KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring Semantic Clustering and Similarity Search for Heterogeneous Traffic Scenario Graphs

Mütsch, Ferdinand 1; Zipf, Maximilian 1,2; Polley, Nikolai ORCID iD icon 1,3; Zöllner, J. Marius 1,2,3
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 FZI Forschungszentrum Informatik (FZI)
3 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Scenario-based testing is an indispensable instrument for the comprehensive validation and verification of automated vehicles (AVs). However, finding a manageable and finite, yet representative subset of scenarios in a scalable, possibly unsupervised manner is notoriously challenging. Our work is meant to constitute a cornerstone to facilitate sample-efficient testing, while still capturing the diversity of relevant operational design domains (ODDs) and accounting for the "long tail" phenomenon in particular. To this end, we first propose an expressive and flexible heterogeneous, spatio-temporal graph model for representing traffic scenarios. Leveraging recent advances of graph neural networks (GNNs), we then propose a self-supervised method to learn a universal embedding space for scenario graphs that enables clustering and similarity search. In particular, we implement contrastive learning alongside a bootstrapping-based approach and evaluate their suitability for partitioning the scenario space. Experiments on the nuPlan dataset confirm the model's ability to capture semantics and thus group related scenarios in a meaningful way despite the absence of discrete class labels. ... mehr


Originalveröffentlichung
DOI: 10.1109/IAVVC61942.2025.11219473
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 30.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2527-9
KITopen-ID: 1000188266
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Erschienen in 2025 IEEE International Automated Vehicle Validation Conference (IAVVC), Baden-Baden, 30th September - 02nd October 2025
Veranstaltung IEEE International Automated Vehicle Validation Conference (IAVVC 2025), Baden-Baden, Deutschland, 30.09.2025 – 02.10.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–7
Schlagwörter Graph Neural Networks, Machine Learning
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page