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This article proves the completeness of an axiomatization for initial value problems (IVPs) with compact
initial conditions and compact time horizons for bounded open safety, open liveness and existence properties.
Completeness systematically reduces the proofs of these properties to a complete axiomatization for differential
equation invariants. This result unifies symbolic logic and numerical analysis by a computable procedure that
generates symbolic proofs with differential invariants for rigorous error bounds of numerical solutions to
polynomial initial value problems. The procedure is modular and works for all polynomial IVPs with rational
coeflicients and initial conditions and symbolic parameters constrained to compact sets. Furthermore, this
article discusses generalizations to IVPs with initial conditions/symbolic parameters that are not necessarily
constrained to compact sets, achieved through the derivation of fully symbolic axioms/proof-rules based on
the axiomatization.
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1 Introduction

Differential equations and their analysis play a fundamental role in cyber-physical systems (CPS)
correctness [3, 42]. Classically, the descriptive power of differential equations exceeds the analytic
power of differential equations [45], since solutions of differential equations are usually significantly
more complicated, not computable in closed form or less analyzable than the differential equations
themselves. That is why Henri Poincaré in 1881 called for the qualitative theory of differential
equations [46], i.e., the study of differential equations directly via their differential equations rather
than indirectly via their solutions. The logical foundations of the qualitative theory of differential
equation invariants have been discovered in a complete axiomatization of differential equation
invariants [45]. In that axiomatization, every true (semialgebraic) invariant of a (polynomial)
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differential equation system can be proved effectively in differential dynamic logic dL [40, 41], and
every false invariant can be disproved, thereby leading to a purely logic-based proof-producing
decision procedure. But in CPS applications, even just finding invariants is challenging. A CPS starts
at an initial state within an initial region and follows a differential equation, where the question is
whether it then always stays safe, which may still be far from an invariance question if the initial
and safe region are very different.

This article, thus, studies the logical foundations of (compact) Initial Value Problems (IVPs).
In a (compact) IVP a (polynomial) differential equation on a compact time interval (with rational
endpoints) starts from some initial value in a compact semialgebraic set. The (semi)algebraic shape
of those syntactic expressions ensures that the required concepts are definable in first-order logic
of real arithmetic (FOLR). IVPs are one of the most fundamental problems studied in numerical
analysis [34]. Unlike in numerical algorithms for classical IVPs [24], however, the initial state is
not given numerically as a single concrete vector of numbers such as (0, 4.2, —6), because those
are typically not known when analyzing all possible behavior of a CPS. Instead, compact IVPs
generalize classical IVPs by supporting a compact initial region from which the symbolic initial
state is selected nondeterministically.

This article proves the completeness of dL’s axiomatization [41, 45, 52] for bounded open safety,
open liveness and existence properties of compact IVPs such that every true such property can be
proved. Moreover, these completeness theorems are effective, i.e., a direct computable procedure
produces the dL proofs based on dL’s effective axiomatization of differential equation invariants
[45]. In order to achieve completeness and thereby complete Henri Poincaré’s qualitative theory of
differential equations for these properties of compact IVPs, this article will do something super-
ficially frivolous: the completeness proofs will use solutions of IVPs, but ultimately of symbolic
IVPs and only to guide the proofs of the required invariance properties of the IVPs. Besides, these
solutions used for the guidance of the proofs will be approximate solutions only, not true solutions.
And, indeed, Henri Poincaré was still correct that both the true solution and their approximations
are more complicated than the IVP, and that the indirect symbolic invariance proofs that this
article’s procedure constructs are both simpler and the key to the complete theory of IVPs. In
fact, one of the hard parts will be the need to prove that sufficient control can be exerted over the
accumulating approximation errors to provide rigorous symbolic proofs with sufficiently small
errors to justify every true bounded open safety, open liveness and existence property of a compact
IVP.

While this article and its results are proof-theoretical in nature, they can also be viewed through
a practically motivated angle. The problem of reachability analysis for ODEs and hybrid dynamical
systems over a compact time horizon is an important area of study in the safety verification of CPS
[3, 42], particularly for bounded model checking [25]. Consequently, practical tools [15, 16, 31]
have been developed to tackle this problem, essentially computing interval enclosures of compact
IVPs. Such procedures are all inherently based on numerical approximation techniques in contrast
to the deductive, symbolic proof approach offered by dL.

In safety-critical applications however, the trustworthiness of such numerical approaches is
challenging to justify rigorously. Even when the numerical approximations computed by such
numerical procedures are mathematically rigorous (which is itself difficult to fully justify in a
trustworthy fashion), subtle errors can still arise in the implementation of such algorithms. Even
the verification of floating-point arithmetic has proven to be intricate and non-trivial [9].

Deductive approaches based on symbolic proofs in contrast are much more trustworthy. Proper-
ties of dynamical systems are proved by applying a sequence of sound proof rules based on a small
set of sound axioms [23]. Certifying the correctness of such proofs only relies upon a small trusted
core of the proof checker [8]. Such deductive approaches are more symbolic in nature, seemingly
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orthogonal to numerical approximations and less capable in verifying inherently numerical proper-
ties of compact IVPs. On the contrary, this article crucially shows that this is not the case, numerical
approximations and symbolic logic can be harmoniously integrated to obtain the best of both
worlds—symbolically proving properties of dynamical systems using numerical approximations.
Thus, the desired properties can be proven deductively in a trustworthy manner accompanied by a
certifying proof, while not losing the computational capabilities of using numerical approximations.
This article thereby unifies computation and deduction for compact IVPs.

All in all, this article explores the proof theory of compact IVPs, providing complete reasoning
principles for bounded open safety, open liveness and existence properties for compact IVPs by
drawing upon both numerical algorithms and deductive verification techniques.

The following presents an overview of the main results established in this article, first defining
the basic notions needed. Let

X' = f(x)
x(0) € [C] cR"

be an arbitrary IVP on a compact time horizon [#,, T] with rational endpoints, each component of
f(x) =(fi(x),..., fu(x)) is a rational polynomial in the (n-dimensional vectorial) variable x and
[C] is a non-empty compact subset of R" defined via the FOLg formula C(x) (i.e., [C] = {x € R" |
R |= C(x)}). The main contributions of the article concern the completeness of fragments of dL, a
brief explanation of the necessary fragment is given here and a more complete account of dL is
provided in Section 3.1.

The fragments this article is concerned with comprises of dL formulas [38] of the following form,
where P,Q € FOLg and #,, T € Q.

SAFETY(P,Q) = (P At =ty — [x' = f(x),t =1&t < T]Q)
LIVENESS(P,Q) = (P At =1ty — (x = f(x),t' = 1&t < T)Q)

where the modal connectives [x" = f(x),t’ = 1&t < T]Q and (x" = f(x),t’ = 1&t < T)Q are exten-
sions of the classic modal operators OQ, ¢Q to ODEs. Intuitively, [x" = f(x),t’ = 1&t < T]Q means
“for every initial value, for all times ¢ € [0, T] following the vector field x” = f(x), ¢ =1, Q is true”
and likewise for the diamond modality. Such modal formulas express safety/liveness properties of
the flow induced by the differential equation x” = f(x). If ¢(x, t) denotes the corresponding flow
function! starting at t = ¢, (i.e., ¢(x, ty) = x), then the formulas above correspond exactly to the
following formulas that quantify over times along the flow:

SAFETY(P,Q) < (P(x) =Vt € [1,T] Q(p(x.1)))
LIVENESS(P,Q) < (P(x) — 3t € [to, T] Q(¢(x,1)))

i.e., the first formula expresses the safety property that every trajectory starting in the set charac-
terized by P evolving on the time horizon [#;, T] remains in the safety region characterized by Q.
Dually, the second formula expresses the liveness property that every trajectory starting in P can
reach the target set Q by evolving on [y, T]. This article primarily concerns open properties where
the post-condition Q defines an open subset (i.e., [Q] is topologically open). It is worth noting that
liveness classically corresponds to the negated safety of the complement, i.e., the following holds

—~SAFETY(P,=Q) < LIVENESS(P,Q)

Thus, (unconditional) completeness of safety properties is equivalent to the (unconditional) com-
pleteness of liveness properties. However, this equivalence does not hold between open properties

IThe flow is assumed to be well-defined here for brevity, the complication of finite time blow-up is treated in Section 5.
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(i.e., Q is topologically open) as the complement of a non-trivial open set is no longer open. The
following main results are established in this article:

(1) Completeness for convergence: Suppose the (compact) IVP admits a solution/flow ¢(x, t)
on the domain [C] X [t, T] (i.e., 9 (x, ty) = x, ¢’ (x,£) = f(@(x, ) forall (x, 1) € [C] X [, T]),
let (pn)n € C°([C] X [to, T], R™) be any sequence of definable approximants” that converges
uniformly to ¢(x, t) in the space C°([C] X [to, T],R"). For all ¢ € Q*, one can computably
find some k € N such that

Cx)Ax=xg At =ty — [x' = f(x),t' =1&t < T] ||lx — p(xo, 1)||? < €2

is a valid formula of dL where x, x¢, t are symbolic variables. In fact, we will show that this can
be syntactically derived in dL’s axiomatization. This formula is equivalent to the following
sentence involving the true flow ¢ of the IVP as a function symbol

Vo € [C] Vt € [t0, T] (llp(xo, 1) = prc(xo, DII* < &%)

ie., px is an approximant of uniform error at most ¢ for the true flow ¢(x, t) on [C] X [t, T]. In
other words, this formula along with its syntactic derivation provides a proof of the accuracy
of the approximant py. This establishes that dL is complete for convergence. i.e., if a sequence
(pn)n RimtaN ¢ converges in C°([C] x [ty, T], R™), then this convergence is provable in dL,
succinctly denoted as the following:

E (Pn)n == ¢ ad F (Pn)n = @

In particular, the definable approximants can be taken to be outputs of numerical solvers
applied on the IVP, obtained via standard interpolation procedures (e.g., polynomials, splines).
The above result shows that dL is capable of symbolically proving the accuracy of numerical
solvers. In contrast to ODE solvers that rely upon rigorous numerics using one specific
formally verified algorithm [31, 32], this result rather gives a procedure that decides if any
such numerical algorithm is correct from its outputs, along with supporting formal proofs.
Crucially this procedure does not rely on any particular ODE solver to be correct, it rather
takes outputs of ODE solvers as inputs (represented by the sequence of approximants) and
returns a certificate of correctness for the accuracy of the approximants in the form of a proof
in dL.

(2) Completeness of (compact) IVPs: This article proves completeness of dL’s axiomatization
for bounded open safety, open liveness and existence properties of compact IVPs:
— Completeness for bounded open safety: Let O(x) be a FOLR formula that characterizes

a bounded open subset of R”. dL is complete for formulas of the form

C(x) At =1ty — [x = f(x),t =1&t < T]O(x)

i.e., if all flows of the IVP starting anywhere in [C] always remains within the set of safe
states characterized by O(x) on the time horizon [ty, T], then this is provable in dL.

— Completeness for open liveness: Let O(x) be a FOLg formula that characterizes an
open subset of R” (not necessarily bounded as stronger assumptions are placed on the flow
instead), and suppose that the true flow ¢ : [C] X [tp, T] — R" is well-defined (i.e., does
not exhibit finite time blow-up on [ty, T])>. Then dL is complete for formulas of the form

C(x) At =ty > (x' = f(x),t' =1&t < T)O(x)

Definable functions in FOLR, which is exactly when each p,, is a semialgebraic function over Q. In particular, this includes
polynomials in Q[x, ¢], see Definition 4.5 for details.
3Such an assumption also suffices for arbitrary open safety properties.
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i.e, if a target state characterized by O(x) is reachable from starting anywhere in [C] in
the time horizon [t,, T] by following the IVP, then this is provable in dL.
— Completeness for existence: dL is complete for formulas of the form

Clx)Ant=ty > (x' =f(x),t' =1)t>T

i.e., if the solution exists for time at least ¢ > T for all initial conditions from [C], then this
is provable in dL.
By considering the case where C(x) = x = x defines a singleton, corresponding completeness
results for IVPs with fixed initial conditions are obtained as a special case.

(3) Axioms/proof-rules for symbolic IVPs: In proving completeness of existence for IVPs, fun-
damental symbolic axioms/proof-rules (Theorem 5.7) are derived for deductive verification of
symbolic IVPs on compact time horizons without placing constraints on the initial conditions.
Establishing symbolic derivations of the classical Picard-Lindel6f theorem, the intermediate
value theorem and the property that the solution to an IVP exists on some time horizon if and
only if the solution has no finite time blow-up on that time horizon. Due to the fundamental
nature of such axioms/proof-rules [54], their derivations are of independent interest.

2 Related Work

The results presented in this article build upon the proof theory of dynamical systems using the
framework of differential dynamic logic (dL) [40, 45, 50, 52]. This article establishes the first
complete axiomatization for compact IVPs, showing that all true (bounded) open properties can
be deduced completely from symbolic axioms/proof rules, in the spirit of Poincaré’s qualitative
theory of differential equations [46]. Consequently, it is possible to deductively prove properties
of compact IVPs with trustworthy symbolic logic whilst retaining the computational capabilities
of numerical techniques. The restriction to open properties is motivated by the fact that general
properties of solutions to IVPs quickly lead to deep open problems such as the decidability of the
real exponential field [36] (x” = x, x(0) = 1 defines the exponential function), the bounded Skolem
problem as discussed below, or are undecidable in general [14, 26].

Computability of compact IVPs: The computability of IVPs have been studied extensively
[11-13, 27, 47], including the computability of the flow of compact IVPs [29] and deep results
establishing the universality of ODEs with polynomial vector fields [14], highlighting the rich
complexity of polynomial IVPs. More recent works have also shown interesting connections
between computable ordinals and the solutions of discontinuous IVPs [10].

In the specific case of (continuous) linear dynamical systems, many deep and fundamental results
have been established in earlier works [1, 17, 18, 20] concerning the (non-)computability of various
properties such as: invariant synthesis, hyperplane reachability, recurrent reachability, and so on.
The computability of these properties are challenging and often rely upon open problems in number
theory, highlighting their intricacy.

In the context of IVP verification, such computability results can be viewed as the theoretical
foundation of numerical techniques. Indeed, the statement that arbitrarily accurate numerical
approximations can be computed for compact IVPs is a restatement of the result that solutions to
compact IVPs are type-two computable (see Section 3.2 for details). However, the trustworthiness
of such approaches is much more delicate and it is difficult to formalize requirements on the
trustworthiness of numerical algorithms purely on the computability level. Such questions are
more naturally expressed as provability questions, which is exactly what this article addresses.

In the same way that computability is the theoretical foundation for numerical techniques, prov-
ability is the theoretical foundation for symbolic deductive techniques. Such provability properties
are generally more fine-grained and delicate compared with computability properties. As dL is
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computably axiomatized, any property it is complete for is trivially computably enumerable by
searching through all possible proofs, while the logical completeness of computably enumerable
properties is far from trivial. For example, the decidability of differential invariants was first estab-
lished [35] and its complete axiomatization was only discovered [44, 45] later. Numerical techniques
are often viewed to be more scalable than deductive techniques for IVPs, but symbolic proofs enjoy
a higher level of rigor and reliability.

Nonetheless, the completeness results presented in this article precisely bridge this gap, showing
that in the context of (open) properties of compact IVPs, provability and computability notions
“coincide” - numerical approximations can be carried out entirely deductively in dL with symbolic
proofs. There is no fundamental distinction between numerical and symbolic computations for
compact IVPs. Properties that can be verified by numerical techniques with direct computations
can also be verified deductively with logic, resulting in trustworthy proofs of such properties
while enjoying the generality of numerical techniques. Furthermore, building upon works on the
computability of IVPs [26], this article establishes a direct computable correspondence between
valid (open) properties of compact IVPs and their proofs in dL.

Proof theory of compact IVPs: The completeness results presented in this article applies to all
(open) properties for compact IVPs, and does so in a computable fashion. In contrast to the results
established in this article, earlier works either only prove relative completeness with some non-
computable oracle [39, 40], exact completeness that cannot handle compact IVPs which are sensitive
to their initial conditions [45], or does not achieve general completeness results [50, 52]. To the
best of our knowledge, this is the first result that establishes the provability of such properties of
compact IVPs.

Concerning relative completeness, dL has been shown to be complete relative to its continuous
fragment [38] and the continuous fragment of dL has been shown to be complete relative to its
discrete fragment by leveraging additional axioms on Euler discretizations [39]. However, since
the discrete fragment of dL is non-computable, such results do not yield exact and computable
completeness results.

For exact (and computable) completeness, earlier works on the proof theory of ODEs have
identified a complete axiomatization for differential invariants [44, 45], i.e., a semialgebraic region
is invariant under the flow of the given ODE if and only if it is provably invariant in the logic dL.
However, in the verification of safety properties of IVPs, appropriate invariants still need to be
found. The synthesis of suitable invariants to prove safety properties of continuous dynamical
systems is a challenging problem in general [51], even in the linear case this is intimately related
to open problems in transcendental number theory [1]. This article in particular also establishes
a reduction of “continuous dependence on initial conditions” of flows to a suitable differential
invariant (Lemma 4.11), which could be viewed as an invariant synthesis result. Generalizing upon
this, a complete axiomatization is then established for general safety properties of IVPs (Theorem
5.11) under topological assumptions which does not assume the existence of some suitable invariant.
Furthermore, this article also prove completeness results for liveness (Theorem 5.13) and existence
(Theorem 5.12) properties.

In addition, this article also provides novel syntactic derivations of classical theorems in dL that
are fundamental to the study of IVPs, allowing for the deductive verification of general symbolic
IVPs beyond compact IVPs. In contrast with earlier works [50, 52], these axioms/proof rules focus
on the case where the IVP is considered on a compact time horizon and crucially does not assume
global existence of solutions. This situation is much more delicate as solutions of IVPs might exhibit
finite time blow-ups. The derivations themselves are of independent interest. Not only are the
axioms/proof rules themselves fundamental in the study of IVPs, such derivations also improve
upon earlier works (e.g., for IVT [43]) where soundness was proven but no derivation was known.
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The Continuous Skolem Problem and limitations: The Continuous Skolem Problem is a central
problem in the theory of continuous dynamical systems [5]. Given an IVP x’ = f(x) with x(0) =
xo € Q" and a vector u € Q", the Continuous Skolem Problem asks if the solution x(t) reaches
the hyperplane defined by w. i.e., if there exists some ¢t > 0 such that ux(t) = 0. The Bounded
Continuous Skolem problem [5, Open Problem 17] asks if such a t exists in some pre-determined
interval [0,T] with T € Q*. The decidability of both problems have been long-standing open
problems, with partial progress being made in the case where the ODE is linear, i.e., x’ = Ax
for A € Q™" [18]. In the linear case, the Bounded Continuous Skolem problem was shown to
be decidable assuming Schanuel’s conjecture [18, Theorem 7], a unifying conjecture in number
theory which implies the decidability of the real exponential field [36]. Such problems have also
been studied when f(x) is allowed to be a polynomial [29]. In this setting, the decidability of the
Bounded Continuous Skolem problem remains open. In the context of this article, such problems
place inherent restrictions on possible generalizations of the new results presented here. The results
established can be viewed as the form of “(compact, (bounded) open)”, where the initial condition
is required to come from a compact set and the post-condition is required to be (bounded) open.
A natural generalization is to consider “(compact, compact)” where post-conditions are compact
semialgebraic sets. However, such completeness results (if possible) are at least as hard as the
Bounded Continuous Skolem problem for polynomial dynamical systems. This is because the
Bounded Continuous Skolem problem is co-computably enumerable (co-c.e.):

3t €[0,T] u'x(t) =0 & min [u'x(¢)]=0
te[0,T]

and minima of computable functions over compact sets are computable (Theorem 3.9), therefore
the second relation is co-c.e. At the same time, reachability can be naturally formulated in dL via:

x=xAt=0— (x' =f(x),t' =1&t < T)ulx =0

Thus, if completeness results of the form "(compact, compact)" hold, then the Bounded Continuous
Skolem problem would also be c.e. by searching through all possible proofs in dL (as dL is computably
axiomatized [39]) while bounding the hyperplane®, implying the decidability of the Bounded
Continuous Skolem problem (independent of Schanuel’s conjecture). Hence, generalizations of
the results in this article by relaxing the topological constraints on the post-conditions are likely
challenging.

Reachability computation of dynamical systems: The problem of computing interval enclo-
sures for hybrid/continuous dynamical systems shows up frequently in the safety verification of
CPS. Practical implementations [15, 16, 21, 31, 32] exist to carry out such computations, based
on numerical approximations. The correctness of these depends on both the correctness of the
underlying mathematical theory of such approximations and the correctness of the implementation,
both of which are prone to errors. Attempts in improving the reliability of such procedures focus
on the formal verification of such algorithms (e.g., [31, 32, 37] in the continuous case), where the
numerical algorithm implemented is formally verified to be mathematically sound. These formal
verifications are inherently dependent on the specific algorithm used, and modifications to the
algorithm require corresponding complex modifications to the proof of correctness, in addition to
the possibility of implementation errors. The lack of compositionality [56, Page 325] implies that
it is non-trivial to combine different algorithms harmoniously. This is in particular highlighted
by the fact that, to the best of our knowledge, current algorithms for computing the interval
enclosure of hybrid dynamical systems [2, 7, 19] are in theory mathematically rigorous but have

*While u” x = 0 does not define a compact set, it can be modified to the compact set u”x = 0 A ||x||> < R for R € Q*.If the
former holds, then the latter holds for all sufficiently large R, resulting in a c.e. procedure by searching through all R € Q*.
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not been formally verified. More fundamentally, such approaches are providing formal verifications
of the algorithm used to compute the approximations, inducing potential error when transforming
from the abstract algorithm verified to the actual implementation executed. This is in contrast to
logic-based deductive approaches where every verified property has a certifying syntactic proof
which can be independently checked.

The results presented in this article provide a complementary possibility through dL: Such
verifications can all be carried out deductively with sound axioms/proof rules, therefore the
correctness of the approximations can be trusted as certified by their corresponding symbolic
proofs. Numerical approximations can be computed deductively, ending up with compositional
proofs in dL that can be used in symbolic proofs of safety of the overall hybrid dynamical system.
In particular, the completeness results (e.g., Theorem 4.21) are agnostic to how the numerical
approximants were computed. Therefore potentially unreliable approximation algorithms can be
used in computations as the computed approximants can always be symbolically proven to be
accurate if they truly are accurate. In contrast with the formal verification of numerical algorithms,
the deductive approach certifies the correctness of outputs with corresponding proofs that can be
checked with proof checkers such as KeYmaera X [8, 23]. The aim of the article is not to argue for
the superiority of symbolic techniques over numerical ones, but rather that such approaches are in
fact intimately related and it is possible to simultaneously achieve the strengths of both approaches
at once as shown by the completeness results.

3 Preliminaries

We give a self-contained overview of the computable analysis and differential dynamic logic (dL)
needed for the article. More details on computable analysis, computability theory [49, 55] and dL
[38] can be found in the corresponding references.

3.1 Differential Dynamic Logic

This section provides a brief review of dL and its axiomatization, fixing some notational conventions
along the way. This article focuses on the continuous fragment of dL. Intuitively, dL extends classical
dynamic logic (which itself extends modal logic) where every ODE x” = f(x) has corresponding
modal operators (x’ = f(x)), [x" = f(x)]. The modal formula (x" = f(x))¢ indicates that by flow-
ing along the ODE x’ = f(x), there exists some time for which ¢ is true. Similarly, [x" = f(x)]¢
indicates that ¢ is always true following the flow of x" = f(x).

3.1.1  Syntax. Terms in dL are formed by the following grammar, where V denotes the set of all
variables, x € V is a variable and ¢ € Q is a rational constant. Equivalently, terms are polynomials
over V with rational coefficients °.

p.gu=xlc|lp+qlp-q

dL formulas have the following grammar, where ~ € {=, #, >, >, <, <} is a comparison relation
and « is a system of differential equations (dL allows for a to be from the more general class of
hybrid programs [38], which is not needed here)

oY =p~qloAYlo V|| Vxe|Ixe |{@)e | [a]e
aun=--- | x' = f(x)&0

SPrior works [45] make it possible to consider dL with an expanded language that includes familiar mathematical functions
such as exp, sin, cos. Such expansions will not be considered in this article due to the subtle concerns regarding computability
of such expanded functions.
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In this article, we will only be dealing with the case « = x” = f(x)&Q, where x’ = f(x) represents
an autonomous system of ODEs x| = fi(x),...,x;, = fo(x) and x = (x1,...,x,) is understood to
be vectorial. Q here refers to some dL formula known as the domain constraint. Intuitively, this
restricts the region for which the ODE x” = f(x) is allowed to evolve. In contrast with some of the
earlier works [45, 52], the domain constraint Q is in general allowed to be any dL formula, resulting
in “rich-test” dL [38, 40, 41], but is usually a formula of real arithmetic (FOLg).

The following conventions are used throughout this article. For terms and formulas that appear
in contexts involving ODEs x” = f(x), it is sometimes needed to restrict the variables that they can
refer to. Such free variables will be indicated by explicitly writing them as arguments. For example,
p() means that the term p cannot refer to any bound variable of the ODE x’ = f(x). In contrast,
P(x) (or just P) indicates that all the variables may be referred to as free variables. Such variable
dependencies can be made formal and rigorous through dL’s uniform substitution calculus [41].

3.1.2 Semantics. A state w is a mapping « : V — R that assigns a value to every variable. We
denote S as the set of all such states. For a term p, its semantics in state w € S written as [p]
is the real value obtained by evaluating the polynomial p at the state w. For a dL formula ¢, its
semantics [¢] is defined to be the set of all states @ € S such that o |= ¢, i.e the formula ¢ is true
in w. The semantics of first-logical connectives are defined as expected, e.g., [¢ V ¢] = [¢] U [¥].
For a = x" = f(x)&Q, the semantics for [a]¢ and («)¢ are defined as follows. For the given ODE
x" = f(x) with domain constraint Q and any state w € S, let ¥, : [0,T) — S be the solution to
x" = f(x) extended maximally to the right with 0 < T < co and ¥, (0) = w. We then have:

w € [[a]e] iff forall 0 < 7 < T such that ¥, (&) E Q forall 0 < & < 7, we have ¥, (1) E ¢
w € [{a)p] iff there exists some 0 < 7 < T such that ¥,(¢) EQforall0 < ¢ <rand ¥,(7) E ¢

Intuitively, the formula [a] ¢ expresses a safety property, that ¢ holds along all flows of the ODE
x" = f(x) that remain inside the domain constraint defined by the dL formula Q. Similarly, the
formula ()¢ expresses a liveness property, that there is some flow along x” = f(x) staying within
Q eventually reaching a state where ¢ is true.

Finally, a formula ¢ is said to be valid if [¢] = S, i.e., it is true in all states. For FOLg formulas® I and
Q, we say I is a differential invariant of the ODE x" = f(x)&Q if the formula I — [x" = f(x)&Q]I
is valid, which is equivalent to [I] € [[x’ = f(x)&Q]I] as sets of states. i.e., Starting from any state
o € [I] and evolving along the ODE x’ = f(x) while remaining within the domain constraint Q
necessarily implies that the state remains in I, thus I is an invariant of the system x” = f(x)&Q.
One important fact used throughout this article is that dL is (effectively) complete for differential
invariants in FOLg [45]. In other words, if I is a differential invariant of x" = f(x)&Q, then one
can effectively find a syntactic proof of I — [x" = f(x)&Q]I (Theorem 3.2).

Example 3.1 (Differential Invariant). The FOLg formula I(x,y) = x* + y* = 1 is a differential
invariant of the ODE x” = —y,y’ = x representing circular motion. i.e., the following dL formula is
valid

ryt=1—> ¥ =-yy =x|x*+ =1
By Theorem 3.2, it then follows that this formula is furthermore provable in dL.

3.1.3  Proof Calculus. The derivations in this article are presented in a standard, classical sequent
calculus with the usual rules for manipulating logical connectives and sequents. The semantics
of a sequent I + ¢ is equivalent to the formula (/\yer ) — ¢, and the sequent is called valid if

®This definition extends to general dL formulas, but computable completeness of differential invariance is restricted to
FOLg.
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its corresponding formula is valid. For a sequent T + ¢, formulas I' are called antecedents, and
¢ the succedent. Completed proof branches are marked with * in a sequent proof, and since R
has a decidable theory via quantifier elimination [53], statements that follow from real arithmetic
are proven with the rule r. An axiom (schema) is called sound iff all of its instances are valid,
and a proof rule is sound if the validity of all its premises entail the validity of its conclusion.
Axioms and proof rules are derivable if they can be proven from dL axioms and proof rules via the
aforementioned sequent calculus. Derivable axioms are automatically sound due to the soundness
of dL’s axiomatization [38, 45].

This article uses a fragment of the base axiomatization of dL [40] (focusing on the continuous case)
along with an extended axiomatization developed in prior works used to handle ODE invariants
and liveness properties [45, 52]. A complete list of the axioms used is provided in Appendix A.

An important feature of the axiomatization used is that it is complete for all differential invariants
[45]. Since this will be used extensively throughout the article, this fact is explicitly stated below.

THEOREM 3.2 (COMPLETENESS OF DIFFERENTIAL INVARIANTS [45]). dL is complete for differential
invariants. For all FOLg formulas I, Q and ODE x” = f(x), if the dL formula

I— [x" = f(x)&QII
is valid, then one can effectively find a proof of it in dL. We will make use of this result with the
following derived proof rule:

dinv TS v = F&0IT (IfI — [x" = f(x)&Q]I is valid)

Theorem 3.2 will be utilized frequently to obtain syntactic proofs by first reducing the goals down
to some differential invariant, and then proving the validity of this invariant semantically. This
completeness is effective, so computability properties are preserved by appealing to Theorem 3.2.

3.2 Computability and Computable Analysis

The completeness properties established in this article are effective. Not only are valid formulas
provable, there is a direct (computable) correspondence between the valid formulas and their proofs.
i.e., there is a computable algorithm taking valid formulas as inputs and outputting corresponding
proofs in dL.” To achieve the desired completeness results effectively, it is necessary to utilize
the computability-theoretic properties of IVPs, which are framed in the language of computable
analysis. The following provides the required background on computable analysis, under the
standard framework of Type Two Theory of Effectivity (TTE) [55].

Definition 3.3 (Name). Let x € R be any real number, a name for x is a sequence of rationals
(gi)i € Q such that
Vi eN (Jgi—x| <279
This definition naturally extends to R” by requiring names to reside in Q" and using the standard
Euclidean norm. For x € R”, we denote the set of all names of x as I'(x).

For a fixed real number x € R", one should think of its names as the “descriptions” of x. We then
define x to be computable if it exhibits a computable description.

Definition 3.4 (Type-Two Computable Number). Let x € R" be any real number, x is Type-Two
computable if it has a computable name. i.e., there is some computable sequence (q;); € Q" that is
a name for x.

7As dL’s axiomatization is effective, completeness automatically implies such an algorithm by searching through all proofs.
However, this article establishes a direct correspondence rather than resorting to the brute-force search.
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Intuitively, this means that a real x € R" is (Type-Two)computable if and only if it can be
computably approximated by a sequence of vectors of rational numbers. From now on, whenever
we refer to the computability of numbers in R", we mean Type-Two computability.

Definition 3.5. An oracle machine M is a Turing machine that allows for an additional one-way
read-only input tape that represents some input oracle used. The machine is allowed to read this
input tape up to arbitrary, but finite, lengths.

One can think of oracle machines as regular Turing machines but with some access to outside
information, namely the “oracle” input tape. The machine may use any finite amount of information
on this tape. For an oracle machine M, and an infinite binary sequence p € 2, MP represents the
oracle machine M with oracle p. By standard encoding, we do not differentiate between Q“ and 2¢.

Having defined a notion of computability on individual elements of R", the following definition
provides a notion of computability on the closed subsets of R”".

Definition 3.6 ([55, Corollary 5.1.8]). A non-empty closed subset E C R" is computable if its
corresponding distance function x + inf e [|x — y| is computable.

It can be easily seen that every FOLg definable closed set is computable.

THEOREM 3.7. IfE C R" is a closed subset defined by the FOLg formula ¢(x), then it is a computable
closed set and its distance function is computable uniformly in ¢(x).

Proor. Let d : R" — R denote the distance function for the closed set E = [¢] defined via
d(x) = inf ||lx -y
yeE

It suffices to show that the relation d(q) < r is uniformly decidable for g € Q",r € Q*, which is
true as this relation can be defined by the following FOLg formula :

¥(q.r) =3yl Ally —qlI* <r?)
hence decidability follows as R has a decidable theory, proving d to be computable. O

The following definition relates the use of oracle machines to computable functions in TTE.

Definition 3.8 (Computable Function). A function f : E C R” — R™ with E a computable closed
set is computable if there is some oracle machine M such that

Ve EVp €T(x) (MP(i); € T(f(x)))
i.e., M maps names of x to names of f(x) for all x € E.

Intuitively, this means that a function f : R” — R™ is computable if and only if there is some
computable algorithm such that for every x € R”, the algorithm can output more and more accurate
approximations of output f(x) given more and more accurate approximations of input x. By this
definition, any Type-Two computable function is necessarily continuous, since oracle machines
can only read a finite amount of its oracle before producing an output. In other words, for all
x € R, i € N, there is some corresponding j € N such that if f is provided with an approximation
of x accurate up to 27/, then the output is an approximation of f(x) accurate up to 27/, therefore f
is continuous. The standard functions sin(x), cos(x), x2, €%, - - - are all computable through their
Taylor expansions.

A useful result of computable analysis is that the classical extreme value theorem holds com-
putably [55, Corollary 6.2.5]. The following theorem states this for functions f : K ¢ R" — R™
with K a definable compact subset of R”, the proof is included for completeness.
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THEOREM 3.9 (COMPUTABLE EXTREME VALUE THEOREM [55, COROLLARY 6.2.5]). Let f : K —» R
be a computable function on the compact set K ¢ R" defined by some FOLgr formula ¢(x). Then
maxyex (f(x)) and minyek (f(x)) are uniformly computable in f, ¢(x).

PRrooOF. As K is definable and closed, it is a computable closed set. In addition, an upper bound
on the radius of K can be computed from ¢(x): search for R € Q* such that the FOLg formula
p(x) = |lx||* < R? is valid, hence a representation of the compact set K [55, Remark 5.2.3] is
computable from ¢(x). Consequently, a representation of the image of K under the computable
function f, f(K), is computable from ¢(x) as well. The computability of maxyex f(x) then follows
from the computability of maximums on compact sets [55, Lemma 5.2.6] applied to f(K). ]

4 Completeness under Domain Constraints

This section establishes the completeness of dL’s axiomatization for convergence with additional
assumptions on domain constraints. To accomplish this, we will reduce the problem of proving
error bounds for approximants of compact IVPs to differential invariance questions, which dL
is effectively complete for [45]. Intuitively, this reduction is achieved by proving a syntactically
provable version of “continuous dependence on initial data” for ODEs in dL. Establishing that the
flow function induced by the ODE, if well-defined on a compact domain, is uniformly continuous.
Consequently, if an approximant starts off close to the initial condition, then it will remain close to
the true flow in the supremum norm for all times in the bounded interval. Thus, proofs of future
error bounds of approximants provably reduce to arithmetic questions at the initial time t,.

However, since polynomial vector fields are generally nonlinear and therefore do not exhibit
global Lipschitz constants, it is tricky to obtain explicit and computable bounds in this reduction
process. As such, this section will first assume the presence of some bounded domain constraint,
which essentially reduces to the case of globally Lipschitz vector fields since polynomials are locally
Lipschitz. Section 5.2 improves upon this, establishing that such assumptions are not necessary and
can be removed, proving completeness for convergence without any additional assumptions.

4.1 Compact IVPs and Approximants

The following definitions fix standard notations that will be used throughout this article.

Definition 4.1 (Notation). The following notation will be used throughout the article.

—R*, Q" denotes the set of positive real/rational numbers, respectively.

— x always denotes some vectorial variable x = (xy, ..., xp).

— For a ring R, denote its ring of polynomials in the variables xy, . .., x, as R[xy, ..., xp]. This
article only considers R € {Q,R}. By a slight abuse of notation, elements p(x) € R[x] are
also identified with the corresponding polynomial p : R* — R.

— By a rational polynomial, we mean some element of Q[x] where x is understood to be
vectorial.

— |Ix|| for x € R™ always refers to the Euclidean norm, and || f|| always refers to the sup norm
for functions f. We sometimes write || f|| , = sup,.c4 ||f(x)|| to emphasize that the supremum
norm of f is taken on the set A, which is FOLr definable when A is FOLg definable.

—Ck([a,b],R") for k € N denotes the set of functions from the closed interval [a, b] to R"
with k continuous derivatives on [a, b]. For K a compact Hausdorff space, C°(K,R") denotes
the space of continuous functions with the usual supremum norm || f||x = sup,.cx [f(X)]l-
When the co-domain is clear, these are also abbreviated as C*([a, b]), C°(K).

— IQ denotes the set of all compact intervals with rational endpoints, i.e.,

IQ ={[a,b]l :a<b,abeQ}
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—For x € R", R € R, write B[ x, R] for the closed ball of radius R around x, and B(x, R) for the
open ball. When x, R are definable in dL, y € B[x, R] and y € B(x, R) are definable via
y € B[x,R] & |ly-x|*<R?
y € B(x,R) & |ly-x|* <R
For a set A C R", write B[ A, R] (and similarly B(A, R)) for |, B[x, R].
— FOLg denotes the set of all first-order formulas in the language of real closed fields. In this
article, definable always refers to FOLy definable unless explicitly stated otherwise. As real
closed fields admit quantifier elimination [53], we may assume without loss of generality that

every element of FOLg is quantifier-free. Finally, for formulas ¢(x) € FOLg, [¢] denotes the
set defined by the formula in R. i.e.,:

[el ={y e R" |R F o(v)}

which coincides with the semantics of ¢ in dL.
Definition 4.2 (Compact IVP). A compact initial value problem (IVP) is a triple
(f(x),C(x), [t0, T]) € Q*[x] X FOLg X IQ

where [C(x)] is a non-empty compact set. The variable x is often suppressed for brevity, and [C]
refers to [C(x)]. Such a triple represents the following IVPs on [t,, T]:

x' = f(x)
X(to) =Xy € [[C]]
That is, the triple defines a collection of IVPs on some compact time horizon [ty, T] where
the initial conditions are constrained to the compact set [C]. The flow ¢ : [C] X [#,T] — R"

of the compact IVP (if it exists) is the flow of the vector field x’ = f(x) starting at t = 1. i.e.,
o(x, 1) =x,¢"(x, 1) = f(p(x,1)) for all (x,t) € [C] x [, T].

Since singletons are compact, the standard notion of IVPs with a fixed initial condition x(0) =
xo € Q" is a special case of Definition 4.2 where C(x) = x = x.

Remark 4.3. In practice, many IVPs contain parameters. i.e., x' = f(x, a), where the vectorial
variable a denotes the parameters used. It is always possible to rewrite such IVPs into:

x' = f(x,a)
a=0
x(ty) = x9,a(ty) =a
which forms a compact IVP when the parameters a are constrained to a compact set.
Example 4.4 (Moore—Greitzer Jet Engine Model). The Moore-Greitzer model of a jet engine [4, 48]
for scalars u, v is given by
W =-v—-15u"-0.50" - 0.5
v =3u-vu
with initial conditions u(0) > 0.6 A v(0) > 0.9 A u(0) + v(0) — 2 < 0, where u, v measures the mass
flow and the pressure rise respectively. Since the initial conditions define a (semialgebraic) compact

subset of R?, for any T € Q*, we may express this model on the time horizon [0, T] as a compact
IVP (f(u,0), A(u,0), [0, T]) where:

— f(u,0) = (=0 — 1.5u% - 0.5u% — 0.5, 3u — 0).
—ANu,0)=u>209A0=209Au+v—-2<0
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This model will serve as a running example through this article, culminating in a proof of the
error bound of a numerically computed approximation to the true flow in Example 5.4. All proofs
concerning the Moore-Greitzer model have been verified using KeYmaera X®.

The first step is to establish a suitable representation for approximants to solutions of compact
IVPs. In this article, such approximants are taken to be functions definable in FOLg, which are also
the semialgebraic functions over Q [6]. The following definition restricts to the particular case
of definable functions with domain being a subset of R**! and co-domain R” for n > 1. This is
because the approximants represent approximations to the flow induced by compact IVPs, as such,
they will always be functions from R™*! (n space variables, 1 time variable) to R".

Definition 4.5 (FOLg Definable Functions). A function f : A € R**! — R" with definable domain
A is definable if there exists a FOLg formula (x, t, y) such that for all x,y €e R",t € R

fxt) =y &= REnxty)

In this case, we say that 5(x, t,y) is a representation of f.

Remark 4.6. As dL strictly extends FOLg [40], FOLR definable functions are also dL definable.

The class of definable functions is very versatile. In particular, polynomials and splines with
rational coefficients are definable in a natural way. As a consequence, one can always carry out
spline/polynomial interpolation on a mesh-grid of points to arrive at a definable approximant.

Remark 4.7. While standard dL only allows for polynomials as terms (as opposed to dL’s ex-
tensions with Noetherian functions [45]), definable functions in the sense of Definition 4.5 can
be expressed as well using their representations. e.g., suppose f : R"*! — R" has representation
n(x,t,y) and u € V" is some vectorial variable, ||f(x, ) — u||> < M? can then be expressed by

y(p(x t,y) Ally - ull® < M?)
such abbreviations will be used throughout the article for formulas containing definable functions.

The following definition makes precise the notion of approximations used in this article.

Definition 4.8 (Local Definable Approximant). Let (f(x),C(x), [to,T]) be a compact IVP and
¢(x, t) be its corresponding flow function. A local definable approximant (LDA) for this compact
IVP is a computable function ® : N — FOLg such that the following holds:

(1) o(x,t) : [C] X [#, T] — R™ is well-defined (i.e., does not exhibit finite time blow-up for time

t € [to, T)).

(2) For all k € N, ®(k) defines a function @, : [C] X [tp, T] — R" (thus each @y is a definable

function with representation ®(k)).

(3) The sequence of functions (@), converges to ¢ in C°([C] X [to, T],R").

(4) For all k € N, the function @y is differentiable in its second (time) variable, and the sequence

of time derivatives (@) converges to ¢’ in Co([C] % [to, T],R™).

Example 4.9. For IVPs with polynomial vector fields, the sequence of Picard iterates [54] always
form a LDA over a sufficiently small interval. i.e., For every IVP x” = f(x), x(%) = xo € Q", there
always exists a sufficiently small S > t; such that the Picard iterates form a LDA for the compact
IVP (C(x) = x = xo, f(x), [t0,S]). To show this, recall that the Picard iterates (¢ )i of the IVP
x" = f(x),x(t) = xo are defined inductively by

— @o(t) = xo.
— g (t) =x0 + [, f(gi(s))ds.

8https://github.com/LongQianQL/Compact_IVP_Example
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By the Picard-Lindel6f theorem the iterates converge uniformly to the unique solution on some
interval [ty, S] for some S > t,. Furthermore, this sequence of iterates are simply polynomials in
t with rational coefficients since integrals of rational polynomials are rational polynomials. As
integrals of polynomials are computable, the sequence of iterates (¢ )x and their representations
are computable. It remains to show that the sequence (¢; )x converges to x” on [ty, S]. Indeed, let
x(t) : [t, S] — R" denote the unique solution that this sequence converges to. We have

% (£) = @y (D] = 1 (x(2)) = f(ic(0)]

Note that B[x([fo, S]), 1] (the set of points of Euclidean distance at most 1 away from x( [, S]))
is compact as x is continuous and [y, S] is compact. Hence, as f is a polynomial vector field
and therefore locally Lipschitz, there exists some L > 0 which is the Lipschitz constant of f on
B[x([t0, T]), 1] (we can computably find such a value by computing the maximum of f’s partial
derivatives on B[x([ty, T]), 1], but this is not required to prove the iterates form a LDA). Since (¢ )k
converges to x on [y, S], we have @i ([to,S]) € B[x([t, S]), 1] for all sufficiently large k. In other
words, for all sufficiently large k, for all ¢ € [t,, S], we have:

% (8) = @psr (D] = [ (x(8)) = flor ()] < Lllx = @il 0

The Picard-Lindel6f theorem says that ¢ — x uniformly i.e., in the supremum norm, and the
above computation shows (¢, )x — x” on [to, S| under the sup-norm as well, therefore the sequence
of Picard iterates (¢ )x forms a LDA.

The example above shows that the Picard iterates will always be LDAs over sufficiently small
intervals for IVPs with fixed initial values. The following theorem shows that for any compact IVP,
a corresponding LDA can always be constructed effectively on the entire interval [¢,, T] provided
that the compact IVP does not exhibit finite time blow-up on [#,, T].

THEOREM 4.10 (CoMPUTABLE LDA). Let (f(x),C(x), [ty,T]) be a n-dimensional compact IVP
where the corresponding flow ¢(x, t) is well-defined on [C]] X [to, T]. Then there exists a corresponding
LDA @ that is uniformly computable in the compact IVP such that for allk € N, every component
of the function defined by ®(k) is a rational polynomial in x, t. Furthermore, the LDA ® satisfies
ll = Pelljcyxpor) < n27% and ||¢’ - CD;C”[[C]]X[%,TJ < n27% forallk € N.

Proor. Since rational polynomials are FOLg definable, it suffices to computably construct a
sequence of rational polynomials (p,i)l <i<nken € Q[x, t] such that the corresponding sequence
(PK)k € Q"[x,t] defined via pr = (p;, ..., p}) satisfies:

(1) The sequence (pi)x converges to ¢ in C°([C] x [to, T], R™).

(2) The sequence (p} )x converges to ¢’ in C°([C] X [to, T],R").

This is sufficient as one can then define the formulas:

ey = N\ wi=pilet)

1<i<n

Properties (1), (2) then imply that the function ® : N — FOLg defined by ®(k) = ¢, forms a
LDA for the compact IVP.

To construct the desired sequence (P,i)lsiSn,keN, first fix some 1 < i < n, let k € N be arbitrary
and notice that it suffices to construct some p]’; € Q[x, t] satisfying the following:

) le; - P;i”c”([[c]]x[to,T]) < 27K where ¢; denotes the ith component of ¢.
@) |l (p”;)’ = @illeo([epxt,T]) < 27% where the derivative is taken with respect to time variable.
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As we may then carry out the same construction for arbitrary 1 < i < n and k € N to obtain

n
1 i —k
(o1, 0n) = (D "’pllcl)”CO([[C]]x[to,T]) < Z [l: _pll<||C°([[C]]><[t0,T]) <n2
i=1
which converges to 0 as k — oo, likewise for ||<p’ - pl,c”CO([[C}]x[to,T])' To carry out the construction
for a fixed index 1 < i < nand k € N, first note that the flow function ¢(x, t) : [C] X [t, T] — R”
is computable for compact IVPs [47] as [C] is a computably closed set by Theorem 3.7. Because
f € Q*[x,t] is also computable, consequently the time-derivative of ¢, ¢’ (x,t) = f(¢(x,t)) is also
computable on [C] X [ty, T]. The effective Stone-Weierstrass theorem [55, Theorem 6.1.10] then
allows us to compute some qfc € QJx, t] such that
—k-1
ot~ ol < TR
k tiic (HC]]X[I(),T]) max(T —_ th 1)

Define p} € Q[x, ] by

t
p,i(x, t) = x; +/ qL(x, s)ds

to
which is computable since q;'( is a polynomial with rational coefficients, hence its integral in the
time variable ¢ can be directly computed symbolically using the elementary power rule. It remains
to verify that conditions (1) and (2) are met:
(1) Direct computations for (x,t) € [C] X [to, T] yields:

—k-1

t
) 2
i — k ’ k-1 -k
ot i (x0, )| < % (xo, "(x0,8)| < (T = tg) ———— < 2 <2
|Pk(xo ) = @i(xo, )| /to lg; (x0,8) = @] (x0,8)| < ( 0) ax(T —1,1)

(2) Noticing that the time derivative of pliC is q;'C which is continuous in both variables, a similar
computation to the above for any (x,t) € [C] X [to, T] yields:

|(p]i<),(x05 t) - qﬂ;(x()! t)l = |q;;(x05 t) - qﬂ;(x()! t)l < qu - (pl{”Co([[C]]X[to,T]) < 2_k_l

thereby condition (2) is also satisfied.

The construction is uniformly computable for all 1 < i < n and k € N, so the proof is complete. O

4.2 Provable IVP Approximants

The following technical lemma proves the validity of a class of differential invariants capturing the
“continuous dependence on initial conditions” characteristic of flow functions. Such invariants are
then used in proving the desired error bounds under the presence of a bounded domain constraint
B(x) containing the true flow of the compact IVP (f(x), C(X), [to, T]). Note that this domain
constraint is an assumption on the FOLg formula B(x) itself, rather than a constraint on the values
of the variables.

LEmMMA 4.11 (CoNTINUOUS DEPENDENCE ON INITIAL CONDITIONS). Let (f(x), C(x), [to, T]) be a
compact IVP and B(x) € FOLg. Further assume that the following holds:

(1) The flow ¢(x, t) of the compact IVP is well-defined on [C] X [, T].
(2) [B] c R™ is a bounded set containing ¢([C], [to, T]).

Then for allK € Q* greater than or equal to the Lipschitz constant of f(x) on [B], for all LDA @,
for all positive rational h € Q*, for all sufficiently large k € N, the following is a valid differential
invariant in dL:

Yi(x0,x,9,1) = [x" = f(x),g" =Kg,t" =1&t < T A B(x)] Y (x0, X, g, 1)
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With Y. (xo, x, g, t) defined as:
Yk (x0,%,g,8) =t 2 tg Ag=1AC(x0) A |lx — D (x0, 1) || < (g, 1)
e(gt) =h(1+t—ty)g—h
A corresponding witness k can also be computed uniformly from the compact IVP, B(x), ® and h.

Lemma 4.11 computes some k witnessing the validity of the differential invariant, but it proves the
stronger assertion that there exists some ko € N such that for all k > k, the differential invariant at
index k is valid. Such a threshold k is in general not computable, because LDAs are not required to
have a computable rate of convergence to the true flow to allow for more general approximants. This
is similar to the difference between computably enumerable real numbers, which have computable
sequences of rationals converging to them, and computable real numbers, which have computable
sequences of rationals converging to them with computable rates of convergence.

Remark 4.12. Intuitively, the idea of the proof of Lemma4.11 is to find some FOLg formula
Small(x, t) that captures the difference between the flow ¢(x, t) and the approximation @ (x, t)
being small. By the continuous dependence of ¢ on its initial conditions, the differential invariant

Small(x, £) — [x’ = f(x),t = 1&t < T]|Small(x, t)

is valid and by Theorem 3.2 rule dInv will give a syntactic proof. However, while the dependence of
the flow ¢(x, t) on its initial conditions is continuous, the error rate may grow like e/’ where L is
the Lipschitz constant of the vector field f on ¢([C], [t, T]). Since the theory of real exponential
fields is not known to be decidable [36] and e* is not directly expressible in dL (without extended
terms), we will have to encode it via an ODE. In the definition of i (x, x, g, t), the variable g
represents the exponential function, as indicated by its ODE g’ = Kg. The error function ¢(g, t)
represents this error rate being scaled by the exponential function g. Lastly, as f(x) is in general
only locally Lipschitz, the domain constraint B(x) is needed in order to obtain a fixed upper bound
on the Lipschitz constant.

The following integral form of Grénwall’s inequality is needed to prove Lemma 4.11.

LEMMA 4.13 (GRONWALL’S INEQUALITY [28, 54]). Let [a,b] C R be an interval of the real line,
u € C([a,b],R) and a, p € R. Further suppose that for allt € [a, b], we have:

t
u(t) <a +/ Pu(s)ds
a
Then the following inequality holds for all t € [a, b]:
u(t) < aeft=%
With the lemma above, we are now ready to prove Lemma 4.11.

ProoF oF LEMMA 4.11. As the claim only concerns validity of the differential invariant and the
ODE is autonomous, we may assume without loss of generality that ¢, = 0 by translating the
starting time if needed. Suppose that ¥ (x, x, g, t) is satisfied at some initial state, that is, there is
some t1,go € R, yo, y € R" such that ¥« (yo, y, go, t1) holds, giving the following conditions:

Ye(Yo, ys go. t1) = t1 > tg Ago = 1A C(yo) A lly — (o, t1)11* < £(go, t1)°

If t; > T then the domain constraint ¢ < T is trivially false, so further assume without loss of
generality that t; < T. Let ¢(x, t) denote the flow of the compact IVP and y/(go, t) denote the flow
of g along ¢’ = Kg with initial condition ¥/(go, 0) = go. By definition at time ¢ € [#;, T] the variable
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x has the value ¢(y, t — t;). Define the following function for (xo, t) € [C] X [0, T] recording the
difference between the true solution and the approximant at time ¢ with initial condition xo:

Ry (xo,t) = Pr(x0,t) — ¢(x0, )

To establish the validity of the invariant, it suffices to show (recall ¢, = 0)

1Px (Yo, t) — @(y, t = t) |l < e(Y(go, t — t1), 1)

for all ¢t € [t;, T] such that the domain constraint is maintained. This is because g satisfies the ODE
g =Kg, thus ¥/(go, t — t1) = goeX*"1) > gy > 1, hence g > 1 is always satisfied by the assumption
of K € Q*. The condition ¢ > t, is also satisfied as the ODE t’ = 1 is strictly increasing, therefore
t > t; > t,. Finally C(y,) remains true since y, does not change along the ODE. To handle the
non-trivial inequality, notice that ¢ > #;, therefore:

Dr(yo, t) — @(y,t — t1) =Ri(yo, t) + ¢ (Yo, t) — ¢ (y, t — t1)
=Ri (Yo, t) + ¢(@(yo, t1), t —t1) —@(y, t — 1)

Re(yo ) + 0(yos ) + /0 7 oo t),5))ds —y /0 ' Flo(w.s))ds

Applying the triangle inequality gives:

t—t
19k (yo, 1) — @ (v, £ = t1) || < [IRk(yo, £) + @ (o, t1) — yl +/0 I1f (@@ (yo, 1), 5)) = f(@(y. )l ds
(1)

Now we crucially use the fact that B(x) is both a domain constraint and assumed to contain
the flow ¢(x,t) for (xo,t) € [C] X [0,T] to see that for s € [0, — #;], we will always have
B(¢(¢(yo, t1),s)) and B(p(y,s)) (e, ¢(yo,t1 + 5), ¢(y,s) both belong to the bounded set [B]).
Letting L denote the Lipschitz constant of f(x) on [B] (recall that such a constant always exists
since f(x) is locally Lipschitz), we have:

t—t

/0 0o 12).5)) - flp(w.s)lds < L /0 (oo t)s) —pws)llds (@)

We will now establish the following bound:

lo(e(yo, t1),s) — @(y. 91l < llo(yo. t1) — yll € 3)

To do this, define E € C1([0, — t;],R™) by E(s) = @(¢(yo, t1),s) — @(y, s). Direct manipulations
yield:

IE(s)]| = HE(O) + /0 E(rdr

/ d
< O] + /0 IE (7] dr
— 1lo(yo 1) — yll + /0 1F (0o (yor 1), 7)) — Flo(y )l dr
< lloGyot1) — yll + L /0 1o (o (Yo, t2).7) — 0y )]l dr

~ (o 1) — I +L/ IEH)]| dr
0

Note that in this derivation, we again utilized the assumption that f(x) is Lipschitz on [B] with
Lipschitz constant L in the second to last inequality. Applying Gréonwall’s inequality (Lemma 4.13)
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with u(s) = |E(s)||, @ = |l¢(yo, t1) — yl| , B = L then gives the desired bound equation (3). Applying
this to inequality (2) results in:

t—t t—t
/0 £ (0(0 (o, 1).9)) — (5Dl ds < Lllp(yor 1) — yll /0 elsds

= ||(P(y0, tl) — y” (eL(t—tl) _ 1)

Substituting this back into inequality (1) gives:

@iy ) = 0w £ = )| < IRk (o, £) + 9o, 1) = yll + oo, 1) = yll (47 = 1)
Recalling Ry (yo, t) = Pr(yo, t) — ¢(yo, t) yields:
1P (yo, 1) = @(y, ¢t = t) || < IRk (Yo, 1) + Pic(to, 1) = Ree(yo. t1) — I
+ IRy, 1) — Dy, 1) + yl (2070 — 1)
Utilizing the triangle inequality and rearranging, we arrive at:

10k (yo, £) =@ (y, t=t1) | <1 Dk (g, 11) =yl € + [ R (o, £) =R (yo, 1) |+ [IRic (g, 1) 1] (X 1)

Recall that we may choose k arbitrarily large and || Rk [[jcyxfo,7] koo, 0, hence assume that k is
large enough to witness ||R|ljcpx[o,r] < h- Also by assumption on g, Yo, y, t1, the following holds:

1Dk (Yo, t1) — yll < e(go, t1)

Rearranging yields:

19k (yo, 1) = 9 (y, £ = 1)l < (e(go, 1) + e ™) + [[Re (o, 1) = Rec(yo, 1)l =
Expanding ¢(go, t1) = h(1 + t1)go — h by construction and requiring K > L yields:

@k (o, ) — @y, t = t1)[| < A(L+ t1)goe™ ") + ||Re (o, ) — Re(yo, 1)l = h
<h(1+1 -t +1)goe“ """ + ||Re(yo, 1) = Re(yo, t1)l| = b
= h(1+1)goe“"™") — h+ |Re(yo. 1) — Re(yo. 1) || — hgoe® =) (t — 1)
= e((go, t = 11), 1) + IRk (5o, 1) = Re(yo, 1)l = hgoe“ "~ (¢ — 1)
< e(¥(go. t — t1), 1) + ||Rk(yo. t) — Rec(yo, t1) || — h(t — 1)

where the second equality uses the fact that /(go, t) is the flow of ¢’ = Kg starting at g(0) = go,
thus 1/(go, t — t1) = goeX =), The final inequality follows from t > t; and gy > 1. Now define

= 4
M= yoe[[crﬁ]l,?é([tosﬂ HRk(yo, t)”

which is well-defined as R € C’([C] x [0,T],R™). Since (@} )k converges uniformly to ¢’ on

[C] x [0, T], (Mg)x will converge to 0. Thus, choose k large enough so that My < h, which allows

us to deduce:

e(¥(go,t —t1), ) + |[Re(yo, t) — Ri(yo, t1) || — h(t — t1) < e(¥(go, t — t1), 1) + Mp(t — t1) — h(t — t1)
< 8(¢(90: t— tl): t)

exactly as desired. Thus, for any h > 0, choosing k large enough such that the following conditions
are met will witness the validity of the differential invariant.

—maXyc[clrefo,r] IRe (Yo, )|l < h
—maxyeclrefor] || (vo. ]| < h
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Furthermore, since maximums of computable functions are computable by Theorem 3.9, a sat-
isfying index k can be found computably. To see that K can be effectively computed and chosen
to be a rational, note that we only require K > L to hold, so one can search through all positive
rationals K € Q* and halt when the following FOLg formula is decided to be true

Vavy (B(x) AB(y) — lIf(x) = fFWII* < K [Ix — ylI*)

and since R has a computable theory by quantifier elimination [53], this search is computable. O

The “continuous dependence on initial conditions” property proven by Lemma 4.11 provides
control on the errors induced by LDAs, and is crucial in establishing completeness for LDAs in
Theorem 5.1. The following example gives a sense of how this can be achieved.

Example 4.14. Consider the simple compact IVP x” = x, x(0) = 1 over the interval [0, 5] (i.e.,
C(x) = x = 1), which has a solution of x(t) = e’ (and therefore we know that max;e[os) x(t) =
> < 300). In this case, the Picard iterates will form a LDA on the compact time horizon [0, 5]. The
Picard iterates of this ODE are:

@o(t) = xo

t
@1 (1) = x0 +/ ¢n(s)ds
0

Listing out the first few terms

t2 t2
(po(t) =1,(p1(t) =1+t,(p2(t) =1+t+?,(p3(t) =1+t+?+g

Where ¢, (t) is just the nth Taylor approximate, and ¢;,(t) = ¢,—1(t). By Taylor’s theorem, the
nth remainder term R, will be bounded by

e5 5n+1

R, <
IRal (n+1)!

And similarly, M,,, the nth error in the derivative, will be bounded by
5gn

e
[My| = [Ryes] < &
n:

Suppose one wants to generate a proof witnessing that some Picard iterate is within 1073
of the true solution. Picking h = 107, one has (note that the Lipschitz constant is 1 here and
t € [0,5])

le(¥(1,1),8)] <107°(1+5)e’ +10 ¢~ 8x107* < 107°

Thus, if (g, t) gives a valid differential invariant in the sense of Lemma 4.11, then the error of
the approximant is necessarily bounded by 1073, Per the proof of the Lemma 4.11, n just needs to
be picked large enough so that

|Rn-1]. [Ra| < 107
and the differential invariant corresponding to ¢(g, t) is valid. By the bound given above, we see
that for n = 28, |Ryy|, |[Rag| < 2 X 1077. Now consider the invariant:

Yos — [x' = f(x),t' = 1&t <5 A ||x]|* < 300]¢g

Since Picard iterates always satisfy (1, x(0),1,0) as they have the correct values at t = 0,
the invariant generated above is valid and witnesses an error bound of at most 1073, Further-
more, this differential invariant can be independently verified by a proof checker for dL [8, 22],
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taking advantage of the effective axiomatisation of differential invariants [45] which reduces the
verification of differential invariants down to questions of real arithmetic. When combined with
formally-verified decision procedures for real arithmetic [33], this gives a complete verification of

the validity of the invariant, illustrating how Lemma 4.11 can be used to produce proofs of error
bounds of approximants.

Example 4.15 (Invariant for Moore—Greitzer). Recall that the dynamics of the Moore-Greitzer jet
engine model is given by

u' = fi(u,0) = —v - 1.5u* = 0.5u°> — 0.5

o' = fo(u,0) =3u—-o
with compact initial conditions A(u,v) = 0.9 <u A 0.9 <v Au+ov < 2. Motivated by prior works
which numerically computes reachability enclosures of this system via successive iterations [48, Ta-
ble 1] over many time steps without corresponding syntactic proofs, we compute a provable approx-

imant to the flow over one such time step, corresponding to T = 0.02. The approximant ®(uy, vg, t)
for which we will prove its accuracy is given by (recall that ®(ug, vg, t) = (D1 (uo, vo, t), D2 (ug, Vo, t))):

D (ug, v0, 1) = up + tc,ll(uo, vy) + tzci(uo, vy) + t3c2(u0, )

1 0
¢, (up,v9) = —— — — —0y— 0.5
u( 0 0) 2 2 0
3ud  15uf 9wl 3ulv 3ugu v
2 0 0 0 0 2 000 0
ci(ug,v9) = — + + — + ——— + 0.375u, + —0.75up + —
ultio,20) = =3 8 4 4 0 07
s5u7  35u 39w Tuly, Tulv,
3 0 0 0 0 4 0 3
c (ug,v9) = — — — - - —3.8125u, — —— — 0.75u
u(tto,%0) 16 16 8 8 0T 0
13u0y  3u?  uyw? ¥
SO I L 0 yup + 0.375up — 2 — =2 40.125
4 4 2 2 6
D, (g, vg, t) = vy + tc},(uo, vy) + tch}(uo, vy) + t3c?}(u0, 09)
3 2
u 3u
1 0 0
c,(Up,09) = —— — — —09—0.5
v( 0 0) 2 2 0

2 _
¢, (g, v9) = 3uy — vg

5 4 3 2
S3ug  15u; Su 3uguo

3u,
+ + 2 0%
8 8 2

50
3 (ug,v0) = +1.125u% + — 0.25u, + ?" +0.25

Such an approximant was computed by Picard iteration with appropriate rounding on the
coefficients. It is important to note that LDA approximants are not limited to be Picard iterates,

and the proofs of accuracy only depends on the true errors. To apply Lemma 4.11, the following
constructs are needed:

— h € Q*, bounding the error of the approximant.
— B(u,v) € FOLR characterizing a bounded set that contains the flow.
— K € Q" larger than or equal to the Lipschitz constant of f(u,v) on [B].

These values can be computed numerically by any method of choice. For example by numerically
sampling, we see that the choices h = 4 X 1073,K = 8 and

B(u,v) =0.781 <u < 1.109 A 0.891 <0 < 1.199 Au + v < 2.25
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satisfy such requirements, therefore the invariant
¥ (ug, vo, 4, 0, g, 1) — [u' = fi(u,0),0" = fo(u,0), g’ =8¢, ' =1&t < 0.02 A B(u, v) ¢ (uo, vo, U, v, g, 1)
with
Yo, 00, ,0,G,8) St > 0A g > 1A A(ug,v9) A || (u =y (ug, 00, 1), 0 — Py (utg, 00, 1)) ||* < (g, 1)?
e(g,t) =4x1072((1+t)g—1)

is valid and provable by dInv. Crucially, while the approximation and u, K, B(u, v) were all obtained
numerically, the validity of the invariant is deductively proven with a proof in dL that can be
independently verified by proof checkers such as KeYmaera X [23]. Later examples build off of this
differential invariant and eventually prove that the approximant ®(ug, vy, t) has an error of at most
5% 1073 on [A] x [0,0.02].

Remark 4.16. While Lemma 4.11 above applies to all LDAs, it would be interesting to know if the
conditions can be relaxed to allow for approximants that do not converge in derivative. The above
result still holds when there is only a subsequence of approximants that converge in derivative to
¢’. Hence, the result remains true if we just assume that the approximants have bounded first and
second derivatives, as this allows us to construct a convergent subsequence using Arzela-Ascoli [54].
Even though one cannot generally compute this convergent subsequence directly, since differential
invariants can be effectively decided by Theorem 3.2, it suffices to perform an unbounded search
across all approximants, halting whenever one of the desired invariants is decided to be valid.

Building on Lemma 4.11, the following theorem reduces the problem of proving convergence of
LDAs to arithmetic questions involving the exponential function.

THEOREM 4.17 (DERIVABLE LDA). Let (C(x), f(x), [to, T]) be a compact IVP with ® a LDA, B(x) a
FOLg formula, ¢, K € Q™ rational constants. Assume that the following holds:

(1) The flow ¢(x, t) of the compact IVP is well-defined on [C] X [, T].

(2) [B] c R" is a bounded set containing ¢([C], [to, T]).

(3) K is greater than or equal to the Lipschitz constant of f(x) on [B].

(4) c> 1.

Then for all M, e € Q*, for all sufficiently large k € N, the following proof rule is syntactically
derivable in dL, where x, g, t, xo are symbolic variables.

Fg=cAt=ty—[g =Kgt' =1&t <T|lg<M
FC(x)Ax=xg At =ty — [x' = f(x),t/ =1&t < T A B(x)] [|lx = D (x0, 1) ||* < M2¢2
For each ¢ € Q™, a corresponding k can be computed uniformly in the compact IVP, ®, ¢ and e.

LDA

Theorem 4.17 gives an effective way of reducing rigorous proofs for error bounds of LDAs in dL
under the presence of some bounded domain B(x) to the problem of proving upper bounds of the
exponential function over a bounded interval. Section 4.3 shows that proofs of such upper bounds
are always possible even if decidability of the exponential field is a famous open problem [36]. In
contrast to the rational constants #y, T, ¢, K, M, the variables x, g, t, X, in the proof rule are symbolic.

Proor. The proof directly follows from Lemma 4.11. Pick n € N large enough such that 27" (1 +
T —t9) < ¢is satisfied. Since ® is a LDA, taking k to be large enough such that || P« — ¢|ljcpx s 1] <
27"(c — 1) and Lemma 4.11 holds with h = 27" gives the following:

(1) ¥xo € [C llx0 = @ (x0, t0) || < 27"(c = 1).

(2) The following differential invariant is valid for h = 27" (thus provable in dL by Theorem 3.2):

Yi(x0,x,9,1) = [x" = f(x),9" = Kg,t' = 1&t < T A B(x) [ (x0, %, g, t)
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The desired proof in dL can now be constructed via the steps below by cutting in the differential
invariant. First abbreviate
a=x"=f(x),g =Kg,t' =1&t < T A B(x)
* *
R dInv o~
C(x),x =x0,g =c,t =ty - Pi(x0,X, g, 1) Ve (x0, %, g, 1) + [l (x0, X, 9, 1) ©)
C(x),x =xp,t =tp,g=c+ [x' = f(x),g =Kg, ' = 1&<T A B(x)] ||x — D (o, H|? < M2¢?
FCx)Ax=xg At =ty — [x' = f(x),t" = 1&t<T A B(x)] ||x — g (x50, 1) ||> < M2¢2
The left premise closes by R from item (1), the second premise closes by Lemma 4.11, and the
final remaining premise is
@ = C(x),x =x0.t = to,g = ¢, [a]Yi(x0.x,9,1) F [a] [lx — Dy (x0, 1) || < 2 M
Which can be handled with dW and cutting in the bound [a]g < M with dC. Crucially the
application of DGi to remove x” = f(x) is sound since x ¢ K, M.
* @
R 5 DGi
wISMt< T, Y (x0, %, g, t) F ||x — Dp (0, 1) ||? < £2M2 g=ct=t+[alg<M
C.dwW
X = Xo, t= to’g = [a]l//k(X(), X, ga t) - [a] ||x - (I)k(x()’ t)”z < €2M2

cut,—»L

—R,DG,3R

d

where the remaining premise on the right is
@=g=ct=t+[g =Kgt' =1&t <T]g<M
For the left premise, notice that the following is a valid formula of FOLg, and therefore provable:
t<TAGg<MAYr(x,x0,9,t) = |lx = B (x0, )|I* < (27" (1 + T — to) M)*

thus, the left premise closes by our choice of n € N. The proof of the desired formula has now been
reduced to an upper bound on the exponential function (premise (2)), completing the derivation.
Since k was only required to satisfy conditions (1), (2) and a satisfying witness for Lemma 4.11 can
be computed, such a k can be computed as well, completing the proof of the theorem. O

Example 4.18 (Constrained Exponential bound for Moore-Greitzer). Theorem 4.17 applies to the
Moore-Greitzer jet engine model introduced in Example 4.4 with its invariant established in Exam-
ple 4.15. We apply proof rule LDA using

— B(u,v) =0.781 <u < 1.109A0.891 <v < 1.199 Au+v < 2.25
—K=38
—c=11
—e=4Xx10"3x (1+0.02)
—M=1.2
Using these values, LDA proves the following
g=11,t=0+ [¢ =8¢t =1&t<0.02]g < 1.2

LDA
A(uo,v0), u =g, 0 =0, 1 =0 F [(,0") = f(u,0)&t<0.02 A B(w,0)] [|(1,0) = D(uo, 09, 1)||* < (5 X 1073)>2

where the constant 5 was chosen as
eM=4%x12%1.02x1072 <5x%x107°

As the derivation shows, the proof rule LDA reduced the problem of proving an error bound
of 5% 1072 to the problem of upper bounding exponentials on [0, 0.02]. Importantly, while all of
the values were chosen numerically, the proof rule LDA is derived. Therefore the validity of the
formula is backed up by a corresponding syntactic proof.
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Theorem 4.17 still holds even if (&), does not converge in derivative, as long as it has bounded
first and second time derivatives (implicitly requiring it to be twice differentiable), since Lemma 4.11
still holds in this case per Remark 4.16.

4.3 Provable Taylor Bounds on Exponentials

Theorem 4.17 reduced the proof of error bounds for LDAs to proving upper bounds for the exponen-
tial function on compact intervals. In this section, we show that dL is capable of proving arbitrarily

accurate upper bounds on the exponential function via Taylor polynomials on the compact interval
[0, T].

PROPOSITION 4.19 (PROVABLE TAYLOR APPROXIMANTS). Let K, T € Q* be rational constants. For
all sufficiently large n € N, there is a syntactic term 6,, € Q[t] such that the following is a valid
differential invariant

g<6,—> ¢ =Kgt' =1&t <Tlg< 0,

Furthermore, 6, — eX* on [~T,T] asn — oo where 0, is treated as a function in t. Finally, for all
n € N we have 6,(0) = 1 and 6,, can be computed uniformly in K, T, n.

ProoF. For n € N, let us denote g,(t) as the nth Taylor approximant of eX i.e.,

o Kt
an(t) = ) ——
i!
i=0
Let
M" Kn+1T
0,,(t) = qn(t =
(0= an() + = n—KT
which is well-defined for all n > KT. By the Darboux inequality [45, Corollary 3.2], the validity of
the invariant follows from the validity of (6,(t))” = K0,(t). Computing (8,(t))’ gives

Mtn—l
0,(1)) =Kqp_1(t) + ———
(On(8)) = Kaus(0) + o
So we have
Mtn_l K'H'lt" KMtn
(0n(1)) = KOn(t) = - -
(n—-1)! n! n!
tn—l n-1

>
n!

(nM — KMT - K™'T) = i

— ((n=KT)M —K""'T) =0

Therefore the invariant is indeed valid for all n > KT. To witness the desired convergence, note
Mit" oo
- 50
n!

and g, 2%, ekt on [-T,T] by Taylor’s theorem. The proof is therefore complete. O

It now follows that dL is capable of proving arbitrarily accurate upper bounds on the exponential
function on bounded intervals.

COROLLARY 4.20 (BOUNDED EXPONENTIALS). Let ¢, K € Q% be constants and [ty, T] € IQ be a
rational interval. For all M € Q* that satisfy ceX(T=%) < M, the following formula is provable in dL:

g=cAt=ty— [¢g =Kg,t' =1&t <Tlg<M
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ProOF. We first begin with standard reductions using DG and dInv, reducing the proof down to
upper bounds on the standard exponential IVP x’ = Kx with initial condition x(t,) = 1.

©)
M

* x=Lt=t+ [x =Kx,t’' =1&t <T]x < ¢

dInv ” S ; DGi i
g=cxt [¢g =Kg,x’ =Kx,t’' =1&t<T]g =cx x=1Lt=ty+ [¢ =Kgx' =Kx,t' =1&t <T]x < %

[IAAR
_ _ _ _ _ _ M _
g=cx=14t=t+ [¢g =Kg,x' =Kx,t' =1&t < T] (xS . /\g—cx)

K
g=cx=Lt=tyr [¢ =Kgx' =Kx,t’' =1&t < T]g< M

Fg=cAt=ty— ¢ =Kg,t' =1&t <Tlg<M

—RDG,3R

Where the left premise closes as it is a valid differential invariant. Theorem 4.19 now gives some
0(s) € Q[s] such that ¢ ||0]|[g7—s) < M, 6(0) =1, and the following differential invariant is valid:

x<0(s) > [x' =Kx,s' =1&s < T — ty]x < 6(s)

Note that this is only possible by our assumption of ceK(T=%) < M. Premise (I) can now be
handled by cutting in this invariant on 6(s).

*

R
s>20,s<T—-tyrcO(s) <M

dw

*

SZOI-[x/:Kx,S’:l&SST—Z‘()/\SZ0](XS9(S)—>XS%)

dC,dInv
x=1,s=0,t =t F x < 0(s) s:0D-[x’:Kx,s/:l&ssT—to](xSG(s)Hxs%)

cut,dInv,K M
x=1Ls=0,t=tyr [x' =Kx,s' =1&s < T - to]x < 7

DGi i
x=1Ls=0,t=tgr [x' =Kx,s’ =1,t' =1&s < T - to]x < 7

dc

x=1,s=0,t=tyF [x' =Kx,s’ =1, =1& < TAs=t—ty|x < %
dC,dInv M
x=1,s=0,t =ty F [x' =Kx,s’ =1, =1&t < T]x < -
DG,3R

x=1t=tyr [x’ =Kx,t’' =1&t < T]x < %

Where the left premise closes as 8(0) = 1, and the right premise closes since 6 was constructed
to satisfy ¢ [|0]|[o7—s) < M, which is therefore provable by r. This completes the proof. O

Chaining up the results of Theorem 4.17 and Theorem 4.19 gives complete proofs for accuracy
bounds of LDAs for compact IVPs. This has many important consequences regarding the proof
theory of dL which are listed below. The first of which says that for any LDA, for any desired
accuracy, one can derive a proof certifying this accuracy within dL assuming the presence of some
domain constraint.

THEOREM 4.21 (COMPLETENESS FOR LDAS wITH DOMAIN CONSTRAINTS). Let (f(x), C(x), [t0, T])
be a compact IVP, ® a LDA and B(x) a FOLg formula. Assume that the following holds:

(1) The flow ¢(x,t) of the compact IVP is well defined on [[C] X [ty, T].
(2) [B] € R" is a bounded set containing ¢([C], [t, T])-

Then for all ¢ € Q*, for all sufficiently large k € N, the following formula is provable in dL.
Cx)Ax=xoAt =ty — [x" = f(x),t' =1&t < T A B(x)] |lx — D (x0, 1)]|> < €2

For each ¢ € Q" a corresponding k can be computed uniformly from the compact IVP, ® and e.

Proor. Follows directly via Theorem 4.17 and Corollary 4.20. O

Example 4.22 (Constrained bound for Moore-Greitzer). Following Theorem 4.19, we prove

g=11t=0F [¢ =8g,t' =1&t <0.02]g < 1.2
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This derivation combined with Example 4.18 proves the validity of the following formula
A(ug,09) At =0Au=uy Ao =0p—
[(W,0) = f(u,0),t' =1&t < 0.02 A B(w,0)] || (1, 0) — (uo,00,)||* < (0.005)*

which is a particular instance of Theorem 4.21, syntactically proving an error bound of 0.005 for
the approximation ®(ug, vy, t) under the assumption of the domain constraint B(u, v).

The following result syntactically proves the classical Stone-Weierstrafy theorem in dL for flows
of compact IVPs under the assumption of some bounded domain constraint. That is, flows of
compact IVPs can be approximated up to arbitrary accuracy with (rational) polynomials.

THEOREM 4.23 (WEIERSTRASS APPROXIMATION WITH DOMAIN CONSTRAINTS). For a given compact
IVP (f(x),C(x), [to, T]) and B(x) a FOLg formula, suppose that the following holds:

(1) The flow ¢(x,t) of the compact IVP is well defined on [C] X [to, T].

(2) [B] c R™ is a bounded set containing ¢([C], [to, T]).
Then there is a computable sequence (0x)r € Q"[xo,t] of approximants such that the following
formulas are provable for all k € N:

Clx)Ax=xoAt=ty— [x" = f(x),t' =1&t < T AB(x)] [|x = Ok (x0, 1) ||* < 27
Proor. Follows directly from Theorem 4.21 and Theorem 4.10. O

Theorem 4.21 and Theorem 4.23 proves that under the presence of some bounded domain con-
straint, flows of compact IVPs can be arbitrarily approximated by polynomials with provably
accurate error bounds. As such, one can always prove desired (open) properties of flows of com-
pact IVPs by transferring to the case of polynomials, where the properties can then be proven by
quantifier elimination with the proof rule r. The remaining sections handle the case where such
domain constraints are not assumed to exist a priori.

5 Proving Domain Constraints and Bounded Completeness

A key assumption in the previous section is the existence of a FOLg formula B(x) that bounds
the evolution of the flow induced by the ODE, acting as a domain constraint. Such an assumption
was a natural consequence of the fact that non-linear polynomial vector fields are only locally
Lipschitz, and therefore some a priori bound on the flow is required in order to computably utilize
the continuity of the flow. In this section, we will first show how to eliminate such assumptions by
proving them directly for compact IVPs and obtain a stronger version of Theorem 4.21. Utilizing
this, we prove that dL’s axiomatization [41, 45, 52] enjoys completeness properties over compact
time horizons without assuming bounded domain constraints. And finally, we discuss methods
of handling domain constraints symbolically. Along the way, the syntactic provability of several
axioms within dL that synthesize fundamental mathematical properties of ODEs is established,
which are of independent interest.

5.1 Error Bounds Without Domain Constraints
Our main goal is the following strengthening of Theorem 4.21, which does not assume the existence
of a bounded domain constraint.

THEOREM 5.1 (COMPLETENESS FOR LDAS). Let (f(x), C(x), [to, T]) be a compact IVP with a well-
defined flow ¢ : [C] X [ty, T] — R™ and ® a LDA. Then for all ¢ € Q*, for all sufficiently large k € N,
the following formula is provable in dL.

Cx)Ax=xoAt=t) = [x' = f(x),t' =1&t < T] ||x = O (0, t)||* < €
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Furthermore, a satisfying k can be computed uniformly from the compact IVP, ® and ¢.

Remark 5.2. Theorem 5.1 can be understood as a “completeness for convergence of LDAs” result.
In the sense that if a sequence of definable functions (gg)x : [C] X [to, T] — R™ converges to
the true flow ¢ : [C] X [to, T] — R" in the C! norm, then their convergence in the C° norm can
be syntactically proven in dL. While this result assumes the existence of the flow for a sufficient
duration, Theorem 5.12 shows that dL is complete for such existence properties as well. Corollary 5.6
further strengthens this theorem by weakening the assumption to C° convergence instead of C!
convergence.

To prove Theorem 5.1, the following lemma is needed.

LEMMA 5.3 (COMPLETENESS FOR BOUNDED FLOWS). Let (f(x), C(x), [to, T]) be a compact IVP, @ a
LDA and R € Q™. Assume that the following holds:

(1) The flow ¢(x,t) of the compact IVP is well-defined on [C] X [to, T].
(2) o([C], [t, T]) € B(0,R), where B(0, R) is the open ball of radius R in R".

Then the following formula is provable in dL.
C(xX)At=ty— [x' =f(x),t =1&t < T]||x||* < R?
Proor. First note that rule Enc reduces the problem to:

Clx)At=tF [x' =f(x),t' =1& <TA ||x||2 < R?] ||x||z < R?
C(xX)At=tyr [x = f(x),t/ =1&t < T]||x||* < R?

Enc

By Theorem 4.10, we may compute some LDA ® for this compact IVP. Now do an a priori
unbounded search on pairs (¢, k) € Q* X N such that the following formulas are provable in dL.

COVAX=xo At =ty — [x' = f(x),t' =1&t < T A ||x]I? < R I|x — @k (x0, )2 < &

no

VoVt (< £ At ST A C(xo) = 19k (xo, )P < R - g)

In fact, such pairs necessarily exist and the search is bounded. To see this, note that ¢ ([C], [, T])
is a compact subset of the open set B(0, R) by assumption, so there exists some ¢ € Q* such that
B(o([C], [0, T]), ¢) € B(0, R). By choosing this ¢ and k € N sufficiently large, the first formula
will be valid and therefore provable by Theorem 4.21. The second formula is true and therefore
provable by R for all sufficiently large k € N since ® is a LDA. Hence, we can computably find a
pair (¢ k) with corresponding proofs to the formulas above. Now applying axiom V (Lemma B.1)
and dW shows that t, <t < T and C(xp) are always satisfied during the evolution of the ODE in
the first formula. As such, applying these axioms on the formulas together with V proves

C(x)Ax=xy At =ty—

€ €
[¥' = f(0). 1" = 18& <T A Jx]? < B (1 = e DI < 5 A 0o, DI < B = 2
from which the remaining premise introduced by Enc follows. O
Theorem 5.1 can now be proven using Lemma 5.3 and Theorem 4.21.

ProOOF OF THEOREM 5.1. First note that for any positive rational R € Q*, cutting in the domain
constraint ||x||* < R? with dC (and applications of L to introduce the variable x,) reduces the
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proof obligation to proving the following premises:
FC(X)Ax=xo At =ty — [x" = f(x),t' =1&t < T A ||x]|* < R?] ||x = D (x0, 1) ||* < €2
FC(xX)At =ty — [x' = f(x),t' =1&t < T] ||x]|* < R?

Hence, we may do a bounded search on the pair (R, k) € Q* X N such that the above are
provable. This is a bounded search since ¢ ([C], [, T]) is a compact set, so for all sufficiently large
R we have ¢([C], [to, T]) € B(0, R), from which the provability of the two premises follows from
Theorem 4.21 and Lemma 5.3, respectively. Furthermore, this is a computable search as Theorem 4.21
and Lemma 5.3 both hold computably. Once such a pair (R, k) has been found with corresponding
proofs, the premises are proven and therefore the proof is complete by applying axiom dC. O

Theorem 5.1 proves that for all compact IVPs, for all corresponding LDAs, for all ¢ € Q*, one
can find some corresponding proof in dL certifying the LDA to be at most ¢ away from the true
solution. The following example applies this theorem to Moore-Greitzer’s model of jet engines.

Example 5.4 (Unconstrained bound for Moore—Greitzer). Example 4.22 proved an error bound of
0.005 under the assumption of a domain constraint B(u, v) given by

B(u,0) =0.781 <u < 1.109A0.891 <0 < 1.199 Au + v < 2.25

Applying Theorem 5.1 and utilizing the constrained bound proven in Example 4.22 then proves
an error bound of 0.005 without assuming domain constraints.

A(ug,v9, ) At =0Au=uy Av =0y —
[(W,0) = f(u,0),t' = 1&t < 0.02] ||(1, ) — P(ug, vo, 1) ||* < 0.005

As such, we have syntactically proven the accuracy of a numerical approximation using deductive
logic reasoning.

The following theorem proves the Stone—Weierstrafy theorem (Theorem 4.23) without domain
constraints.

THEOREM 5.5 (STONE-WEIERSTRASS). Let (f(x), C(x), [to, T]) be a compact IVP with well-defined
flow (x,t) : [C] X [to, T] — R™. Then there is a computable sequence (0)r € Q"[xo,t] of approxi-
mants such that the following formulas are provable for all k € N:

Clx)Ax=xo At =ty — [x" = f(x),t' =1&t < T] ||x — O (x, 1) ||* < 27
Proor. Follows directly by Theorem 4.10 and Theorem 5.1. ]

Theorem 5.1 can also be viewed as a “completeness for convergence” result that requires C!
convergence and proves C° convergence. By utilizing Theorem 4.10 to provably compute a correct
LDA, it is possible to strengthen Theorem 5.1 and only require C° convergence.

COROLLARY 5.6 (COMPLETENESS FOR CONVERGENCE). Let (f(x), C(x), [to, T]) be a compact IVP
with well-defined flow ¢ : [C]] X [ty, T| — R". Further suppose that (fi) is a sequence of FOLg
definable functions with fi. : [C] X [ty, T] — R". Then dL is complete for convergence:

E(fidk —— ¢ =  F(fik——0

ie., if (fi)x converges to ¢ in C°([C] x [to, T],R"), then for every ¢ € Q*, for all sufficiently large
k € N, the following formula is provable

CxX)Ax=xg At =ty — [x' = f(x),t' =1&t < T] ||fi(x0,t) — x||* < &

Furthermore, a satisfying k can be computed uniformly from the compact IVP, € and (fi ).
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Proor. Let ® be some LDA of the compact IVP computed by Theorem4.10, ¢ € Q* be the
desired accuracy. Let k be large enough such that Theorem 5.1 holds with an accuracy of £ and

lfic = @lljcpxie, 1) < § is satisfied. It suffices to show that the formula

CX)Ax=xo At =ty — [x' = f(x),t' =1&t < T] || fe(x0,t) — x||* < &

is provable. Indeed, Theorem 5.1 and the choice of k imply that the following formula is provable

2
COOAX=xo At =ty — [x' = f(x), ' = 1&t < T] |Bx (x0, ) — x||? < (g)

By construction and E, it is also provable that ||k — fill jcpx(s,7] < % Hence an application of
axiom K implies that the following is provable, completing the proof. O

2
2
Ce)Ax=xpAt=ty— [x' = f(0.t' = 1&t < T] | fi(xo, ) —x < (§ * ?6)

5.2 Symbolic Domain Constraints and Completeness on Compact Time Horizons

This section establishes completeness properties of dL over compact time horizons for compact
IVPs. The main proof strategy is to utilize our results in previous sections which show that dL is
complete for LDAs of compact IVPs, thereby reducing properties of such compact IVPs to decidable
sentences in real arithmetic. This section also explores to what extent such results can be applied to
IVPs with symbolic initial conditions that are not constrained to compact sets. The main technical
results can be encapsulated in the following theorem, which asserts the provability of various
axioms and proof rules in dL.

THEOREM 5.7. The following axioms and rules are syntactically derivable in dL, thus sound. Where
M, R > 0 are symbolic variables, and B(x), Q, I'1, I, Py, P, are FOLR formulas with B(x) characterizing
a bounded set.

StepDual_, t <7A [x" = f(x),t' =1&t < 7|B(x) = (x' = f(x),t' = 1&B(x))t =7

StepDual.  (x" = f(x),t' =1&Q)t > 7 — [x’ = f(x),t' = 1&t < 7]Q

Vy (y € Blxo. Rl = (I < M*) —

StepE R
CPEX =xg At =ty — {(x' = f(x),t' =1&x € Blxo,R])t > to + M
t=ty, P+ 1y
In+ [X/ :f(x),t’ =1&t < to]Pl
Lk [x = f(x),t =1&t <ty + t;] P
StepExt 2 f oo

t<ty,I7F [X/ :f(x),t’ =1&t < to+t1]((t <k —’Pl) A (t > 1y —>P2))

Remark 5.8. These axioms are capable of symbolically simulating a basic algorithm for certifying
existence of ODEs, which essentially mimics the classical proof [30], such an algorithm has also
been presented explicitly in more recent work [27]. Example 5.10 shows how this can be done.

The following provides some intuitive explanation for the axioms/proof rules in Theorem 5.7.

— Axioms StepDual_,, StepDual. provide a duality between box and diamond modalities on
compact time horizons for ODEs. These axioms are useful in proving that the flow is bounded
within some bounded set over a fixed time interval. It is also worth noting that while axiom
StepDual_, requires a bounded set, axiom StepDual._ places no requirements on the domain
constraint Q as it follows from the uniqueness of flows for ODEs.
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— Axiom StepEx is a quantitative version of the classical Picard-Lindelof theorem presented in
the language of dL, allowing one to symbolically prove that the solution exists for a duration
of %, which is a lower-bound on how long it takes for the solution to escape the ball B[xy, R].

— Proof rule StepExt provides a way of concatenating information proven for different time
steps together over the entire time step. Similar to the proof of computability of solutions to

IVPs [27] which iteratively chains up Picard iterations at various time steps.
All of the above axioms/proof rules are syntactically derivable using just dL’s axiomatization [45, 52].
It is important to note that the axioms in Theorem 5.7 hold symbolically and are not limited to
compact IVPs (e.g., xo, 7, t, T, M, R are symbolic variables).
In order to prove Theorem 5.7, the following lemma is needed, which establishes the provability
of many fundamental properties of ODEs, and is therefore of independent interest.

LEMMA 5.9. The following axioms are derivable in dL, where Q, Q1, Q2 are FOLR formulas and e is
a term.

Rev P—[x' = f(x)&QI(x" = —f(x)&Q)P
Stuck t=t— ([x" = f(x),t' =1&t < t|P < P)
ldem  (x' = f(x)&Q)P—(x' = f(x)&Q A (x = f(x)&Q)P)P

(x'=f (x)&Q1)P1 A (x"=f (x)&Q2) P, —

(x"=f (x)8&Q1AQ2) (PiA{x"=f (x)&Q2) P2) V{x'=f (x)&Q1AQ2) (P2 A{x'=f (x)&Q1)P:)
e<OA(X =f(x),t' =1&0) (t=1Ae>0)—

' =f(x),t' =1&Q At <TAe<0)e=0

Uniq’
IVT

While Lemma 5.9’s purpose in this article is solely to prove Theorem 5.7, they also convey helpful
properties of ODEs that are useful for other purposes. The following provides some intuition for
these axioms.

— Axiom Rev says that if a property P is true, then after flowing along some ODE one can
always flow back to a state where P is true. A sort of “there and back” quantification that
says the current state can always be reached by reversing the ODE flow. This axiom (and its
proof) has already been implemented in KeYmaera X’s tactics library, but we reproduce a
proof here for completeness.

— Axiom Stuck expresses that the ODE ¢’ = 1 is strictly monotone, and therefore does not have
any fixed points. Thus, if the current state has ¢t = t; and the domain constraint includes
t < ty, then the overall dynamical system is stuck and necessarily cannot evolve, resulting in
the RHS of the axiom.

— Axiom Idem expresses an “idempotence” property of diamond modalities. If the current state
can flow along some ODE to a target region, then every state along this flow can also flow to
the target region. One can also view this as a statement on the uniqueness of flows [45].

— Axiom Uniq’ is a more fine-grained version of dL’s uniqueness axiom [45] that deals with two
potentially distinct target regions. While the implication looks complicated, it just says that
if the flow along the same ODE can reach two regions P, P, under the domain constraints
Q1, Q; respectively, then by uniqueness of flows one flow will be the prefix of the other.

— Axiom IVT internalizes the classical intermediate value theorem within dL, saying if the term
e is initially non-positive and becomes positive along some flow, then it necessarily reaches
e = 0 along the way and will do so while remaining in e < 0.

Proofs of Lemma 5.9 and Theorem 5.7 are provided in Appendix B.
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The main use of Theorem 5.7 in this article is to establish completeness results for compact IVPs.
However, as the axioms/proof rules in Theorem 5.7 are fully symbolic, they also enable deductive rea-
soning for general symbolic IVPs which is of independent interest, one such example is given below.

Example 5.10 (Symbolic Maximal Interval of Existence). Consider the simple uni-variate ODE
x’ = x? + 1 with symbolic initial condition x(0) = xo. Its exact solution is
x(t) = tan(arctan(xg) + t)

Thus, the (right) maximal interval of existence of the corresponding solution is [0, Z —arctan(xp)),
note that x, is a symbolic variable rather than a fixed constant. This example shows how dL can
essentially prove this symbolic interval of existence. Since arctan(x,) is not expressible in dL, we
approximate arctan(x) (and % — arctan(x)) informally via its series expansion at infinity

T 1 1 1
arctan(x) ~ 5 +—+o0

x  3x3 x*
T ¢ () 1 1 + 1
— —arctan(x) ~ — — — +o|—
2 x  3x3 x4

With Theorem 5.7, it can be shown that for all ¢ € Q" however small, the following formula
(parametrized by ¢) is derivable in dL’ (the same technique in this example also works for higher-
order bounds)

x=x0/\t=0/\x0>0—>(x’=x2+1,t'=1)t2(1—£)(i—%)
Xo  3x;

In other words, for every ¢ > 0, one can symbolically prove that the (right) maximal interval of
existence is at least (1—¢) (3 — 317) Importantly, such a bound is interesting because x; is symbolic
and can be unbounded, hence the provability of this formula does not directly follow from the
completeness results for compact IVPs. Indeed, for x, sufficiently small the bound tends to —co,
which is trivially satisfied. The assumption of x¢ > 0 is added for clarity in derivations only, and an
identical formula can also be derived for x4 < 0.

A complete proof of this example is provided in Appendix B. The main idea is to derive a numerical
approximation purely symbolically using StepEx. For a symbolic initial value x, bounding the
maximum derivative in B(xo, X) gives some positive duration of existence. Running this procedure
iteratively for n steps gives rise to n such values, adding these up with axiom StepExt gives a
lower-bound on the duration of existence while remaining in the region B(xo, nxo). By picking
n € N large enough (independent of xy), this procedure proves the desired lower-bound.

With Theorem 5.7, various completeness properties of dL for compact IVPs can now be proven.
The following theorem states that all true safety properties of compact IVPs can be proven provided
that the safety set is open.

THEOREM 5.11 (COMPLETENESS FOR BOUNDED SAFETY). Let (f(x), C(x), [to, T]) be a compact IVP
and O(x) a FOLg formula characterizing a bounded open set. Then dL is complete for formulas of the
form

C(x) At =ty — [x' = f(x),t =1&t < T]O(x)
i.e., the following equivalence holds
ECx)At=ty — [x = f(x),t' =1&t < T|0(x) =
FC(x) At =ty — [x' = f(x),t' =1&t < T]O(x)

%Since x; # 0 is enforced, the value ;Tlg is defined uniquely as some c such that ¢x = 1.
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Proor. The = implication is soundness and follows by soundness of dL’s axiomatization
[38, 45, 52], so it remains to prove the = implication. To this end, let us assume the validity
of such a formula. Since O(x) is a bounded set, this implies that the flow ¢ : [C] X [t,, T] — R"
of the compact IVP is well-defined as it does not exhibit finite time blow-up. By validity of the
formula, we have ¢([C], [#, T]) € O(x). Since O(x) is open and ¢([C], [, T]) is compact, there
necessarily exists some ¢ € Q" such that B(¢([C], [to, T]),¢) C [O]. For each n € N, denote by 6,
the (vectorial) polynomial of error at most 27" as computed by Theorem 5.5. Now note that for all
sufficiently large n € N, the following formulas will be valid

CxX)Ax=xg At =ty — [x' = f(x),t' =1&t < T]||lx — Op(x0, t)||* < 272"
VxoVE(Clxg) Aty <t At <T — B[6,(x0,1),27"] € [O])
Furthermore, they are both provable via Theorem 5.5 and Rr respectively. Thus, doing a bounded

search on n € N will find one where the two formulas above are provable. From this applications
of V,dW on the first formula proves

Clx) Ax=xg At=ty — [x'=f(x),t' =1&t < T] (tg <t At < T AC(x0) A |lx = On(x0,t)||* < 272)
Another application of V (Lemma B.1) brings the second formula in, proving

C(x)Ax=xoAt=ty — [x' =f(x),t' =1&t < T] (B[0n(x0, 1), 27"] C [O] A llx = Op(x0, ) |I* < 272")
The desired formula of C(x) At =ty — [x’ = f(x),t’ = 1&t < T]O(x) then follows by applying

K and Rr, completing the proof. O

Beyond safety properties, the following theorem establishes that dL is also complete for durations
of existence. If the flow of a compact IVP exists on the time interval [0, T], then it provably exists.

THEOREM 5.12 (COMPLETENESS FOR BOUNDED EXISTENCE). Let (f(x), C(x), [to, T]) be a compact
IVP. dL is complete for formulas of the form

Cx)At=ty—> (' =f(x),t' =1)t>T
Where T € Q" is a rational constant. i.e., the following equivalence holds
ECx)At=tg > X' =f(x),t'=)t>T
FCx)At =ty — (X" =f(x),t' =1t >T

Proor. Again <= follows from dL’s soundness [41, 45, 52], so it suffices to prove = .
Assuming that such a formula is valid, the flow ¢ : [C] X [to, T] — R" of the compact IVP is
necessarily well-defined and therefore does not exhibit finite time blow-up on the time interval
[to, T]. Thus, for all sufficiently large R € Q*, the following formula will be valid

C(x)At=ty— [x' = f(x),t' =1&t < T] ||x||* < R?

By Theorem 5.11, this will furthermore be provable in dL because ||x||* < R? is open. Thus, we
may do a search for R € Q" until we find a value for which the formula above is provable. Once
such a value is found, the desired formula can be proven via the following derivation

k

FC(X)At =ty — [x' = f(x),t’ =1&t < T] ||x]|* < R?
FCx)ANt=ty > (x' =f(x),t' =1)t>T

StepDual_,,dRW(-)
where the premise is proven by application of Lemma 5.3. This completes the proof. ]
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Theorem 5.11 and Theorem 5.12 do not require the flow of the compact IVP to be well-defined a
priori, as dL is capable of proving this from the validity of the formulas in question.
There is a natural dual part to Theorem 5.11, involving liveness formulas of the form

FC(x)At =ty — (x = f(x),t' =1&t < T)O(x)

dL is indeed also complete for formulas of this form, and the requirements on O(x) can even be
slightly relaxed in comparison with the earlier theorems to just characterizing an open set that is
not necessarily bounded.

THEOREM 5.13 (COMPLETENESS FOR LIVENESS). Let (f(x),C(x), [ty, T]) be a compact IVP with
well-defined flow ¢ : [C] X [to, T] — R" and O(x) a FOLg formula characterizing an open set. Then
dL is complete for formulas of the form

Cx) At =1y — (x' = f(x),t =1&t < T)O(x)
i.e., the following equivalence holds
ECx)At=ty— (x'=f(x),t' =1&t < T)O(x) =
FC(x) At =ty — (x' =f(x),t =1&t < T)O(x)

ProOOF. As <= is soundness, we only handle = , so suppose that the formula is valid. Similar
to the proof of Theorem5.11, denote by 6, the (vectorial) polynomial of error at most 27" as
computed by Theorem 5.5 for each n € N. Now (computably) search for some n € N such that the
following formulas are valid (note that the first formula is always valid by construction of 6,,)

CX)Ax=xg At =ty — [x' = f(x),t' =1&t < T] ||0n(x0,t) — x||* < 272"
Vxo € [C] 3t (tg <t At <T A B[0n(x0,1),27"] C [O])
For this to be a well-defined procedure, we prove that such an n € N necessarily exists. Suppose

for the sake of contradiction that this is false, then for all n € N, the following hold:

(1) 116n = @llco ey < 27"
(2) There exists some z, € [C] such that for all t € [to, T], B[0,(24,t),27"] € [O].

Since [C] is compact, we may assume without loss of generality (by re-indexing if necessary), that
the sequence z, — z € [C] converges to some z. To achieve a contradiction, it suffices to show that
¢(z,t) ¢ [O] for all t € [, T]. Let t € [, T] be arbitrary and denote d : R” — R as the distance
function associated to the closed set [[O]]C. For all n € N, we have
d((z,1)) < d(0n(2n, 1)) + [16n(2n, 1) — (2 D)l
< 27" 4+ 10n(zn, t) — (2, 1)|| (by choice of z, in (2))
<27+ 10n(2.1) = @(z Ol + 10n(zn. 1) = On(z,1) ||
27" 410 = ollco (qepx i)y * 100 (20 1) = @(zn DI + |9 (20, £) = On(z. DI
<27 4100 = ¢lloo(reixirorn) + 119(zn D) = @2 DI + llp(z. 1) = Bn(z 1)l
<27 4 llpen 1) = (2 Dl = 0
where the final convergence uses the fact that ¢ is continuous. Since the argument above holds
for all ¢ € [#, T], this shows ¢(z, [£, T]) N [O] = 0, a contradiction. Thus, there necessarily exists

some n such that both formulas are valid and therefore provable via Theorem 5.5 and r. To continue,
first note that the following is provable

C(x) Ax=x9 At =ty — (' =1&t < T)B[0,(x0,1),27"] C [O]
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with derivation
%
RRC(X),X —xoF 3t (- <AL <T AB[On(x0,0).2-"] < [O])
C(x),x =x0,t =ty + (t’ =1) (B[0n(x0,1),27"] C[O] At < T)

92

&K;:C(x),x =Xg, t =1ty F <t' = 1> (B[Qn(xo’ t),z_”] C [[Oﬂ A [t/ _ —1](t >t >t < T))
o C(x),x =x0,t =to b (' = 1&t < T)B[6a(x0, 1), 27"] € [O]

FC(x) Ax=xg At =ty — (t' =1&t < T)B[0n(x0,1),27"] C [O]
where the final application of r is sound by the construction of n, and axiom K(-) was applied

assuming t < T — [t' = —1]t < T, which is a valid invariant and can be proven by dInv. Next, the
following formula can be derived with a direct application of axiom BDG(-)

C(x)Ax=xg At =ty — (x' = f(x),t' =1&t < T)B[0n(x0,1),27"] C [O]
which uses the (provable) formulas
CxX)Ax=xg At =ty — [x" = f(x),t' =1&t < T]||6n(x0,t) — x||> < 272"
C(x) Ax=xg At =ty — (t' =1&t < T)B[0,(x0,1),27"] € [O]
Finally, applying axioms DR(-),dW{-) with the (provable) formulas
Cx)Ax=xo At =ty — [x" = f(x),t' =1&t < T]||0p(x0, ) — x||*> < 272"
Cx) Ax=xg At =ty — (x' = f(x),t' =1&t < T)B[0,(x0,),27"] C [O]
proves
C(x) Ax=xg At=ty — (x"=f(x),t' =1&t < T)(B[0,(x0,1),27"] C [O] A |6 (x0, 1) — x]|* < 27%7)
another application of K(-) gives
C(x) At =ty — (x' = f(x),t' =1&t < T)O(x)

completing the proof of completeness for open properties. ]

6 Conclusion

By unifying both deductive and numerical techniques, this article establishes several completeness
properties of compact IVPs. On a theoretical level, this proves complete reasoning principles for
compact IVPs from purely qualitative properties. On a practical level, these results show that it is
possible both to enjoy the capabilities of numerical methods, whilst retaining the rigorous level
of trust provided by deductive, symbolic proofs. Alternatively, one could view such completeness
results as a strengthening in the uniformity of such numerical algorithms. Standard numerical
algorithms take in a single input and compute a corresponding output. As such, a different certifying
proof of the output is needed for each individual input. This article improves on the level of
uniformity for compact IVPs and establishes that there exists a single, symbolic proof in dL which
proves the desired properties of the given compact IVP for all initial conditions from the compact
domain.

To achieve these completeness results, the article crucially establishes that rigorous error bounds
can be proved in dL by reducing them down to differential invariance questions, providing a
modular, rigorous way of verifying error bounds for numerical approximations. Utilizing this result,
this article then proves that dL is complete for (open and bounded) safety and liveness properties,
as well as convergence for compact IVPs. This proof-theoretic result shows that not only is dL
expressive enough, its axiomatization is also powerful enough to prove all such true properties
of compact IVPs. The article also presented derivations of several classical theorems in dL along
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the way to establishing completeness, which are of independent interest, notably including the
Weierstrass approximation theorem, intermediate value theorem and the correspondence between
global existence of flows and absence of finite time blow-up.

For future work, it would be interesting to establish specific classes of LDAs that are general
enough to preserve the completeness results while having a more tractable complexity in proving
their error bounds in the sense of Theorem 5.1.
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Appendix
A dL Axiomatization
This section provides a complete record of dL’s axiomatization that is needed for the article.

THEOREM A.1 ([40, 45, 52]). The following are sound axioms of dL. In axioms Cont, Dadj, BDG, the
variables y is fresh. In axiom BDG, Q(x) is required to be a formula of real arithmetic.

R o (if Aper P— V gea Q is valid in FOLg)
() (@P o =[a]-P

() (& = Fp(x) © 320 (= y(0)p(x) W' (D = F(y)
B (' = £(x) & 0(0))FP(x,y) © Ty (x' = f(x) & Q(x)P(x,y) (4 ¢ %)
K [al(o—p)—([alp—[aly)
V p—lale (no free variable of ¢ is bound by «)
S iy

oW QrP

Tr ¥ = f(x) &QIP
Tk [x' =f(x)&Q]C A Tr[x' =f(x)&(QAQ)]P,A
Tk [x' =f(x)&Q]P,A
DG [x' = f(x) &Qx)]P(x) & Ty [x" = f(x).y" = a(x) - y + b(x) &Q(x)] P(x)
DGi  [x" = f(x) & Q(x)[P(x)—=Vy[x" = f(x),y" = g(x,y) &Q(x)]P(x)

[&]  [x" =0&)]p < Vig=co[x" = 0] ([x" = =0] (co 2 1o = X) — @)

dC

DX [x" = f(x)&Q]P & (Q — P A [x" = f(x)&Q]P) (x" € P,Q)
Uniq (x" = f(x)&Q1 A Q2)P & ({x" = f(x)&Q1)P) A ({x" = f(x)&Q2)P)
Cont x=y— ((x' =f(x)&e >0)x#y < e >0) (f(x) £0)

Dadj (x"=f(x)&Q(x)x =y & (v =-f(y)&Q(y))y =x
RI [x' =f(x)]P & Vy[x' = f(x)& P Vx=y|(x=y > PA{x' = f(x)&P Vx =y)x # y)

[x" = f(x),y" = 9(x,)&Q(x)] llyll* < p(x)

BDG (¥ = F(0)&Q(@)IP(x) & [x = f(x).y = g(x, )&Q(x)]P(x))

Remark A.2. In axioms [&] and Cont, it is assumed that the ODE x’ = f(x) includes a clock
variable ¢, = 1. This assumption can be made without loss of generality since a clock variable can
always be added using DG. The variable t; is also assumed to be fresh in [&].

The following derivable axioms will also be used.
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THEOREM A.3 ([40, 45, 52]). The following axioms are derivable in dL, where e is a term. In axiom
BDG(-), Q(x) is required to be a formula of real arithmetic.
DR(:)  [x" = f(x)&R]Q— ((x" = f(x) &R)P — (x" = f(x)&Q)P)
R+ Q Ik (x’ = f(x)&R)P
[k (x" = f(x)&Q)P

[x" = f(x),y = 9(x,)&Q(x)] llyll* < p(x)
—= (X" = f(x)&Q(x))P(x) = (x" = f(x),y = g(x,y)&Q(x))P(x))

K() lal (9 = ¢) = (a)e = ()y)
OV L) (V) o () V()Y
A [al(e AY) & [ale Alaly

I'r[x'=f(x)&Q Ae>0]e>0
I'F[x'=f(x)&Q]le >0

dRW ()

BDG(-)

T're>0

Enc

Remark A.4. This article adopts “rich-test” dL which allows domain constraints Q to be general
dL formulas with modalities rather than just first order formulas of arithmetic unless explicitly
restricted otherwise. Thus one should be cautious when employing previous axiomatization [45,
52] and ensure that they are still sound. Indeed, while earlier works stated the soundness of
such axioms under the assumption of “poor-test” dL, the proofs are more general and extend to
“rich-test” dL.

This concludes the brief overview of dL’s proof calculus that will be needed for this article. The
usual FOL proof rules are listed below for completeness [38].

T'rPA I'rP,A ILOrA
e — —L
IL-PrA ILP-QFrA
I[LP,OFA Lp(e) kA
AL — VL ——— bit t
T,PAQF A TVxp(x) F A (arbitrary term e)
IPr A I OrF A T, FA
VL Q L L (y ¢ T,A,3x p(x))
ILPVQOFA [,3xp(x) - A
ILPFA ILPrQA
Tr—P,A T+ PO, A
T'rP A T'rOA T+ A
AR Q VR & (y ¢ T,AVx p(x))
F'rPAQA T'FVxp(x),A
TrCA T,CrA T+ p(e), A
cut R — (arbitrary term e)
F'rA I'F 3Ixp(x),A
T'rP,QA *
VR —Q id ——
'rPVQA ILPrPA
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B Derived Axioms and Proof Rules

This section proves Lemma 5.9 and subsequently Theorem 5.7. The following lemma proves useful
properties of constant assumptions and a diamond analog of axiom [&].

LEmMa B.1 ([45, APPENDIX A.2]). The following axioms/proof rules are derivable and thus sound,
where R(y) is a dL formula only depending on its free variables y which has no differential equation

inx" = f(x).
dW()  (x" = f(0)&QYP—(x" = f(x)&Q) (P A Q)

I+ [x' = f(x)&Q A R(y)IP
LRy + [x' = [(x)&QIP
I, (' = fx)&Q)(P AR(y)) + R(y)
R(y), (¢’ = fO&QP r (x' = [(x)&Q)(P AR(y))
(&) (x' = 0&x)p o Ttg=co(x’ = 0) (p A [x" = =0] (co = 1o — 1))

\%

Proor. Axiom dW(-) can be derived as follows

= f0&010
= @& (P - PAQ)
- (7 = [(DEQP — (' = [(x)&Q) (PA Q)

The last proof rule labeled as V can be derived using dW-)

K{

*

d:\\;’:-: <x’ = f(x)&Q A R(y)>(P A R(y)) F <x/ _ f(x)&Q>(P A R(y))
oy & = FEIEQ ARWYP ¥ (" = f(x)&Q)(P AR(y))

R(y), (x" = f(0)&Q)P F (x" = f(x)&Q)(P A R(y))

Axiom (&) can be derived directly from axioms [&],(-), and the remaining proof-rules have been
derived in earlier works [45, Appendix A.2]. ]

Axiom dW(-) asserts that domain constraints are always satisfied along the flow, the next three
proof rules assert that the truth of constant properties remain unchanged along the ODE flows,
all special cases of axiom V [45, Appendix A.2] and thus have the same name. Similar to earlier
works [45], manipulations of constant properties in derivations will be abbreviated with V. Axiom
(&) is the diamond analog of [&], similar to [&], c; = 1 is a clock variable in x” = f(x) and £
is fresh.

ProoF oF LEMMA 5.9. Rev: Suppose for the sake of contradiction that the claim was false, there
would be some state along the flow of x” = f(x) such that reversing the flow does not return to the
original state where P is true. But this directly contradicts axiom Dadj, which says that it is always
possible to reach the initial state by following the reverse flow.
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*

v P(x),(y' = —f()&Q)P(y), [y = —f(y)&Q]-P(y) + L

D P(x),(y = =f(&Qx =y, [y = —f(y)&Q]-P(y) - L
o P, & = f)&Q)x =y, [y’ = —f(y)&Q]-P(y) + L

P(x), (x' = f(x)&Q)(x =y A [y’ = —f(y)&Q]-P(y)) F L

P(x),(x" = f(x)&Q)(x =y A [x" = —f(x)&Q]=P(x)) + L
P(x), Jyx’ = f(x)&Q) (x =y A [x’ = —f(x)&Q]=P(x)) L

P(x), (x" = f(x)&Q)(Ty(x =y) A [x' = —f(x)&Q]-P(x)) F L

P(x),{(x" = f(x)&Q) [x" = —f(x)&Q]=P(x) F L
FP(x)—[x" = f(x)&Q]{x" = —f(x)&Q) P(x)

The open premise resulting from a cut with x = y A [x' =f(x)&Q]-P(x) —
[v" = f(y)&Q]=P(y) is

(-),~Lid

@

cut,K(-)

K{),G
—R,(+),mR

D =x=y [x" = f(x)&0]-P(x) + [y = f(y)&Q]-P(y)

To complete the proof of Rev, premise (I) needs to be resolved.

o =y = FEOROIPR). (7 = FEO&QIPG) - L
Jx =y I = FO&QI-P(), & = f&QY(x =2 A P() F L
x =y [ = f)&QIP(), & = f(0)&Q) =2, P(2) + L
x =y [ = f&QI-P(), ' =~ ()&Q)z =%, P(2) F L
x =y [ = f)&QIP(), (&' =~ (2)&Q)z =y, P(2) + L
VX =y [ = F0RQIP(O, (' = [ (9)&Q)y = 2 P(2) F L
ey X = [ = FORQIP) (v = F(5)&Q)(y =2 A P(z) - L
=y = f&QI=P(), (' = f1)&0)(y =2 A P(y) F L
=y [ = f(&QI-P(), T2y = FW)&QNy =2 A P(y) + L
x =y [ = [()&QI-P(x). (¥ = [()&Q) Gz(y =2) AP(y) F +
x =y, [x" = f()&QI-P(x), (y' = f(H)&Q)P(y) + L
x =y [ = fORQIP() + [y = f(§)&QI-P(y)

Dadj
V.K()

Dadj

G.K(:)
()R

This completes the proof of axiom Rev.

Stuck: While there might be easier ways to prove this, the completeness axiom dInv for differential
invariants gives the difficult direction immediately.

k
@ . S =l f<fo—PFP
t=t, P+ [x' = f(x),t' =1&t < t]P t =ty [x' = f(x),t’ =1&t < t]P+ P
t=t+ [x' =f(x),t' =1&t < tH|P & P
Fit=ty— ([x' =f(x),t' =1&t < tH]P & P)

—R

—R

Premise (D is easily proven by noting that if x = x, initially, then I = t =t A x = xo is a valid
differential invariant of the ODE x’" = f(x),t" = 1&t < ty, and can therefore be proven via dInv.
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* k
V,dW dl
PO to) b [x = f), 1 = 1&t <ty ATIP(x, 1) "HPTS [ = f(x), = 1&t < fo]]
C

t=ty,x = x9, P(x0,80) F [x" = f(x),t' =1&t < t]P(x, 1)
t=ty,PF [x’ =f(x), =1&t < to]P

cut, 3L

This completes the proof of Stuck. The following useful corollary of Stuck will be used in future
derivations.

t=tg AP AL = f(x),t =1&0YP — (x’ = f(x),t' =1&Q) (P At > t;)

Semantically this is not surprising, if P is not satisfied at the initial state, then there must be some
evolution along the ODE to reach a state where P is true, and since ¢’ = 1 is strictly increasing,
such a state must also satisfy t > 5. However, axiom Stuck provides a syntactic derivation of the
axiom. The derivation begins with axiom B’ to quantify the final time value reached, cutting in
an appropriate domain constraint that captures the monotonicity of t' = 1 then completes the
derivation with an application of axiom Stuck.

*
. t=ty,—PF [x" = f(x),t' =1&t < tp] =P
t =ty, =P, (x" = f(x),t’ =1&t < t)P+ L
t =ty,s <tg, P, (x" = f(x),t’ =1&t <s)P+ L
t =1y, =P, (x’ = f(x),t’ =1&t < s)PF s> 1y
dRW(-),K(-)
t=tg, P, (x' = f(x),t! =1&Q At <s) (PAt=5)F s>k
. ' t=to,—P,(x' = f(x),t' =1&Q0) (P AL =5) F 5 > fo
« t =ty, =P, (x" = f(x),t’ =1&Q) (PAt =5) F [x' = f(x),t’ =1&Q]s >ty
K t =1y, =P, (x' = f(x),t’! =1&Q) (P At =35) F [x' = f(x),t’ =1&Q](PAt=s > P At > ty)
o t=tg,—P,(x’ = f(x),t’ =1&Q) (P At =5) F (x' = f(x),t' =1&Q) (P A t > ty)
—>RK!(~> t =t, =P, (x" = f(x),t’ =1&Q) (P A3s(t =s)) F (x’ = f(x),t' =1&Q) (P At > ty)
' Fi=t A=PAX = f(x),t’ =1&Q)P — (x’ = f(x),t’ =1&Q) (P At > tp)

Stuck
()=
DR(-),V

-R

©)

cul

The open premise (2) arising from cutting in (x” = f(x),t’ = 1&Q At <s)(P At =s) is:
@ =" =f(x),t' =1&Q) (P At =3s) F (x' = f(x),t' =1&Q At <s) (PAt =5)

It therefore remains to prove (2), which follows directly from axiom (&) with clock variable
t’ =1 and noting that t <s — [x’ = —f(x),t’ = —1]t < s is a valid differential invariant, we also
make the following abbreviation for clarity.

A=s(x'=f(x),t' =1&Q At <s)y(PAt=s)

to=t{x' = f(x),t’ =1) (PAt=sA[x' =—f(x),t' =-1] (t >t > QAt<s)FA
fo=t(x' =f(x), ' =1) (PAt=sA[x' =—f(x),t' =-1](t 2tp > Q) F A
(x" = f(x), ! =1&QY (P At =s) F (x’ = f(x),t’' =1&Q At <s) (P At =35)

This completes the proof. The corollaries of Stuck are recorded below as axioms, the positive
time versions (i.e., Stuck™,Mont*) have been derived above, and the negative time versions can be
derived in exactly the same fashion with ¢’ = —1 instead of ¢’ = 1.

Stuck™ =1ty AP A(x" = f(x), 1" = 1&Q)P—(x’ = f(x),t' =1&Q) (P At > ty)

Stuck™ t=1tg AP A = f(x),t' = -1&Q)YP—(x" = f(x),t' =—-1&Q) (P At < 1)
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Premise (2) and its negative time version will also be useful.
Mont™ (x" = f(x),t' =1&Q) (P At =s)—(x" = f(x),t' =1&Q At <s) (PAt =5)

Mont™ (x’ = f(x),t' = -1&Q) (P At =5)—>(x" = f(x),t' =-1&Q At =s) (P At =5)

It is useful to note that by utilizing axiom B’, the condition ¢ = s in axioms Mont*,Mont™ can
also be substituted by t < s and t > s respectively.

Idem: The derivation of axiom Idem heavily relies upon axiom (&) to repeatedly remove domain
constrains within modalities. The following abbreviation will be useful in its derivation.

A=[x"=—=f(x)](co =t — Q)

The proof first applies (&) with the clock variable ¢y to the antecedent followed by Skolemizing
the initial time value with 3L to the witness t,. Similarly, the second application of (&) is applied
to the succedent followed by Skolemizing the clock variable to the same witness t,. Axiom K(-)
then reduces the open premise to proving an implication between the inner box-modalities that
arised from (&).

@
PAF [x' =—f(x)] (co 2 tg = (X' = f(x)&Q)P)
. PAFrPAAN[X =—=f(x)] (co = tg = (x' = f(x)&Q)P)
o= K =fx)(PAAF X =f(x) (PAAN[X =—f(x)] (co 2 ) = (x = f(x)&Q)P))
=X =f)) (PAA) F X =f(x) (PA[x" = —f(x)] (0 2 to > QA X' = f(x)&Q)P))
ty = co, (X = f(x)) (PAA) F Tso = co(x” = f(x)) (PA[x" = —f(x)] (co 2 50 = QA (X" = f(x)&Q)P))

AR,id

o = o, (7 = F)) (PAA) F (= FR&Q A (' = f()&Q)P)P
T =l =) PAY =] (&0 2y > Q) (¥ = FEQ A (' = [EQ)P)P

(" = fO&QP F (x" = f(x)&Q A (x" = f(x)&Q)P)P

The open premise (I) can now be proven by first negating the succedent and then applying axiom
Mont™. Recall that x” = —f(x) is assumed to contain the clock variable ¢; = —1 and therefore
Mont~ is applicable with the time variable t being co.

[ = f@&OI(x' = FO&QP. (¥ = —f()&Q) [ = f(X)&QI~P+ L
P (' = —f()&Q)[x' = f()&Q]-P r L
[ = —f(] (co > fo > Q), (¥’ = —f ()& > ) [x' = f(X)&QI-P F L
P = —f(0)] (0= to = Q) (x' = —f(x)) (co > o A [/ = f()&QIP) F L
P = —f(0] (0= to = Q) F [¥' = ~f(0] (co = fo — (x' = [(x)&Q)P)

(-),~L,id

Rev
DR(-)
P,
Mont™

(-):7R

Uniq’: Before deriving this axiom, we make the following abbreviations for brevity:

A= {x" = f(x)&01)P;

A =(x" = f(x)&Q1 A APy

B=(x" = f(x)&Q,)P,

B = (x' = f(x)&Q; A B)P,

C=(x" = f(x)&Q1 A Q2) (P1 A B) V {x" = f(x)&Q1 A Q2) (P2 A A)
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%

0 = F)&0, A Q2 (PLAB) V (x’ = f(x)&0; A Q) (P, AA) ¥ C
(x = f(x)&Q1 AQs ANAAB)P; V (x' = f(x)&Q1 A Q2 AAANB)P, + C
(" =f(X)&Q1 AQ AAAB) (PLVP)+C

A, BF(x" = f(x)&Q1 A Q2) (PL AB) V(x" = f(x)&Q1 A Qz) (P2 A A)
FAAB— (x" = f(x)&Q1 A Q2) (P1 A B) V{x’ = f(x)&Q1 A Q2) (P2 A A)

IVT: Classically, the intermediate value theorem is usually proven directly from the completeness
of R (and indeed they are equivalent), so it might be expected that axiom RI is utilized. Indeed, the
derivation relies upon the derived proof rule Enc, which itself relies on RI. The derivation begins
by contradiction, negating the succedent and applying Enc proves that e < 0 always holds along
the flow under the domain constraint ¢ < 7. Note that e # 0 under the domain constraint of e < 0
reduces down to e < 0 by K.

dW(-),dRW(-)
Ov
K(-),Uniq

—R,JIdem

©)
e<0,(x'=f(x),t' =1&Q) (t=tAe>0),[x =f(x),' =1&Q At <T]e<O0F L
‘e<0,(x' = f(x),t' =1&Q) (t=tAe>0),[x' = f(x).t' =1&Q At <TAe<O0le<O0F L
e<0,{x' =f(x),t' =1&Q0)(t =1t Ae>0)F =[x’ =f(x),t' =1&Q At <TAe<0]le#0
Fe<OAX =f(x),t' =1&Q0) (t=7Ae>0) = (x' =f(x),t' =1&Q At <TAe<0)e=0

En

—R()

Continuing from (D), the derivation crucially relies on Dadj which flows along the reverse ODE
x" = —f(x),t' = —1to reach a state where t, < t < 7 A e > 0, with ; being the initial time value.
Semantically, we have found a flow along x” = f(x),t’ = 1 to a state where both t < 7and e > 0 are
true, contradicting the fact that e < 0 holds along the flow while ¢ < 7. Synthesizing the argument
above within dL first requires extensive use of B’ to instantiate extra variables which allows us to
apply axiom Cont, flowing to a state where both ¢ < 7 and e > 0 hold. A final application of Uniq’
then gives the desired contradictions. Again for brevity, we first make the following abbreviation.

a(x,t) =x" = f(x),t' =1
—a(x,t) =x" =-f(x),t' =-1
A(x, t,7) = [a(x, 1) &Q(x,t) At < T]e(x,t) <0

©) ©)
C()ntlj:fc;fe(x,t) < 0,A(x, t,s),e(y,7) >0, (—a(y,1)&Q(y, 7)) (x =yAr=1t),(-a(y,7)&e(y,7) >0) (r <s) F L
o e(x,t) <0,A(x,t,s),e(y,7) >0, y=2z,7=5,{-a(y,71)&Q(y, 7)) (x =yAT=¢)+ L
- lv e(x,t) <0,A(x,t,7),e(y,7) >0, y=2,7=5,(-a(y,7)&Q(y, 7)) (x =yAr=28)F L
| o e(x,t) <0, (a(x,1)&Q(x,t)) (x =yAy=zAt=tAT=sAe(x,t)>0),A(x,t,7) F L
if; e(x,t) <0,{a(x,t)&Q(x,t)) (Qy=xATJz=xAds=1tAt=1Ae(x,t) >0),A(x,t,7) F L

e(x,t) <0,(x" =f(x),t’ =1&Q(x,t)) (t =t Ae(x,t) >0),A(x,t,7) + L

Where the open premises arising from Uniq’,VL are
D =e(xt) <0, {(-a(y,1)&Q(y, 7)) (x =y At =1 A{(—a(y, 1) &e(y,7) > 0) (T <s)) F L
@ = A(x, t,5), (—a(y, 1) &e(y,7) > 0) (1 < s A {—a(y,0)&Q(y, 7)) (x =y At=1)) F L

Intuitively, @) yields a contradiction since the first diamond modality flows to a state where
e(y,7) = e(x,t) < 0 is true, but the second diamond modality requires e(y,7) > 0 as a domain
constraint. Since the domain constraint is not satisfied, the overall formula is indeed false. For 2),
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another application of Dadj to the inner modality gives a flow that contradicts A(x, t, s). We deal
with () first:

*

Lr1>2sA[—a(y,r)&e(y,7) > 0] (= 3)
) <0e(,1) >0F 25 A [—aly, D&e(g,7) > 0] (7 = 5)
x e(y,7) <0Fe(y,7) >0 > 125 A [—a(y, 1)&e(y,7) > 0] (r >5)
(ot e(y,7) <0+ [—a(y, r)&e(y, ) > 0] (r = s)
o ’ e(y,7) <0,(—a(y, 0)&e(y,7) > 0) (r <s) + L
Lyt t) 0, (-a(y, D&y, 1)) (e(y, 1) < 0 A {~a(y, D&e(y,7) > 0) (1 <)) + L
e(x,t) <0,{(—a(y, 1)&Q(y, 7)) (x =y At =1 A {(—a(y, 1)&e(y,7) > 0) (1 <s)) + L
Continuing with the proof of 2), we have:

%k
1dA(x, t,s), A(x,t,s) F L
. A L) @ D&O ) AL <) (e ) > 0) F L
LA ts)e(y,1) > 0,7 <s (@ H&Q(x ) At<T) (x=yAt=17)F L
D A(x, t,5),e(y, 1) > 0,7 < s, {a(x, ))&Q(x,t)) (x =y At=7)F L
o A(x, t,s),e(y,7) > 0,7 <s,{(—a(y, 1) &Q(y, 7)) (x =y At=7) F L
de(j} (—a(y, 1)&e(y, 7)>0) (A(x,t,5) Ae(y,7)>0 A t<s A (—a(y, 1)&Q(y, 7)) (x =y At =7)) F L
' A(x, t,5), (—a(y, ) &e(y,7) > 0) (t < s A {—a(y, 1)&Q(y, 7)) (x =y At =7)) F L
This concludes the proof of Lemma 5.9. Note that for IVT, axiom B’ allows us to relax the
condition of t = 7 in the antecedent to t < 7 without loss of provability.

=L,

Mont

O

ProoF oF THEOREM 5.7. StepDual_,: To derive this axiom, we first utilize BDG to cut in the
formula

x'=f(x),t' =1&t <)t =1

after which an application of DR(-) will give the desired outcome.

@
t<r[x =f(x),t’' =1&t < 7]B(x) F (x’ = f(x),t' =1&t < 1)t =7 @
Ft<tA[x'=f(x),t =1&t < 7]B(x) = (x' = f(x),t’ = 1&B(x))t =7
Where the premises arising from cut are

—R,cut

<t [x =f(x),t' =1&t < 7]B(x) F (x = f(x),t' =1&t <)t =7
x' = f(x),t' =1&E<7]|B(x), (x" = f(x),t' = 1&t<r)t =7+ {x’ = f(x),t' =1&B(x))t =7

To prove (D), axiom BDG reduces the problem to proving [x” = f(x),t’ = 1&t < 7] ||x||* < p(¢t),
where p(t) is some polynomial in terms of t. Since B(x) is a bounded set, the FOLr formula
3IDVx(B(x) — ||x||* < D) is valid, and therefore p(t) can be simply be chosen to be p(t) = D for
some D € Q* a witness of the FOLg formula. Expressing this argument in sequent form gives:

— ® </>tST|- (' =1&t <)t =1
t<r,Vx (B(x) — [Ix]|? <D), [x’ = f(x),t' =1&t < 7]B(x) F (x’' = f(x),t/ =1&t <)t =7
e ALE F<tlx =00 =18t <TBX) F (¥ = f(). 0 = 1&l <) =7

*

Where

® = Vx (B(x) — lIlx||* < D), [x" = f(x),t' =1&t < 7]B(x)  [x" = f(x),t' = 1&t < 1] Ix|I* < D
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@ is proven by first applying dC to cut in the domain constraint B(x) to the succedent, after which
an application of dW completes the proof since the formula Vx (B(x) — [Ix]1* < D) is independent
of the ODE x’ = f(x),t' = 1.

R\v’x (B(x) = lIxI” < D), t <t AB(x) + |Ix||* < D
} va (B(x) — lIx||? < D)+ [x" = f(x),t’ = 1&t < 7 A B(x)] lIx|I> < D
“Vx (B(x) = x> < D), [x’ = f(x),t/ =1&t < 7] B(x)  [x' = f(x),t' = 1&t < 7] ||x||* < D

The open premise (3) has been proven and therefore so has (D. (2) is now proved utilizing DR(-)
to add in the domain constraint of B(x).
*
(x' = f(x),t! =1&t <t ABx))t =1+ (x’ = f(x),t’ =1&B(x))t =1
O =f(0, = 1&t < TIB(x), (¢ = Fx), t/ = 1&E < )i =7 F (&' = f(x), 1/ = 1&B(x))i = 7

dRW(-)

DR

This completes the proof of StepDual .
StepDual._: For brevity, first make the following abbreviations:

A=s(x' = f(x),t' =1&Q)t > 1
B=(x" = f(x),t' =1&t < 1)-Q

Axiom StepDual._ says that if there is some flow of the ODE x’ = f(x),t’ = 1&Q where time
surpasses 7, then every flow of this ODE before time ¢ = 7 will remain within the domain constraint
Q. Alternatively, this axiom is precisely the uniqueness property of ODE flows. Consequently, our
derivation will follow the classical soundness argument. If the implication is not valid, then there
are two disjoint flows of the ODE, contradicting Uniq’. For brevity, we also make the following
abbreviations:

@ dW<;’<x':f(x),t':1&Q/\tsT> (FONQOAA)F L
(X' =f(x),! =1&Q At <7)(t 2TAB)+ L (X' =f(x),t’ =1&Q At <7) ("QANA)F L
(X' =f(x),t! =1&Q At <T)(t ZTAB)V(x' = f(x),t’! =1&Q At < 7) ("QANA) F L
(x! =f(x),t' =1&0Q)t > 7,{x’ = f(x),t' =1&t < 7)=QF L
F(x' =f(x),t’! =1&Q)t > 7 — [x' = f(x),t' =1&t < 7]Q

VL

Uniq’

—R,(-),~R

The right branch arising from VL closes easily by noting =Q A Q = L and applying axiom dW¢-).
For (D, B says there is some flow along x” = f(x),t’ = 1&t < 7 reaching —Q. But since the first
diamond modality already reaches a state where t > 7, there cannot possibly be any non-trivial
evolution, and therefore Q must remain true, a contradiction.

%
V(x’ =f(x), ! =1&QAt<T)(t=TAQA-Q)F L
(X' =f(x), ! =1&Q At <) 1 =TAQA (X' = f(x),t' =1&t < 1)-Q) + L
(' =f(x),! =1&Q At <T)(t>2TAB)F L
where we used Stuck by negating the succedent, resulting in
t=1— ((x'=f(x),t' =1&t < 1)=Q & =Q)

this completes the derivation of StepDual. .

StepEx: Derivation of StepEx mostly follows from axioms IVT and dInv. Mathematically, the
boundedness requirement on f(x) implies ||x(t) — xo|| < M(¢ — t,), essentially the multivariate
mean value theorem where x(t) is the flow of x” = f(x), x(#) = x at time ¢. By StepDual_, and IVT,

K(-),Stuck
dW(-)
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if the axiom does not hold, then there exists some point where the bound ||x(#) — xo|| < M(t — £o)
is violated, resulting in a contradiction. The derivation is as follows (maxyep[x,,r] ||/ (y) 1> < M?
abbreviates Vy(y € B[xo, R] — | f(y)]I* < M?)).

cut @ @

e MaXx yeBlx,R] IF ()1 < M2, x=x0, t=ty, (x' =f(x),t' =1&t < ty + %/\x € B[xo,R]) ||x — xo||?=R? + L

MaX yeBx.R] IF(IIF < M2, x=x), t=ty, (x' =f(x),t' =1&¢ < to + %) lx = xoll? >R+ L

(-),7R
bl maxyepixgR] IF (917 < M2, x=x0,t=ty b [x'=f(x),t'=1&¢ < to + K |x € B[xo, R]
tepDual
- maxyep(x, &) [ f(9)1I° < M2, x=x0,t=tg + (x'=f(x), ' =1&x € Blxo, RI)t > ty + ¢
—R,—

F maxyeni R I ()17 < M2 (x=x A 1=ty = (' =f (x), 1/ =1&x € Blxo, RI)t = 10 + &)

Where we are cutting in the differential invariant representing the multivariate mean value
theorem at the last step, giving:

R
a(x,t) =x" = f(x),t' =1&t <ty + i A x € B[xo,R]

I(x,t) = D(x,t) = [x" = f(x),t’ =1&x € B[xp,R] A max_||f(y)||* < M*]|D(x,1)
y€B[x,R]
D(x,t) = |lx — x0l? S M*(t —t))* At = 1,

@O =x=xo,t =tp, max |[|f(WI° <M I(x1), (a(x 1) |lx—xol> =R* F L
y€B[x,R]
@ =+ I(x,t)

(2 is derived first. By the completeness of differential invariants, it is suffices to establish the
validity of I(x, t) semantically. To show that (2) holds semantically, let © € S be some arbitrary state
where w |= D.Let ¢ : [0,7] — S be any solution satisfying the ODE x’" = f(x),t’ = 1 with ¢(0) = @
and ¢(t) F x" = f(x),t" =1 Ax € B[xo, R] Amaxyep[xR] ILf (y)||> < M? for all t € [0, 7]. We want
to show that ¢(7) |= D as well. To this end, let us denote x(¢) = ¢(t)(x) as the trajectory of x under
the given ODE. The triangle inequality together with the multivariate mean value theorem gives

llx(z) = xoll < llx(0) = xoll + [lx(7) = x(0)[| < M(¢(0)(2) - to) + (max %" (DIl =

Note that taking square roots implicitly used the assumption ¢ (0) |= D and therefore ¢(0) (¢+)—t, >
0. We will write xo (and similarly ;) instead of ¢(s)(xp) for all s € [0, 7], as xo, ty are just constants
along the given ODE, and will therefore not vary along ¢. Since ¢ |= x" = f(x) A x € B[xo,R] A
MaX e B[R] If (> < M?, this gives the bound maxge (s, Ix"({)|| < M and consequently the
following bound on ||x(7) — xo||

llx(7) = xoll < M(@(0)(2) — to) + [ lx" (Ol 7 < M(@(0)(t) - to) + Mz
=M(7 + ¢(0) (1) - to)

Finally, ¢ |=t' = 1 implies ¢(s)(t) = s + ¢(0)(¢) since the solution to ¢’ = 1 is just t(s) = s + £(0).
In particular, this yields 7 + ¢(0)(#) = ¢(7)(¢), so we have

llx(7) = xoll < M(7 + ¢(0)(2) — 1) = M(p()(¢) — 1)

Squaring both sides then gives the desired claim of ¢(r) |= D, proving I(x,t) to be valid.
Consequently (@) closes by a single application of axiom dInv.
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For premise (D):

*

. O T R (3, ¢ = 1&x € Blxo, R1ID(x%, £), (x' =f (x), / =1&x € Blxo, R|)=D(x, 7) F L
[x'=f(x),t'=1&x € Blxo, R]]D(x, 1), (x' = (x), t’ =1&x € B[x0, R]) (le - xllP =R At -1 < %) Pl
dRW(-)
[x' = f(x), ' =1&x € Blx0, R]]D(x, 1), {a(x, )) (||x ol =R AL -1y < g) FL
dw(-L> [x"=f(x),t =1&x € B[xo,R]1D(x, 1), {a(x,t)) ||x — x0||*=R® + L

x=x0, t =to, maxyepx.R] [f (Y1 < MEI(x,0),(a(x, 1)) lx = xol|*=R? + L

This completes the derivation of StepEx.

StepExt: The main idea in deriving this axiom is to note that IVT and Uniq’ allows one to
decompose diamond modalities into different time steps, from which the premises allow us to
complete the proof. We denote the premises as @), (®), (©) and will indicate when they are used
during the derivation, where:

@=0+ [x =f(x),t' =1&t < )Py
@ =L+ [x’ =f(x), t'=1&t < by + tl]Pz
©Et=t0,P1|-r2

o @ @
t<to, [, {x" = f(x), ¢! =1&t <top+t1) (E<tyA=P) V(> A=P)) F L
h < t(),rl F [x’ =f(x), ' =1&t < to + tl] ((t <ty — Pl) A (t >ty — Pz))

With the open premises being

D=t<te,I, (" =f(x),t' =1&t <ty+t1) (1 <tHyA=P) F L

@ =t <ty (x =f(x),t' =1&t <to+t1) (t > tg A=Pa) F L

Premise (D) is proven first, noting that the diamond modality directly contradicts @) after applying
Mont* to add in the domain constraint of t < t,.

*

(+),~Liid ©)

t <ty I, (x' =f(x), V=1&t < to)"Pl, [X’ =f(x), v =1&t < t()]Pl F L
t
B t<to,Ih,(x' = f(x),t' = 1&t < to)=P, F L

C

K{(-
dRW” F<to, T (' = f(0), 0 = 1&F < fo)(E < fg A —P1) F L
N © t<to,Ty, (x = f(x),t/ =1&t <to+t; At <to) (t <ty A=Py) F L
Adont™
" t<to, Iy, (x' = f(x),t' =1&t < to+ ;) (t < tg A =Py) F L
And (3 is

B=n+ [x =f(x),t' =1& < (|P =@

In other words, (D) derives with premise @). We prove premise (2) next, by first applying axiom
IVT on the terme =t — t,.

Uniq’,VL @ @
niq,
< to, Iy, (x" = f(x), 8" = 1&t < tg + 1) (t > tg A =Py) ,{x’ = f(x),t’ =1&t < to)t =tp + L
VT
t <ty I, (x’ =f(x),t’ =1&t <ty + l’1> (t >t A —|P2) F L
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Where the open premises are the ones arising from the disjunction in Uniq’, we have:

@ =Ty, = f(x),t' =1&t <tp) (t=tg Ax’ = f(x), ¢ =1&t <ty + 1) (t > tg A=Py)) F L
O =" =f(x),t =1&t <tog+t) (>t APy A{X = f(x),t' =1&t <o)t =) F L

Premise (§) is resolved first, noticing that the inequality ¢t > #, contradicts with the domain
constraint of the second diamond modality, so axiom DX yields the desired derivation.

k
HRRt St <ty —Pot L=ty A X = f(x), 0 = 1& < o]t = 1o
t>t, Pkt <ty—t=tyA[x =f(x),t' =1&t < to]t =t
X E> ty, =Py b [x = f(x), ¢ = 1&L < bo]t = fo
. t > to, Py, (x = f(x),t' = 1&t < to)t =to F L
(= f(). = 1&E <to+ 1) (£ > fo A =Py A (%’ = f(x), ¢ = 1&F < fo)f = 1) F L

()7L

We now prove the remaining premise (@. Intuitively speaking, the first diamond modality reaches
some state where t = ty, P; are both true (by premise @), from which premise (¢) implies the truth
of T, and therefore premise (b) gives a contradiction with the second modality. This gives the
following derivation, where each of @), (), (©) indicates the corresponding assumption being cut
in:

*
K
. [x'=f(x),t'=1&t < tg+ 11| Pa + [x'=f(x), ' =1&t < to+ 1] (t <ty V Py) ®
CLEL [x'=f(x),t'=1&t <ty + 11| Py, (X' =f(x), ' =1&t < tg + t1) (£ > ty A=Py) + L ©
' Lo, (x'=f(x), ' =1&t < tg+ t1) (t >ty A=Py) + L
v t=ty, Py, (x'=f(x),t'=1&t < ty+ t1) (t > tg A=P2) F L
W (x'=f(x),t'=1&t <ty APy) (t=tg APy AN{x'=f(x),t'=1&t <ty + t1) (t > thy A=P)) F L @
I, (x'=f(x),t'=1&t < tg AP1) (t=tg A (x'=f(x),t'=1&t < tg+ 1) (t > th A=Py)) F L
cut,DR(-)
I, (' =f(x), ' =1&t < ty) (t=tg A (X' =f(x), ! =1&t <ty + 1) (t > tg A=Pp)) + L

cut

This completes the derivation of StepExt and thus also completing the proof of Theorem5.7. O
The last part completes the proof of Example 5.10.

Proor oF ExaMPLE 5.10. Let ¢ € Q* be arbitrary, and assume without loss of generality that e < 1.
The main idea of the derivation is to iteratively apply axiom StepEx to obtain (shrinking) iterates of
existence intervals using R = «|xy| for some suitably chosen a € Q*, these existence intervals can
be chained together using StepExt, giving the desired proof. First pick & € Q" sufficiently small
and N € N sufficiently large such that the following hold

1 1

a+1 aN+1
1 1 1

a+1  aN+1 z (a+1)3°

>1-¢

such choices are possible since N € N is allowed to be arbitrarily large and dependent on «.

The derivation will use N steps of StepEx to show that x(¢) is bounded in B[x, aNx,] for t €

[0, (1- e)(xi0 - #)) from which the desired claim concludes by axiom StepDual_,. Note that the
0

bound max yep(xynx,) 1%* + 1| < (n+ 1)%x7 + 1 holds for all n € N. The derivation first begins by

handling the trivial case where x%, - # < 0 holds.
0
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*

R
X=x0,t=0,x>0+-L <0t<(l-e|+-L|rL
0 >0 ’ X0 3x3 ? X0 ng
DX
_ _ 1 _ 1 = x2 r = -+ -4
x =Xo,t =0,%0 >0, - 3xg<0,[x x>+ 1,t Jt<(1 5)(XO 3x8)|—J_
()R @
= = 1 _ 1 ’— 42 ’— S (1— 1 1
X = xp, t 0,x0>0,x0 3xg<0|—(x X+LY=1)t>(1 5)(}(0 3x§)
VL
= = 1 _ 1 1 _ 1 — x2 = _ 1 _ 1
x =x0,t=0,%0 >0, 5 3xg<0Vx0 3XSZOI—(x’—x + Lt =1)t>(1 6)(XO 3x3)
—R,cut,R
I—x:xo/\tZO/\x0>0—>(x’:x2+1,t’zl)tz(l—g)()%o—#)
0
The remaining premise (I) represents the case where - — -1 > 0

X_O_SXS

1 1 1 1
@Exzxo,tzo,x0>0,———320k(x'=x2+1,t’=1>t2(1—£) — =
X0 3x0 X0 3x0

The derivation of (I) begins with axiom StepDual_, and the bounded set B[xo, @Nx,] (closed ball

centered around x, with radius aNx), followed by repeated applications of StepEx and StepExt. It
uses the following constructs:

— Define the sequence {t, }o<n<n recursively with ¢y =0, t, = t,-1 + m:{—%
— For each 0 < n < N, define the ODEs
w=Ex =xt+1,t =1&t <ty
Bn=x" =x*+1,t' =1&x € B[xo, anxo]
—For each 1 < n < N, define the formula
I, =x0>0Ax € B[xg,anxo] At =ty

where anx, denotes standard multiplication. Note that crucially the upper bound N and the
parameter « are constant, fixed values.

Note that formulas of the form

¢n =T = [Yns1](x0 > 0 A x € Blxo, a(n + 1)x0])

are valid and derivable from axiom StepEx for every 0 < n < N — 1, the proof is as follows.

*
id
! [Yn+1]x € Blxo, a(n + 1)x0] + [yn+1]x € Blxo, a(n + 1)x]
StepDual
(Bra1)t 2 tar1 F [yne1lx € Blxo, a(n + 1)xo]
T, F [Yn+1]x € Blxo, a(n + 1)xo]
F L, = [yn+1](x0 > 0 A x € B[xg, a(n + 1)x0])

@

cut,StepEx,dRW (- )

—RV

Where the open premise (2) arising from cut is
F Vx € B[xy, anxy|Vy € Blx, ax,] Hy2 + 1|| <(a(n+1)+1)%x2 +1

which is valid as y? + 1 is maximized when |y| is maximized, therefore the maximum is attained

when y = xo + anxy + axo = (a(n + 1) + 1)x, and the premise is proven by axiom r. We can now
derive the example.
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® *

x =x0,t =0,x0 >0+ [yn]x € B[xop, aNxo]

X

ts(l—s)(%{]—ﬁ)usm
0
dC,dw

X=x0,t=0,%>0F [x =x2+ 1, =1&t < (1 —¢) (% - #)]x € B[x0, aNxy]
0
StepDual_,

x =x0,t=0,x0>0 i—%ZOF(x'=x2+1,t’=1>t2(1—g)(i_L)

’ X0 3x; X0 3x8
The resolution of the right premise with axiom Rr requires justification, it is not trivial that the
inequality txy > (1— s)(xio - #) holds. Lower-bounding ¢y with the corresponding integral yields:
0

u ax N ax

0 0
tN = E —_— > ——————dt = arctan((aN + 1)x,) — arctan((a + 1)x,
N i i + 1 /1 (af + D2 + 1 (( )Xo) (( )Xo)

It is well-known that the bound
T 1 T 1 1
— —— <arctan(x) < — - — + —
2 x 2 x  3x3
holds for all x > 0 (can be derived from standard Taylor bounds of arctan(x) and the identity

arctan(x) + arctan( %) 7). Utilizing this, we have

ty > arctan((aN + 1)xg) — arctan((a + 1)xp)

T 1 1
> arctan((aN + 1)xy) — — + _
(« P 2 (a+Dxo 3(a+1)x]
T 1 T 1 1
>—————+ —
2 (eN+Dx 2 (a+Dxo 3(a+1)%
1

1 1 1 1
xXo\a+1 aN+1 3x; \(a+1)°

S 1 1 1 1
“la+1 aN+1)\x  3x

where the final inequality follows from the assumption that ﬁ - ﬁ > m Finally, since
1

P 1\} — = 1—¢by construction, the desired bound holds and the application of axiom R is justified.
At last, the derivation of 3) can be completed by iteratively applying axioms StepEx,StepExt, note
that by construction ¢ = t,,x9 > 0,x € B[xy, anx,] + I}, is always valid.

*

id
! xo > 0,2=0, [yn]x € B[xp, aNxo] F [yn]x € B[xp, aNxp]
StepExt,—L

* *

StepExt,—L " R StepEx —

bt oL xo > 0,2=0, [y2]x € B[xo, 2axo] + [yn]x € B[xp, aNxp] t=t1,x0 > 0,x € B[xp, axo| + [} 01
St xt,—

o xo > 0,2=0,[y1](x0 > 0 Ax € B[xp,aNxo]) + [yn]x € B[xp, aNxp]
—L
x=x0,t=0,x9 > 0,90 + [yn]x € B[x0, aNxy]

cut,StepEx

x=x0,t=0,x0 > 0+ [yn]x € B[x0, aNx]

Where the abbreviated derivation consists of N levels, at the n-th level [y,|x € B[x,, anxo] is
proven via applications of StepEx,StepExt, this completes the derivation of the example. Note that
when choosing the parameters a, N, all sufficiently small « and all sufficiently large N will suffice.
As an example, suppose that the desired error threshold is 1 — 0.1 = 0.9 with ¢ = 0.1, then a = 0.01
and N = 10* works. i
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