Fan et al. [72] propose the query cooperation paradigm
for cooperative perception tasks, which is more interpretable
than scene-level feature cooperation. They then propose the
transformer-based QUEST framework utilizing VoVNetV2
[73] as the feature encoding backbone. Every query output
from the decoder corresponds to a possible detected object,
and the query will be shared if its confidence score meets
the request agent’s requirements. As the cross-agent queries
arrive, they are utilized for query fusion and implementation.

C. LiDAR-Camera

Most work on CP that utilizes both LiDAR and Camera
sensors follows a simple paradigm. The proposed structure
can use either LiDAR or Camera data as inputs because both
types of sensor data will be turned into the same type of
BEV feature maps as a uniform intermediate representation
for later processing. The work of Yin et al. [74] is a typ-
ical example. It proposes V2VFormer++, where individual
camera-LiDAR representation is incorporated with dynamic
channel fusion (DCF) at BEV space, and ego-centric BEV
maps from adjacent vehicles are aggregated by a global-local
transformer module. The camera images are first cropped with
a resolution of 520 × 520 pixels, fed into the ResNet-34
encoder for multi-scale feature extraction, and then processed

by a sparse cross-attention view Transformer module. Point-
Pillars first processes the single-vehicle LiDAR data for point
feature extraction, and a simple PointNet architecture is used
for pillar feature extraction. Finally, a 2D CNN backbone
is introduced to merge multi-resolution maps into a dense
LiDAR BEV feature. Many other work follow the same pattern
[22], [75], [76], [77]. These work may vary slightly in the
backbone used, especially for processing camera data. For
example, Zhou et al. [78] uses the Fast-SCNN network as the
image feature map encoder, while some may use BEVFormer.
Zhang et al. [79] provide a slightly different scenario where
each agent is equipped with LiDAR and camera sensors. The
work of Zhang et al. [80] fuse LiDAR and RGB data through
point cloud fusion, first converting RGB images into virtual
point clouds and then combining them with real point clouds.

D. Comparative Analysis

One noticeable observation is that while there is exten-
sive research on LiDAR, camera-based CP has only recently
emerged, with relatively few papers exploring the use of
cameras as a data source. The reason could be the lack of depth
perception of cameras, sensitivity to lighting and weather
conditions, and heavy computational requirements in semantic
understanding. Additionally, visual data from cameras raises
privacy concerns under data protection laws, further impacting
the deployment of camera-based systems. However, despite
such differences, we can still observe that the problem to solve
in both cases are similar, such as the limited bandwidth, lossy
communication, temporal- and spatial-asynchrony, sensor and
model heterogeneity, etc. They are still being actively investi-
gated regardless of sensor types. Thus, the improvement in one
area can also have an impact on the other. Besides, one trend
we can observe is that research tends to use existing backbones
and datasets, gradually convergent to a limited number of
choices.

V. COLLABORATION TYPE (RQ1)

This section presents an in-depth review of the various
collaboration types in CP: Early, Intermediate, Late, and
Hybrid.

A. Early Collaboration

In collaborative perception, early collaboration refers to the
approach where raw sensor data (such as camera images, or
LiDAR point clouds) from multiple vehicles are shared and
fused early in the processing pipeline. This is done before
any significant local processing or feature extraction is applied
to the data. The fused data is then processed collectively to
generate a unified perception of the environment. It allows
for richer information exchange, as the original details in
the sensor data are preserved. On the other hand, sharing
raw sensor data, such as high-resolution camera images or
dense LiDAR point clouds, requires significant communication
bandwidth. Some examples of this approach exist where raw
LiDAR data is shared among vehicles [8], [9], [10], [81] and
one where infrastructure also participates [10]. [78] differs
from the others in that it also enables the sharing of raw camera
data.
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B. Intermediate Collaboration
In intermediate collaboration, neural network-generated

features are distributed and merged to improve perception
performance and conserve bandwidth. Based on their fusion
mechanisms, these methods are categorized into three types:
traditional feature fusion, attention-based feature fusion, and
graph-based feature fusion. This section presents a compara-
tive analysis of these intermediate fusion approaches.

1) Traditional Feature Fusion: Non-parametric operators
such as summation, maximum, and average are commonly
employed in neural network architectures to integrate infor-
mation. These operators are particularly effective for merging
features with spatial characteristics from different agents. For
example, Marvasti et al. utilize non-parametric element-wise
summation to fuse BEV features from multiple sources [11],
ensuring comprehensive inclusion of available data. However,
features with larger magnitudes may disproportionately affect
the outcome, potentially overshadowing smaller yet significant
inputs. Guo et al. [33] introduce a lightweight feature-based
CP framework employing the maxout operator, which excels
in emphasizing the most critical features or activations while
being robust against variations in the number of contributing
agents. Despite its effectiveness, the maximum operator risks
discarding valuable contextual information by focusing solely
on the highest values. Non-parametric operations are favored
for their computational efficiency and simplicity of imple-
mentation. In contrast, parametric operators involve learnable
parameters within the fusion module, such as convolution
layers, offering a more adaptive approach to feature integra-
tion. Qiao and Zulkernine [44] propose an adaptive feature
fusion model that combines spatial and channel-wise feature
fusion, leveraging both max and average pooling and train-
able neural layers to enhance feature extraction selectively.
Another prominent method is feature concatenation followed
by a trainable neural layer, as demonstrated by Bai’s feature
fusion backbone [37] using a dense CNN network to process
concatenated features. This approach allows for the extraction
of relevant information, significantly enhancing performance,
though it may increase the feature dimensionality and compu-
tational demand.

To conclude, traditional feature fusion techniques utilize
reduction operators and often integrate trainable neural layers
to extract the most relevant features effectively. This approach
strives to balance performance improvement with compu-
tational efficiency, ensuring an optimal feature integration
process.

2) Attention-Based Feature Fusion: The attention mecha-
nism [82] is effective in capturing long-range dependencies
and contextual relationships, making it highly suitable for
feature weighting during fusion. For example, Wang et al.
propose the F-Transformer [47], a point cloud fusion trans-
former that employs only Transformer encoder to fuse features
from different views. As illustrated in Fig. 7a, features from
multiple entities are represented as tokens and forwarded
to the attention module, where contextual relationships are
learned to produce a fused feature representation. Unlike
conventional Transformers, it omits position embeddings since
the spatial arrangement of views is arbitrary, and there is no

inherent ordering relationship between features from multiple
perspectives. This design enhances robustness by preventing
the model from making erroneous spatial assumptions and
instead allowing it to focus on learning meaningful feature
correlations across views. Xu et al. introduce the V2X-ViT
[16], designed to fuse information across on-road agents
efficiently. It enhances self-attention by incorporating an addi-
tional weight matrix tailored to the type of the source and
target agents. For example, agents are categorized as either
vehicles or infrastructure, and the weight matrix dynami-
cally adjusts to optimize collaboration based on their type.
Hu et al. [75] introduce a spatial confidence-aware attentive
fusion, where a spatial confidence map identifies perceptual
uncertainty across different areas, serving as a basis for
attention learning. This method prioritizes features with higher
confidence during fusion, enhancing reliability. Lu et al. [55]
propose a robust multiscale attentive fusion to mitigate noise
from spatial misalignment. This method leverages features at
different scales: finer scales provide detailed semantic infor-
mation, while coarser scales offer robustness against spatial
noise, thus maintaining semantic density and enhancing overall
robustness. Yang et al. [52] address temporal noise using
the spatial-temporal collaboration transformer (STCFormer),
which features decoupled spatial and temporal cross-attention.
STCFormer follows the architecture of a vanilla transformer
but incorporates three customized modules: temporal cross-
attention, decoupled spatial attention, and adaptive late fusion.
The temporal cross-attention captures historical context across
agents to enhance the representation of the current frame, miti-
gating point cloud sparsity caused by fast-moving objects. The
decoupled spatial attention fuses spatial features from multi-
ple agents, while the adaptive late fusion module integrates
spatial features using weight maps. With these customized
modules, STCFormer achieves robust detection performance
even in dynamic environments. Despite its effectiveness, the
computational complexity of attention mechanisms O(N2)
poses scalability challenges. To address this, Yang et al.
[56] utilized a deformable cross-attention module that selec-
tively focuses on informative locations, significantly reducing
computational demands and memory usage. Unlike standard
attention, which assigns weights to all elements in the feature
space, deformable attention selectively attends to a sparse set
of informative locations, improving computational efficiency
and scalability.

LiDAR-based features inherently possess spatial character-
istics suitable for per-location fusion via attention. Expanding
cooperative perception to camera sensors, the BEV feature
is commonly used. However, due to the inherent uncertainty
in depth estimation, visual BEV features are less reli-
able than LiDAR features. To mitigate spatial misalignment,
Huang et al. [70] propose a camera-based collaborative BEV
feature fusion using selective deformable attention, which
fuses features based on an interest score threshold, empha-
sizing relevant and significant features for ego’s perception.
The interest score is generated by a simple network that
processes the BEV features as input, and during inference,
only those features with scores above a threshold of 1 are
selected.
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Fig. 6. Illustration of collaboration type in CP, showcasing Early Collaboration, Intermediate Collaboration, and Late Collaboration across Co-Vehicle, Ego-
Vehicle, and Infrastructure, integrating Camera and LiDAR data. Early Collaboration involves sharing raw sensor data (e.g., images, LiDAR point clouds)
for joint processing, while Intermediate Collaboration transmits extracted features (e.g., key points, feature maps). Late Collaboration shares final perception
results (e.g., detected objects, trajectories).

Fig. 7. Illustration of intermediate feature fusion: (a) Attention-based feature
fusion, where features from ego-vehicle, cooperative vehicle, and infrastruc-
ture are transformed into tokens and aggregated using attention mechanisms;
(b) Graph-based feature fusion, where features are represented as nodes and
fused through message passing and node state updates in a GNN.

In conclusion, Attention mechanisms and their variants play
a pivotal role in collaborative feature fusion, enhancing feature
integration across channel, spatial, and temporal dimensions.
Techniques like confidence mapping and deformable attention
are employed to improve fusion robustness and effectiveness
further.

3) Graph-Based Feature Fusion: Graph structures are prac-
tical tools to represent complex relationships among data
elements, where features are modeled as nodes interconnected
by edges. These edges depict interactions between features.

As shown in Fig. 7b, multi-agent collaboration can be con-
ceptualized as a graph where nodes represent individual agents
and edges represent inter-agent collaborations. Graph Neural
Network (GNN) [83] are well suited for processing such
graph-structured data, enabling effective message passing and
node state updates that facilitate information aggregation and
propagation across the network. For instance, Wang et al. [84]
introduce a spatially-aware GNN where each agent maintains
a local graph with nodes holding state representations. These
states are updated via a trainable neural network such as
ConvGRU, which processes edge-weighted feature maps from
all nodes to output updated node representations. This method
incorporates historical context, enhancing temporal alignment
and enabling joint object detection and motion prediction.
Li et al. [45] propose a collaboration graph with trainable
edge weights reflecting the collaboration strength between
agents. These spatially and temporally aware weights allow
agents to identify regions requiring collaboration dynamically.
Xiang et al. [22] further evolve this concept by introducing the
H3GAT, a heterogeneous 3D graph attention model that inte-
grates attention mechanisms with GNNs. This model captures
local and global interactions, preserving detail and providing
a comprehensive context. Liu et al. [58] employ a multi-
scale graph-attention technique to extract more comprehensive
semantic information across different levels of granularity,
enhancing feature integration.

In conclusion, GNNs represent a sophisticated approach to
modeling multi-agent collaboration. GNN fusion with atten-
tion mechanisms enables a nuanced capture of local and global
contexts, facilitating a more detailed and integrated feature
analysis.
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C. Late Collaboration

Unlike the previous two approaches, each agent processes
its sensor data independently in late collaboration and extracts
relevant results or information. The processed information
(often in the form of high-level results such as object-level
data) is then shared with other agents or a central system, and
the fusion happens at a higher, more abstract level. Since only
high-level, compact information is shared, late collaboration
requires much less communication bandwidth compared to
the other two approaches. Besides, it allows different agents
to have varying sensor capabilities and still collaborate since
only the abstract results are shared. However, some detail or
precision may be lost during local processing.

The late collaboration approach is potentially modality
agnostic, and in specific papers LiDAR data are often used
as example [13], [36], [85]. Yu et al. [86] utilize both LiDAR
and camera sensors.

A simple approach in late fusion is to use detected bounding
boxes from multiple vehicles and weight them according to
the detection confidence, such as Non-Maximum Suppression
(NMS). Another way of late fusion is to use an adapted
Kalman filter. The collectively perceived tracks are considered
as measurements and integrated into the local environmen-
tal model. In general, late fusion approaches utilizes less
information than the previous two approaches, and existing
work’s focus is mostly on improving fusion accuracy, given
constraints such as heterogeneous density, low quality object
proposals, overconfidence, etc.

According to the data exchanged among vehicles for
cooperative object detection, the most common form is the
detected object list. Zhang et al. develop a three-stage fusion
scheme: partitioning local objects, generating global objects,
and eliminating overlapped boxes [13]. Yu et al propose a
detection boxes fusion network for the late fusion, the inputs
of which are vehicle-side and road-side boxes. This network
performs coordination transform, filtering, object match, and
combination [86]. In [23], the authors assumes the existence
of attackers and propose an approach where each vehicle
samples a subset of teammates and compares the results with
and without the sampled teammates. Only after a consensus
is verified, indicating no attackers among the participants,
that the vehicle can output the perceptual results. Sampling
ensures the scalability of this solution. Teufel et al. propose
to incorporate collectively detected objects to enhance the
local perception capabilities [38]. Song et al. uses optimal
transport theory to correct inaccurate vehicle location and
heading measurements using only object-level bounding boxes
[15]. Xu et al. propose mechanisms that considers confidence
scores and mitigate the misalignment in box aggregation [85].
In [14], the aim is to check perceived information for its
trustworthiness and validity, so other information, such as
covariance information, is also exchanged.

D. Hybrid Collaboration

Yuan et al. [87] combine late and intermediate collaboration.
The fusion step combines multiple types of information: object
box proposals (as in late collaboration), sensor pose, selected

key point coordinates, and selected features (instead of all
deep features as in intermediate collaboration). The aim is
to reduce the redundancy of shared deep features to decrease
the communication overhead.

Wang et al. [65] employ a two-stage fusion approach. In
the first stage, an edge device collects and fuses the encoded
Pillar features from the LiDAR data of all cooperative vehicles
to generate a list of detected objects. This object list is then
transmitted to the ego vehicle, which performs a late fusion
by combining it with its own object list predictions.

Dao et al. [60] propose a “late-early” collaboration frame-
work for V2X cooperative perception. Here, objects detected
by each connected agent at a past time closest to the present
are broadcast. Detected objects shared between agents are
propagated to the present timestamp using their velocities,
computed by pooling point-wise scene flow. These propagated
objects are then fused with the point cloud collected by the
ego vehicle at the current time to enhance its perception. This
work relaxes the assumption of inter-agent synchronization
to agents sharing a shared time reference (e.g., GPS time)
and acknowledges that agents produce detections at different
rates. As a result, exchanged detections always have older
timestamps than the timestamp of the query made by the
ego vehicle, thus risking a misalignment between exchanged
detections and their associated ground truth. To resolve this
issue, the method simultaneously predicts both the velocities
and locations of objects by pooling point-wise scene flow,
effectively correcting for temporal discrepancies.

Liu et al. [64] also combine intermediate and late collab-
oration approaches. In the proposed fusion scheme, LiDAR
data is divided into two types according to the overlapping
area between the detection ranges of vehicles. For the over-
lapping area, intermediate collaboration is applied by sharing
and fusing the features from different vehicles. For the non-
overlapping area, late collaboration is conducted by generating
and sharing the local detection result with an economic band-
width.

Xie et al. [35] combine all fusion approaches. This frame-
work enables vehicles to partition each point cloud frame into
three parts: raw, feature, and object data, and exchange the data
with other vehicles. To address spatial alignment issues, the
receiving vehicle transforms these data levels from the sender’s
local coordinate system into its own. This transformation is
achieved by constructing a matrix using additional information
such as LiDAR sensor poses and GPS/IMU readings.

E. Comparative Analysis

Through a comprehensive review of collaboration types
in CP approaches, each level offers distinct advantages and
challenges. Early collaboration, while providing the richest
information from various agents, demands substantial band-
width, and methods to address time latency at the raw data
level remain underexplored. In contrast, late collaboration is
bandwidth-efficient but sacrifices significant scene semantic
context, resulting in decreased performance and robustness
against noise. Intermediate collaboration balances efficiency
and accuracy, enhancing noise robustness within the system.
To optimize further, hybrid collaboration allows dynamic
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TABLE IX
OVERVIEW OF THE METHODS FOR COLLABORATIVE SEMANTIC SEGMENTATION (CSS). V: VEHICLE, I: INFRASTRUCTURE, UAV: UNCREWED

AERIAL VEHICLE, RAW: RAW DATA FUSION, TRAD FEAT: TRADITIONAL FEATURE FUSION, ATTEN FEAT: ATTENTION FEATURE FUSION

TABLE X
OVERVIEW OF THE METHODS FOR COLLABORATIVE OBJECT TRACKING (COT). V: VEHICLE, I: INFRASTRUCTURE, OBJ: OBJECT, COD:

COLLABORATIVE OBJECT DETECTION, ATTEN FEAT: ATTENTION FEATURE FUSION, OBJ FUSION: OBJECT-LEVEL FUSION

combinations of early, intermediate, or late collaboration based
on accuracy demands. However, implementing hybrid frame-
works is complex, mainly due to the challenges of managing
heterogeneous data sources.

VI. PERCEPTION TASKS (RQ1)

There are various critical perception tasks that can benefit
from a collaborative approach, including object detection,
object tracking, motion prediction, semantic segmentation, and
lane detection. Object Detection (OD) identifies and locates
objects within a sensor frame, establishing a foundation for
further perception processes. Object Tracking (OT) involves
monitoring the dynamic status of an object across multi-
ple frames, while Motion Prediction (MP) aims to forecast
the future movements or intentions of an object. Semantic
Segmentation (SS) plays a crucial role in scene under-
standing, helping CAVs identify drivable areas and provide
essential information for subsequent tasks. Lane Detection
(LD) is integral to determining road boundaries and lane
markings, enabling CAVs to comprehend the geometry of
the road network. This section provides a comprehensive
overview of collaborative methods used in detection, tracking,
motion prediction, semantic segmentation, and lane detection.
Additionally, it introduces concepts of Multi-Task (MT) and
Task-agnostic (TA) pipelines, which are pivotal in enhancing
the efficiency and accuracy of vehicle perception systems.

Furthermore, the subcategories for each perception task are
provided, with classifications based on representation formats.
For example, OD and SS are categorized into 2D, 3D, and
BEV representations. MT is divided into trajectory and BEV
map representations, while LD is classified into curve-model
and BEV map representations. OT is further categorized
into tracking with Collaborative Object Detection (COD) and
tracking without COD.

A. Collaborative Object Detection

Object detection is a fundamental perception task that
focuses on identifying and locating relevant objects from raw
sensor data. Typically, object detection results are presented as
bounding boxes, each labeled with the corresponding object
category. These bounding boxes can vary in representation:
they may appear in 2D, BEV, or 3D formats. 2D bounding
boxes, often used in camera-based 2D object detection, capture
object on image plane. BEV representation disregards height
and emphasizes the spatial layout of dynamic objects on the
road plane, which is often sufficient for downstream tasks such
as planning. The 3D format includes height and z-axis posi-
tion, offering a more comprehensive view of the scene. This
section discusses COD across these different representations,
with 3D being the most prevalent form in COD applications.
All papers on COD that meet our criteria are summarized in
Tables XXIX.

1) 2D: Collaborative 2D object detection focuses on rec-
ognizing individual objects across multiple viewpoints on the
image plane, which is particularly challenging. For instance,
Khalifa et al. [88] propose a multi-view pedestrian detection
approach that proceeds through a sequence of steps: monoc-
ular detection, geometric transformation, detection matching,
and detection fusion. Similarly, Marez et al. [89] introduce
a general COD framework, CP Faster-RCNN, designed to
detect both vehicles and pedestrians. This framework extracts
features from multiple viewpoints and uses an alignment
module to warp them, followed by feature fusion to generate
detection results. Mao et al. [90] present MoRFF, a multi-view
object detection pipeline that reduces communication costs by
matching deep features rather than image data.

2) BEV and 3D: BEV and 3D bounding boxes are
widely used to represent dynamic objects in autonomous
driving applications. The BEV representation simplifies the 3D
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TABLE XI
OVERVIEW OF THE METHOD FOR COLLABORATIVE MOTION PREDICTION (CMP). V: VEHICLE, I: INFRASTRUCTURE, RAW: RAW DATA

FUSION, TRAD FEAT: TRADITIONAL FEATURE FUSION, ATTEN FEAT: ATTENTION FEATURE FUSION, OBJ FUSION:
OBJECT-LEVEL FUSION, GRAPH: GRAPH-BASED FUSION

TABLE XII
OVERVIEW OF THE METHODS FOR CLD. V: VEHICLE, TRAD FEAT: TRADITIONAL FEATURE FUSION

TABLE XIII
OVERVIEW OF METHODS FOR MULTI-TASK PIPELINE AND TASK-AGNOSTIC PIPELINE. OD: OBJECT DETECTION, OT: OBJECT TRACKING,
MP: MOTION PREDICTION, AP: ACCIDENT PREDICTION, SS: SEMANTIC SEGMENTATION, V: VEHICLE, I: INFRASTRUCTURE, RAW: RAW

DATA FUSION, TRAD FEAT: TRADITIONAL FEATURE FUSION, ATTEN FEAT: ATTENTION FEATURE FUSION, OBJ FUSION:
OBJECT-LEVEL FUSION, GRAPH: GRAPH-BASED FUSION

TABLE XIV

OVERVIEW OF THE METHODS FOR ADDRESSING POSE ERROR. V: VEHICLE, I: INFRASTRUCTURE,
RAW: RAW SENSOR DATA, FEAT: FEATURE, OBJ: OBJECT-LEVEL DATA

bounding box by disregarding the height dimension, making
it especially useful in camera-based pipelines that utilize
BEV features for detection. For instance, Hu et al. [69]
present CoCa3D, a camera-only CP pipeline that extracts
BEV features through a depth estimation module and voxel
transformation module, subsequently decoding these features
to predict object locations. Similarly, LiDAR-based pipelines

can also leverage BEV features by collapsing 3D voxel feature
into a BEV format, which avoids computationally demand-
ing 3D convolutions. Wei et al. [48] introduce CoBEVFlow
which utilze BEV features to predict detection result as
well as predict the flow of BEV boxes. BEV features are
also advantageous in LiDAR-camera pipelines, as they facil-
itate the alignment and fusion of multi-modal data. For
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TABLE XV

OVERVIEW OF METHODS FOR ADDRESSING LATENCY AT THE FEATURE LEVEL. V: VEHICLE, I: INFRASTRUCTURE

TABLE XVI

OVERVIEW OF METHODS FOR ADDRESSING COMMUNICATION EFFICIENCY. V: VEHICLE, I: INFRASTRUCTURE

TABLE XVII

OVERVIEW OF METHODS FOR ADDRESSING DOMAIN SHIFT. V: VEHICLE, I: INFRASTRUCTURE

TABLE XVIII

OVERVIEW OF METHODS FOR ADDRESSING THE PROBLEM OF HETEROGENEITY. V: VEHICLE, I: INFRASTRUCTURE

example, Yin et al. [74] present V2VFormer++, a multi-modal
detection pipeline that first fuses BEV features from LiDAR
and camera data at the entity level and then combines the
multi-modal features across entities in the CP fusion step,
resulting in a streamlined and unified fusion process in BEV

space. In addition to BEV, 3D bounding boxes are widely
used in LiDAR-only pipelines and occasionally in camera-only
approaches. For instance, Wang et al. [71] introduce EMIFF, a
camera-based pipeline that directly employs 3D voxel features
to estimate the 3D position and dimensions of objects.
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TABLE XIX
OVERVIEW OF ALL PUBLICLY AVAILABLE REAL WORLD DATASETS FOR CP THAT INCLUDE INFRASTRUCTURE PERSPECTIVE. L INDICATES LIDAR

AND RGB DENOTES CAMERA SENSOR IN THE MODALITIES. FOR THE TASKS THE DATASETS INCLUDE OBJECT DETECTION (OD) – 3D IF NOT
INDICATED OTHERWISE –, OBJECT TRACKING (OT), MOTION PREDICTION (MP) AND DOMAIN ADAPTION (DA)

TABLE XX
ADDITIONAL TECHNICAL INFORMATION FOR THE PUBLICLY AVAILABLE

REAL WORLD DATASETS. A “-” INDICATES THE ABSENCE OF INFOR-
MATION IN THE REFERENCED PUBLICATION

B. Collaborative Semantic Segmentation

Semantic segmentation is a process designed to assign a
semantic class label to every pixel in an image or every point in
a LiDAR scan. This technique offers a granular understanding
of scenes, going beyond object detection that typically uses
bounding boxes to localize objects. Semantic segmentation
facilitates the precise delineation of object boundaries and
enables the identification of multiple instances within the same
scene. However, visual occlusions can create areas where
semantic labels cannot be accurately predicted. Through V2X
collaboration, CAVs can extend their FOV and supplement
the semantic labels of occluded areas, thus achieving a
more comprehensive understanding of their surroundings. This
section summarizes and categorizes Collaborative Semantic
Segmentation (CSS) approaches based on their representation
format. All papers on CSS that meet the selection criteria are
listed in Table IX.

1) 2D: 2D semantic segmentation directly labels pixels
within the 2D image plane. For instance, Liu et al. [91]
introduce the Who2com framework, a pioneering collabora-
tive approach to 2D semantic segmentation. This framework
utilizes observations from multiple agents, including RGB
images, aligned dense depth maps, and poses, to produce a
2D semantic segmentation mask for each agent. Additionally,
Liu’s subsequent When2com approach achieves improved per-
formance with reduced bandwidth requirements [17]. In 2021,
Glaser et al. [92] introduce a novel pipeline that operates solely
on raw image data, showing superior performance particularly
in scenarios with image occlusions. This method employs an

attention mechanism to identify visually similar patches across
different perspectives, a crucial step when depth and pose
information are absent.

2) BEV: BEV semantic segmentaiton involves creating the
top-down semantic map of the environment around a vehicle.
In 2023, Yuan et al. [93] present GenBEV, the first BEV
collaborative segmentation approach based on LiDAR. In this
model, 3D voxel features, extracted by a backbone network,
are projected onto a BEV map and processed by a task-specific
head to segment both static road elements and dynamic
objects. For camera-based BEV segmentation, 2D image fea-
ture is typically converted into a top-down perspective by
depth estimation. For instance, Xu et al. [94] present the
CoBEVT, a framework that enables collaborative generation
of BEV map predictions. CAVs extract BEV features using
the SinBEVT module and shares them with others. Received
features are transformed to match the receiving vehicle’s coor-
dinate system using the FuseBEVT module, which integrates
fused axial attention (FAX) to efficiently manage local-global
interactions. Local attention resolves pixel correspondence on
occluded objects, while global attention assimilates contextual
information such as road topology and traffic density.

3) 3D: 3D semantic segmentation provides a more detailed
understanding of the environment by incorporating not only
road-plane information but also the height and spatial dimen-
sions of objects. For instance, Liu et al. [95] introduce the
first vehicle-infrastructure CSS framework. This innovative
approach begins by transforming the point cloud data from
infrastructure sensors into the vehicle’s coordinate system,
followed by a feature extraction process. The extracted features
are then compressed and transmitted to the vehicle. Upon
reception, these features are divided into two subsets based
on whether they fall inside or outside the overlapping FOV.
Each subset is processed separately to extract valuable infor-
mation, then recombined and concatenated with the vehicle’s
own data. The integrated vehicle-infrastructure features are
subsequently fed into a Multilayer Perceptron (MLP) to predict
the class labels of the points. Experiments conducted on a
synthetic dataset demonstrate that the framework outperforms
several classical single-vehicle LiDAR semantic segmenta-
tion algorithms, showcasing its enhanced performance and
utility. Besides LiDAR, RGB cameras also support 3D seman-
tic segmentation by labeling occupied voxels semantically.
Song et al. [96] present CoHFF framework, the first to explore
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TABLE XXI
GENERAL OVERVIEW OF SYNTHETIC DATASETS FOR CP. L INDICATES LIDAR AS MODALITY. THE DATASETS SUPPORT OBJECT DETECTION (OD),

OBJECT TRACKING (OT), SEMANTIC SEGMENTATION (SS), MOTION PREDICTION (MP) AND ACCIDENT PREDICTION (AP)

TABLE XXII
OVERVIEW OF MORE TECHNICAL ASPECTS OF THE

SYNTHETIC DATASETS. DEFAULT SYNCHRONIZATION
MEANS PERFECT SYNCHRONIZATION

TABLE XXIII
OVERVIEW OF SIMULATION EXPERIMENTS. SUPPORTED TASKS ARE

OBJECT DETECTION (OD), OBJECT TRACKING (OT), SEMANTIC SEG-
MENTATION (SS), MOTION PREDICTION (MP), LANE DETECTION

(LD), MAP FUSION (MF). A “-” INDICATES THE ABSENCE OF
INFORMATION IN THE REFERENCED PUBLICATION

collaborative semantic occupancy prediction. It consists of four
modules: occupancy prediction, semantic segmentation, V2X
feature fusion, and task feature fusion. Initial RGB data is pro-
cessed for depth estimation and then transformed into a voxel
representation, supplemented by a 3D occupancy encoder.
The semantic segmentation task net maps RGB-derived 2D
semantic features onto the 3D space using deformable cross-
attention. These features are projected onto orthogonal planes,
optimizing bandwidth usage. V2X feature fusion updates

these features with input from various agents, enhancing the
perception beyond the ego vehicle’s observations. The task-
fusion module combines multi-agent features to reconstruct a
comprehensive semantic occupancy grid, effectively mitigating
issues caused by visual occlusion.

C. Collaborative Object Tracking

Object tracking involves locating and following object tra-
jectories across sequences of video frames or point cloud
data. Accurate tracking enables determination of an object’s
position, velocity, and acceleration, collectively understood
as its motion status. Challenges in object tracking, such as
dynamic changes in appearance, occlusions, and complex
motion patterns, necessitate robust algorithms for contin-
uous and precise tracking. Multi-view collaboration is a
promising solution to address occlusions and maintain con-
tinuous tracking. This section categorizes collaborative object
tracking into two approaches: tracking with Collaborative
Object Detection (COD) and tracking without COD. Track-
ing with COD integrates closely with collaborative detection
outcomes, enhancing subsequent perception processes. Alter-
natively, tracking without COD offers flexibility by fusing
perception results from multiple agents independently. Both
methods predominantly utilize Kalman filters and their vari-
ants for tracking and incorporate uncertainty propagation to
refine their tracking processes. All papers on Collaborative
Object Tracking (COT) that meet the selection criteria are
summarized in Table X.

1) Tracking With COD: Tracking with COD involves per-
forming tracking based on results from collaborative object
detection. For instance, Su et al. [97] propose a 3D multi-
object tracking (3D-MOT) framework that utilizes results from
collaborative detection. The process begins with the tracker
receiving collaborative detection results, followed by the esti-
mation of object states at the next frame using a Kalman filter.
The states are then matched to update the tracked object’s
status and initialize any new objects detected. This approach
significantly reduces false negatives and positives compared
to individual 3D-MOT setups. Additionally, Su et al. [100]
introduce a method to address uncertainty in detection, termed
MOT-CUP. This framework quantifies uncertainty using con-
formal prediction, assuming a Gaussian distribution, which is
incorporated into a Standard Deviation-based Kalman Filter
(SDKF) for enhanced prediction accuracy.
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TABLE XXIV

OVERVIEW OF THE EVALUATION ENVIRONMENTS FOR REAL-WORLD AND SIMULATION SCENARIOS

TABLE XXV

OVERVIEW OF ROAD ENVIRONMENT FOR EVALUATION

TABLE XXVI

OVERVIEW OF GENERAL EVALUATION METRICS FOR
COLLABORATIVE PERCEPTION TASKS

2) Tracking Without COD: Tracking without COD uti-
lizes lists of detected objects from multiple agents to enable
cooperative tracking. For instance, Chiu et al. [101] present
DMSTrack framework, a differentiable multi-sensor Kalman
filter facilitates 3D multi-object tracking. Uniquely, this frame-
work decentralizes the prediction of object state covariances,
allowing each vehicle to independently predict uncertainties
associated with its detections. These detected object states,
along with their predicted uncertainties, are then transformed
from local to global coordinate systems before being shared
with neighboring vehicles. Once integrated, these data inform
the Kalman filter’s prediction and update stages, allowing for

continuous and robust tracking by effectively managing the
detection uncertainties from various agents.

D. Collaborative Motion Prediction

Motion prediction involves forecasting the future states
of moving objects using historical data, a critical capability
for autonomous navigation. Accurate predictions of dynamic
entities’ trajectories allow systems to make right decisions,
thereby enhancing safety and operational efficiency. The task
becomes increasingly complex in environments with multiple
interacting agents due to the nonlinear and unpredictable
nature of agent interactions.

Collaborative motion prediction leverages the collective
intelligence of multiple observing agents, integrating diverse
data sources to enhance the accuracy and robustness of pre-
dictions. This cooperative approach not only mitigates the
effects of individual sensor occlusions but also provides a more
reliable prediction framework compared to isolated mecha-
nisms. Motion prediction can be descirbed as forecasting the
trajectory of bounding boxes or forcasting the BEV map. All
papers on Collaborative Motion Prediction (CMP) that meet
the selection criteria are summarized in Table XI.

1) Trajectory: Dynamic objects in environment can be
represented through the bounding boxes with attritubes such
as position and shape. In this case, motion prediction means to
predict a sequence of future position of the bounding boxes,
known as the trajectory. For instance, Wang et al. [84] intro-
duce V2VNet, a pioneering collaborative framework designed
for simultaneous perception and prediction, termed Perception
and Prediction (P&P). This approach not only enhances perfor-
mance but also increases computational efficiency compared
to traditional two-step processes. V2VNet extends individual
P&P capabilities by integrating V2V communication. The
model captures multi-scale historical data using Inception-
like convolutional blocks [104] for accurate forecasting. After
integrating data across different agents, the combined feature
map is processed through dual networks that deliver detection
and motion forecasting outcomes. In 2021, Vadivelu et al. [18]
enhance V2VNet by addressing pose errors, thus improving
accuracy. Additionally, Dao et al. [60] present a LiDAR-based
method for scene flow prediction, called Aligner, which can be
adapted for motion forecasting. Aligner predicts the movement
of point-wise features extracted from LiDAR point clouds,
achieving precise scene flow predictions.

2) BEV Map: BEV map can naturally combine the static
road map and dynamic object map together, which benefits

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



WAN et al.: SYSTEMATIC LITERATURE REVIEW ON VEHICULAR CP—A COMPUTER VISION PERSPECTIVE 19

TABLE XXVII

OVERVIEW OF CUSTOM EVALUATION METRICS FOR COLLABORATIVE PERCEPTION TASKS

TABLE XXVIII

ABLATION STUDIES GROUPED BY ASPECT

the motion prediction of objects. Wang et al. [103] introduce a
camera-based framework, V2XFormer, which builds upon the
capabilities of BEVerse [105]. V2XFormer utilizes the Swin-
Transformer [106] to extract BEV features and incorporates
a multi-task head that simultaneously addresses detection
and motion prediction tasks. This model introduces the
V2XFusion module, which integrates BEV features from mul-
tiple vehicles, enhancing collaborative perception capabilities.
Chang et al. [102] introduce BEV-V2X, a pioneering frame-
work for cooperative prediction of BEV occupancy grid maps.
This framework represents dynamic objects and road structures
within the BEV occupancy grid on the map, capturing the
dynamics of the scene over time. BEV-V2X leverages histor-
ical and current BEV map data to forecast future BEV maps
within a three-second timeframe.

E. Collaborative Lane Detection

Lane detection is a critical component for Advanced Driver
Assistance Systems (ADAS) and automated driving (AD), as
it provides essential information for path planning and vehicle
control. High-definition Map (HD Map), though effective, is

expensive to create, maintain, and scale. This makes real-
time lane detection and online HD Map learning increasingly
important. However, lane detection, like other perception tasks,
faces challenges such as visual occlusion and limited per-
ception range, particularly in urban intersections with dense
traffic, where multi-agent collaboration offers a potential solu-
tion. This section categorizes collaborative lane detection into
two main approaches: curve-model-based methods and BEV-
map-based methods. Lane information can be represented
using curve models, which are more data-efficient and require
less bandwidth, or BEV segmentation, which provides pixel-
level detail with higher resolution and greater robustness to
noise. While both approaches offer substantial potential, they
remain under-explored and require deeper investigation. All
papers on Collaborative Lane Detection (CLD) that meet the
selection criteria are summarized in Table XII.

1) Curve-Model-Based: Curve-model-based methods rep-
resent the lane information as mathematical curves, enabling
efficient data sharing and processing. For example, Sakr et al.
[107] propose a cooperative road geometry estimation frame-
work, where sensor-rich vehicles share perceived road
information with other vehicles. The road is divided into
multiple connected segments, with each segment described
by a clothoid-based model that uses parameters such as
position, initial curvature, and curvature change rate. These
parameters can be transmitted via V2X communication to
extend the perception range. However, this approach does not
account for fusing local lane detection data. To address this,
Gamerdinger et al. [108] introduce convoy fusion and spline
fusion methods, which handle scenarios with and without
overlapping lanes, respectively. Convoy fusion uses a weighted
mean to merge lane data, assuming that closer lane detection
is more accurate. For non-overlapping segments, spline fusion
reconstructs the road between visible segments to provide a
complete lane model.

2) BEV-Map-Based: While these methods represent the
road using segmented curves, Jahn et al. [109] propose LaCPF,
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TABLE XXIX
OVERVIEW OF THE METHODS FOR COLLABORATIVE OBJECT DETECTION (COD) BASED ON BEV AND 3D REPRESENTATIONS. V:

VEHICLE, I: INFRASTRUCTURE, RAW: RAW DATA FUSION, TRAD FEAT: TRADITIONAL FEATURE FUSION, ATTEN FEAT:
ATTENTION FEATURE FUSION, OBJ FUSION: OBJECT-LEVEL FUSION, GRAPH: GRAPH-BASED FUSION

a different approach with the lightweight collaborative lane
detection framework. In this method, roads are represented
as static BEV maps, transforming lane detection into a BEV
segmentation task. Each vehicle generates its own BEV road

segmentation, which is shared via V2X with neighboring vehi-
cles. After aligning all local BEV data into the same coordinate
system, a fusion process using an encoder-decoder architecture
combines the data into a comprehensive segmentation result.
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TABLE XXIX
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Lane information can be represented through either curve
models or BEV segmentation. Curve models are more data-
efficient and require less bandwidth, while BEV segmentation
provides pixel-level detail, offering higher resolution and
greater robustness to noise. Both approaches have significant
potential but remain underexplored.

F. Multi-Task and Task-Agnostic
Autonomous vehicle navigation requires addressing various

perception tasks, from object detection to semantic segmen-
tation. Traditionally, these tasks are performed independently,
consuming significant computational resources. To optimize
resource usage and enhance performance across multiple
tasks simultaneously, researchers have proposed multi-task
learning pipelines to address multiple perception tasks. All
papers on multi-task and task-agnostic method that meet the
selection criteria are summarized in Table XIII. For example,
V2XFormer [103] simultaneously performs object detec-
tion, motion prediction, and accident prediction. Similarly,
CoBEVT [94] handles both object detection and semantic
segmentation in parallel. V2VNet [84] is also able to conduct
object detection and motion prediction at the same time.

However, multi-task learning alone cannot fully address
task heterogeneity issues. To tackle this challenge, researchers
have proposed task-agnostic frameworks, such as Collabo-
rative Scene Completion (CSC), which can support various
downstream perception tasks. In 2022, Li et al. [110] introduce
STAR, a multi-agent scene completion framework where each
agent learns to reconstruct the complete scene as viewed
by all agents. STAR employs a spatial-temporal autoencoder
architecture with a vision transformer (ViT) backbone to
extract scene features. These features from various agents
are aggregated with pose awareness and then processed by
a decoder to predict the complete view. STAR demonstrates
compatibility with single-agent perception models, allowing
for integration without additional training. This approach sig-
nificantly benefits scenarios with visual occlusion. In contrast
to STAR, which conducts downstream tasks on completed
scene representations, Wang et al. [111] propose CORE, a
novel cooperative reconstruction framework. CORE performs

downstream tasks directly on collaborative features, using
reconstruction as additional guidance to develop a powerful
encoder and fusion module. This approach generates informa-
tive intermediate representations that are then processed by
task-specific decoders for various purposes, such as detection
or segmentation. CORE has shown superior performance in
both 3D object detection and BEV semantic segmentation
tasks while maintaining bandwidth efficiency. In conclusion,
scene completion can serve as a guideline for feature learning,
benefiting various downstream tasks. It can also be combined
with single-agent perception models to enhance accuracy
across different perception tasks.

VII. APPROACHES TO ADDRESS REALISTIC ISSUES (RQ1)

In the initial stages of research, the focus on CP primarily
focused on the collaboration process and fusion strategies
under ideal conditions, often relying on unrealistic assump-
tions such as precise localization and ideal communication
conditions. However, CP algorithms encounter numerous chal-
lenges when deployed in real-world scenarios. This section
summarizes these practical issues and their corresponding
solutions.

A. Localization Errors

Accurate spatial alignment is essential for effective data
fusion among different agents. However, errors in localization
can lead to data misalignment, significantly impacting per-
ception accuracy. To tackle this issue, researchers focus on
correcting the relative pose before alignment [8], [15], [18],
[51], [55], [61], [81], [87], [90], [102], the process as shown
in Figure 8. Approaches to address localization errors are
summarized in Table XIV. The various approaches to address
this problem can be categorized into three levels: raw-sensor,
object, and feature levels. These methods are comparatively
analyzed below.

1) Raw-Sensor Level: To achieve accurate relative position-
ing between cooperative vehicles, Ahmed et al. [8] introduce a
joint perception scheme that utilizes compressed point clouds.
This approach employs point-to-plane Iterative Closest Point
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Fig. 8. Illustration of the localization error issue: The cooperative vehicle
transmits its sensing data and pose to the ego vehicle. The ego vehicle corrects
the relative pose before alignment using consensus derived from the sensing
data. Subsequently, the sensing data from multiple agents are fused based on
the corrected pose.

(ICP) registration to determine the optimal transformation
matrix between the point clouds of the ego vehicle and the
sender. This matrix is then used to achieve spatial alignment
of the point clouds. While raw-sensor data level corrections
typically provide precise pose estimations, they require the
transmission of point cloud data, which consumes substantial
bandwidth.

2) Object-Level: Song et al. [15] introduce the application
of optimal transport theory to correct inaccurate vehicle loca-
tions and headings using only object-level bounding boxes.
The pose correction process involves two stages. Given the
local pose estimations of the ego vehicle and a cooperative
vehicle, along with noisy measurements of perceived objects,
the first step is to identify the co-visible region and associate
the corresponding objects. Subsequently, an accurate trans-
formation matrix F is estimated by optimizing the following
problem:

min
F

X
(i, j)∈M

‖xi − F(y j)‖2 (1)

x represents the position vector of objects perceived by the
ego vehicle (similarly, y for the cooperative vehicle), with
i, j denoting associated object pairs that represent the same
physical target.

Similarly, Lu et al. [55] introduce another optimization-
based approach, CoAlign, commonly used in Simultaneous
Localization and Mapping (SLAM) algorithms, to correct the
relative pose over various timeframes once the close-loop of
the pose graph is identified. CoAlign introduces an agent-
object pose graph to represent the relationships between agents
and objects, aiming for consistency in the object’s pose from
different viewpoints. This consistency is pursued by formu-
lating and minimizing a pose consistency error optimization
problem. This method not only corrects the agents’ pose but
also enhances the positional accuracy of perceived objects.
However, pose-graph optimization depends on a good initial
guess, limiting its effectiveness in the presence of large noise.

Both optimization-based methods may be constrained by
an underperforming object association step, which relies on
prior knowledge of the pose. To overcome this limitation,
Lei et al. [61] propose a spatial alignment approach,

FreeAlign, which utilizes geometric consistency of a shared
object map to associate objects without prior pose knowledge.
Geometric consistency implies that co-visible regions should
have a similar distribution of objects, with consistent geometric
characteristics between object pairs. A graph model, where
nodes represent objects and edges represent relative distances,
can be used to depict this relationship. By identifying the
most similar graph between two agents, corresponding nodes
in the two graphs represent associated objects. Subsequently,
FreeAlign employs RANSAC [112] to calculate the relative
pose between these object maps.

While object-level pose correction is more communication-
efficient, it is generally less accurate than methods using raw-
sensor data due to higher noise levels in processed object-level
data.

3) Feature-Level: To balance the performance of pose
correction with communication efficiency, feature-level
approaches have been developed. Vadivelu et al. [18]
introduce a pose regression module that estimates the relative
pose through end-to-end learning, further refined by a
Markov Random Field [113]. This approach has proven
to enhance both object detection and motion forecasting
tasks. Additionally, Chang et al. [102] develop a method that
incorporates global spatially-aware attention to improve spatial
alignment. This technique utilizes prior map information to
compare with current BEV segmentation results, achieving
more precise global positioning.

Feature matching is the most commonly used method at
this level. For example, Gu et al. [51] introduce FeaCo,
which utilizes a robust feature-level proposal centers matching
technique to calculate an accurate transformation matrix. This
matching process, inspired by ICP, minimizes the distance
between original proposal centers from the ego vehicle and
the transformed proposal centers from cooperative vehicles
to derive the rotation matrix and translation vector. Simi-
larly, MoRFF [90] and FPV-RCNN [87] both employ feature
keypoint matching to rectify the relative pose, enhancing
pose alignment. While feature matching is straightforward to
implement, its accuracy is limited by the spatial resolution of
the features.

Discussion: Pose correction methods vary significantly in
their trade-offs among accuracy, bandwidth consumption, and
robustness to noise. Approaches based on raw-sensor data
typically offer the highest accuracy but require substantial
bandwidth. In contrast, object-level methods are more efficient
in terms of communication and computation but are less robust
against noisy conditions. Feature-level approaches represent a
middle ground, balancing accuracy and efficiency. The choice
of a pose correction approach generally depends on the type
of collaboration involved. When feature-level data is shared
across agents, frameworks tend to utilize this same-level data
for pose alignment, eliminating the need for external data
sources. It allows for a more streamlined integration and
efficient processing within the CP system.

B. Time Latency

Effective data fusion in CAVs necessitates that data be tem-
porally aligned. In practice, Connected Autonomous Vehicle
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(CAV)s synchronize their clocks with Coordinated Universal
Time (UTC) primarily through Global Navigation Satellite
System (GNSS) signals, while the Network Time Protocol
(NTP) may serve as a fallback when GNSS is unavailable.
Achieving perfect alignment, however, remains challenging
due to factors such as communication delays, interruptions,
heterogeneous processing times, and varying data rates across
vehicles, all of which can introduce temporal misalignment.
To mitigate these issues, three levels of data are utilized:
object-level data, feature-level data, and occupancy-level data.

1) Object-Level: The object-level approach is frequently
applied in late collaboration scenarios to adjust for the move-
ment of dynamic objects across different time frames. This
method uses motion models to predict the position of an object
at the current timestamp based on its previous data frame. For
example, Su et al. [97] employ the Constant Acceleration (CA)
motion model to predict future positions of objects, allowing
for more accurate data synchronization and integration in
CAVs.

2) Feature-Level: Feature-level approaches have gained
significant attention in addressing temporal alignment chal-
lenges for intermediate collaboration in CAVs. The overview
of feature-level approaches to address time latency is shown in
Table XV. One notable approach is the latency-aware collab-
orative perception system introduced by Lei et al. [19]. This
system employs SyncNet, a latency compensation module uti-
lizing Long Short-Term Memory (LSTM) networks to estimate
real-time features for collaboration. SyncNet has demonstrated
effectiveness in enhancing intermediate collaboration, partic-
ularly in high-latency scenarios. However, real-time feature
prediction can be computationally intensive. An alternative
method, proposed by Wei et al. [48], focuses on BEV flow
prediction within the CP framework. This approach, called
CoBEVFlow, generates spatial regions of interest (ROIs) based
on received perceptual feature maps. By associating correlated
ROIs across message sequences, it calculates motion vectors
and estimates object positions at specific timestamps. The
resulting BEV flow map is used to adjust the spatial position
of features, ensuring temporal alignment with ego features
for efficient aggregation. Yu et al. [115] introduce another
technique called Feature Flow Net (FFNet), which employs
feature flow prediction. This method describes feature changes
over time, enabling direct prediction of aligned features at
the current timestamp of collaborating vehicles. Similarly, the
How2comm [52] framework utilizes feature flow prediction
but refines it with a scale matrix. This scaling of predicted
features has been shown to enhance temporal alignment
effectiveness.

These feature-level approaches offer promising solutions
for addressing temporal alignment challenges in CP systems.
By focusing on feature prediction, BEV-ROI-flow prediction,
and feature-flow prediction, researchers are developing more
robust and efficient methods for CAVs to share and process
perceptual information.

3) Occupancy-Level: Occupancy-Grid representation have
emerged as a promising solution for 3D scene under-
standing, offering a more comprehensive depiction of
dynamic environments compared to traditional object-level or

feature-level methods. Zhang et al. [9] introduce the concept
of occupancy flow prediction for temporal alignment in CP.
This approach utilizes occupancy maps, which provide a more
effective representation of the environment than raw point
clouds and offer more detailed information compared to neural
features. By predicting the flow of occupancy over time,
these systems can better account for the dynamic nature of
traffic scenarios and compensate for localization discrepancies
between collaborating vehicles.

Discussion: Object-level approaches offer efficiency and
ease of implementation, making them attractive for real-time
applications. These methods typically involve sharing high-
level information such as object positions and velocities.
However, their effectiveness is heavily dependent on the accu-
racy of upstream tasks, including object tracking and motion
estimation. In scenarios with significant time latency, the prop-
agation of errors from these tasks can lead to reduced overall
system performance. To mitigate such challenges, feature-
level approaches offer enhanced robustness by estimating
environmental features with greater temporal precision. These
methods often involve sophisticated prediction algorithms that
can compensate for temporal mis-alignments in data from
multiple vehicles. While more complex than object-level meth-
ods, feature-level approaches offer a better balance between
computational efficiency and latency mitigation. Occupancy-
level approaches, particularly those employing occupancy
flow prediction, deliver the most comprehensive representa-
tion of the environment by modeling dynamic occupancy
states over time. These methods provide detailed environ-
mental information and offer significant benefits for temporal
alignment.

C. Communication Bandwidth Constraints

In any system requiring communication, bandwidth can
become a bottleneck when multiple entities participate and
actively contribute to sharing data. In CP, several entities
(vehicles or infrastructure) collect, share, and aggregate per-
ception data. In Europe, the European Telecommunications
Standards Institute (ETSI) has specified functional require-
ments for collective awareness and cooperative perception
applications. These specifications establish well-recognized
networking constraints that must be considered in the design of
CP algorithms. The vehicular network is ad hoc, participants
establish communication in a self-organizing manner, and
safety applications, such as CP, generate messages within
the limits of a Packet Data Unit (PDU). The PDU size is
defined by the access layer protocol, which imposes bandwidth
limitations and the requirement that safety messages such
as Cooperative Awareness Message (CAM) and Collective
Perception Message (CPM) must fit into a single PDU, as they
are broadcast only once without retransmission or forwarding.

In practice, the bandwidth available for vehicular com-
munication is highly constrained. For instance, IEEE
802.11p/DSRC provides a theoretical data rate of up to
27 Mbps in a 10 MHz channel, but the effective throughput in
dense traffic environments is typically below 10 Mbps due
to protocol overhead and channel contention [116], [117].
Similarly, LTE-V2X operating in a 10 MHz channel can
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achieve around 15 Mbps under ideal conditions, yet its capac-
ity decreases substantially as the number of vehicles increases
[118]. These limitations render the direct transmission of raw
sensor data, such as LiDAR point clouds or high-resolution
camera frames, largely infeasible in real-world deployments.
This motivates the need for more efficient communication
strategies that focus on transmitting intermediate features, or
final perception outputs rather than raw data.

To mitigate these constraints, recent research has explored
approaches such as data selection to filter transmitted informa-
tion, data compression to reduce message size, and cooperator
selection to restrict the number of entities participating in
the CP algorithm. Table XVI provides an overview of rep-
resentative methods that address communication bandwidth
challenges in CP.

1) Data Selection: Data selection becomes necessary when,
in the ETSI Intelligent Transportation System (ITS) scenario,
there are limitations on how much data can or should be
sent. Perception algorithms output data with varying accuracy,
which can lead to filtering data based on the accuracy or
confidence in the quality of the perception [6]. Luo et al.
[10] propose a Voxelization-based strategy for LiDAR data
where the detection model groups samples into voxels. When
transmission is required, the number of points from a voxel
is limited while still being able to represent an object.
Wang et al. [47] employ data selection as a two-step process
with negotiation and transmission. This method divides the
view (perception field of view) into sections called pillars.
Pillars with occlusion or partial occlusion require auxiliary
information requested through the negotiation step. The rel-
evant pillars are sent in the transmission step. Yang et al.
[53] utilize a request-response methodology for cooperation
where the ego vehicle broadcasts a request based on a filtered
importance map generated from the feature map. Neighbor-
ing vehicles respond based on specificity and consistency
constraints contained in the request.

2) Data Compression: Another means of reducing band-
width is through data compression. This can be achieved
by employing compression algorithms that reduce the binary
representation of the same data and can be decompressed at
the receiver. However, this adds overhead in both operations.
Some work utilizes a change in the encoding of data, such
as Slim-FCP [33], where feature maps are reduced with a
negligible degradation to the recall performance of the CP
algorithm. Marvasti et al. [11] utilize a Convolutional Neural
Network (CNN) encoder solution to transform the feature
map into a lower dimension. This compressed feature map is
transmitted along with GPS information to other cooperative
entities. Compression through transformation implies a trade-
off between feature map accuracy (post-decompression) and
transmission bandwidth requirements.

3) Cooperator Selection: Cooperator selection restricts the
number of entities in the vehicular network participating
in the CP algorithm. This way, the number of messages
being transmitted can be reduced. However, the choice of
participating entities is not trivial, since designing effec-
tive selection metrics is challenging, including determining
the factors that should be incorporated into these metrics.

Wang et al. [50] utilize a scoring system among participants
that share feature maps encoded into query features using
CNN. Each participant then scores these query features to
select their communication targets. Liu et al. [17], [91] present
a three-stage handshake among entities to establish a group of
participants to communicate. Participants calculate a matching
score based on the correlation between two entities, which
represents the amount of information one entity can provide
for the other.

Discussion: The three strategies - data selection, data com-
pression, and cooperator selection - offer distinct methods for
mitigating communication bandwidth constraints in CP. Data
selection focuses on transmitting the most relevant informa-
tion, optimizing bandwidth but risking incomplete perception
if criteria are overly restrictive. Data compression achieves
bandwidth efficiency through compact representations but
introduces computational costs and potential loss of fidelity.
Cooperator selection reduces the communication load by lim-
iting participants, though the exclusion of key entities due
to suboptimal metrics can compromise effectiveness. Com-
bining these approaches could provide a balanced solution,
leveraging their strengths to address bandwidth limitations
comprehensively.

D. Communication Interruptions

Ad-hoc networks, such as the vehicular network, are prone
to communication issues that lower the effectiveness of data
transmission. In some cases, packets may fail to arrive due
to collision, which we call communication interruption. One
solution to this issue is proposed by Ren et al. [20], where
missing data is estimated by prediction from a previous frame.
In such cases where historical data from a known entity is
available, missing frames can be estimated.

E. Domain Shifts

CP frameworks for CAVs face significant challenges due to
domain shift, a problem often under-explored in the field. This
section examines the approaches to address different types of
domain shift caused by training data, sensor characteristics,
and the transition from simulation to real-world environments
(Sim2Real). An overview can be seen in Table XVII.

1) Domain Shift Caused by Training Data: Collaborative
perception systems in CAVs often involve vehicles from
different manufacturers, each employing its own perception
pipeline. Even if these vehicles utilize the same neural network
architecture for feature extraction, variations in their training
data can still lead to inconsistencies in the extracted features.
To address this challenge, Li et al. [120] propose the Feature
Distribution-aware Aggregation (FDA) framework. The FDA
framework incorporates a Learnable Feature Compensation
(LFC) module, designed as an encoder-decoder architecture
with skip connections, to predict and adjust residual dis-
crepancies in the shared features. By applying this residual
compensation, the shared features are enhanced before being
fed into the fusion module. The FDA framework has been
shown to effectively restore detection performance, even in
the presence of distribution gaps, demonstrating its efficiency
in maintaining reliable perception.
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2) Domain Shift Caused by Sensor: CAVs from differ-
ent manufacturers may be equipped with varying LiDAR
sensors, which introduces inherent domain gaps in the raw
sensor data. To address this issue, Li et al. [21] propose the
DI-V2X framework for Vehicle-Infrastructure Collaborative
3D Object Detection. DI-V2X is designed to learn domain-
invariant representations using a distillation-based approach.
First, the Domain Mixing Instance Augmentation (DMA)
module creates a domain-mixing 3D instance bank for both
teacher and student models during training, ensuring better
alignment in data representation. Following this, the Progres-
sive Domain-Invariant Distillation (PDD) module encourages
student models across different domains to progressively
learn domain-invariant feature representations from the teacher
model. Additionally, a Domain-Adaptive Attention Framework
(DAF) is used to further close the domain gap by incorporating
calibration-aware, domain-adaptive attention.

In contrast to the domain-invariant approach, Liu et al. [58]
explore the use of heterogeneous graph-attention mechanisms
to fuse features from different agents, each with domain-
specific characteristics. In this method, vehicles equipped
with different types of LiDAR are treated as heterogeneous
collaborators, represented as distinct nodes in a graph. The
cooperative interactions between these heterogeneous nodes
are modeled as weighted edges, where the weights reflect
different fusion strategies for effective collaboration across
domain gaps.

3) Domain Shift Caused by Sim2Real: CP models require a
large amount of labeled real-world data for training. However,
collecting and annotating this data is both challenging and
costly. As a result, synthetic data has gained attention due
to its ease of production and cost-effectiveness. Despite these
advantages, there is a significant domain gap between simu-
lated environments and the real world, particularly in terms
of appearance and content realism. This gap often leads to
poor performance when models trained on simulated data are
evaluated on real-world data.

To address this issue, Kong et al. [57] introduce the DUSA
framework for CP. DUSA employs a Location-Adaptive
Sim2Real Adapter (LSA) module to selectively aggregate
features from critical locations on the feature map. It then
aligns the features between simulated and real-world data
using a sim/real discriminator in an adversarial training pro-
cess. The aligned features are subsequently fed into the fusion
module, ensuring CP remains unaffected by the Sim2Real
gap. Similarly, Li et al. propose the S2R-ViT framework [62],
which uses domain discriminators to extract domain-invariant
features from both simulation and real-world environments.
Unlike other methods, S2R-ViT not only inputs features from
individual agents into the discriminator before fusion but also
applies the discriminator to the fused features, enhancing
feature generalization and improving model performance in
real-world scenarios.

Discussion: Domain shifts can be categorized by their
severity, ranging from low to high: dataset distribution, sen-
sor characteristics, and Sim2Real discrepancies. Solutions
for addressing domain shift include heterogeneous fusion,
feature compensation, and domain-invariant feature learning.

Heterogeneous fusion involves combining features with
weights without fully eliminating the domain shift, making it
less effective for larger gaps such as Sim2Real. In contrast,
feature compensation and domain-invariant feature learning
both aim to minimize domain gaps by generating more con-
sistent features before fusion. Domain-invariant features can
be achieved through cross-domain knowledge distillation and
adversarial training, effectively bridging the gap and enhancing
model performance.

F. Heterogeneity

Heterogeneity within CP systems presents a significant
challenge, primarily caused by differences in sensors and
perception models across agents. CAVs on the road are often
manufactured by various companies, leading to differences
in sensor types and data processing models across vehicles
from different Original Equipment Manufacturers (OEMs).
This section provides a summary of the approaches used to
address both model heterogeneity and modality heterogeneity
within CP systems, as listed in Table XVIII.

1) Model Heterogeneity: Current CP frameworks leverage
deep neural network features to balance perception accuracy
and communication bandwidth. However, these frameworks
typically assume that all CAVs use identical neural networks,
which is not always feasible in real-world scenarios. When
features are transmitted from different models, a significant
domain gap can emerge, leading to a decline in performance
within CP systems.

To address this issue, Xu et al. [121] introduce the Multi-
agent Perception Domain Adaptation (MPDA) framework, a
plug-in module designed to work with most existing systems
while preserving confidentiality. MPDA includes a learnable
feature resizer to align features across multiple dimensions
and a sparse cross-domain transformer for domain adapta-
tion. A domain classifier is then used to distinguish whether
the features originate from the source or target domain.
Through adversarial training, the sparse cross-domain trans-
former learns to produce domain-invariant features. Although
MPDA has shown to improve performance in heterogeneous
environments, it still struggles to fully resolve significant
performance drops.

2) Modality Heterogeneity: Most existing work focuses
on homogeneous systems where CAVs are equipped with
identical sensor types, an assumption that is unrealistic for
real-world applications and significantly limits the scalability
of collaboration.

To address modality heterogeneity, Zhang et al. [80]
introduce the Multi-Modal Virtual-Real Fusion Transformer
(MVRF) for collaborative perception. MVRF enables cross-
modality cooperation between LiDAR and RGB cameras by
generating virtual points from RGB images and incorporating
them with LiDAR data.

In contrast to this data alignment approach, Xiang et al.
[22] propose the hetero-modal Vision-Transformer (HM-ViT)
for collaborative perception, which utilizes Heterogeneous 3D
Graph Attention. HM-ViT separately extracts BEV features
from LiDAR and camera streams, treating the features as
distinct nodes on a collaborative graph. A 3D graph attention
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mechanism is then applied to learn cross-modality interactions,
and the updated features are fed into separate heads for final
predictions from each modality.

In addition to learning cross-modality interactions, Lu et al.
[77] introduce HEAL, an extensible framework for open
heterogeneous CP. HEAL addresses heterogeneity by aligning
features in a unified space using a multi-scale, foreground-
aware Pyramid Fusion network. To integrate new agents
with previously unseen models or sensor modalities, only the
encoder part of the architecture on new agents needs retraining.
This step aligns the new agents’ BEV feature space with
the unified space, offering low training costs and making the
solution scalable for open heterogeneity scenarios.

Discussion: There are four primary approaches to address-
ing heterogeneity in CP systems. The first is to account
for heterogeneity in the fusion process by learning cross-
heterogeneity interactions. Another approach is to align the
data format or feature space, allowing for homogeneous fusion.
Additionally, rather than focusing on alignment, one can
enable fusion by learning domain-invariant features across
heterogeneous agents.

G. Adversarial Attacks

CP enhances scene understanding but is particularly vul-
nerable to adversarial attacks. Ensuring the safety of CAVs
requires protecting them from such threats. While adversarial
attacks have been extensively studied in the communications
field, they have not been deeply explored within the context
of CP frameworks.

The first study to address adversarial attacks in this domain
is ROBOSAC [23], a general sampling-based framework for
adversarially robust CP. ROBOSAC aims to achieve consensus
among co-vehicles during collaboration, preventing signif-
icant deviations from individual perceptions. Its workflow
involves several steps. First, a vehicle samples a subset of
its teammates and compares the results with and without the
sampled teammates. Next, it verifies the consensus across
results to ensure no attackers are present. Finally, the vehicle
produces a collaborative perception result. The key advantage
of ROBOSAC is that it does not require prior knowledge of
specific attack patterns, allowing it to be generalized to new
types of adversarial attacks. ROBOSAC has been shown to
significantly enhance the robustness of CP while maintaining
high perception accuracy under attack.

Despite this progress, robust design against adversarial
attacks in CP remains an under-explored area, requiring further
investigation in the future.

VIII. EVALUATION METHODS FOR COLLABORATIVE
PERCEPTION (RQ2-4)

Evaluation methods are a critical aspect of research on
CP, complementing the development of CP approaches. This
section provides an overview of the current evaluation method-
ologies employed in the surveyed studies. Section VIII-A
describes the evaluation methodologies in detail, while Sec-
tion VIII-B focuses on the evaluation scenarios. Additionally,
Section VIII-C presents the metrics and ablation studies used
to assess CP approaches.

A. Evaluation Methodology
To evaluate new algorithms for CP, various methodologies

are employed. This section provides an overview of the
approaches used in the surveyed papers. Real-world datasets
and synthetic datasets are discussed in Sections VIII-A1
and VIII-A2, respectively. Additionally, real-world experi-
ments and simulation-based evaluations are summarized in
Sections VIII-A3 and VIII-A4.

1) Real World Datasets: Table XIX provides a summary
of publicly available datasets for CP. These datasets predom-
inantly focus on vehicle-to-infrastructure (V2I) collaboration,
with limited attention given to vehicle-to-vehicle (V2V) inter-
actions. The absence of datasets that integrate both V2I and
V2V collaborations highlights a significant gap in existing
resources, underscoring the need for more comprehensive
datasets to advance CP research.

LiDAR emerges as the most frequently used sensor in these
datasets, often complemented by RGB cameras to enhance
visual perception. However, the exclusion of additional modal-
ities, such as infrared cameras or radars, limits their utility
in handling complex scenarios, particularly in adverse envi-
ronmental conditions. Furthermore, the scale of these datasets
remains small compared to single-entity perception datasets
like NuScenes [122] and Waymo [123], which feature over
200,000 frames. This disparity is further compounded by
limited scenario diversity, as most datasets are constrained to
daytime and clear weather conditions. To address these short-
comings, future datasets should incorporate a wider variety of
scenarios, including nighttime and adverse weather, to better
reflect real-world challenges in CP.

The diversity in annotated object classes across these
datasets also reveals notable inconsistencies. For example,
DAIR-V2X [124] includes annotations for 10 distinct object
classes, whereas others, such as [125] and [126], focus on
fundamental categories like pedestrians, cyclists, cars, and
trucks. Some datasets adopt a task-specific approach, such as
[88], which is exclusively dedicated to pedestrian detection.
Although object detection is a central feature, support for
advanced tasks like object tracking is limited, and motion pre-
diction remains under-represented, highlighting an imbalance
in task coverage.

Table XX delves deeper into V2X configurations, examining
critical aspects such as the number of connected vehicles,
localization methods, and time synchronization protocols.
Most datasets involve three or fewer CAVs, as exemplified
by LUCOOP [126]. Time synchronization is generally asyn-
chronous, with a maximum latency of 50 milliseconds between
entities. To ensure accurate ground-truth localization, hybrid
localization approaches are commonly employed, combining
multiple techniques such as HD Map and Real Time Kinematic
(RTK) to minimize positional errors. These precise localization
methods play a pivotal role in enhancing CP system perfor-
mance and fostering effective collaboration between vehicles
and infrastructure.

2) Synthetic Datasets: Table XXI summarizes the syn-
thetic datasets used in CP. These datasets are predominantly
generated using CARLA, often paired with frameworks like
OpenCDA [129], which integrates CARLA with SUMO for
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traffic simulation. The use of simulation significantly reduces
the effort required to create scenarios involving multiple
CAVs compared to real-world settings. Unlike real-world
datasets, synthetic datasets frequently support both V2V and
V2I communication, making them highly versatile for CP
research. Additionally, many synthetic datasets enable coop-
eration among more than three CAVs, further enhancing their
applicability. These datasets also exhibit greater diversity in
sensor modalities, incorporating LiDAR and RGB cameras,
with some extending to include depth information.

Synthetic datasets exhibit greater diversity in the range of
tasks they support. While object detection remains the primary
focus, many datasets extend their scope to include tasks such
as semantic segmentation and accident prediction. However,
the scenario diversity is often constrained by a reliance on pre-
existing maps from CARLA, which limits geographic variety
and reduces the ability to replicate a wide range of real-world
conditions accurately.

A significant characteristic of synthetic datasets is their
reliance on idealized system conditions. As outlined in
Table XXII, most datasets assume perfect time synchronization
between connected entities, with the exception of [48]. Addi-
tionally, simulators provide precise ground-truth localization,
resulting in error-free localization performance. While these
conditions simplify evaluation, they may not fully reflect the
challenges of real-world scenarios.

Despite these limitations, synthetic datasets are often
designed to replicate real-world conditions to better evaluate
CP system performance. For instance, [103] explores the
impact of time latency and pose errors, demonstrating that
increasing the number of CAVs enhances robustness against
such issues. Similarly, [130] reveals a positive correlation
between the number ofCAVs and the average precision of
object detection, with performance improvements plateauing
at around four CAVs. These studies highlight the value of
synthetic datasets in examining trade-offs and identifying
limitations in CP systems.

3) Real World Experiment: As discussed in the previous
section, existing real-world datasets have significant limita-
tions. When new algorithms offer advantages that cannot be
effectively demonstrated using these datasets, dedicated exper-
iments become essential. However, real-world experiments
demand considerable time and financial resources, making
them far less common than simulation-based evaluations.

For example, Sakr et al. [107] conduct an experiment where
a legacy vehicle follows a sensor-rich vehicle that transmits
road geometry information. The aim is to estimate the road
geometry ahead of the legacy vehicle using the data provided
by the sensor-rich vehicle. Similarly, Li et al. [66] design
experiments involving two vehicles equipped with LiDARs
and cameras. Their study demonstrates two scenarios where
V2V perception outperforms single-entity perception, particu-
larly in detecting distant objects beyond the range of LiDAR
sensors. Additionally, they show how V2V communication
effectively reduces positioning errors in various road scenarios.
Xie et al. [35] adopt a different approach by conducting
real-world experiments with two vehicles equipped with
LiDARs and cameras. These vehicles collect data across three

representative V2V scenarios, facilitating the validation of
their algorithm under real-world conditions.

In general, real-world experiments remain rare due to the
significant resources required. Most of these studies focus on
V2V cooperation, as it is easier to design and continues to be
the most extensively researched form of V2X collaboration.

4) Simulation Experiment: In simulation experiments,
trends similar to those observed in real-world evaluations
are evident. Table XXIII summarizes studies employing
simulation-based experiments, which either generate new
datasets or adapt existing ones to evaluate specific approaches,
as demonstrated in [14].

As with real-world tests, V2V communication remains the
dominant approach, preferred over V2I or combined V2I and
V2V methods. Object detection continues to be the most
frequently studied perception task [8], [10], [11], [37], [38],
[58], [65], [76], [81], [132]. Some studies create tailored
datasets to address specific requirements, such as semantic
segmentation [92], [95] or lane detection [108].

CARLA4 is the most widely used simulator for CP research,
frequently utilized in customized configurations. AirSim5

and Gazebo6 are also commonly employed. Among these,
only one study incorporated a network simulator to model
realistic network data traffic and its impact on perception
performance [10].

Simulation studies often explore specific aspects of CP. A
recurring focus is determining the optimal number of coop-
erating vehicles to maximize performance [10], [14], [102].
Kuang et al. [81] investigate scenarios where V2V cooperation
significantly outperforms single-vehicle perception. Similarly,
Liu et al. [58] analyze the effects of homogeneous versus het-
erogeneous sensor configurations on CP performance across
various conditions.

Another line of research examines federated learning for
CP. For instance, Zhang et al. [13] implement a dynamic map
fusion algorithm using federated learning to recover objects
missed by individual systems, demonstrating its potential to
enhance CP performance.

B. Evaluation Scenarios

1) Environmental Settings: The methodologies for evaluat-
ing CP algorithms, including datasets and experiments, were
introduced in the previous section. This section examines
the specific scenarios used for algorithm evaluation. In both
real-world and simulation studies, environments are typically
categorized into three primary types: urban, rural, and high-
way, as outlined in Table XXIV. Simulation studies offer a
wider range of scenarios compared to real-world evaluations,
largely due to the extensive use of CARLA and its pre-defined
maps. However, this reliance on CARLA maps introduces
limitations in the diversity of road environments and the
assessment of specific road features, such as intersections.
Although many studies specify which CARLA map is utilized,
detailed information about the types of intersections or the

4https://carla.org
5https://microsoft.github.io/AirSim
6https://gazebosim.org
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specific routes examined is often absent. Commonly evaluated
road configurations, including cross intersections and straight
road segments, are summarized in Table XXV.

2) Daytime and Weather: Robust evaluation of CP algo-
rithms requires testing under diverse conditions to assess
their performance in challenging scenarios, such as low-light
environments or adverse weather conditions. Many real-world
datasets incorporate both daytime and nighttime data [99],
[126], [128], although not all studies provide explicit docu-
mentation of these conditions [125], [127]. Regarding weather
diversity, detailed descriptions are frequently omitted. Among
real-world datasets, DAIR-V2X [124] stands out for its inclu-
sion of varying weather and lighting conditions, establishing
it as the most comprehensive dataset in this regard.

In contrast, synthetic datasets offer complete control over
environmental parameters such as weather and time of day.
However, these conditions are rarely detailed in the associated
studies. An exception is the DeepAccident dataset [103],
which explicitly provides variations in weather conditions
(e.g., clear, rainy, cloudy, wet) and times of day (e.g., noon,
sunset, night). This level of specification enhances its utility
for evaluating CP algorithms under diverse environmental
settings.

C. Evaluation Metrics

To quantitatively assess perception performance, various
metrics are applied to specific tasks such as object detection,
tracking, and motion prediction, depending on the evaluation
objectives. Unified evaluation metrics are crucial for bench-
marking different algorithms, enabling comparative analysis of
their performance, and supporting the continuous improvement
of these algorithms.

This section reviews and summarizes the metrics used for
evaluating CP. These metrics are categorized into two groups:
general evaluation metrics, which are adapted from single-
entity perception tasks, and custom metrics designed for CP.
Additionally, this section provides a summary of the ablation
studies conducted in the reviewed papers. These studies offer
insights into the evaluation process, highlighting common fac-
tors that impact CP and how they influence performance. This
understanding aids researchers in designing more practical and
robust CP frameworks.

1) General Evaluation Metrics for Perception Tasks: The
general evaluation metrics for different perception tasks are
summarized in the Table XXVI. These metrics are adapted
from single-entity perception and are widely accepted by
researchers. In some cases, evaluation results are divided into
different groups based on detection difficulty levels, such as
easy, medium, and difficult, as seen in the KITTI dataset [133],
which considers factors like occlusion level and object size.
Evaluation results can also be categorized by object type, such
as cars, cyclists, and pedestrians. This categorization helps
researchers better understand the strengths and limitations of
different approaches.

2) Custom Evaluation Metrics for Collaborative Percep-
tion: Traditional evaluation metrics used for single-entity
perception do not adequately represent the performance of
cooperative perception (CP). Since CP primarily aims to

address visual occlusion problems and serves as a supple-
ment to single-entity perception, it requires distinct evaluation
criteria. Moreover, CP is significantly constrained by commu-
nication resources. Therefore, communication factors should
be incorporated into the design of evaluation metrics. In this
subsection, we summarize custom metrics designed for CP in
Table XXVII. These metrics are classified into the following
three types.
• Communication: Compared to single-entity perception,

cooperative perception requires additional communication
resources. Evaluating the communication demands of CP
algorithms is crucial for assessing their efficiency and
scalability. For example, metrics such as average message
size are commonly used to measure the communication
costs associated with CP.

• Perception: CP aims to address visual occlusion prob-
lems, making it crucial to have metrics that assess
how effectively CP resolves these issues. Wang et al.
[114] introduce the Average Recall of Collaborative View
(ARCV) metric, which measures the average recall of
agents that are invisible from a single-vehicle perspective
but become detectable through collaborative perception.
In addition to uncovering occluded agents, CP can
enhance the perception of agents already visible to a
single vehicle by incorporating additional information.
To quantify this enhancement, Luo et al. [43] propose
the marginal gain metric, defined as the performance
improvement when an additional agent joins the col-
laboration. It is important to note that the marginal
gain tends to diminish as more observing agents are
added.

• Ratio between Communication and Perception: There
is an inherent trade-off between communication cost
and collaborative perception (CP) performance. Reduc-
ing communication costs can constrain CP effectiveness
by limiting the amount of shared information among
agents. Researchers are exploring how to balance these
factors to develop efficient and effective CP approaches.
For instance, Liu et al. [91] introduce the Bandwidth
Improvement Score (BIS), defined as the ratio of the
relative improvement in overall accuracy to the bandwidth
usage. A higher BIS indicates a more favorable balance,
lower bandwidth cost coupled with greater improvement
in perception performance.

The custom metrics for collaborative perception place
greater emphasis on improving the detection of both visi-
ble and previously invisible objects from the ego vehicle’s
viewpoint. However, these perception improvement metrics
have not been widely accepted in the research community.
Most studies predominantly utilize evaluation metrics adopted
from single-entity perception, with the exception of studies
[33], [50], [91], [114], which employ custom metrics for CP.
Communication cost metrics are also occasionally considered
when evaluating the efficiency of collaborative perception
methods.

3) Ablation Studies: Ablation studies are crucial for
evaluating the robustness and scalability of CP systems
under various conditions. They help identify how different
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factors affect CP performance, enabling researchers to opti-
mize system design. In this section, we categorize and discuss
ablation studies focusing on communication, localization, sys-
tem scale, visual occlusion, adversarial attacks, and other
relevant factors.
• Communication: Communication poses significant chal-

lenges for CP in real-world applications. Vehicle-to-
everything (V2X) communication introduces practical
constraints such as bandwidth limitations, data com-
pression requirements, latency, noise, and interruptions.
Most research includes ablation studies addressing these
communication issues [8], [9], [15], [36], [50], [54], [69],
[75], [91]. It has been proven that latency and noise can
significantly degrade CP performance, while interruptions
have the most severe impact. Designing communication-
aware approaches is essential for enhancing the scalability
and effectiveness of CP applications.

• Localization: Localization errors heavily affect the per-
formance of CP systems. To ensure algorithms are viable
in real-world settings, it is crucial to measure their robust-
ness against positioning errors. Most studies validate
algorithm performance under varying positioning errors,
typically ranging from 0 to 1 meter [15], [39], [46],
[51], [64], [71], [72], [74], [77], [91]. The absence of
significant performance degradation under these condi-
tions demonstrates the algorithm’s reliability in practical
applications.

• Scale of system: The performance of CP varies with
the number and types of CAVs involved. Ablation stud-
ies are helpful in determining the optimal configuration
of cooperative systems. Research has shown that CP
achieves the best results when 4 to 6 agents participate
in the collaborative system; adding more agents does not
further increase perception accuracy [34], [44], [60], [64].
Additionally, the types of CAVs, such as those equipped
with LiDAR or cameras, also influence CP performance
[22]. Validating CP under different ratios of LiDAR-
equipped and camera-equipped CAVs is important to
ensure robustness.

• Visual occlusion: Verifying CP’s reliability in detecting
occluded objects requires ablation studies that consider
different levels of occlusion. These studies demonstrate
the effectiveness of CP in addressing visual occlusion
and indicate how well the system performs under such
conditions [13], [100].

• Adversarial attack: Robustness against adversarial
attacks is a critical aspect of CP systems. Ablation stud-
ies focusing on attack scenarios verify whether CP can
maintain reliability under various adversarial conditions
[23], [61]. Ensuring resilience to such attacks is vital for
the safe deployment of CP systems.

• Others: Additional factors can affect CP performance,
such as traffic density, vehicle velocity and speed, and
sensor dropout. Conducting diverse ablation studies under
different scenarios ensures the system’s reliability in real-
world usage [9], [94]. By validating CP performance
across these variables, researchers can develop more
robust and adaptable systems.

Various ablation studies have been conducted to assess the
reliability and robustness of CP systems. However, perform-
ing comprehensive ablation studies is time-consuming and
resource-intensive. Researchers should prioritize validating
factors that are most pertinent to the specific problems their
work aims to address. To simplify the evaluation process, an
automated evaluation framework is needed.

While ablation studies are valuable for measuring CP per-
formance, they may not always yield accurate results due
to the interplay of multiple influencing factors, such as the
number of CAVs and communication bandwidth. To ensure
reliable validation, it is important to conduct online evaluations
using simulations or real-world experiments. These methods
can address the interdependencies of various factors, filling
the gap left by traditional ablation studies.

IX. CHALLENGES, OPPORTUNITIES, AND RISKS (RQ5)

Collaborative Perception holds significant potential to
extend the perception range of individual vehicles and address
critical scenarios caused by occlusion. However, implementing
this technology in real-world applications faces numerous
challenges. Based on the comprehensive analysis of CP, this
section introduces the challenges, opportunities, and risks
associated with CP research.

We examine the challenges and opportunities from three
perspectives: hardware, software, and evaluation methods. The
risks in CP research are summarized concerning application
gaps, reproducibility, and evaluation. Each aspect provides
insight into the current state of CP and highlights areas for
future improvement.

A. Challenges

1) Hardware: CAVs employ a variety of sensors, each with
its advantages and limitations. These vehicles are typically
equipped with multiple sensors, such as LiDAR and cameras,
to navigate diverse driving scenarios effectively. Integrating
these sensors enhances the capabilities of multi-modality in
CP, allowing vehicles to perceive their environment more com-
prehensively and share multi-modal information with nearby
vehicles. However, achieving precise time synchronization
and calibration among multiple sensors is challenging. Multi-
modal CP methods rely on accurate spatial and temporal
alignment from different sensors, but factors like sensor
drift and environmental variability make consistent precision
challenging to maintain. This inconsistency can hinder the
full potential of multi-modal approaches. To fully harness
the advantages of multi-modality, it is essential to develop
efficient calibration methods for multi-sensor systems, not only
on the vehicles themselves but also within the supporting
infrastructure [25]. Addressing these calibration challenges
will enhance the reliability and effectiveness of CP in
real-world applications.

2) Software: While hardware challenges such as sensor
calibration are significant, various software challenges also
exist and are the main focus of this literature review. In the
following sections, we discuss these software challenges from
two critical aspects, communication and perception, which
together form the core technologies of cooperative perception.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



30 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

• Communication: V2X communication enables data
transmission between entities but comes with certain
constraints. As discussed in Section VII, the com-
munication challenges involved in CP are significant.
Bandwidth limitations and communication range con-
straints are primary considerations when designing a CP
framework. To prevent network congestion, the frame-
work must minimize bandwidth demands. In addition
to communication efficiency, the robustness of the CP
framework against latency, data loss, and interruptions is
crucial for maintaining reliable perception. By address-
ing these real-world communication factors, we can
effectively implement CP technology in practical appli-
cations, enhancing perception in critical scenarios and
improving the safety of CAVs. However, only one study,
V2X-INCOP [20], has specifically addressed commu-
nication interruptions. Research on robust CP under
realistic communication conditions remains significantly
under-explored. In addition to addressing communication
constraints, the standardization of V2X protocols presents
significant challenges for early and intermediate collabo-
ration approaches. Currently, standardized CP exclusively
support late collaboration. Exploring effective methods
to transmit raw sensor data and intermediate features
within the framework of realistic communication proto-
cols remains a critical area of investigation.

• Fusion strategy in Perception: Information fusion
among agents is central to CP, enabling a collective
understanding of the environment. However, several chal-
lenges persist in developing efficient and robust fusion
methods. Firstly, information loss is a significant concern
in data fusion. Techniques such as late fusion, which
combine perception results using bounding boxes, often
discard crucial texture information. Traditional feature
fusion methods, such as average pooling, may overlook
detailed features from different agents. These fine-grained
details are essential for accurate scene understanding. To
overcome these limitations, exploring efficient data fusion
methods that retain essential information for downstream
tasks without substantially increasing communication
costs is necessary. Secondly, the growing volume and
variety of data shared among agents introduce challenges
in data management and resource allocation. Novel hybrid
fusion methods that utilize features and perception results
can enhance cooperation between agents, such as Hybrid-
CP [64]. However, the inclusion of diverse data types
substantially increases the complexity of data manage-
ment. Managing heterogeneous data from multiple agents
poses a significant challenge, necessitating targeted solu-
tions. Lastly, data alignment remains a bottleneck in the
real-world application of CP systems. Spatial alignment
issues are not fully resolved; most current approaches are
only robust against positioning errors within one meter
[19], [20], [48], [52], [99], [114], [115]. In practice, the
localization error of CAVs can vary by several meters.
Achieving higher robustness is essential to scale CP solu-
tions across diverse conditions. For instance, resolving
the positional alignment of visual features extracted from

different agents’ cameras remains an unsolved problem.
Temporal alignment is another crucial factor. Aligning
asynchronous features is particularly challenging because
it often relies on predicting future features, which can
constrain the accuracy of the alignment.

• Robustness: Ensuring the robustness of CP systems is
crucial for autonomous driving applications, which are
inherently safety-critical. Various factors can degrade the
performance of CP systems. As previously discussed,
issues with communication and localization significantly
affect performance, making it essential to enhance the
robustness of CP systems against these challenges. In
addition to these factors, challenging scenarios present
further critical issues. For example, collaborative lane
detection performance in complex road structures dete-
riorates because current models may not be sufficiently
robust to infer intricate road geometries accurately in real-
time [107], [108], [109]. Similarly, collaborative object
detection performance declines in dense traffic conditions
due to increased occlusion and the constrained bandwidth
available to each CAV in the area. Although CP has
not yet been extensively evaluated under adverse weather
conditions, performance is expected to degrade similar
to single-entity perception systems. Therefore, enhancing
the robustness of CP systems across diverse scenarios is
imperative. Beyond environmental challenges, adversarial
attacks pose another significant threat to CP. With increas-
ing connectivity between vehicles, infrastructure, and
cloud services, protecting autonomous vehicles from net-
work attacks becomes more critical. CP systems should be
capable of identifying fraudulent messages and avoiding
the fusion of malicious data to maintain system reliability.
Only one study, AmongUs [23], implement the detection
of malicious activities within the CP framework and
evaluated their impact on perception performance. This
remains a significantly under-explored area.

• Uncertainty: CP relies heavily on Artificial Intelligence
(AI), which often functions as a “black box” due to its
lack of explainability. This opacity makes it difficult to
determine absolute confidence in the perception results.
CAVs from different manufacturers may use diverse per-
ception models with varying performance levels. In CP
systems, receivers obtain processed data from senders –
such as detected objects – but assessing the uncertainty
associated with this data is challenging. This situation
raises the issue of trustworthiness: to what extent should
CAVs trust the information received from others? Beyond
uncertainties in perception results, there are inherent
uncertainties within the systems. For example, depth
estimation using cameras for 3D perception introduces
uncertainty, as do upstream tasks whose errors can accu-
mulate throughout the processing pipeline, ultimately
degrading the outcome. To enhance the reliability and
explainability of CP systems, it is important to design
uncertainty-aware models that can learn to process noisy
data effectively.

• Efficiency: Autonomous driving systems are computa-
tionally intensive platforms that process large amounts
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of data in real-time. Perception is one of the most
resource-consuming modules, heavily relying on complex
neural networks. Compared to single-entity perception,
CP demands even more computing and communication
resources. The trade-off between improved perception
and additional resource consumption is a critical factor
in determining the scalability of CP systems for real-
world applications. Furthermore, real-time performance
necessitates that CP systems achieve computational and
communication efficiency. This ensures that accurate
information is transmitted promptly to downstream mod-
ules such as planning and control. Balancing these
demands is essential for effectively deploying CP in
practical autonomous driving scenarios.

• Domain shift: Domain shift presents a significant chal-
lenge in CP among agents equipped with different
types of LiDAR sensors. Features extracted from vari-
ous LiDAR systems do not reside in the same feature
space, meaning this discrepancy can significantly degrade
system’s performance [21], [58]. To address this issue,
bridging the gap between the source and target domains
is essential before fusing features from multiple agents.
Beyond its impact on feature fusion, the simulation-to-
real-world (Sim2Real) domain shift also causes models
trained on synthetic datasets to perform poorly in real-
world environments [57], [62]. Collecting real-world data
is costly and particularly difficult for safety-critical sce-
narios. As a result, researchers and developers are seeking
cost-efficient solutions for training neural networks using
synthetic data. However, the pronounced gap between
simulation and reality makes achieving this challenging.
To increase the utilization of synthetic data in CP, it
is urgent to bridge the Sim2Real gap, facilitating the
transfer of knowledge learned from simulations to real-
world applications. This advancement would also enable
training models with synthetic safety-critical data, filling
current gaps in available training datasets.

• Heterogeneity: Research on CP often assumes unrealistic
conditions to simplify the complexity of collaborative sys-
tems, particularly regarding the heterogeneity of agents.
This heterogeneity includes differences in models (model
heterogeneity) [121] and sensing modalities (modality
heterogeneity) [22], [77], [80]. Embracing heterogeneous
collaboration is essential for making CP technology appli-
cable in industry and deployable in real-world scenarios.
However, current approaches that address heterogeneity
are limited and struggle to maintain the reliability of CP
systems under heterogeneous conditions.

• Model training: Model training is a crucial step in
developing CP algorithms. As models increase in size
and complexity, they require larger datasets for effective
training. To reduce costs, it is important to decrease the
dependence on labeled data in CP, which can significantly
reduce the effort required for data annotation [26].

3) Evaluation: The evaluation of CP systems presents sev-
eral challenges, ranging from the methods used to the metrics
applied. The challenges related to evaluation, as identified in
the literature, are summarized below.

• Lack of large-scale real-world dataset: AI-driven
perception algorithms require large-scale and diverse
datasets to learn the patterns and features necessary
for robust model generalization. However, the current
datasets available for CP research are insufficient in
size and lack diversity. They do not adequately cover
a range of scenarios, such as different weather condi-
tions or critical traffic situations. Additionally, existing
datasets primarily support collaborative object detection,
tracking, and prediction, but there are no datasets for
tasks like collaborative semantic segmentation or lane
detection. To advance CP research forward, creating
large-scale, multi-modal datasets that support multiple
tasks across diverse scenarios is essential. Creating a
real-world dataset presents several challenges that must
be addressed in advance. Data privacy concerns and the
processes required to ensure compliance can be time-
intensive. In particular, visual data captured by cameras
must undergo anonymization to obscure identifiable fea-
tures such as human faces and vehicle license plates,
ensuring adherence to data privacy regulations. Hard-
ware setup poses additional difficulties, particularly in
achieving precise time synchronization and localization
for the vehicles involved. Moreover, generating diverse
annotations, covering supported tasks, object classes, or
supplementary details such as occlusion, demands sub-
stantial time and financial resources. Finally, as these
datasets are typically recorded at real-world intersections
rather than controlled test fields, managing class distribu-
tion becomes challenging due to the lack of control over
traffic conditions.

• Simulation for evaluation: To further advance CP
algorithms, designing fair and goal-oriented evaluation
methods that quantitatively measure their performance
is essential. Beyond benchmarking on public datasets,
conducting online evaluations in simulations that consider
more realistic network conditions can provide deeper
insights. However, integrating realistic communication
models into co-simulation frameworks remains chal-
lenging due to bottlenecks between multiple simulation
platforms.

• Scenarios for evaluation: CP is designed to address crit-
ical occlusion situations to enhance the safety of CAVs.
However, collecting data on these critical scenarios from
real-world environments is challenging. Such situations
are rare in daily traffic and pose significant risks during
data collection. Consequently, there is a gap in validating
the reliability of CP in safety-critical scenarios, which is
crucial for its improvement. Developing effective methods
to evaluate CP under these conditions remains an essential
yet unresolved challenge.

• Evaluation metrics: Metrics are essential for quan-
titatively analyzing the performance of CP methods.
Therefore, it is crucial to design appropriate metrics that
clearly represent the advantages and limitations of CP.
Most existing metrics are adapted from single-entity per-
ception, which may not fully capture the unique benefits
of CP, especially in addressing occlusion. Notably, only
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one study, UMC [114], evaluates performance specifi-
cally on occluded objects. To effectively evaluate CP’s
efficiency in solving occlusion problems, new metrics
need to be developed, introducing novel criteria for quan-
titative assessment. Beyond performance measurement,
there is also a need for metrics that evaluate effectiveness
and safety-related aspects. Developing such metrics will
enable a more comprehensive and quantitative analysis of
CP systems, facilitating their improvement and real-world
application.

• Ablation study: Researchers employ ablation studies to
evaluate the efficiency of CP under various conditions.
However, conducting these studies is more labor-intensive
than in single-entity perception due to the diverse factors
affecting CP, including communication, localization, and
perception. To accelerate future research, it is essential
to develop tools that enable the automatic execution of
ablation studies.

B. Opportunities

We have outlined corresponding opportunities and future
directions by identifying the open challenges and research gaps
in CP. These are summarized from three critical perspectives:
hardware, software, and evaluation.

1) Hardware:
• Optimal sensor configuration: Optimizing sensor con-

figurations is a significant opportunity in the hardware
aspect of CP. Researchers have ample potential to explore
which hardware setups are most effective for CP systems.
Determining the optimal types and placements for infras-
tructure sensors is particularly important. The design and
positioning of sensors at intersections directly impact
roadside perception performance [134]. Investigating the
trade-offs between sensor redundancy and safety is also
valuable for enhancing system reliability.

• New modality: Another area for advancement is the inte-
gration of new sensor modalities. Current CP frameworks
predominantly use LiDAR and cameras to perceive the
environment. However, the application of radar, infrared
cameras, or event cameras remains largely unexplored.
Radars can provide more accurate velocity measurements,
while infrared cameras offer night vision capabilities.
Incorporating these sensors can enhance the robustness
of perception systems by supplementing the limitations
of LiDAR and standard cameras.

2) Software:
• Communication: Enhancing communication efficiency is

a critical opportunity in the software aspect of CP. Since
communication is fundamental to these systems, improv-
ing it can significantly boost overall performance. One
approach is implementing data compression techniques
that reduce message sizes without substantial informa-
tion loss. This applies to raw data and feature data,
enabling the transmission of more valuable information
and enhancing the CP process. Additionally, exploring the
transmission of various data types, maps and historical
perception data, can diversify CP solutions. Designing

efficient data structures for these heterogeneous data types
is crucial for real-world applications. Implementing con-
tributor selection strategies can also reduce unnecessary
connections and data redundancy within the collaborative
framework [17], [50], [91].

• Fusion strategy in CP: Advancing fusion strategies
presents another promising direction. Hybrid fusion
methods have shown potential in balancing resource con-
sumption with perception performance by dynamically
adapting to communication conditions, thus ensuring
scalability [35], [61], [64], [65], [87]. Further research
into hybrid fusion could unlock more benefits for CP.
Graph-based feature fusion is an underexplored area that
merits attention. Graph Neural Networks (GNNs) can
model agent relationships and adjust collaborations based
on changing environments. Investigating the application
of GNNs in communication and perception could yield
significant advancements.

• Robustness and efficiency: Improving robustness and
efficiency is vital for the practical deployment of CP
systems. While issues like communication disruptions and
adversarial attacks have been studied, hardware failures,
such as sensor dropouts, have been largely overlooked.
Enhancing robustness against sensor failures is important
for ensuring system reliability. On the efficiency front,
although many state-of-the-art algorithms achieve high
accuracy on public datasets, their performance concerning
hardware limitations has not been thoroughly investi-
gated. Exploring ways to improve algorithmic efficiency,
such as optimizing models like V2X-ViT [16], would be
a valuable direction for future research.

• Compatibility: Lastly, ensuring compatibility between
CP and ego perception systems is essential. CP should
supplement, not replace, individual perception capabil-
ities. Current research often treats CP as a separate
system, leading to potential resource wastage. Develop-
ing perception pipelines that can operate independently
without shared information and collaborate with other
agents when necessary would make systems more prac-
tical. Designing CP as a plug-and-play module can
avoid the need for complete redesign and retrain-
ing of perception models, enhancing efficiency and
adaptability.

3) Evaluation: Evaluation methods are essential guidelines
for researchers and developers seeking to improve CP perfor-
mance. However, current evaluation approaches have notable
drawbacks. This section outlines opportunities to enhance CP
evaluation from several perspectives.
• Datasets: A significant opportunity lies in developing

large-scale CP datasets to advance research. Besides
size, diversity in datasets is equally important. Incor-
porating various sensor modalities and perception tasks
can enrich future CP datasets. While annotating real-
world data is costly, researchers might provide unlabeled
data to the community to foster collaboration. Creating
an open-source framework for generating synthetic CP
datasets would also be highly beneficial, enabling broader
participation and innovation.
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• Evaluation methods: To bridge the deployment gap in
CP systems, developing a framework simplifying the
entire lifecycle, from research and development to deploy-
ment and testing, is crucial. Such a framework should
accelerate validation and evaluation with datasets and in
real-world conditions. By streamlining these processes,
CP can more readily transition into practical applications.

• Evaluation scenarios: Validating the reliability of CP
under diverse conditions requires collecting a more com-
prehensive range of evaluation scenarios. Expanding the
diversity of these scenarios ensures that CP systems are
robust across different environments. Particular attention
should be given to critical traffic situations, such as
those involving vulnerable road users, to assess system’s
performance in high-risk contexts thoroughly.

• Metrics and ablation studies: Quantitative metrics are
important for accurately measuring CP performance. As
discussed in the challenges, new metrics that align with
CP’s objectives, such as resolving visual occlusions,
are needed. Beyond developing new metrics, creating a
framework that enables automatic ablation studies under
varied conditions would provide valuable insights. Such
a framework can help researchers understand the impact
of different components and configurations, ultimately
leading to more effective CP systems.

C. Risks

While CP technology shows great promise in enhancing the
capabilities of CAVs and improving road safety, it also faces
several significant risks.
• Deployment gap: A significant risk is the gap

between research advancements and real-world deploy-
ment. Although various studies address individual aspects
of this gap, the complexities of real-world conditions
far exceed those modeled in datasets or simulations. For
instance, limited communication bandwidth caused by
environmental factors, unexpected synchronization fail-
ures, as well as unpredictable communication latency
and interruptions can adversely affect CP performance.
Additionally, striking the right balance between the per-
ceptual improvements gained through collaboration and
the additional costs incurred is challenging. Successful
deployment of CP also requires collaboration among
different vendors to ensure that CAVs from various
manufacturers can communicate effectively and have
compatible perception modules.

• Reproducibility: Another critical concern is the repro-
ducibility of research findings. The research community
must verify results and build upon previous work to
ensure reproducibility. However, the limited availability
of accessible repositories and source code in CP research
hampers this process. Providing open-source code and
datasets is highly encouraged to enable other researchers
to reproduce results and advance the field.

Despite these risks, the substantial potential benefits of CP
make it a valuable area for continued exploration. Overcoming
these challenges will require collaboration among researchers

from various disciplines, including computer vision, com-
munication technology, and vehicle engineering. Companies
and governments should actively work together to establish
standards for different V2X applications and develop com-
patible CP systems. Finally, embracing open-source practices
can significantly assist the research community in reproducing
results and focusing on new challenges.

X. CONCLUSION

In this paper, we systematically reviewed recent research
on Collaborative Perception (CP). We propose a struc-
tured taxonomy categorized by modality, collaboration type,
and task, encompassing object detection, tracking, motion
prediction, segmentation, lane detection, and multi-task or
task-agnostic pipelines. The review also examined advanced
techniques addressing real-world challenges, including pose
errors, latency, bandwidth limitations, communication inter-
ruptions, domain shifts, heterogeneity, and adversarial attacks.
Furthermore, we conducted a comparative analysis of these
approaches, highlighting their strengths and limitations, and
reviewed CP evaluation methods, ranging from real-world
datasets and synthetic datasets to experiments in real-world
and simulated environments. Key limitations in current
evaluation scenarios and metrics were identified, alongside
challenges and opportunities in hardware, software, and
evaluation methodologies.

A central motivation for CP is to address visual occlusions
and complement ego-perception systems. However, current
research often overlooks the necessity of ensuring compati-
bility between CP and ego-perception pipelines, as well as
the importance of triggers to selectively activate collaboration
under appropriate conditions. To assess CP’s effectiveness
in addressing visual occlusions, novel evaluation approaches
aligned with its goals are essential. This review underscores
the urgent need for large-scale CP datasets that reflect realistic
setups and diverse scenarios, which are pivotal for advancing
the field.

Future work must prioritize the development of appro-
priate evaluation methodologies and large-scale datasets. An
open-source co-simulation framework that represents realistic
real-world scenarios and a unified collaborative driving frame-
work encompassing the entire lifecycle, from research and
development to deployment and validation, could significantly
accelerate CP advancements and its real-world implementa-
tion. Bridging the deployment gap should remain a key focus
for future investigations.

Through this systematic review, we re-evaluate the concrete
role of CP in CAVs. Revolutionizing evaluation methods
and addressing deployment challenges will help transition CP
systems from lab prototypes to real-world applications. As
CP systems integrate communication, vehicular, and computer
vision technologies, their progress will require interdisci-
plinary collaboration to enable the practical deployment of
sophisticated CP solutions.

Given the time constraints of this survey, our literature col-
lection was finalized in March 2024, while our review focuses
on research published in the past five years (2019–2023).
However, our systematic review protocol and curated paper
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set provide a solid foundation for future researchers to extend
this study. By applying forward snowballing, researchers can
efficiently update the review with high-quality, cutting-edge
research beyond our collection period.
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Germany. His research interests include vehicle-to-
everything (V2X) communication, computer vision,
and cooperative perception. Specifically, he aims to

enhance the efficiency of V2X communication-based cooperative perception
by leveraging intermediate features from deep learning models.

Andreas Festag (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
Berlin Institute of Technology, Berlin, Germany,
in 2003. He has held research positions with the
Telecommunication Networks Group, Berlin Insti-
tute of Technology, the Heinrich-Hertz-Institute
(HHI), Berlin, NEC Laboratories, Heidelberg, Ger-
many, the Vodafone Chair Mobile Communication
Systems, Dresden University of Technology, Dres-
den, Germany, and the Fraunhofer Institute for
Transportation and Infrastructure Systems, Dresden.

He is currently a Professor with the Technische Hochschule Ingolstadt, Ger-
many, and is affiliated with the Center of Automotive Research on Integrated
Safety Systems and Measurement Area (CARISSMA). He is also the Deputy
Head of the Fraunhofer Application Center for “Connected Mobility and
Infrastructure, “Ingolstadt. His research interests include architecture, design,
and performance evaluation of wireless and mobile communication systems
and protocols, with an emphasis on vehicular communication and cooperative
intelligent transportation systems (C-ITS).

Antônio Augusto Fröhlich (Senior Member, IEEE)
received the Ph.D. degree in computer engineering
from the Technical University of Berlin, Germany.
He has coordinated several research and develop-
ment projects on embedded systems, including the
ALTATV Open, Free, Scalable Digital TV Platform,
the CIA2 research network on Smart Cities and the
Internet of Things, and the Smart Campus project at
UFSC. Significant contributions from these projects
materialized within the Brazilian Digital Television
System (SBTVD) and IoT technology for energy

distribution, smart cities, and precision agriculture. He is currently a Full
Professor with the Federal University of Santa Catarina (UFSC), Brazil, where
he has been leading the Software/Hardware Integration Laboratory (LISHA),
since 2001. He is a senior member of ACM and SBC.

Hannan Ejaz Keen received the B.Sc. degree
in electrical engineering from the University of
Engineering and Technology (UET), Lahore, Pak-
istan, the M.S. degree in electrical engineering
from Lahore University of Management Sci-
ences (LUMS), Lahore, and the Ph.D. degree
in autonomous off-road robotics from Robotics
Research Laboratory, RPTU Kaiserslautern-Landau,
Germany. He was a Researcher with the Robotics
Research Laboratory. He is currently a Senior
Researcher with the Team of Autonomous Systems,

XITASO GmbH. His research interests include sensor fusion, perception, and
mapping.

Alexey Vinel (Senior Member, IEEE) received the
Ph.D. degree from the Tampere University of Tech-
nology, Finland, in 2013. He was a Professor with
the University of Passau, Germany. Since 2015,
he has been a Professor with Halmstad University,
Sweden (now part-time). He is currently a Profes-
sor with Karlsruhe Institute of Technology (KIT),
Germany. His research interests include vehicular
communications and networking, cooperative auto-
mated and autonomous driving, and future smart
mobility solutions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


