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This article proves the completeness of an axiomatization for initial value problems (IVPs) with compact

initial conditions and compact time horizons for bounded open safety, open liveness and existence properties.

Completeness systematically reduces the proofs of these properties to a complete axiomatization for differential

equation invariants. This result unifies symbolic logic and numerical analysis by a computable procedure that

generates symbolic proofs with differential invariants for rigorous error bounds of numerical solutions to

polynomial initial value problems. The procedure is modular and works for all polynomial IVPs with rational

coefficients and initial conditions and symbolic parameters constrained to compact sets. Furthermore, this

article discusses generalizations to IVPs with initial conditions/symbolic parameters that are not necessarily

constrained to compact sets, achieved through the derivation of fully symbolic axioms/proof-rules based on

the axiomatization.
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1 Introduction
Differential equations and their analysis play a fundamental role in cyber-physical systems (CPS)
correctness [3, 42]. Classically, the descriptive power of differential equations exceeds the analytic

power of differential equations [45], since solutions of differential equations are usually significantly

more complicated, not computable in closed form or less analyzable than the differential equations

themselves. That is why Henri Poincaré in 1881 called for the qualitative theory of differential

equations [46], i.e., the study of differential equations directly via their differential equations rather

than indirectly via their solutions. The logical foundations of the qualitative theory of differential

equation invariants have been discovered in a complete axiomatization of differential equation

invariants [45]. In that axiomatization, every true (semialgebraic) invariant of a (polynomial)
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differential equation system can be proved effectively in differential dynamic logic dL [40, 41], and

every false invariant can be disproved, thereby leading to a purely logic-based proof-producing

decision procedure. But in CPS applications, even just finding invariants is challenging. A CPS starts

at an initial state within an initial region and follows a differential equation, where the question is

whether it then always stays safe, which may still be far from an invariance question if the initial

and safe region are very different.

This article, thus, studies the logical foundations of (compact) Initial Value Problems (IVPs).
In a (compact) IVP a (polynomial) differential equation on a compact time interval (with rational

endpoints) starts from some initial value in a compact semialgebraic set. The (semi)algebraic shape

of those syntactic expressions ensures that the required concepts are definable in first-order logic

of real arithmetic (FOLR). IVPs are one of the most fundamental problems studied in numerical

analysis [34]. Unlike in numerical algorithms for classical IVPs [24], however, the initial state is

not given numerically as a single concrete vector of numbers such as (0, 4.2,−6), because those
are typically not known when analyzing all possible behavior of a CPS. Instead, compact IVPs
generalize classical IVPs by supporting a compact initial region from which the symbolic initial

state is selected nondeterministically.

This article proves the completeness of dL’s axiomatization [41, 45, 52] for bounded open safety,

open liveness and existence properties of compact IVPs such that every true such property can be

proved. Moreover, these completeness theorems are effective, i.e., a direct computable procedure

produces the dL proofs based on dL’s effective axiomatization of differential equation invariants

[45]. In order to achieve completeness and thereby complete Henri Poincaré’s qualitative theory of

differential equations for these properties of compact IVPs, this article will do something super-

ficially frivolous: the completeness proofs will use solutions of IVPs, but ultimately of symbolic

IVPs and only to guide the proofs of the required invariance properties of the IVPs. Besides, these

solutions used for the guidance of the proofs will be approximate solutions only, not true solutions.

And, indeed, Henri Poincaré was still correct that both the true solution and their approximations

are more complicated than the IVP, and that the indirect symbolic invariance proofs that this

article’s procedure constructs are both simpler and the key to the complete theory of IVPs. In

fact, one of the hard parts will be the need to prove that sufficient control can be exerted over the

accumulating approximation errors to provide rigorous symbolic proofs with sufficiently small

errors to justify every true bounded open safety, open liveness and existence property of a compact

IVP.

While this article and its results are proof-theoretical in nature, they can also be viewed through

a practically motivated angle. The problem of reachability analysis for ODEs and hybrid dynamical

systems over a compact time horizon is an important area of study in the safety verification of CPS

[3, 42], particularly for bounded model checking [25]. Consequently, practical tools [15, 16, 31]

have been developed to tackle this problem, essentially computing interval enclosures of compact

IVPs. Such procedures are all inherently based on numerical approximation techniques in contrast

to the deductive, symbolic proof approach offered by dL.
In safety-critical applications however, the trustworthiness of such numerical approaches is

challenging to justify rigorously. Even when the numerical approximations computed by such

numerical procedures are mathematically rigorous (which is itself difficult to fully justify in a

trustworthy fashion), subtle errors can still arise in the implementation of such algorithms. Even

the verification of floating-point arithmetic has proven to be intricate and non-trivial [9].

Deductive approaches based on symbolic proofs in contrast are much more trustworthy. Proper-

ties of dynamical systems are proved by applying a sequence of sound proof rules based on a small

set of sound axioms [23]. Certifying the correctness of such proofs only relies upon a small trusted

core of the proof checker [8]. Such deductive approaches are more symbolic in nature, seemingly
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orthogonal to numerical approximations and less capable in verifying inherently numerical proper-

ties of compact IVPs. On the contrary, this article crucially shows that this is not the case, numerical

approximations and symbolic logic can be harmoniously integrated to obtain the best of both

worlds—symbolically proving properties of dynamical systems using numerical approximations.

Thus, the desired properties can be proven deductively in a trustworthy manner accompanied by a

certifying proof, while not losing the computational capabilities of using numerical approximations.

This article thereby unifies computation and deduction for compact IVPs.

All in all, this article explores the proof theory of compact IVPs, providing complete reasoning
principles for bounded open safety, open liveness and existence properties for compact IVPs by

drawing upon both numerical algorithms and deductive verification techniques.

The following presents an overview of the main results established in this article, first defining

the basic notions needed. Let

𝑥 ′ = 𝑓 (𝑥)
𝑥 (0) ∈ J𝐶K ⊂ R𝑛

be an arbitrary IVP on a compact time horizon [𝑡0,𝑇 ] with rational endpoints, each component of

𝑓 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥)) is a rational polynomial in the (𝑛-dimensional vectorial) variable 𝑥 and

J𝐶K is a non-empty compact subset of R𝑛 defined via the FOLR formula 𝐶 (𝑥) (i.e., J𝐶K = {𝑥 ∈ R𝑛 |
R |=𝐶 (𝑥)}). The main contributions of the article concern the completeness of fragments of dL, a
brief explanation of the necessary fragment is given here and a more complete account of dL is

provided in Section 3.1.

The fragments this article is concerned with comprises of dL formulas [38] of the following form,

where 𝑃,𝑄 ∈ FOLR and 𝑡0,𝑇 ∈ Q.
SAFETY(𝑃,𝑄) ≡ (𝑃 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑄)

LIVENESS(𝑃,𝑄) ≡ (𝑃 ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑄)
where the modal connectives [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑄 and ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑄 are exten-

sions of the classic modal operators □𝑄, ♦𝑄 to ODEs. Intuitively, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑄 means

“for every initial value, for all times 𝑡 ∈ [0,𝑇 ] following the vector field 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1, 𝑄 is true”

and likewise for the diamond modality. Such modal formulas express safety/liveness properties of

the flow induced by the differential equation 𝑥 ′ = 𝑓 (𝑥). If 𝜑 (𝑥, 𝑡) denotes the corresponding flow
function

1
starting at 𝑡 = 𝑡0 (i.e., 𝜑 (𝑥, 𝑡0) = 𝑥), then the formulas above correspond exactly to the

following formulas that quantify over times along the flow:

SAFETY(𝑃,𝑄) ⇐⇒
(
𝑃 (𝑥) → ∀∀𝑡 ∈ [𝑡0,𝑇 ] 𝑄 (𝜑 (𝑥, 𝑡))

)
LIVENESS(𝑃,𝑄) ⇐⇒

(
𝑃 (𝑥) → ∃∃𝑡 ∈ [𝑡0,𝑇 ] 𝑄 (𝜑 (𝑥, 𝑡))

)
i.e., the first formula expresses the safety property that every trajectory starting in the set charac-

terized by 𝑃 evolving on the time horizon [𝑡0,𝑇 ] remains in the safety region characterized by 𝑄 .

Dually, the second formula expresses the liveness property that every trajectory starting in 𝑃 can

reach the target set 𝑄 by evolving on [𝑡0,𝑇 ]. This article primarily concerns open properties where

the post-condition 𝑄 defines an open subset (i.e., J𝑄K is topologically open). It is worth noting that

liveness classically corresponds to the negated safety of the complement, i.e., the following holds

¬SAFETY(𝑃,¬𝑄) ⇐⇒ LIVENESS(𝑃,𝑄)
Thus, (unconditional) completeness of safety properties is equivalent to the (unconditional) com-

pleteness of liveness properties. However, this equivalence does not hold between open properties

1
The flow is assumed to be well-defined here for brevity, the complication of finite time blow-up is treated in Section 5.
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(i.e., 𝑄 is topologically open) as the complement of a non-trivial open set is no longer open. The

following main results are established in this article:

(1) Completeness for convergence: Suppose the (compact) IVP admits a solution/flow 𝜑 (𝑥, 𝑡)
on the domain J𝐶K× [𝑡0,𝑇 ] (i.e., 𝜑 (𝑥, 𝑡0) = 𝑥, 𝜑 ′ (𝑥, 𝑡) = 𝑓 (𝜑 (𝑥, 𝑡)) for all (𝑥, 𝑡) ∈ J𝐶K× [𝑡0,𝑇 ]),
let (𝑝𝑛)𝑛 ∈ 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛) be any sequence of definable approximants

2
that converges

uniformly to 𝜑 (𝑥, 𝑡) in the space 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛). For all 𝜀 ∈ Q+, one can computably

find some 𝑘 ∈ N such that

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 − 𝑝𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2

is a valid formula of dLwhere 𝑥, 𝑥0, 𝑡 are symbolic variables. In fact, we will show that this can

be syntactically derived in dL’s axiomatization. This formula is equivalent to the following

sentence involving the true flow 𝜑 of the IVP as a function symbol

∀∀𝑥 0 ∈ J𝐶K ∀∀𝑡 ∈ [𝑡0,𝑇 ]
(
∥𝜑 (𝑥0, 𝑡) − 𝑝𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2

)
i.e., 𝑝𝑘 is an approximant of uniform error at most 𝜀 for the true flow 𝜑 (𝑥, 𝑡) on J𝐶K× [𝑡0,𝑇 ]. In
other words, this formula along with its syntactic derivation provides a proof of the accuracy

of the approximant 𝑝𝑘 . This establishes that dL is complete for convergence. i.e., if a sequence
(𝑝𝑛)𝑛

𝑛→∞−−−−→ 𝜑 converges in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛), then this convergence is provable in dL,
succinctly denoted as the following:

⊨ (𝑝𝑛)𝑛
𝑛→∞−−−−→ 𝜑 =⇒ ⊢ (𝑝𝑛)𝑛

𝑛→∞−−−−→ 𝜑

In particular, the definable approximants can be taken to be outputs of numerical solvers

applied on the IVP, obtained via standard interpolation procedures (e.g., polynomials, splines).

The above result shows that dL is capable of symbolically proving the accuracy of numerical

solvers. In contrast to ODE solvers that rely upon rigorous numerics using one specific

formally verified algorithm [31, 32], this result rather gives a procedure that decides if any
such numerical algorithm is correct from its outputs, along with supporting formal proofs.

Crucially this procedure does not rely on any particular ODE solver to be correct, it rather

takes outputs of ODE solvers as inputs (represented by the sequence of approximants) and

returns a certificate of correctness for the accuracy of the approximants in the form of a proof

in dL.
(2) Completeness of (compact) IVPs: This article proves completeness of dL’s axiomatization

for bounded open safety, open liveness and existence properties of compact IVPs:

—Completeness for bounded open safety: Let𝑂 (𝑥) be a FOLR formula that characterizes

a bounded open subset of R𝑛 . dL is complete for formulas of the form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑂 (𝑥)
i.e., if all flows of the IVP starting anywhere in J𝐶K always remains within the set of safe

states characterized by 𝑂 (𝑥) on the time horizon [𝑡0,𝑇 ], then this is provable in dL.
—Completeness for open liveness: Let 𝑂 (𝑥) be a FOLR formula that characterizes an

open subset of R𝑛 (not necessarily bounded as stronger assumptions are placed on the flow

instead), and suppose that the true flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 is well-defined (i.e., does

not exhibit finite time blow-up on [𝑡0,𝑇 ])3. Then dL is complete for formulas of the form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥)

2
Definable functions in FOLR, which is exactly when each 𝑝𝑛 is a semialgebraic function over Q. In particular, this includes

polynomials in Q[𝑥, 𝑡 ], see Definition 4.5 for details.
3
Such an assumption also suffices for arbitrary open safety properties.
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i.e., if a target state characterized by 𝑂 (𝑥) is reachable from starting anywhere in J𝐶K in
the time horizon [𝑡0,𝑇 ] by following the IVP, then this is provable in dL.

—Completeness for existence: dL is complete for formulas of the form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩𝑡 ≥ 𝑇
i.e., if the solution exists for time at least 𝑡 ≥ 𝑇 for all initial conditions from J𝐶K, then this

is provable in dL.
By considering the case where𝐶 (𝑥) ≡ 𝑥 = 𝑥0 defines a singleton, corresponding completeness

results for IVPs with fixed initial conditions are obtained as a special case.

(3) Axioms/proof-rules for symbolic IVPs: In proving completeness of existence for IVPs, fun-

damental symbolic axioms/proof-rules (Theorem 5.7) are derived for deductive verification of

symbolic IVPs on compact time horizons without placing constraints on the initial conditions.

Establishing symbolic derivations of the classical Picard-Lindelöf theorem, the intermediate

value theorem and the property that the solution to an IVP exists on some time horizon if and

only if the solution has no finite time blow-up on that time horizon. Due to the fundamental

nature of such axioms/proof-rules [54], their derivations are of independent interest.

2 Related Work
The results presented in this article build upon the proof theory of dynamical systems using the

framework of differential dynamic logic (dL) [40, 45, 50, 52]. This article establishes the first
complete axiomatization for compact IVPs, showing that all true (bounded) open properties can

be deduced completely from symbolic axioms/proof rules, in the spirit of Poincaré’s qualitative

theory of differential equations [46]. Consequently, it is possible to deductively prove properties

of compact IVPs with trustworthy symbolic logic whilst retaining the computational capabilities

of numerical techniques. The restriction to open properties is motivated by the fact that general

properties of solutions to IVPs quickly lead to deep open problems such as the decidability of the

real exponential field [36] (𝑥 ′ = 𝑥, 𝑥 (0) = 1 defines the exponential function), the bounded Skolem

problem as discussed below, or are undecidable in general [14, 26].

Computability of compact IVPs: The computability of IVPs have been studied extensively

[11–13, 27, 47], including the computability of the flow of compact IVPs [29] and deep results

establishing the universality of ODEs with polynomial vector fields [14], highlighting the rich

complexity of polynomial IVPs. More recent works have also shown interesting connections

between computable ordinals and the solutions of discontinuous IVPs [10].

In the specific case of (continuous) linear dynamical systems, many deep and fundamental results

have been established in earlier works [1, 17, 18, 20] concerning the (non-)computability of various

properties such as: invariant synthesis, hyperplane reachability, recurrent reachability, and so on.

The computability of these properties are challenging and often rely upon open problems in number

theory, highlighting their intricacy.

In the context of IVP verification, such computability results can be viewed as the theoretical

foundation of numerical techniques. Indeed, the statement that arbitrarily accurate numerical

approximations can be computed for compact IVPs is a restatement of the result that solutions to

compact IVPs are type-two computable (see Section 3.2 for details). However, the trustworthiness

of such approaches is much more delicate and it is difficult to formalize requirements on the

trustworthiness of numerical algorithms purely on the computability level. Such questions are

more naturally expressed as provability questions, which is exactly what this article addresses.

In the same way that computability is the theoretical foundation for numerical techniques, prov-

ability is the theoretical foundation for symbolic deductive techniques. Such provability properties

are generally more fine-grained and delicate compared with computability properties. As dL is
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computably axiomatized, any property it is complete for is trivially computably enumerable by

searching through all possible proofs, while the logical completeness of computably enumerable

properties is far from trivial. For example, the decidability of differential invariants was first estab-

lished [35] and its complete axiomatization was only discovered [44, 45] later. Numerical techniques

are often viewed to be more scalable than deductive techniques for IVPs, but symbolic proofs enjoy

a higher level of rigor and reliability.

Nonetheless, the completeness results presented in this article precisely bridge this gap, showing

that in the context of (open) properties of compact IVPs, provability and computability notions

“coincide” - numerical approximations can be carried out entirely deductively in dL with symbolic

proofs. There is no fundamental distinction between numerical and symbolic computations for

compact IVPs. Properties that can be verified by numerical techniques with direct computations

can also be verified deductively with logic, resulting in trustworthy proofs of such properties

while enjoying the generality of numerical techniques. Furthermore, building upon works on the

computability of IVPs [26], this article establishes a direct computable correspondence between

valid (open) properties of compact IVPs and their proofs in dL.

Proof theory of compact IVPs: The completeness results presented in this article applies to all

(open) properties for compact IVPs, and does so in a computable fashion. In contrast to the results

established in this article, earlier works either only prove relative completeness with some non-

computable oracle [39, 40], exact completeness that cannot handle compact IVPs which are sensitive

to their initial conditions [45], or does not achieve general completeness results [50, 52]. To the

best of our knowledge, this is the first result that establishes the provability of such properties of

compact IVPs.

Concerning relative completeness, dL has been shown to be complete relative to its continuous

fragment [38] and the continuous fragment of dL has been shown to be complete relative to its

discrete fragment by leveraging additional axioms on Euler discretizations [39]. However, since

the discrete fragment of dL is non-computable, such results do not yield exact and computable

completeness results.

For exact (and computable) completeness, earlier works on the proof theory of ODEs have

identified a complete axiomatization for differential invariants [44, 45], i.e., a semialgebraic region

is invariant under the flow of the given ODE if and only if it is provably invariant in the logic dL.
However, in the verification of safety properties of IVPs, appropriate invariants still need to be

found. The synthesis of suitable invariants to prove safety properties of continuous dynamical

systems is a challenging problem in general [51], even in the linear case this is intimately related

to open problems in transcendental number theory [1]. This article in particular also establishes

a reduction of “continuous dependence on initial conditions” of flows to a suitable differential

invariant (Lemma 4.11), which could be viewed as an invariant synthesis result. Generalizing upon

this, a complete axiomatization is then established for general safety properties of IVPs (Theorem

5.11) under topological assumptions which does not assume the existence of some suitable invariant.

Furthermore, this article also prove completeness results for liveness (Theorem 5.13) and existence

(Theorem 5.12) properties.

In addition, this article also provides novel syntactic derivations of classical theorems in dL that

are fundamental to the study of IVPs, allowing for the deductive verification of general symbolic

IVPs beyond compact IVPs. In contrast with earlier works [50, 52], these axioms/proof rules focus

on the case where the IVP is considered on a compact time horizon and crucially does not assume

global existence of solutions. This situation is much more delicate as solutions of IVPs might exhibit

finite time blow-ups. The derivations themselves are of independent interest. Not only are the

axioms/proof rules themselves fundamental in the study of IVPs, such derivations also improve

upon earlier works (e.g., for IVT [43]) where soundness was proven but no derivation was known.
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The Continuous Skolem Problem and limitations: The Continuous Skolem Problem is a central

problem in the theory of continuous dynamical systems [5]. Given an IVP 𝑥 ′ = 𝑓 (𝑥) with 𝑥 (0) =
𝑥0 ∈ Q𝑛 and a vector 𝑢 ∈ Q𝑛 , the Continuous Skolem Problem asks if the solution 𝑥 (𝑡) reaches
the hyperplane defined by 𝑢. i.e., if there exists some 𝑡 ≥ 0 such that 𝑢𝑇𝑥 (𝑡) = 0. The Bounded

Continuous Skolem problem [5, Open Problem 17] asks if such a 𝑡 exists in some pre-determined

interval [0,𝑇 ] with 𝑇 ∈ Q+. The decidability of both problems have been long-standing open

problems, with partial progress being made in the case where the ODE is linear, i.e., 𝑥 ′ = 𝐴𝑥

for 𝐴 ∈ Q𝑛×𝑛 [18]. In the linear case, the Bounded Continuous Skolem problem was shown to

be decidable assuming Schanuel’s conjecture [18, Theorem 7], a unifying conjecture in number

theory which implies the decidability of the real exponential field [36]. Such problems have also

been studied when 𝑓 (𝑥) is allowed to be a polynomial [29]. In this setting, the decidability of the

Bounded Continuous Skolem problem remains open. In the context of this article, such problems

place inherent restrictions on possible generalizations of the new results presented here. The results

established can be viewed as the form of “(compact, (bounded) open)”, where the initial condition

is required to come from a compact set and the post-condition is required to be (bounded) open.

A natural generalization is to consider “(compact, compact)” where post-conditions are compact

semialgebraic sets. However, such completeness results (if possible) are at least as hard as the

Bounded Continuous Skolem problem for polynomial dynamical systems. This is because the

Bounded Continuous Skolem problem is co-computably enumerable (co-c.e.):

∃∃𝑡 ∈ [0,𝑇 ] 𝑢𝑇𝑥 (𝑡) = 0 ⇐⇒ min

𝑡 ∈[0,𝑇 ]
|𝑢𝑇𝑥 (𝑡) | = 0

and minima of computable functions over compact sets are computable (Theorem 3.9), therefore

the second relation is co-c.e. At the same time, reachability can be naturally formulated in dL via:

𝑥 = 𝑥0 ∧ 𝑡 = 0→ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑢𝑇𝑥 = 0

Thus, if completeness results of the form "(compact, compact)" hold, then the Bounded Continuous

Skolem problemwould also be c.e. by searching through all possible proofs in dL (as dL is computably

axiomatized [39]) while bounding the hyperplane
4
, implying the decidability of the Bounded

Continuous Skolem problem (independent of Schanuel’s conjecture). Hence, generalizations of

the results in this article by relaxing the topological constraints on the post-conditions are likely

challenging.

Reachability computation of dynamical systems: The problem of computing interval enclo-

sures for hybrid/continuous dynamical systems shows up frequently in the safety verification of

CPS. Practical implementations [15, 16, 21, 31, 32] exist to carry out such computations, based

on numerical approximations. The correctness of these depends on both the correctness of the

underlying mathematical theory of such approximations and the correctness of the implementation,

both of which are prone to errors. Attempts in improving the reliability of such procedures focus

on the formal verification of such algorithms (e.g., [31, 32, 37] in the continuous case), where the

numerical algorithm implemented is formally verified to be mathematically sound. These formal

verifications are inherently dependent on the specific algorithm used, and modifications to the

algorithm require corresponding complex modifications to the proof of correctness, in addition to

the possibility of implementation errors. The lack of compositionality [56, Page 325] implies that

it is non-trivial to combine different algorithms harmoniously. This is in particular highlighted

by the fact that, to the best of our knowledge, current algorithms for computing the interval

enclosure of hybrid dynamical systems [2, 7, 19] are in theory mathematically rigorous but have

4
While 𝑢𝑇 𝑥 = 0 does not define a compact set, it can be modified to the compact set 𝑢𝑇 𝑥 = 0∧ ∥𝑥 ∥2 ≤ 𝑅 for 𝑅 ∈ Q+. If the
former holds, then the latter holds for all sufficiently large 𝑅, resulting in a c.e. procedure by searching through all 𝑅 ∈ Q+.
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not been formally verified. More fundamentally, such approaches are providing formal verifications

of the algorithm used to compute the approximations, inducing potential error when transforming

from the abstract algorithm verified to the actual implementation executed. This is in contrast to

logic-based deductive approaches where every verified property has a certifying syntactic proof
which can be independently checked.

The results presented in this article provide a complementary possibility through dL: Such
verifications can all be carried out deductively with sound axioms/proof rules, therefore the

correctness of the approximations can be trusted as certified by their corresponding symbolic

proofs. Numerical approximations can be computed deductively, ending up with compositional

proofs in dL that can be used in symbolic proofs of safety of the overall hybrid dynamical system.

In particular, the completeness results (e.g., Theorem 4.21) are agnostic to how the numerical

approximants were computed. Therefore potentially unreliable approximation algorithms can be

used in computations as the computed approximants can always be symbolically proven to be

accurate if they truly are accurate. In contrast with the formal verification of numerical algorithms,

the deductive approach certifies the correctness of outputs with corresponding proofs that can be

checked with proof checkers such as KeYmaera X [8, 23]. The aim of the article is not to argue for

the superiority of symbolic techniques over numerical ones, but rather that such approaches are in

fact intimately related and it is possible to simultaneously achieve the strengths of both approaches

at once as shown by the completeness results.

3 Preliminaries
We give a self-contained overview of the computable analysis and differential dynamic logic (dL)

needed for the article. More details on computable analysis, computability theory [49, 55] and dL

[38] can be found in the corresponding references.

3.1 Differential Dynamic Logic
This section provides a brief review of dL and its axiomatization, fixing some notational conventions

along the way. This article focuses on the continuous fragment of dL. Intuitively, dL extends classical
dynamic logic (which itself extends modal logic) where every ODE 𝑥 ′ = 𝑓 (𝑥) has corresponding
modal operators ⟨𝑥 ′ = 𝑓 (𝑥)⟩, [𝑥 ′ = 𝑓 (𝑥)]. The modal formula ⟨𝑥 ′ = 𝑓 (𝑥)⟩𝜑 indicates that by flow-

ing along the ODE 𝑥 ′ = 𝑓 (𝑥), there exists some time for which 𝜑 is true. Similarly, [𝑥 ′ = 𝑓 (𝑥)]𝜑
indicates that 𝜑 is always true following the flow of 𝑥 ′ = 𝑓 (𝑥).

3.1.1 Syntax. Terms in dL are formed by the following grammar, where V denotes the set of all

variables, 𝑥 ∈ V is a variable and 𝑐 ∈ Q is a rational constant. Equivalently, terms are polynomials

over V with rational coefficients
5
.

𝑝, 𝑞 ::= 𝑥 | 𝑐 | 𝑝 + 𝑞 | 𝑝 · 𝑞

dL formulas have the following grammar, where ∼ ∈ {=,≠,≥, >,≤, <} is a comparison relation

and 𝛼 is a system of differential equations (dL allows for 𝛼 to be from the more general class of

hybrid programs [38], which is not needed here)

𝜑,𝜓 ::= 𝑝∼𝑞 | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | ¬𝜑 | ∀𝑥𝜑 | ∃𝑥𝜑 | ⟨𝛼⟩𝜑 | [𝛼]𝜑
𝛼 ::= · · · | 𝑥 ′ = 𝑓 (𝑥)&𝑄

5
Prior works [45] make it possible to consider dL with an expanded language that includes familiar mathematical functions

such as exp, sin, cos. Such expansions will not be considered in this article due to the subtle concerns regarding computability

of such expanded functions.
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In this article, we will only be dealing with the case 𝛼 ≡ 𝑥 ′ = 𝑓 (𝑥)&𝑄 , where 𝑥 ′ = 𝑓 (𝑥) represents
an autonomous system of ODEs 𝑥 ′

1
= 𝑓1 (𝑥), . . . , 𝑥 ′𝑛 = 𝑓𝑛 (𝑥) and 𝑥 = (𝑥1, . . . , 𝑥𝑛) is understood to

be vectorial. 𝑄 here refers to some dL formula known as the domain constraint. Intuitively, this
restricts the region for which the ODE 𝑥 ′ = 𝑓 (𝑥) is allowed to evolve. In contrast with some of the

earlier works [45, 52], the domain constraint𝑄 is in general allowed to be any dL formula, resulting

in “rich-test” dL [38, 40, 41], but is usually a formula of real arithmetic (FOLR).
The following conventions are used throughout this article. For terms and formulas that appear

in contexts involving ODEs 𝑥 ′ = 𝑓 (𝑥), it is sometimes needed to restrict the variables that they can

refer to. Such free variables will be indicated by explicitly writing them as arguments. For example,

𝑝 () means that the term 𝑝 cannot refer to any bound variable of the ODE 𝑥 ′ = 𝑓 (𝑥). In contrast,

𝑃 (𝑥) (or just 𝑃 ) indicates that all the variables may be referred to as free variables. Such variable

dependencies can be made formal and rigorous through dL’s uniform substitution calculus [41].

3.1.2 Semantics. A state 𝜔 is a mapping 𝜔 : V→ R that assigns a value to every variable. We

denote S as the set of all such states. For a term 𝑝 , its semantics in state 𝜔 ∈ S written as J𝑝K
is the real value obtained by evaluating the polynomial 𝑝 at the state 𝜔 . For a dL formula 𝜑 , its

semantics J𝜑K is defined to be the set of all states 𝜔 ∈ S such that 𝜔 |= 𝜑 , i.e the formula 𝜑 is true

in 𝜔 . The semantics of first-logical connectives are defined as expected, e.g., J𝜑 ∨𝜓K = J𝜑K ∪ J𝜓K.
For 𝛼 ≡ 𝑥 ′ = 𝑓 (𝑥)&𝑄 , the semantics for [𝛼]𝜑 and ⟨𝛼⟩𝜑 are defined as follows. For the given ODE

𝑥 ′ = 𝑓 (𝑥) with domain constraint 𝑄 and any state 𝜔 ∈ S, let Ψ𝜔 : [0,𝑇 ) → S be the solution to

𝑥 ′ = 𝑓 (𝑥) extended maximally to the right with 0 < 𝑇 ≤ ∞ and Ψ𝜔 (0) = 𝜔 . We then have:

𝜔 ∈ J[𝛼]𝜑K iff for all 0 ≤ 𝜏 < 𝑇 such that Ψ𝜔 (𝜉) |=𝑄 for all 0 ≤ 𝜉 ≤ 𝜏 , we have Ψ𝜔 (𝜏) |= 𝜑
𝜔 ∈ J⟨𝛼⟩𝜑K iff there exists some 0 ≤ 𝜏 < 𝑇 such that Ψ𝜔 (𝜉) |=𝑄 for all 0 ≤ 𝜉 ≤ 𝜏 and Ψ𝜔 (𝜏) |= 𝜑
Intuitively, the formula [𝛼]𝜑 expresses a safety property, that 𝜑 holds along all flows of the ODE

𝑥 ′ = 𝑓 (𝑥) that remain inside the domain constraint defined by the dL formula 𝑄 . Similarly, the

formula ⟨𝛼⟩𝜑 expresses a liveness property, that there is some flow along 𝑥 ′ = 𝑓 (𝑥) staying within

𝑄 eventually reaching a state where 𝜑 is true.

Finally, a formula𝜑 is said to be valid if J𝜑K = S, i.e., it is true in all states. For FOLR formulas
6 𝐼 and

𝑄 , we say 𝐼 is a differential invariant of the ODE 𝑥 ′ = 𝑓 (𝑥)&𝑄 if the formula 𝐼 → [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼
is valid, which is equivalent to J𝐼K ⊆ J[𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼K as sets of states. i.e., Starting from any state

𝜔 ∈ J𝐼K and evolving along the ODE 𝑥 ′ = 𝑓 (𝑥) while remaining within the domain constraint 𝑄

necessarily implies that the state remains in 𝐼 , thus 𝐼 is an invariant of the system 𝑥 ′ = 𝑓 (𝑥)&𝑄 .
One important fact used throughout this article is that dL is (effectively) complete for differential

invariants in FOLR [45]. In other words, if 𝐼 is a differential invariant of 𝑥 ′ = 𝑓 (𝑥)&𝑄 , then one

can effectively find a syntactic proof of 𝐼 → [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼 (Theorem 3.2).

Example 3.1 (Differential Invariant). The FOLR formula 𝐼 (𝑥,𝑦) ≡ 𝑥2 + 𝑦2 = 1 is a differential

invariant of the ODE 𝑥 ′ = −𝑦,𝑦′ = 𝑥 representing circular motion. i.e., the following dL formula is

valid

𝑥2 + 𝑦2 = 1→ [𝑥 ′ = −𝑦,𝑦′ = 𝑥]𝑥2 + 𝑦2 = 1

By Theorem 3.2, it then follows that this formula is furthermore provable in dL.

3.1.3 Proof Calculus. The derivations in this article are presented in a standard, classical sequent

calculus with the usual rules for manipulating logical connectives and sequents. The semantics

of a sequent Γ ⊢ 𝜑 is equivalent to the formula (∧𝜓 ∈Γ𝜓 ) → 𝜑 , and the sequent is called valid if

6
This definition extends to general dL formulas, but computable completeness of differential invariance is restricted to

FOLR.

J. ACM, Vol. 72, No. 6, Article 41. Publication date: November 2025.



41:10 A. Platzer and L. Qian

its corresponding formula is valid. For a sequent Γ ⊢ 𝜑 , formulas Γ are called antecedents, and

𝜑 the succedent. Completed proof branches are marked with ∗ in a sequent proof, and since R
has a decidable theory via quantifier elimination [53], statements that follow from real arithmetic

are proven with the rule R. An axiom (schema) is called sound iff all of its instances are valid,

and a proof rule is sound if the validity of all its premises entail the validity of its conclusion.

Axioms and proof rules are derivable if they can be proven from dL axioms and proof rules via the

aforementioned sequent calculus. Derivable axioms are automatically sound due to the soundness

of dL’s axiomatization [38, 45].

This article uses a fragment of the base axiomatization of dL [40] (focusing on the continuous case)
along with an extended axiomatization developed in prior works used to handle ODE invariants

and liveness properties [45, 52]. A complete list of the axioms used is provided in AppendixA.

An important feature of the axiomatization used is that it is complete for all differential invariants

[45]. Since this will be used extensively throughout the article, this fact is explicitly stated below.

Theorem 3.2 (Completeness of Differential Invariants [45]). dL is complete for differential
invariants. For all FOLR formulas 𝐼 ,𝑄 and ODE 𝑥 ′ = 𝑓 (𝑥), if the dL formula

𝐼 → [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼
is valid, then one can effectively find a proof of it in dL. We will make use of this result with the
following derived proof rule:

dInv

∗
⊢ 𝐼 → [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼 (If 𝐼 → [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝐼 is valid)

Theorem 3.2 will be utilized frequently to obtain syntactic proofs by first reducing the goals down

to some differential invariant, and then proving the validity of this invariant semantically. This

completeness is effective, so computability properties are preserved by appealing to Theorem 3.2.

3.2 Computability and Computable Analysis
The completeness properties established in this article are effective. Not only are valid formulas

provable, there is a direct (computable) correspondence between the valid formulas and their proofs.

i.e., there is a computable algorithm taking valid formulas as inputs and outputting corresponding

proofs in dL.7 To achieve the desired completeness results effectively, it is necessary to utilize

the computability-theoretic properties of IVPs, which are framed in the language of computable
analysis. The following provides the required background on computable analysis, under the

standard framework of Type Two Theory of Effectivity (TTE) [55].

Definition 3.3 (Name). Let 𝑥 ∈ R be any real number, a name for 𝑥 is a sequence of rationals

(𝑞𝑖 )𝑖 ⊆ Q such that

∀∀𝑖 ∈ N ( |𝑞𝑖 − 𝑥 | < 2
−𝑖 )

This definition naturally extends to R𝑛 by requiring names to reside inQ𝑛 and using the standard
Euclidean norm. For 𝑥 ∈ R𝑛 , we denote the set of all names of 𝑥 as Γ(𝑥).

For a fixed real number 𝑥 ∈ R𝑛 , one should think of its names as the “descriptions” of 𝑥 . We then

define 𝑥 to be computable if it exhibits a computable description.

Definition 3.4 (Type-Two Computable Number). Let 𝑥 ∈ R𝑛 be any real number, 𝑥 is Type-Two
computable if it has a computable name. i.e., there is some computable sequence (𝑞𝑖 )𝑖 ⊆ Q𝑛 that is

a name for 𝑥 .

7
As dL’s axiomatization is effective, completeness automatically implies such an algorithm by searching through all proofs.

However, this article establishes a direct correspondence rather than resorting to the brute-force search.
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Intuitively, this means that a real 𝑥 ∈ R𝑛 is (Type-Two)computable if and only if it can be

computably approximated by a sequence of vectors of rational numbers. From now on, whenever

we refer to the computability of numbers in R𝑛 , we mean Type-Two computability.

Definition 3.5. An oracle machine𝑀 is a Turing machine that allows for an additional one-way

read-only input tape that represents some input oracle used. The machine is allowed to read this

input tape up to arbitrary, but finite, lengths.

One can think of oracle machines as regular Turing machines but with some access to outside

information, namely the “oracle” input tape. The machine may use any finite amount of information

on this tape. For an oracle machine𝑀 , and an infinite binary sequence 𝑝 ∈ 2𝜔 ,𝑀𝑝
represents the

oracle machine𝑀 with oracle 𝑝 . By standard encoding, we do not differentiate between Q𝜔 and 2
𝜔
.

Having defined a notion of computability on individual elements of R𝑛 , the following definition

provides a notion of computability on the closed subsets of R𝑛 .

Definition 3.6 ([55, Corollary 5.1.8]). A non-empty closed subset 𝐸 ⊆ R𝑛 is computable if its
corresponding distance function 𝑥 ↦→ inf𝑦∈𝐸 ∥𝑥 − 𝑦∥ is computable.

It can be easily seen that every FOLR definable closed set is computable.

Theorem 3.7. If 𝐸 ⊆ R𝑛 is a closed subset defined by the FOLR formula𝜑 (𝑥), then it is a computable
closed set and its distance function is computable uniformly in 𝜑 (𝑥).

Proof. Let 𝑑 : R𝑛 → R denote the distance function for the closed set 𝐸 = J𝜑K defined via

𝑑 (𝑥) = inf

𝑦∈𝐸
∥𝑥 − 𝑦∥

It suffices to show that the relation 𝑑 (𝑞) < 𝑟 is uniformly decidable for 𝑞 ∈ Q𝑛, 𝑟 ∈ Q+, which is

true as this relation can be defined by the following FOLR formula :

𝜓 (𝑞, 𝑟 ) ≡ ∃𝑦 (𝜑 (𝑦) ∧ ∥𝑦 − 𝑞∥2 < 𝑟 2)
hence decidability follows as R has a decidable theory, proving 𝑑 to be computable. □

The following definition relates the use of oracle machines to computable functions in TTE.

Definition 3.8 (Computable Function). A function 𝑓 : 𝐸 ⊆ R𝑛 → R𝑚 with 𝐸 a computable closed

set is computable if there is some oracle machine𝑀 such that

∀∀∈ 𝐸 ∀∀𝑝 ∈ Γ(𝑥) ((𝑀𝑝 (𝑖))𝑖 ∈ Γ(𝑓 (𝑥)))
i.e.,𝑀 maps names of 𝑥 to names of 𝑓 (𝑥) for all 𝑥 ∈ 𝐸.

Intuitively, this means that a function 𝑓 : R𝑛 → R𝑚 is computable if and only if there is some

computable algorithm such that for every 𝑥 ∈ R𝑛 , the algorithm can output more and more accurate

approximations of output 𝑓 (𝑥) given more and more accurate approximations of input 𝑥 . By this

definition, any Type-Two computable function is necessarily continuous, since oracle machines

can only read a finite amount of its oracle before producing an output. In other words, for all

𝑥 ∈ R𝑛, 𝑖 ∈ N, there is some corresponding 𝑗 ∈ N such that if 𝑓 is provided with an approximation

of 𝑥 accurate up to 2
− 𝑗
, then the output is an approximation of 𝑓 (𝑥) accurate up to 2

−𝑖
, therefore 𝑓

is continuous. The standard functions sin(𝑥), cos(𝑥), 𝑥2, 𝑒𝑥 , · · · are all computable through their

Taylor expansions.

A useful result of computable analysis is that the classical extreme value theorem holds com-

putably [55, Corollary 6.2.5]. The following theorem states this for functions 𝑓 : 𝐾 ⊂ R𝑛 → R𝑚

with 𝐾 a definable compact subset of R𝑛 , the proof is included for completeness.
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Theorem 3.9 (Computable Extreme Value Theorem [55, Corollary 6.2.5]). Let 𝑓 : 𝐾 → R
be a computable function on the compact set 𝐾 ⊂ R𝑛 defined by some FOLR formula 𝜑 (𝑥). Then
max𝑥∈𝐾 (𝑓 (𝑥)) and min𝑥∈𝐾 (𝑓 (𝑥)) are uniformly computable in 𝑓 , 𝜑 (𝑥).

Proof. As 𝐾 is definable and closed, it is a computable closed set. In addition, an upper bound

on the radius of 𝐾 can be computed from 𝜑 (𝑥): search for 𝑅 ∈ Q+ such that the FOLR formula

𝜑 (𝑥) → ∥𝑥 ∥2 < 𝑅2 is valid, hence a representation of the compact set 𝐾 [55, Remark 5.2.3] is

computable from 𝜑 (𝑥). Consequently, a representation of the image of 𝐾 under the computable

function 𝑓 , 𝑓 (𝐾), is computable from 𝜑 (𝑥) as well. The computability of max𝑥∈𝐾 𝑓 (𝑥) then follows

from the computability of maximums on compact sets [55, Lemma 5.2.6] applied to 𝑓 (𝐾). □

4 Completeness under Domain Constraints
This section establishes the completeness of dL’s axiomatization for convergence with additional

assumptions on domain constraints. To accomplish this, we will reduce the problem of proving

error bounds for approximants of compact IVPs to differential invariance questions, which dL
is effectively complete for [45]. Intuitively, this reduction is achieved by proving a syntactically

provable version of “continuous dependence on initial data” for ODEs in dL. Establishing that the
flow function induced by the ODE, if well-defined on a compact domain, is uniformly continuous.

Consequently, if an approximant starts off close to the initial condition, then it will remain close to

the true flow in the supremum norm for all times in the bounded interval. Thus, proofs of future

error bounds of approximants provably reduce to arithmetic questions at the initial time 𝑡0.
However, since polynomial vector fields are generally nonlinear and therefore do not exhibit

global Lipschitz constants, it is tricky to obtain explicit and computable bounds in this reduction

process. As such, this section will first assume the presence of some bounded domain constraint,

which essentially reduces to the case of globally Lipschitz vector fields since polynomials are locally

Lipschitz. Section 5.2 improves upon this, establishing that such assumptions are not necessary and

can be removed, proving completeness for convergence without any additional assumptions.

4.1 Compact IVPs and Approximants
The following definitions fix standard notations that will be used throughout this article.

Definition 4.1 (Notation). The following notation will be used throughout the article.

—R+,Q+ denotes the set of positive real/rational numbers, respectively.

— 𝑥 always denotes some vectorial variable 𝑥 = (𝑥1, . . . , 𝑥𝑛).
— For a ring 𝑅, denote its ring of polynomials in the variables 𝑥1, . . . , 𝑥𝑛 as 𝑅 [𝑥1, . . . , 𝑥𝑛]. This
article only considers 𝑅 ∈ {Q,R}. By a slight abuse of notation, elements 𝑝 (𝑥) ∈ 𝑅 [𝑥] are
also identified with the corresponding polynomial 𝑝 : 𝑅𝑛 → 𝑅.

— By a rational polynomial, we mean some element of Q[𝑥] where 𝑥 is understood to be

vectorial.

— ∥𝑥 ∥ for 𝑥 ∈ R𝑛 always refers to the Euclidean norm, and ∥ 𝑓 ∥ always refers to the sup norm

for functions 𝑓 . We sometimes write ∥ 𝑓 ∥𝐴 = sup𝑥∈𝐴 ∥ 𝑓 (𝑥)∥ to emphasize that the supremum

norm of 𝑓 is taken on the set 𝐴, which is FOLR definable when 𝐴 is FOLR definable.

—𝐶𝑘 ( [𝑎, 𝑏],R𝑛) for 𝑘 ∈ N denotes the set of functions from the closed interval [𝑎, 𝑏] to R𝑛

with 𝑘 continuous derivatives on [𝑎, 𝑏]. For 𝐾 a compact Hausdorff space, 𝐶0 (𝐾,R𝑛) denotes
the space of continuous functions with the usual supremum norm ∥ 𝑓 ∥𝐾 = sup𝑥∈𝐾 ∥ 𝑓 (𝑥)∥.
When the co-domain is clear, these are also abbreviated as 𝐶𝑘 ( [𝑎, 𝑏]),𝐶0 (𝐾).

— IQ denotes the set of all compact intervals with rational endpoints, i.e.,

IQ = {[𝑎,𝑏] : 𝑎 ≤ 𝑏, 𝑎, 𝑏 ∈ Q}
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— For 𝑥 ∈ R𝑛, 𝑅 ∈ R+, write 𝐵 [𝑥, 𝑅] for the closed ball of radius 𝑅 around 𝑥 , and 𝐵(𝑥, 𝑅) for the
open ball. When 𝑥, 𝑅 are definable in dL, 𝑦 ∈ 𝐵 [𝑥, 𝑅] and 𝑦 ∈ 𝐵(𝑥, 𝑅) are definable via

𝑦 ∈ 𝐵 [𝑥, 𝑅] ⇐⇒ ∥𝑦 − 𝑥 ∥2 ≤ 𝑅2

𝑦 ∈ 𝐵(𝑥, 𝑅) ⇐⇒ ∥𝑦 − 𝑥 ∥2 < 𝑅2

For a set 𝐴 ⊆ R𝑛 , write 𝐵 [𝐴, 𝑅] (and similarly 𝐵(𝐴, 𝑅)) for ⋃𝑥∈𝐴 𝐵 [𝑥, 𝑅].
— FOLR denotes the set of all first-order formulas in the language of real closed fields. In this

article, definable always refers to FOLR definable unless explicitly stated otherwise. As real

closed fields admit quantifier elimination [53], we may assume without loss of generality that

every element of FOLR is quantifier-free. Finally, for formulas 𝜑 (𝑥) ∈ FOLR, J𝜑K denotes the
set defined by the formula in R. i.e.,:

J𝜑K = {𝑦 ∈ R𝑛 | R |= 𝜑 (𝑦)}
which coincides with the semantics of 𝜑 in dL.

Definition 4.2 (Compact IVP). A compact initial value problem (IVP) is a triple

(𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) ∈ Q𝑛 [𝑥] × FOLR × IQ
where J𝐶 (𝑥)K is a non-empty compact set. The variable 𝑥 is often suppressed for brevity, and J𝐶K
refers to J𝐶 (𝑥)K. Such a triple represents the following IVPs on [𝑡0,𝑇 ]:

𝑥 ′ = 𝑓 (𝑥)
𝑥 (𝑡0) = 𝑥0 ∈ J𝐶K

That is, the triple defines a collection of IVPs on some compact time horizon [𝑡0,𝑇 ] where
the initial conditions are constrained to the compact set J𝐶K. The flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛

of the compact IVP (if it exists) is the flow of the vector field 𝑥 ′ = 𝑓 (𝑥) starting at 𝑡 = 𝑡0. i.e.,

𝜑 (𝑥, 𝑡0) = 𝑥, 𝜑 ′ (𝑥, 𝑡) = 𝑓 (𝜑 (𝑥, 𝑡)) for all (𝑥, 𝑡) ∈ J𝐶K × [𝑡0,𝑇 ].

Since singletons are compact, the standard notion of IVPs with a fixed initial condition 𝑥 (0) =
𝑥0 ∈ Q𝑛 is a special case of Definition 4.2 where 𝐶 (𝑥) ≡ 𝑥 = 𝑥0.

Remark 4.3. In practice, many IVPs contain parameters. i.e., 𝑥 ′ = 𝑓 (𝑥, 𝑎), where the vectorial
variable 𝑎 denotes the parameters used. It is always possible to rewrite such IVPs into:

𝑥 ′ = 𝑓 (𝑥, 𝑎)
𝑎′ = 0

𝑥 (𝑡0) = 𝑥0, 𝑎(𝑡0) = 𝑎
which forms a compact IVP when the parameters 𝑎 are constrained to a compact set.

Example 4.4 (Moore–Greitzer Jet Engine Model). The Moore–Greitzer model of a jet engine [4, 48]

for scalars 𝑢, 𝑣 is given by

𝑢′ = −𝑣 − 1.5𝑢2 − 0.5𝑢3 − 0.5
𝑣 ′ = 3𝑢 − 𝑣

with initial conditions 𝑢 (0) ≥ 0.6 ∧ 𝑣 (0) ≥ 0.9 ∧ 𝑢 (0) + 𝑣 (0) − 2 ≤ 0, where 𝑢, 𝑣 measures the mass

flow and the pressure rise respectively. Since the initial conditions define a (semialgebraic) compact

subset of R2
, for any 𝑇 ∈ Q+, we may express this model on the time horizon [0,𝑇 ] as a compact

IVP (𝑓 (𝑢, 𝑣),Δ(𝑢, 𝑣), [0,𝑇 ]) where:
— 𝑓 (𝑢, 𝑣) = (−𝑣 − 1.5𝑢2 − 0.5𝑢3 − 0.5, 3𝑢 − 𝑣).
— Δ(𝑢, 𝑣) ≡ 𝑢 ≥ 0.9 ∧ 𝑣 ≥ 0.9 ∧ 𝑢 + 𝑣 − 2 ≤ 0
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This model will serve as a running example through this article, culminating in a proof of the

error bound of a numerically computed approximation to the true flow in Example 5.4. All proofs

concerning the Moore-Greitzer model have been verified using KeYmaera X
8
.

The first step is to establish a suitable representation for approximants to solutions of compact

IVPs. In this article, such approximants are taken to be functions definable in FOLR, which are also

the semialgebraic functions over Q [6]. The following definition restricts to the particular case

of definable functions with domain being a subset of R𝑛+1 and co-domain R𝑛 for 𝑛 ≥ 1. This is

because the approximants represent approximations to the flow induced by compact IVPs, as such,

they will always be functions from R𝑛+1 (𝑛 space variables, 1 time variable) to R𝑛 .

Definition 4.5 (FOLR Definable Functions). A function 𝑓 : 𝐴 ⊆ R𝑛+1 → R𝑛 with definable domain

𝐴 is definable if there exists a FOLR formula 𝜂 (𝑥, 𝑡,𝑦) such that for all 𝑥,𝑦 ∈ R𝑛, 𝑡 ∈ R
𝑓 (𝑥, 𝑡) = 𝑦 ⇐⇒ R |= 𝜂 (𝑥, 𝑡,𝑦)

In this case, we say that 𝜂 (𝑥, 𝑡,𝑦) is a representation of 𝑓 .

Remark 4.6. As dL strictly extends FOLR [40], FOLR definable functions are also dL definable.

The class of definable functions is very versatile. In particular, polynomials and splines with

rational coefficients are definable in a natural way. As a consequence, one can always carry out

spline/polynomial interpolation on a mesh-grid of points to arrive at a definable approximant.

Remark 4.7. While standard dL only allows for polynomials as terms (as opposed to dL’s ex-
tensions with Noetherian functions [45]), definable functions in the sense of Definition 4.5 can

be expressed as well using their representations. e.g., suppose 𝑓 : R𝑛+1 → R𝑛 has representation
𝜂 (𝑥, 𝑡,𝑦) and 𝑢 ∈ V𝑛 is some vectorial variable, ∥ 𝑓 (𝑥, 𝑡) − 𝑢∥2 ≤ 𝑀2

can then be expressed by

∃𝑦 (𝜂 (𝑥, 𝑡,𝑦) ∧ ∥𝑦 − 𝑢∥2 ≤ 𝑀2)
such abbreviations will be used throughout the article for formulas containing definable functions.

The following definition makes precise the notion of approximations used in this article.

Definition 4.8 (Local Definable Approximant). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP and

𝜑 (𝑥, 𝑡) be its corresponding flow function. A local definable approximant (LDA) for this compact

IVP is a computable function Φ : N→ FOLR such that the following holds:

(1) 𝜑 (𝑥, 𝑡) : J𝐶K × [𝑡0,𝑇 ] → R𝑛 is well-defined (i.e., does not exhibit finite time blow-up for time

𝑡 ∈ [𝑡0,𝑇 ]).
(2) For all 𝑘 ∈ N, Φ(𝑘) defines a function Φ𝑘 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 (thus each Φ𝑘 is a definable

function with representation Φ(𝑘)).
(3) The sequence of functions (Φ𝑘 )𝑘 converges to 𝜑 in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛).
(4) For all 𝑘 ∈ N, the function Φ𝑘 is differentiable in its second (time) variable, and the sequence

of time derivatives (Φ′
𝑘
)𝑘 converges to 𝜑 ′ in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛).

Example 4.9. For IVPs with polynomial vector fields, the sequence of Picard iterates [54] always

form a LDA over a sufficiently small interval. i.e., For every IVP 𝑥 ′ = 𝑓 (𝑥), 𝑥 (𝑡0) = 𝑥0 ∈ Q𝑛 , there
always exists a sufficiently small 𝑆 > 𝑡0 such that the Picard iterates form a LDA for the compact

IVP (𝐶 (𝑥) ≡ 𝑥 = 𝑥0, 𝑓 (𝑥), [𝑡0, 𝑆]). To show this, recall that the Picard iterates (𝜑𝑘 )𝑘 of the IVP

𝑥 ′ = 𝑓 (𝑥), 𝑥 (𝑡0) = 𝑥0 are defined inductively by

— 𝜑0 (𝑡) = 𝑥0.
— 𝜑𝑘+1 (𝑡) = 𝑥0 +

∫ 𝑡
𝑡0
𝑓 (𝜑𝑘 (𝑠))𝑑𝑠 .

8
https://github.com/LongQianQL/Compact_IVP_Example
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By the Picard–Lindelöf theorem the iterates converge uniformly to the unique solution on some

interval [𝑡0, 𝑆] for some 𝑆 > 𝑡0. Furthermore, this sequence of iterates are simply polynomials in

𝑡 with rational coefficients since integrals of rational polynomials are rational polynomials. As

integrals of polynomials are computable, the sequence of iterates (𝜑𝑘 )𝑘 and their representations

are computable. It remains to show that the sequence (𝜑 ′
𝑘
)𝑘 converges to 𝑥 ′ on [𝑡0, 𝑆]. Indeed, let

𝑥 (𝑡) : [𝑡0, 𝑆] → R𝑛 denote the unique solution that this sequence converges to. We have

|𝑥 ′ (𝑡) − 𝜑 ′
𝑘+1 (𝑡) | = |𝑓 (𝑥 (𝑡)) − 𝑓 (𝜑𝑘 (𝑡)) |

Note that 𝐵 [𝑥 ( [𝑡0, 𝑆]), 1] (the set of points of Euclidean distance at most 1 away from 𝑥 ( [𝑡0, 𝑆]))
is compact as 𝑥 is continuous and [𝑡0, 𝑆] is compact. Hence, as 𝑓 is a polynomial vector field

and therefore locally Lipschitz, there exists some 𝐿 > 0 which is the Lipschitz constant of 𝑓 on

𝐵 [𝑥 ([𝑡0,𝑇 ]), 1] (we can computably find such a value by computing the maximum of 𝑓 ’s partial

derivatives on 𝐵 [𝑥 ( [𝑡0,𝑇 ]), 1], but this is not required to prove the iterates form a LDA). Since (𝜑𝑘 )𝑘
converges to 𝑥 on [𝑡0, 𝑆], we have 𝜑𝑘 ( [𝑡0, 𝑆]) ⊆ 𝐵 [𝑥 ( [𝑡0, 𝑆]), 1] for all sufficiently large 𝑘 . In other

words, for all sufficiently large 𝑘 , for all 𝑡 ∈ [𝑡0, 𝑆], we have:

|𝑥 ′ (𝑡) − 𝜑 ′
𝑘+1(𝑡) | = |𝑓 (𝑥 (𝑡)) − 𝑓 (𝜑𝑘 (𝑡)) | ≤ 𝐿 ∥𝑥 − 𝜑𝑘 ∥ [𝑡0,𝑆 ]

𝑘→∞−−−−→ 0

The Picard–Lindelöf theorem says that 𝜑𝑘 → 𝑥 uniformly i.e., in the supremum norm, and the

above computation shows (𝜑 ′
𝑘
)𝑘 → 𝑥 ′ on [𝑡0, 𝑆] under the sup-norm as well, therefore the sequence

of Picard iterates (𝜑𝑘 )𝑘 forms a LDA.

The example above shows that the Picard iterates will always be LDAs over sufficiently small

intervals for IVPs with fixed initial values. The following theorem shows that for any compact IVP,
a corresponding LDA can always be constructed effectively on the entire interval [𝑡0,𝑇 ] provided
that the compact IVP does not exhibit finite time blow-up on [𝑡0,𝑇 ].

Theorem 4.10 (Computable LDA). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a 𝑛-dimensional compact IVP
where the corresponding flow 𝜑 (𝑥, 𝑡) is well-defined on J𝐶K× [𝑡0,𝑇 ]. Then there exists a corresponding
LDA Φ that is uniformly computable in the compact IVP such that for all 𝑘 ∈ N, every component
of the function defined by Φ(𝑘) is a rational polynomial in 𝑥, 𝑡 . Furthermore, the LDA Φ satisfies
∥𝜑 − Φ𝑘 ∥J𝐶K×[𝑡0,𝑇 ] < 𝑛2

−𝑘 and


𝜑 ′ − Φ′

𝑘




J𝐶K×[𝑡0,𝑇 ]

< 𝑛2−𝑘 for all 𝑘 ∈ N.

Proof. Since rational polynomials are FOLR definable, it suffices to computably construct a

sequence of rational polynomials (𝑝𝑖
𝑘
)1≤𝑖≤𝑛,𝑘∈N ⊆ Q[𝑥, 𝑡] such that the corresponding sequence

(𝑝𝑘 )𝑘 ⊆ Q𝑛 [𝑥, 𝑡] defined via 𝑝𝑘 = (𝑝1
𝑘
, . . . , 𝑝𝑛

𝑘
) satisfies:

(1) The sequence (𝑝𝑘 )𝑘 converges to 𝜑 in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛).
(2) The sequence (𝑝′

𝑘
)𝑘 converges to 𝜑 ′ in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛).

This is sufficient as one can then define the formulas:

𝜓𝑘 (𝑥,𝑦, 𝑡) ≡
∧

1≤𝑖≤𝑛
𝑦𝑖 = 𝑝

𝑖
𝑘
(𝑥, 𝑡)

Properties (1), (2) then imply that the function Φ : N → FOLR defined by Φ(𝑘) = 𝜓𝑘 forms a

LDA for the compact IVP.

To construct the desired sequence (𝑝𝑖
𝑘
)1≤𝑖≤𝑛,𝑘∈N, first fix some 1 ≤ 𝑖 ≤ 𝑛, let 𝑘 ∈ N be arbitrary

and notice that it suffices to construct some 𝑝𝑖
𝑘
∈ Q[𝑥, 𝑡] satisfying the following:

(1) ∥𝜑𝑖 − 𝑝𝑖𝑘 ∥𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) < 2
−𝑘

where 𝜑𝑖 denotes the 𝑖th component of 𝜑 .

(2) ∥(𝑝𝑖
𝑘
)′ − 𝜑 ′𝑖 ∥𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) < 2

−𝑘
where the derivative is taken with respect to time variable.
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As we may then carry out the same construction for arbitrary 1 ≤ 𝑖 ≤ 𝑛 and 𝑘 ∈ N to obtain

(𝜑1, . . . , 𝜑𝑛) − (𝑝1𝑘 , . . . , 𝑝𝑛𝑘 )

𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) ≤
𝑛∑︁
𝑖=1



𝜑𝑖 − 𝑝𝑖𝑘

𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) < 𝑛2
−𝑘

which converges to 0 as 𝑘 →∞, likewise for


𝜑 ′ − 𝑝′

𝑘




𝐶0 (J𝐶K×[𝑡0,𝑇 ] )

. To carry out the construction

for a fixed index 1 ≤ 𝑖 ≤ 𝑛 and 𝑘 ∈ N, first note that the flow function 𝜑 (𝑥, 𝑡) : J𝐶K × [𝑡0,𝑇 ] → R𝑛

is computable for compact IVPs [47] as J𝐶K is a computably closed set by Theorem 3.7. Because

𝑓 ∈ Q𝑛 [𝑥, 𝑡] is also computable, consequently the time-derivative of 𝜑 , 𝜑 ′ (𝑥, 𝑡) = 𝑓 (𝜑 (𝑥, 𝑡)) is also
computable on J𝐶K × [𝑡0,𝑇 ]. The effective Stone-Weierstrass theorem [55, Theorem 6.1.10] then

allows us to compute some 𝑞𝑖
𝑘
∈ Q[𝑥, 𝑡] such that

𝑞𝑖
𝑘
− 𝜑 ′𝑖




𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) <

2
−𝑘−1

max(𝑇 − 𝑡0, 1)
Define 𝑝𝑖

𝑘
∈ Q[𝑥, 𝑡] by

𝑝𝑖
𝑘
(𝑥, 𝑡) = 𝑥𝑖 +

∫ 𝑡

𝑡0

𝑞𝑖
𝑘
(𝑥, 𝑠)𝑑𝑠

which is computable since 𝑞𝑖
𝑘
is a polynomial with rational coefficients, hence its integral in the

time variable 𝑡 can be directly computed symbolically using the elementary power rule. It remains

to verify that conditions (1) and (2) are met:

(1) Direct computations for (𝑥0, 𝑡) ∈ J𝐶K × [𝑡0,𝑇 ] yields:

|𝑝𝑖
𝑘
(𝑥0, 𝑡) − 𝜑𝑖 (𝑥0, 𝑡) | ≤

∫ 𝑡

𝑡0

|𝑞𝑘𝑖 (𝑥0, 𝑠) − 𝜑 ′𝑖 (𝑥0, 𝑠) | ≤ (𝑇 − 𝑡0)
2
−𝑘−1

max(𝑇 − 𝑡0, 1)
≤ 2
−𝑘−1 < 2

−𝑘

(2) Noticing that the time derivative of 𝑝𝑖
𝑘
is 𝑞𝑖

𝑘
which is continuous in both variables, a similar

computation to the above for any (𝑥0, 𝑡) ∈ J𝐶K × [𝑡0,𝑇 ] yields:

| (𝑝𝑖
𝑘
)′ (𝑥0, 𝑡) − 𝜑 ′𝑖 (𝑥0, 𝑡) | = |𝑞𝑖𝑘 (𝑥0, 𝑡) − 𝜑

′
𝑖 (𝑥0, 𝑡) | ≤



𝑞𝑖
𝑘
− 𝜑 ′𝑖




𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) < 2

−𝑘−1

thereby condition (2) is also satisfied.

The construction is uniformly computable for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑘 ∈ N, so the proof is complete. □

4.2 Provable IVP Approximants
The following technical lemma proves the validity of a class of differential invariants capturing the

“continuous dependence on initial conditions” characteristic of flow functions. Such invariants are

then used in proving the desired error bounds under the presence of a bounded domain constraint

𝐵(𝑥) containing the true flow of the compact IVP (𝑓 (𝑥),𝐶 (𝑋 ), [𝑡0,𝑇 ]). Note that this domain

constraint is an assumption on the FOLR formula 𝐵(𝑥) itself, rather than a constraint on the values

of the variables.

Lemma 4.11 (Continuous Dependence on Initial Conditions). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a
compact IVP and 𝐵(𝑥) ∈ FOLR. Further assume that the following holds:
(1) The flow 𝜑 (𝑥, 𝑡) of the compact IVP is well-defined on J𝐶K × [𝑡0,𝑇 ].
(2) J𝐵K ⊂ R𝑛 is a bounded set containing 𝜑 (J𝐶K , [𝑡0,𝑇 ]).
Then for all 𝐾 ∈ Q+ greater than or equal to the Lipschitz constant of 𝑓 (𝑥) on J𝐵K, for all LDA Φ,

for all positive rational ℎ ∈ Q+, for all sufficiently large 𝑘 ∈ N, the following is a valid differential
invariant in dL:

𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) → [𝑥 ′ = 𝑓 (𝑥), 𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)]𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡)
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With𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) defined as:

𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) ≡ 𝑡 ≥ 𝑡0 ∧ 𝑔 ≥ 1 ∧𝐶 (𝑥0) ∧ ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀 (𝑔, 𝑡)2

𝜀 (𝑔, 𝑡) ≡ ℎ(1 + 𝑡 − 𝑡0)𝑔 − ℎ

A corresponding witness 𝑘 can also be computed uniformly from the compact IVP, 𝐵(𝑥), Φ and ℎ.

Lemma 4.11 computes some 𝑘 witnessing the validity of the differential invariant, but it proves the

stronger assertion that there exists some 𝑘0 ∈ N such that for all 𝑘 ≥ 𝑘0, the differential invariant at
index 𝑘 is valid. Such a threshold 𝑘0 is in general not computable, because LDAs are not required to

have a computable rate of convergence to the true flow to allow for more general approximants. This

is similar to the difference between computably enumerable real numbers, which have computable

sequences of rationals converging to them, and computable real numbers, which have computable

sequences of rationals converging to them with computable rates of convergence.

Remark 4.12. Intuitively, the idea of the proof of Lemma 4.11 is to find some FOLR formula

Small(𝑥, 𝑡) that captures the difference between the flow 𝜑 (𝑥, 𝑡) and the approximation Φ𝑘 (𝑥, 𝑡)
being small. By the continuous dependence of 𝜑 on its initial conditions, the differential invariant

Small(𝑥, 𝑡) → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]Small(𝑥, 𝑡)

is valid and by Theorem 3.2 rule dInv will give a syntactic proof. However, while the dependence of

the flow 𝜑 (𝑥, 𝑡) on its initial conditions is continuous, the error rate may grow like 𝑒𝐿𝑡 where 𝐿 is

the Lipschitz constant of the vector field 𝑓 on 𝜑 (J𝐶K , [𝑡0,𝑇 ]). Since the theory of real exponential

fields is not known to be decidable [36] and 𝑒𝑥 is not directly expressible in dL (without extended

terms), we will have to encode it via an ODE. In the definition of 𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡), the variable 𝑔

represents the exponential function, as indicated by its ODE 𝑔′ = 𝐾𝑔. The error function 𝜀 (𝑔, 𝑡)
represents this error rate being scaled by the exponential function 𝑔. Lastly, as 𝑓 (𝑥) is in general

only locally Lipschitz, the domain constraint 𝐵(𝑥) is needed in order to obtain a fixed upper bound

on the Lipschitz constant.

The following integral form of Grönwall’s inequality is needed to prove Lemma 4.11.

Lemma 4.13 (Grönwall’s ineqality [28, 54]). Let [𝑎, 𝑏] ⊂ R be an interval of the real line,
𝑢 ∈ 𝐶 ( [𝑎,𝑏],R) and 𝛼, 𝛽 ∈ R. Further suppose that for all 𝑡 ∈ [𝑎, 𝑏], we have:

𝑢 (𝑡) ≤ 𝛼 +
∫ 𝑡

𝑎

𝛽𝑢 (𝑠)𝑑𝑠

Then the following inequality holds for all 𝑡 ∈ [𝑎,𝑏]:

𝑢 (𝑡) ≤ 𝛼𝑒𝛽 (𝑡−𝑎)

With the lemma above, we are now ready to prove Lemma 4.11.

Proof of Lemma 4.11. As the claim only concerns validity of the differential invariant and the

ODE is autonomous, we may assume without loss of generality that 𝑡0 = 0 by translating the

starting time if needed. Suppose that𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) is satisfied at some initial state, that is, there is

some 𝑡1, 𝑔0 ∈ R, 𝑦0, 𝑦 ∈ R𝑛 such that𝜓𝑘 (𝑦0, 𝑦, 𝑔0, 𝑡1) holds, giving the following conditions:

𝜓𝑘 (𝑦0, 𝑦, 𝑔0, 𝑡1) ≡ 𝑡1 ≥ 𝑡0 ∧ 𝑔0 ≥ 1 ∧𝐶 (𝑦0) ∧ ∥𝑦 − Φ𝑘 (𝑦0, 𝑡1)∥2 ≤ 𝜀 (𝑔0, 𝑡1)2

If 𝑡1 > 𝑇 then the domain constraint 𝑡 ≤ 𝑇 is trivially false, so further assume without loss of

generality that 𝑡1 ≤ 𝑇 . Let 𝜑 (𝑥, 𝑡) denote the flow of the compact IVP and𝜓 (𝑔0, 𝑡) denote the flow
of 𝑔 along 𝑔′ = 𝐾𝑔 with initial condition𝜓 (𝑔0, 0) = 𝑔0. By definition at time 𝑡 ∈ [𝑡1,𝑇 ] the variable
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𝑥 has the value 𝜑 (𝑦, 𝑡 − 𝑡1). Define the following function for (𝑥0, 𝑡) ∈ J𝐶K × [0,𝑇 ] recording the
difference between the true solution and the approximant at time 𝑡 with initial condition 𝑥0:

𝑅𝑘 (𝑥0, 𝑡) = Φ𝑘 (𝑥0, 𝑡) − 𝜑 (𝑥0, 𝑡)

To establish the validity of the invariant, it suffices to show (recall 𝑡0 = 0)

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ 𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡)

for all 𝑡 ∈ [𝑡1,𝑇 ] such that the domain constraint is maintained. This is because 𝑔 satisfies the ODE

𝑔′ = 𝐾𝑔, thus𝜓 (𝑔0, 𝑡 − 𝑡1) = 𝑔0𝑒𝐾 (𝑡−𝑡1 ) ≥ 𝑔0 ≥ 1, hence 𝑔 ≥ 1 is always satisfied by the assumption

of 𝐾 ∈ Q+. The condition 𝑡 ≥ 𝑡0 is also satisfied as the ODE 𝑡 ′ = 1 is strictly increasing, therefore

𝑡 ≥ 𝑡1 ≥ 𝑡0. Finally 𝐶 (𝑦0) remains true since 𝑦0 does not change along the ODE. To handle the

non-trivial inequality, notice that 𝑡 ≥ 𝑡1, therefore:

Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)=𝑅𝑘 (𝑦0, 𝑡) + 𝜑 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)
=𝑅𝑘 (𝑦0, 𝑡) + 𝜑 (𝜑 (𝑦0, 𝑡1), 𝑡 − 𝑡1) − 𝜑 (𝑦, 𝑡 − 𝑡1)

=𝑅𝑘 (𝑦0, 𝑡) + 𝜑 (𝑦0, 𝑡1) +
∫ 𝑡−𝑡1

0

𝑓 (𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠))𝑑𝑠 − 𝑦 −
∫ 𝑡−𝑡1

0

𝑓 (𝜑 (𝑦, 𝑠))𝑑𝑠

Applying the triangle inequality gives:

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ ∥𝑅𝑘 (𝑦0, 𝑡) + 𝜑 (𝑦0, 𝑡1) − 𝑦∥ +
∫ 𝑡−𝑡1

0

∥ 𝑓 (𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠)) − 𝑓 (𝜑 (𝑦, 𝑠))∥ 𝑑𝑠
(1)

Now we crucially use the fact that 𝐵(𝑥) is both a domain constraint and assumed to contain

the flow 𝜑 (𝑥0, 𝑡) for (𝑥0, 𝑡) ∈ J𝐶K × [0,𝑇 ] to see that for 𝑠 ∈ [0, 𝑡 − 𝑡1], we will always have

𝐵(𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠)) and 𝐵(𝜑 (𝑦, 𝑠)) (i.e., 𝜑 (𝑦0, 𝑡1 + 𝑠), 𝜑 (𝑦, 𝑠) both belong to the bounded set J𝐵K).
Letting 𝐿 denote the Lipschitz constant of 𝑓 (𝑥) on J𝐵K (recall that such a constant always exists

since 𝑓 (𝑥) is locally Lipschitz), we have:∫ 𝑡−𝑡1

0

∥ 𝑓 (𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠)) − 𝑓 (𝜑 (𝑦, 𝑠))∥ 𝑑𝑠 ≤ 𝐿
∫ 𝑡−𝑡1

0

∥𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠) − 𝜑 (𝑦, 𝑠)∥ 𝑑𝑠 (2)

We will now establish the following bound:

∥𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠) − 𝜑 (𝑦, 𝑠)∥ ≤ ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥ 𝑒𝐿𝑠 (3)

To do this, define 𝐸 ∈ 𝐶1 ( [0, 𝑡 − 𝑡1],R𝑛) by 𝐸 (𝑠) = 𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠) − 𝜑 (𝑦, 𝑠). Direct manipulations

yield:

∥𝐸 (𝑠)∥ =




𝐸 (0) + ∫ 𝑠

0

𝐸′ (𝑟 )𝑑𝑟




 ≤ ∥𝐸 (0)∥ + ∫ 𝑠

0

∥𝐸′ (𝑟 )∥ 𝑑𝑟

= ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥ +
∫ 𝑠

0

∥ 𝑓 (𝜑 (𝜑 (𝑦0, 𝑡1), 𝑟 )) − 𝑓 (𝜑 (𝑦, 𝑟 ))∥ 𝑑𝑟

≤ ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥ + 𝐿
∫ 𝑠

0

∥𝜑 (𝜑 (𝑦0, 𝑡1), 𝑟 ) − 𝜑 (𝑦, 𝑟 )∥ 𝑑𝑟

= ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥ + 𝐿
∫ 𝑠

0

∥𝐸 (𝑟 )∥ 𝑑𝑟

Note that in this derivation, we again utilized the assumption that 𝑓 (𝑥) is Lipschitz on J𝐵K with
Lipschitz constant 𝐿 in the second to last inequality. Applying Grönwall’s inequality (Lemma 4.13)
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with 𝑢 (𝑠) = ∥𝐸 (𝑠)∥ , 𝛼 = ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥ , 𝛽 = 𝐿 then gives the desired bound equation (3). Applying

this to inequality (2) results in:∫ 𝑡−𝑡1

0

∥ 𝑓 (𝜑 (𝜑 (𝑦0, 𝑡1), 𝑠)) − 𝑓 (𝜑 (𝑦, 𝑠))∥ 𝑑𝑠 ≤ 𝐿 ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥
∫ 𝑡−𝑡1

0

𝑒𝐿𝑠𝑑𝑠

= ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥
(
𝑒𝐿 (𝑡−𝑡1 ) − 1

)
Substituting this back into inequality (1) gives:

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ ∥𝑅𝑘 (𝑦0, 𝑡) + 𝜑 (𝑦0, 𝑡1) − 𝑦∥ + ∥𝜑 (𝑦0, 𝑡1) − 𝑦∥
(
𝑒𝐿 (𝑡−𝑡1 ) − 1

)
Recalling 𝑅𝑘 (𝑦0, 𝑡) = Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦0, 𝑡) yields:

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ ∥𝑅𝑘 (𝑦0, 𝑡) + Φ𝑘 (𝑦0, 𝑡1) − 𝑅𝑘 (𝑦0, 𝑡1) − 𝑦∥

+ ∥𝑅𝑘 (𝑦0, 𝑡1) − Φ𝑘 (𝑦0, 𝑡1) + 𝑦∥
(
𝑒𝐿 (𝑡−𝑡1 ) − 1

)
Utilizing the triangle inequality and rearranging, we arrive at:

∥Φ𝑘 (𝑦0, 𝑡)−𝜑 (𝑦, 𝑡−𝑡1)∥ ≤ ∥Φ𝑘 (𝑦0, 𝑡1)−𝑦∥ 𝑒𝐿 (𝑡−𝑡1 ) + ∥𝑅𝑘 (𝑦0, 𝑡)−𝑅𝑘 (𝑦0, 𝑡1)∥+∥𝑅𝑘 (𝑦0, 𝑡1)∥ (𝑒𝐿 (𝑡−𝑡1 )−1)

Recall that we may choose 𝑘 arbitrarily large and ∥𝑅𝑘 ∥J𝐶K×[0,𝑇 ]
𝑘→∞−−−−→ 0, hence assume that 𝑘 is

large enough to witness ∥𝑅𝑘 ∥J𝐶K×[0,𝑇 ] ≤ ℎ. Also by assumption on 𝑔0, 𝑦0, 𝑦, 𝑡1, the following holds:

∥Φ𝑘 (𝑦0, 𝑡1) − 𝑦∥ ≤ 𝜀 (𝑔0, 𝑡1)
Rearranging yields:

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ (𝜀 (𝑔0, 𝑡1) + ℎ)𝑒𝐿 (𝑡−𝑡1 ) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ
Expanding 𝜀 (𝑔0, 𝑡1) = ℎ(1 + 𝑡1)𝑔0 − ℎ by construction and requiring 𝐾 ≥ 𝐿 yields:

∥Φ𝑘 (𝑦0, 𝑡) − 𝜑 (𝑦, 𝑡 − 𝑡1)∥ ≤ ℎ(1 + 𝑡1)𝑔0𝑒𝐿 (𝑡−𝑡1 ) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ
≤ ℎ(1 + 𝑡1 − 𝑡 + 𝑡)𝑔0𝑒𝐾 (𝑡−𝑡1 ) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ
= ℎ(1 + 𝑡)𝑔0𝑒𝐾 (𝑡−𝑡1 ) − ℎ + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ𝑔0𝑒𝐾 (𝑡−𝑡1 ) (𝑡 − 𝑡1)
= 𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ𝑔0𝑒𝐾 (𝑡−𝑡1 ) (𝑡 − 𝑡1)
≤ 𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ(𝑡 − 𝑡1)

where the second equality uses the fact that 𝜓 (𝑔0, 𝑡) is the flow of 𝑔′ = 𝐾𝑔 starting at 𝑔(0) = 𝑔0,
thus𝜓 (𝑔0, 𝑡 − 𝑡1) = 𝑔0𝑒𝐾 (𝑡−𝑡1 ) . The final inequality follows from 𝑡 ≥ 𝑡1 and 𝑔0 ≥ 1. Now define

𝑀𝑘 = max

𝑦0∈J𝐶K,𝑡 ∈[𝑡0,𝑇 ]



𝑅′
𝑘
(𝑦0, 𝑡)




which is well-defined as 𝑅′

𝑘
∈ 𝐶0 (J𝐶K × [0,𝑇 ],R𝑛). Since (Φ′

𝑘
)𝑘 converges uniformly to 𝜑 ′ on

J𝐶K × [0,𝑇 ], (𝑀𝑘 )𝑘 will converge to 0. Thus, choose 𝑘 large enough so that𝑀𝑘 ≤ ℎ, which allows

us to deduce:

𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡) + ∥𝑅𝑘 (𝑦0, 𝑡) − 𝑅𝑘 (𝑦0, 𝑡1)∥ − ℎ(𝑡 − 𝑡1) ≤ 𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡) +𝑀𝑘 (𝑡 − 𝑡1) − ℎ(𝑡 − 𝑡1)
≤ 𝜀 (𝜓 (𝑔0, 𝑡 − 𝑡1), 𝑡)

exactly as desired. Thus, for any ℎ > 0, choosing 𝑘 large enough such that the following conditions

are met will witness the validity of the differential invariant.

— max𝑦0∈J𝐶K,𝑡 ∈[0,𝑇 ] ∥𝑅𝑘 (𝑦0, 𝑡)∥ ≤ ℎ
—max𝑦0∈J𝐶K,𝑡 ∈[0,𝑇 ]



𝑅′
𝑘
(𝑦0, 𝑡)



 ≤ ℎ
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Furthermore, since maximums of computable functions are computable by Theorem 3.9, a sat-

isfying index 𝑘 can be found computably. To see that 𝐾 can be effectively computed and chosen

to be a rational, note that we only require 𝐾 ≥ 𝐿 to hold, so one can search through all positive

rationals 𝐾 ∈ Q+ and halt when the following FOLR formula is decided to be true

∀𝑥∀𝑦
(
𝐵(𝑥) ∧ 𝐵(𝑦) → ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2 ≤ 𝐾2 ∥𝑥 − 𝑦∥2

)
and since R has a computable theory by quantifier elimination [53], this search is computable. □

The “continuous dependence on initial conditions” property proven by Lemma 4.11 provides

control on the errors induced by LDAs, and is crucial in establishing completeness for LDAs in

Theorem 5.1. The following example gives a sense of how this can be achieved.

Example 4.14. Consider the simple compact IVP 𝑥 ′ = 𝑥 , 𝑥 (0) = 1 over the interval [0, 5] (i.e.,
𝐶 (𝑥) ≡ 𝑥 = 1), which has a solution of 𝑥 (𝑡) = 𝑒𝑡 (and therefore we know that max𝑡 ∈[0,5] 𝑥 (𝑡) =
𝑒5 < 300). In this case, the Picard iterates will form a LDA on the compact time horizon [0, 5]. The
Picard iterates of this ODE are:

𝜑0 (𝑡) = 𝑥0

𝜑𝑛+1 (𝑡) = 𝑥0 +
∫ 𝑡

0

𝜑𝑛 (𝑠)𝑑𝑠

Listing out the first few terms

𝜑0 (𝑡) = 1, 𝜑1 (𝑡) = 1 + 𝑡, 𝜑2 (𝑡) = 1 + 𝑡 + 𝑡
2

2

, 𝜑3 (𝑡) = 1 + 𝑡 + 𝑡
2

2

+ 𝑡
3

6

Where 𝜑𝑛 (𝑡) is just the 𝑛th Taylor approximate, and 𝜑 ′𝑛 (𝑡) = 𝜑𝑛−1 (𝑡). By Taylor’s theorem, the

𝑛th remainder term 𝑅𝑛 will be bounded by

|𝑅𝑛 | ≤
𝑒55𝑛+1

(𝑛 + 1)!
And similarly,𝑀𝑛 , the 𝑛th error in the derivative, will be bounded by

|𝑀𝑛 | = |𝑅𝑛−1 | ≤
𝑒55𝑛

𝑛!

Suppose one wants to generate a proof witnessing that some Picard iterate is within 10
−3

of the true solution. Picking ℎ = 10
−6
, one has (note that the Lipschitz constant is 1 here and

𝑡 ∈ [0, 5])
|𝜀 (𝜓 (1, 𝑡), 𝑡) | ≤ 10

−6 (1 + 5)𝑒5 + 10−6 ≈ 8 × 10−4 < 10
−3

Thus, if 𝜀 (𝑔, 𝑡) gives a valid differential invariant in the sense of Lemma 4.11, then the error of

the approximant is necessarily bounded by 10
−3
. Per the proof of the Lemma 4.11, 𝑛 just needs to

be picked large enough so that

|𝑅𝑛−1 |, |𝑅𝑛 | ≤ 10
−6

and the differential invariant corresponding to 𝜀 (𝑔, 𝑡) is valid. By the bound given above, we see

that for 𝑛 = 28, |𝑅27 |, |𝑅28 | ≤ 2 × 10−7. Now consider the invariant:

𝜓28 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 5 ∧ ∥𝑥 ∥2 ≤ 300]𝜓28

Since Picard iterates always satisfy 𝜓𝑘 (1, 𝑥 (0), 1, 0) as they have the correct values at 𝑡 = 0,

the invariant generated above is valid and witnesses an error bound of at most 10
−3
. Further-

more, this differential invariant can be independently verified by a proof checker for dL [8, 22],
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taking advantage of the effective axiomatisation of differential invariants [45] which reduces the

verification of differential invariants down to questions of real arithmetic. When combined with

formally-verified decision procedures for real arithmetic [33], this gives a complete verification of

the validity of the invariant, illustrating how Lemma 4.11 can be used to produce proofs of error

bounds of approximants.

Example 4.15 (Invariant for Moore–Greitzer). Recall that the dynamics of the Moore–Greitzer jet

engine model is given by

𝑢′ = 𝑓1 (𝑢, 𝑣) = −𝑣 − 1.5𝑢2 − 0.5𝑢3 − 0.5
𝑣 ′ = 𝑓2 (𝑢, 𝑣) = 3𝑢 − 𝑣

with compact initial conditions Δ(𝑢, 𝑣) ≡ 0.9 ≤ 𝑢 ∧ 0.9 ≤ 𝑣 ∧ 𝑢 + 𝑣 ≤ 2. Motivated by prior works

which numerically computes reachability enclosures of this system via successive iterations [48, Ta-

ble 1] over many time steps without corresponding syntactic proofs, we compute a provable approx-
imant to the flow over one such time step, corresponding to 𝑇 = 0.02. The approximant Φ(𝑢0, 𝑣0, 𝑡)
for which we will prove its accuracy is given by (recall that Φ(𝑢0, 𝑣0, 𝑡) = (Φ1 (𝑢0, 𝑣0, 𝑡),Φ2 (𝑢0, 𝑣0, 𝑡))):

Φ1 (𝑢0, 𝑣0, 𝑡) = 𝑢0 + 𝑡𝑐1𝑢 (𝑢0, 𝑣0) + 𝑡2𝑐2𝑢 (𝑢0, 𝑣0) + 𝑡3𝑐3𝑢 (𝑢0, 𝑣0)

𝑐1𝑢 (𝑢0, 𝑣0) = −
𝑢3
0

2

−
3𝑢2

0

2

− 𝑣0 − 0.5

𝑐2𝑢 (𝑢0, 𝑣0) =
3𝑢5

0

8

+
15𝑢4

0

8

+
9𝑢3

0

4

+
3𝑢2

0
𝑣0

4

+ 0.375𝑢2
0
+ 3𝑢0𝑣0

2

− 0.75𝑢0 +
𝑣0

2

𝑐3𝑢 (𝑢0, 𝑣0) = −
5𝑢7

0

16

−
35𝑢6

0

16

−
39𝑢5

0

8

−
7𝑢4

0
𝑣0

8

− 3.8125𝑢4
0
−
7𝑢3

0
𝑣0

2

− 0.75𝑢3
0

−
13𝑢2

0
𝑣0

4

+
3𝑢2

0

4

−
𝑢0𝑣

2

0

2

− 𝑢0𝑣0 + 0.375𝑢0 −
𝑣2
0

2

− 𝑣0
6

+ 0.125

Φ2 (𝑢0, 𝑣0, 𝑡) = 𝑣0 + 𝑡𝑐1𝑣 (𝑢0, 𝑣0) + 𝑡2𝑐2𝑣 (𝑢0, 𝑣0) + 𝑡3𝑐3𝑣 (𝑢0, 𝑣0)

𝑐1𝑣 (𝑢0, 𝑣0) = −
𝑢3
0

2

−
3𝑢2

0

2

− 𝑣0 − 0.5

𝑐2𝑣 (𝑢0, 𝑣0) = 3𝑢0 − 𝑣0

𝑐3𝑣 (𝑢0, 𝑣0) =
3𝑢5

0

8

+
15𝑢4

0

8

+
5𝑢3

0

2

+
3𝑢2

0
𝑣0

4

+ 1.125𝑢2
0
+ 3𝑢0𝑣0

2

− 0.25𝑢0 +
5𝑣0

6

+ 0.25

Such an approximant was computed by Picard iteration with appropriate rounding on the

coefficients. It is important to note that LDA approximants are not limited to be Picard iterates,

and the proofs of accuracy only depends on the true errors. To apply Lemma 4.11, the following

constructs are needed:

—ℎ ∈ Q+, bounding the error of the approximant.

— 𝐵(𝑢, 𝑣) ∈ FOLR characterizing a bounded set that contains the flow.

—𝐾 ∈ Q+ larger than or equal to the Lipschitz constant of 𝑓 (𝑢, 𝑣) on J𝐵K.
These values can be computed numerically by any method of choice. For example by numerically

sampling, we see that the choices ℎ = 4 × 10−3, 𝐾 = 8 and

𝐵(𝑢, 𝑣) ≡ 0.781 < 𝑢 < 1.109 ∧ 0.891 < 𝑣 < 1.199 ∧ 𝑢 + 𝑣 < 2.25
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satisfy such requirements, therefore the invariant

𝜓 (𝑢0, 𝑣0, 𝑢, 𝑣, 𝑔, 𝑡)→ [𝑢′= 𝑓1 (𝑢, 𝑣), 𝑣 ′= 𝑓2 (𝑢, 𝑣), 𝑔′=8𝑔, 𝑡 ′=1&𝑡 ≤ 0.02 ∧ 𝐵(𝑢, 𝑣)]𝜓 (𝑢0, 𝑣0, 𝑢, 𝑣, 𝑔, 𝑡)
with

𝜓 (𝑢0, 𝑣0, 𝑢, 𝑣, 𝑔, 𝑡) ≡ 𝑡 ≥ 0 ∧ 𝑔 ≥ 1 ∧ Δ(𝑢0, 𝑣0) ∧ ∥(𝑢 − Φ1 (𝑢0, 𝑣0, 𝑡), 𝑣 − Φ2 (𝑢0, 𝑣0, 𝑡))∥2 ≤ 𝜀 (𝑔, 𝑡)2

𝜀 (𝑔, 𝑡) ≡ 4 × 10−3 ((1 + 𝑡)𝑔 − 1)
is valid and provable by dInv. Crucially, while the approximation and 𝑢, 𝐾, 𝐵(𝑢, 𝑣) were all obtained
numerically, the validity of the invariant is deductively proven with a proof in dL that can be

independently verified by proof checkers such as KeYmaera X [23]. Later examples build off of this

differential invariant and eventually prove that the approximant Φ(𝑢0, 𝑣0, 𝑡) has an error of at most

5 × 10−3 on JΔK × [0, 0.02].

Remark 4.16. While Lemma 4.11 above applies to all LDAs, it would be interesting to know if the

conditions can be relaxed to allow for approximants that do not converge in derivative. The above

result still holds when there is only a subsequence of approximants that converge in derivative to

𝜑 ′. Hence, the result remains true if we just assume that the approximants have bounded first and

second derivatives, as this allows us to construct a convergent subsequence using Arzelà–Ascoli [54].

Even though one cannot generally compute this convergent subsequence directly, since differential

invariants can be effectively decided by Theorem 3.2, it suffices to perform an unbounded search

across all approximants, halting whenever one of the desired invariants is decided to be valid.

Building on Lemma 4.11, the following theorem reduces the problem of proving convergence of

LDAs to arithmetic questions involving the exponential function.

Theorem 4.17 (Derivable LDA). Let (𝐶 (𝑥), 𝑓 (𝑥), [𝑡0,𝑇 ]) be a compact IVP with Φ a LDA, 𝐵(𝑥) a
FOLR formula, 𝑐, 𝐾 ∈ Q+ rational constants. Assume that the following holds:
(1) The flow 𝜑 (𝑥, 𝑡) of the compact IVP is well-defined on J𝐶K × [𝑡0,𝑇 ].
(2) J𝐵K ⊂ R𝑛 is a bounded set containing 𝜑 (J𝐶K , [𝑡0,𝑇 ]).
(3) 𝐾 is greater than or equal to the Lipschitz constant of 𝑓 (𝑥) on J𝐵K.
(4) 𝑐 > 1.
Then for all 𝑀, 𝜀 ∈ Q+, for all sufficiently large 𝑘 ∈ N, the following proof rule is syntactically

derivable in dL, where 𝑥, 𝑔, 𝑡, 𝑥0 are symbolic variables.

LDA

⊢ 𝑔 = 𝑐 ∧ 𝑡 = 𝑡0 → [𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝑀
⊢ 𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝑀2𝜀2

For each 𝜀 ∈ Q+, a corresponding 𝑘 can be computed uniformly in the compact IVP, Φ, 𝑐 and 𝜀.

Theorem 4.17 gives an effective way of reducing rigorous proofs for error bounds of LDAs in dL
under the presence of some bounded domain 𝐵(𝑥) to the problem of proving upper bounds of the

exponential function over a bounded interval. Section 4.3 shows that proofs of such upper bounds

are always possible even if decidability of the exponential field is a famous open problem [36]. In

contrast to the rational constants 𝑡0,𝑇 , 𝑐, 𝐾,𝑀 , the variables 𝑥,𝑔, 𝑡, 𝑥0 in the proof rule are symbolic.

Proof. The proof directly follows from Lemma 4.11. Pick 𝑛 ∈ N large enough such that 2
−𝑛 (1 +

𝑇 − 𝑡0) ≤ 𝜀 is satisfied. Since Φ is a LDA, taking 𝑘 to be large enough such that ∥Φ𝑘 − 𝜑 ∥J𝐶K×[𝑡0,𝑇 ] ≤
2
−𝑛 (𝑐 − 1) and Lemma 4.11 holds with ℎ = 2

−𝑛
gives the following:

(1) ∀𝑥0 ∈ J𝐶K ∥𝑥0 − Φ𝑘 (𝑥0, 𝑡0)∥ ≤ 2
−𝑛 (𝑐 − 1).

(2) The following differential invariant is valid for ℎ = 2
−𝑛

(thus provable in dL by Theorem 3.2):

𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) → [𝑥 ′ = 𝑓 (𝑥), 𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)]𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡)
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The desired proof in dL can now be constructed via the steps below by cutting in the differential

invariant. First abbreviate

𝛼 ≡ 𝑥 ′ = 𝑓 (𝑥), 𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)

→R,DG,∃R

cut,→L

R
∗

𝐶 (𝑥), 𝑥 = 𝑥0, 𝑔 = 𝑐, 𝑡 = 𝑡0 ⊢ 𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡)
dInv

∗
𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) ⊢ [𝛼]𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) 1○

𝐶 (𝑥), 𝑥 = 𝑥0, 𝑡 = 𝑡0, 𝑔 = 𝑐 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡≤𝑇 ∧ 𝐵(𝑥)] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝑀2𝜀2

⊢ 𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡≤𝑇 ∧ 𝐵(𝑥)] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝑀2𝜀2

The left premise closes by R from item (1), the second premise closes by Lemma 4.11, and the

final remaining premise is

1○ ≡ 𝐶 (𝑥), 𝑥 = 𝑥0, 𝑡 = 𝑡0, 𝑔 = 𝑐, [𝛼]𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) ⊢ [𝛼] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2𝑀2

Which can be handled with dW and cutting in the bound [𝛼]𝑔 ≤ 𝑀 with dC. Crucially the

application of DGi to remove 𝑥 ′ = 𝑓 (𝑥) is sound since 𝑥 ∉ 𝐾,𝑀 .

dC,dW

R
∗

𝑔 ≤ 𝑀, 𝑡 ≤ 𝑇,𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) ⊢ ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2𝑀2

DGi

2○
𝑔 = 𝑐, 𝑡 = 𝑡0 ⊢ [𝛼]𝑔 ≤ 𝑀

𝑥 = 𝑥0, 𝑡 = 𝑡0, 𝑔 = 𝑐, [𝛼]𝜓𝑘 (𝑥0, 𝑥, 𝑔, 𝑡) ⊢ [𝛼] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2𝑀2

where the remaining premise on the right is

2○ ≡ 𝑔 = 𝑐, 𝑡 = 𝑡0 ⊢ [𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝑀

For the left premise, notice that the following is a valid formula of FOLR, and therefore provable:

𝑡 ≤ 𝑇 ∧ 𝑔 ≤ 𝑀 ∧𝜓𝑘 (𝑥, 𝑥0, 𝑔, 𝑡) → ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ (2−𝑛 (1 +𝑇 − 𝑡0)𝑀)2

thus, the left premise closes by our choice of 𝑛 ∈ N. The proof of the desired formula has now been

reduced to an upper bound on the exponential function (premise 2○), completing the derivation.

Since 𝑘 was only required to satisfy conditions (1), (2) and a satisfying witness for Lemma 4.11 can

be computed, such a 𝑘 can be computed as well, completing the proof of the theorem. □

Example 4.18 (Constrained Exponential bound for Moore-Greitzer). Theorem 4.17 applies to the

Moore-Greitzer jet engine model introduced in Example 4.4 with its invariant established in Exam-

ple 4.15. We apply proof rule LDA using

— 𝐵(𝑢, 𝑣) ≡ 0.781 < 𝑢 < 1.109 ∧ 0.891 < 𝑣 < 1.199 ∧ 𝑢 + 𝑣 < 2.25

—𝐾 = 8

— 𝑐 = 1.1

— 𝜀 = 4 × 10−3 × (1 + 0.02)
—𝑀 = 1.2

Using these values, LDA proves the following

LDA

𝑔 = 1.1, 𝑡 = 0 ⊢ [𝑔′ = 8𝑔, 𝑡 ′ = 1&𝑡≤0.02]𝑔 ≤ 1.2

Δ(𝑢0, 𝑣0), 𝑢 = 𝑢0, 𝑣 = 𝑣0, 𝑡 = 0 ⊢ [(𝑢′, 𝑣 ′) = 𝑓 (𝑢, 𝑣)&𝑡≤0.02 ∧ 𝐵(𝑢, 𝑣)] ∥(𝑢, 𝑣) − Φ(𝑢0, 𝑣0, 𝑡)∥2 < (5 × 10−3)2

where the constant 5 was chosen as

𝜀𝑀 = 4 × 1.2 × 1.02 × 10−3 < 5 × 10−3

As the derivation shows, the proof rule LDA reduced the problem of proving an error bound

of 5 × 10−3 to the problem of upper bounding exponentials on [0, 0.02]. Importantly, while all of

the values were chosen numerically, the proof rule LDA is derived. Therefore the validity of the

formula is backed up by a corresponding syntactic proof.
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Theorem 4.17 still holds even if (Φ𝑘 )𝑘 does not converge in derivative, as long as it has bounded

first and second time derivatives (implicitly requiring it to be twice differentiable), since Lemma 4.11

still holds in this case per Remark 4.16.

4.3 Provable Taylor Bounds on Exponentials
Theorem 4.17 reduced the proof of error bounds for LDAs to proving upper bounds for the exponen-

tial function on compact intervals. In this section, we show that dL is capable of proving arbitrarily

accurate upper bounds on the exponential function via Taylor polynomials on the compact interval

[0,𝑇 ].

Proposition 4.19 (provable Taylor approximants). Let 𝐾,𝑇 ∈ Q+ be rational constants. For
all sufficiently large 𝑛 ∈ N, there is a syntactic term 𝜃𝑛 ∈ Q[𝑡] such that the following is a valid
differential invariant

𝑔 ≤ 𝜃𝑛 → [𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝜃𝑛
Furthermore, 𝜃𝑛 → 𝑒𝐾𝑡 on [−𝑇,𝑇 ] as 𝑛 →∞ where 𝜃𝑛 is treated as a function in 𝑡 . Finally, for all

𝑛 ∈ N we have 𝜃𝑛 (0) = 1 and 𝜃𝑛 can be computed uniformly in 𝐾,𝑇 , 𝑛.

Proof. For 𝑛 ∈ N, let us denote 𝑞𝑛 (𝑡) as the 𝑛th Taylor approximant of 𝑒𝐾𝑡 i.e.,

𝑞𝑛 (𝑡) =
𝑛∑︁
𝑖=0

𝐾𝑖𝑡𝑖

𝑖!

Let

𝜃𝑛 (𝑡) = 𝑞𝑛 (𝑡) +
𝑀𝑡𝑛

𝑛!
𝑀 =

𝐾𝑛+1𝑇

𝑛 − 𝐾𝑇
which is well-defined for all 𝑛 > 𝐾𝑇 . By the Darboux inequality [45, Corollary 3.2], the validity of

the invariant follows from the validity of (𝜃𝑛 (𝑡))′ ≥ 𝐾𝜃𝑛 (𝑡). Computing (𝜃𝑛 (𝑡))′ gives

(𝜃𝑛 (𝑡))′ = 𝐾𝑞𝑛−1 (𝑡) +
𝑀𝑡𝑛−1

(𝑛 − 1)!
So we have

(𝜃𝑛 (𝑡))′ − 𝐾𝜃𝑛 (𝑡) =
𝑀𝑡𝑛−1

(𝑛 − 1)! −
𝐾𝑛+1𝑡𝑛

𝑛!
− 𝐾𝑀𝑡

𝑛

𝑛!

≥ 𝑡
𝑛−1

𝑛!

(
𝑛𝑀 − 𝐾𝑀𝑇 − 𝐾𝑛+1𝑇

)
=
𝑡𝑛−1

𝑛!

(
(𝑛 − 𝐾𝑇 )𝑀 − 𝐾𝑛+1𝑇

)
= 0

Therefore the invariant is indeed valid for all 𝑛 > 𝐾𝑇 . To witness the desired convergence, note

𝑀𝑡𝑛

𝑛!

𝑛→∞−−−−→ 0

and 𝑞𝑛
𝑛→∞−−−−→ 𝑒𝐾𝑡 on [−𝑇,𝑇 ] by Taylor’s theorem. The proof is therefore complete. □

It now follows that dL is capable of proving arbitrarily accurate upper bounds on the exponential

function on bounded intervals.

Corollary 4.20 (bounded exponentials). Let 𝑐, 𝐾 ∈ Q+ be constants and [𝑡0,𝑇 ] ∈ IQ be a
rational interval. For all𝑀 ∈ Q+ that satisfy 𝑐𝑒𝐾 (𝑇−𝑡0 ) < 𝑀 , the following formula is provable in dL:

𝑔 = 𝑐 ∧ 𝑡 = 𝑡0 → [𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝑀
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Proof. We first begin with standard reductions using DG and dInv, reducing the proof down to

upper bounds on the standard exponential IVP 𝑥 ′ = 𝐾𝑥 with initial condition 𝑥 (𝑡0) = 1.

→R,DG,∃R
K

[ ]∧,∧R

dInv

∗
𝑔 = 𝑐𝑥 ⊢ [𝑔′ = 𝐾𝑔, 𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤𝑇 ]𝑔 = 𝑐𝑥

DGi

1○
𝑥 = 1, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤𝑇 ]𝑥 ≤ 𝑀

𝑐

𝑥 = 1, 𝑡 = 𝑡0 ⊢ [𝑔′ = 𝐾𝑔, 𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤𝑇 ]𝑥 ≤ 𝑀
𝑐

𝑔 = 𝑐, 𝑥 = 1, 𝑡 = 𝑡0 ⊢ [𝑔′ = 𝐾𝑔, 𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]
(
𝑥 ≤ 𝑀

𝑐
∧ 𝑔 = 𝑐𝑥

)
𝑔 = 𝑐, 𝑥 = 1, 𝑡 = 𝑡0 ⊢ [𝑔′ = 𝐾𝑔, 𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝑀

⊢ 𝑔 = 𝑐 ∧ 𝑡 = 𝑡0 → [𝑔′ = 𝐾𝑔, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑔 ≤ 𝑀

Where the left premise closes as it is a valid differential invariant. Theorem 4.19 now gives some

𝜃 (𝑠) ∈ Q[𝑠] such that 𝑐 ∥𝜃 ∥ [0,𝑇−𝑡0 ] ≤ 𝑀 , 𝜃 (0) = 1, and the following differential invariant is valid:

𝑥 ≤ 𝜃 (𝑠) → [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1&𝑠 ≤ 𝑇 − 𝑡0]𝑥 ≤ 𝜃 (𝑠)

Note that this is only possible by our assumption of 𝑐𝑒𝐾 (𝑇−𝑡0 ) < 𝑀 . Premise 1○ can now be

handled by cutting in this invariant on 𝜃 (𝑠).

DG,∃R

dC,dInv

dC

DGi

cut,dInv,K

R
∗

𝑥 = 1, 𝑠 = 0, 𝑡 = 𝑡0 ⊢ 𝑥 ≤ 𝜃 (𝑠 )
dC,dInv

dW

R
∗

𝑠 ≥ 0, 𝑠 ≤ 𝑇 − 𝑡0 ⊢ 𝑐𝜃 (𝑠 ) ≤ 𝑀
𝑠 = 0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1&𝑠 ≤ 𝑇 − 𝑡0 ∧ 𝑠 ≥ 0]

(
𝑥 ≤ 𝜃 (𝑠 ) → 𝑥 ≤ 𝑀

𝑐

)
𝑠 = 0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1&𝑠 ≤ 𝑇 − 𝑡0 ]

(
𝑥 ≤ 𝜃 (𝑠 ) → 𝑥 ≤ 𝑀

𝑐

)
𝑥 = 1, 𝑠 = 0, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1&𝑠 ≤ 𝑇 − 𝑡0 ]𝑥 ≤ 𝑀

𝑐

𝑥 = 1, 𝑠 = 0, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1, 𝑡 ′ = 1&𝑠 ≤ 𝑇 − 𝑡0 ]𝑥 ≤ 𝑀
𝑐

𝑥 = 1, 𝑠 = 0, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝑠 = 𝑡 − 𝑡0 ]𝑥 ≤ 𝑀
𝑐

𝑥 = 1, 𝑠 = 0, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑠′ = 1, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑥 ≤ 𝑀
𝑐

𝑥 = 1, 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝐾𝑥, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑥 ≤ 𝑀
𝑐

Where the left premise closes as 𝜃 (0) = 1, and the right premise closes since 𝜃 was constructed

to satisfy 𝑐 ∥𝜃 ∥ [0,𝑇−𝑡0 ] ≤ 𝑀 , which is therefore provable by R. This completes the proof. □

Chaining up the results of Theorem 4.17 and Theorem 4.19 gives complete proofs for accuracy

bounds of LDAs for compact IVPs. This has many important consequences regarding the proof

theory of dL which are listed below. The first of which says that for any LDA, for any desired

accuracy, one can derive a proof certifying this accuracy within dL assuming the presence of some

domain constraint.

Theorem 4.21 (completeness for LDAs with Domain Constraints). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ])
be a compact IVP, Φ a LDA and 𝐵(𝑥) a FOLR formula. Assume that the following holds:

(1) The flow 𝜑 (𝑥, 𝑡) of the compact IVP is well defined on J𝐶K × [𝑡0,𝑇 ].
(2) J𝐵K ⊂ R𝑛 is a bounded set containing 𝜑 (J𝐶K , [𝑡0,𝑇 ]).
Then for all 𝜀 ∈ Q+, for all sufficiently large 𝑘 ∈ N, the following formula is provable in dL.

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤ 𝜀2

For each 𝜀 ∈ Q+ a corresponding 𝑘 can be computed uniformly from the compact IVP, Φ and 𝜀.

Proof. Follows directly via Theorem 4.17 and Corollary 4.20. □

Example 4.22 (Constrained bound for Moore-Greitzer). Following Theorem 4.19, we prove

𝑔 = 1.1, 𝑡 = 0 ⊢ [𝑔′ = 8𝑔, 𝑡 ′ = 1&𝑡 ≤ 0.02]𝑔 ≤ 1.2
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This derivation combined with Example 4.18 proves the validity of the following formula

Δ(𝑢0, 𝑣0) ∧ 𝑡 = 0 ∧ 𝑢 = 𝑢0 ∧ 𝑣 = 𝑣0→
[(𝑢′, 𝑣 ′) = 𝑓 (𝑢, 𝑣), 𝑡 ′ = 1&𝑡 ≤ 0.02 ∧ 𝐵(𝑢, 𝑣)] ∥(𝑢, 𝑣) − Φ(𝑢0, 𝑣0, 𝑡)∥2 < (0.005)2

which is a particular instance of Theorem 4.21, syntactically proving an error bound of 0.005 for

the approximation Φ(𝑢0, 𝑣0, 𝑡) under the assumption of the domain constraint 𝐵(𝑢, 𝑣).

The following result syntactically proves the classical Stone–Weierstraß theorem in dL for flows

of compact IVPs under the assumption of some bounded domain constraint. That is, flows of

compact IVPs can be approximated up to arbitrary accuracy with (rational) polynomials.

Theorem 4.23 (Weierstrass Approximationwith Domain Constraints). For a given compact
IVP (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) and 𝐵(𝑥) a FOLR formula, suppose that the following holds:
(1) The flow 𝜑 (𝑥, 𝑡) of the compact IVP is well defined on J𝐶K × [𝑡0,𝑇 ].
(2) J𝐵K ⊂ R𝑛 is a bounded set containing 𝜑 (J𝐶K , [𝑡0,𝑇 ]).

Then there is a computable sequence (𝜃𝑘 )𝑘 ∈ Q𝑛 [𝑥0, 𝑡] of approximants such that the following
formulas are provable for all 𝑘 ∈ N:

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝐵(𝑥)] ∥𝑥 − 𝜃𝑘 (𝑥0, 𝑡)∥2 ≤ 2
−2𝑘

Proof. Follows directly from Theorem 4.21 and Theorem 4.10. □

Theorem 4.21 and Theorem 4.23 proves that under the presence of some bounded domain con-

straint, flows of compact IVPs can be arbitrarily approximated by polynomials with provably

accurate error bounds. As such, one can always prove desired (open) properties of flows of com-

pact IVPs by transferring to the case of polynomials, where the properties can then be proven by

quantifier elimination with the proof rule R. The remaining sections handle the case where such

domain constraints are not assumed to exist a priori.

5 Proving Domain Constraints and Bounded Completeness
A key assumption in the previous section is the existence of a FOLR formula 𝐵(𝑥) that bounds
the evolution of the flow induced by the ODE, acting as a domain constraint. Such an assumption

was a natural consequence of the fact that non-linear polynomial vector fields are only locally

Lipschitz, and therefore some a priori bound on the flow is required in order to computably utilize

the continuity of the flow. In this section, we will first show how to eliminate such assumptions by

proving them directly for compact IVPs and obtain a stronger version of Theorem 4.21. Utilizing

this, we prove that dL’s axiomatization [41, 45, 52] enjoys completeness properties over compact

time horizons without assuming bounded domain constraints. And finally, we discuss methods

of handling domain constraints symbolically. Along the way, the syntactic provability of several

axioms within dL that synthesize fundamental mathematical properties of ODEs is established,

which are of independent interest.

5.1 Error Bounds Without Domain Constraints
Our main goal is the following strengthening of Theorem 4.21, which does not assume the existence

of a bounded domain constraint.

Theorem 5.1 (Completeness for LDAs). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP with a well-
defined flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 and Φ a LDA. Then for all 𝜀 ∈ Q+, for all sufficiently large 𝑘 ∈ N,
the following formula is provable in dL.

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 < 𝜀2
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Furthermore, a satisfying 𝑘 can be computed uniformly from the compact IVP, Φ and 𝜀.

Remark 5.2. Theorem 5.1 can be understood as a “completeness for convergence of LDAs” result.

In the sense that if a sequence of definable functions (𝑔𝑘 )𝑘 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 converges to

the true flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 in the 𝐶1
norm, then their convergence in the 𝐶0

norm can

be syntactically proven in dL. While this result assumes the existence of the flow for a sufficient

duration, Theorem 5.12 shows that dL is complete for such existence properties as well. Corollary 5.6

further strengthens this theorem by weakening the assumption to 𝐶0
convergence instead of 𝐶1

convergence.

To prove Theorem 5.1, the following lemma is needed.

Lemma 5.3 (completeness for bounded flows). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP, Φ a
LDA and 𝑅 ∈ Q+. Assume that the following holds:

(1) The flow 𝜑 (𝑥, 𝑡) of the compact IVP is well-defined on J𝐶K × [𝑡0,𝑇 ].
(2) 𝜑 (J𝐶K , [𝑡0,𝑇 ]) ⊆ 𝐵(0, 𝑅), where 𝐵(0, 𝑅) is the open ball of radius 𝑅 in R𝑛 .

Then the following formula is provable in dL.

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 ∥2 < 𝑅2

Proof. First note that rule Enc reduces the problem to:

Enc

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ ∥𝑥 ∥2 ≤ 𝑅2] ∥𝑥 ∥2 < 𝑅2

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 ∥2 < 𝑅2

By Theorem 4.10, we may compute some LDA Φ for this compact IVP. Now do an a priori

unbounded search on pairs (𝜀, 𝑘) ∈ Q+ × N such that the following formulas are provable in dL.

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ ∥𝑥 ∥2 ≤ 𝑅2] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤
𝜀

2

∀𝑥0∀𝑡
(
𝑡0 ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ∧𝐶 (𝑥0) → ∥Φ𝑘 (𝑥0, 𝑡)∥2 < 𝑅2 −

𝜀

2

)
In fact, such pairs necessarily exist and the search is bounded. To see this, note that𝜑 (J𝐶K , [𝑡0,𝑇 ])

is a compact subset of the open set 𝐵(0, 𝑅) by assumption, so there exists some 𝜀 ∈ Q+ such that

𝐵(𝜑 (J𝐶K , [𝑡0,𝑇 ]), 𝜀) ⊆ 𝐵(0, 𝑅). By choosing this 𝜀 and 𝑘 ∈ N sufficiently large, the first formula

will be valid and therefore provable by Theorem 4.21. The second formula is true and therefore

provable by R for all sufficiently large 𝑘 ∈ N since Φ is a LDA. Hence, we can computably find a

pair (𝜀, 𝑘) with corresponding proofs to the formulas above. Now applying axiom V (LemmaB.1)

and dW shows that 𝑡0 ≤ 𝑡 ≤ 𝑇 and 𝐶 (𝑥0) are always satisfied during the evolution of the ODE in

the first formula. As such, applying these axioms on the formulas together with V proves

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0→

[𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ ∥𝑥 ∥2 ≤ 𝑅2]
(
∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 ≤

𝜀

2

∧ ∥Φ𝑘 (𝑥0, 𝑡)∥2 < 𝑅2 −
𝜀

2

)
from which the remaining premise introduced by Enc follows. □

Theorem 5.1 can now be proven using Lemma 5.3 and Theorem 4.21.

Proof of Theorem 5.1. First note that for any positive rational 𝑅 ∈ Q+, cutting in the domain

constraint ∥𝑥 ∥2 < 𝑅2 with dC (and applications of ∃L to introduce the variable 𝑥0) reduces the
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proof obligation to proving the following premises:

⊢ 𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ ∥𝑥 ∥2 < 𝑅2] ∥𝑥 − Φ𝑘 (𝑥0, 𝑡)∥2 < 𝜀2

⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 ∥2 < 𝑅2

Hence, we may do a bounded search on the pair (𝑅, 𝑘) ∈ Q+ × N such that the above are

provable. This is a bounded search since 𝜑 (J𝐶K , [𝑡0,𝑇 ]) is a compact set, so for all sufficiently large

𝑅 we have 𝜑 (J𝐶K , [𝑡0,𝑇 ]) ⊆ 𝐵(0, 𝑅), from which the provability of the two premises follows from

Theorem 4.21 and Lemma 5.3, respectively. Furthermore, this is a computable search as Theorem 4.21

and Lemma 5.3 both hold computably. Once such a pair (𝑅, 𝑘) has been found with corresponding

proofs, the premises are proven and therefore the proof is complete by applying axiom dC. □

Theorem 5.1 proves that for all compact IVPs, for all corresponding LDAs, for all 𝜀 ∈ Q+, one
can find some corresponding proof in dL certifying the LDA to be at most 𝜀 away from the true

solution. The following example applies this theorem to Moore–Greitzer’s model of jet engines.

Example 5.4 (Unconstrained bound for Moore–Greitzer). Example 4.22 proved an error bound of

0.005 under the assumption of a domain constraint 𝐵(𝑢, 𝑣) given by

𝐵(𝑢, 𝑣) ≡ 0.781 < 𝑢 < 1.109 ∧ 0.891 < 𝑣 < 1.199 ∧ 𝑢 + 𝑣 < 2.25

Applying Theorem 5.1 and utilizing the constrained bound proven in Example 4.22 then proves

an error bound of 0.005 without assuming domain constraints.

Δ(𝑢0, 𝑣0, 𝑡) ∧ 𝑡 = 0 ∧ 𝑢 = 𝑢0 ∧ 𝑣 = 𝑣0 →
[(𝑢′, 𝑣 ′) = 𝑓 (𝑢, 𝑣), 𝑡 ′ = 1&𝑡 ≤ 0.02] ∥(𝑢, 𝑣) − Φ(𝑢0, 𝑣0, 𝑡)∥2 < 0.0052

As such, we have syntactically proven the accuracy of a numerical approximation using deductive

logic reasoning.

The following theorem proves the Stone–Weierstraß theorem (Theorem 4.23) without domain

constraints.

Theorem 5.5 (Stone-Weierstrass). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP with well-defined
flow 𝜑 (𝑥, 𝑡) : J𝐶K × [𝑡0,𝑇 ] → R𝑛 . Then there is a computable sequence (𝜃𝑘 )𝑘 ∈ Q𝑛 [𝑥0, 𝑡] of approxi-
mants such that the following formulas are provable for all 𝑘 ∈ N:

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 − 𝜃𝑘 (𝑥0, 𝑡)∥2 ≤ 2
−2𝑘

Proof. Follows directly by Theorem 4.10 and Theorem 5.1. □

Theorem 5.1 can also be viewed as a “completeness for convergence” result that requires 𝐶1

convergence and proves 𝐶0
convergence. By utilizing Theorem 4.10 to provably compute a correct

LDA, it is possible to strengthen Theorem 5.1 and only require 𝐶0
convergence.

Corollary 5.6 (Completeness for convergence). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP
with well-defined flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 . Further suppose that (𝑓𝑘 )𝑘 is a sequence of FOLR
definable functions with 𝑓𝑘 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 . Then dL is complete for convergence:

⊨ (𝑓𝑘 )𝑘
𝑛→∞−−−−→ 𝜑 =⇒ ⊢ (𝑓𝑘 )𝑘

𝑛→∞−−−−→ 𝜑

i.e., if (𝑓𝑘 )𝑘 converges to 𝜑 in 𝐶0 (J𝐶K × [𝑡0,𝑇 ],R𝑛), then for every 𝜀 ∈ Q+, for all sufficiently large
𝑘 ∈ N, the following formula is provable

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥ 𝑓𝑘 (𝑥0, 𝑡) − 𝑥 ∥2 < 𝜀2

Furthermore, a satisfying 𝑘 can be computed uniformly from the compact IVP, 𝜀 and (𝑓𝑘 )𝑘 .
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Proof. Let Φ be some LDA of the compact IVP computed by Theorem 4.10, 𝜀 ∈ Q+ be the

desired accuracy. Let 𝑘 be large enough such that Theorem 5.1 holds with an accuracy of
𝜀
3
and

∥ 𝑓𝑘 − 𝜑 ∥J𝐶K×[𝑡0,𝑇 ] <
𝜀
3
is satisfied. It suffices to show that the formula

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥ 𝑓𝑘 (𝑥0, 𝑡) − 𝑥 ∥2 < 𝜀2

is provable. Indeed, Theorem 5.1 and the choice of 𝑘 imply that the following formula is provable

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥Φ𝑘 (𝑥0, 𝑡) − 𝑥 ∥2 <
( 𝜀
3

)
2

By construction and R, it is also provable that ∥Φ𝑘 − 𝑓𝑘 ∥J𝐶K×[𝑡0,𝑇 ] <
2𝜀
3
. Hence an application of

axiom K implies that the following is provable, completing the proof. □

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥ 𝑓𝑘 (𝑥0, 𝑡) − 𝑥 ∥2 <
(
𝜀

3

+ 2𝜀

3

)
2

5.2 Symbolic Domain Constraints and Completeness on Compact Time Horizons
This section establishes completeness properties of dL over compact time horizons for compact

IVPs. The main proof strategy is to utilize our results in previous sections which show that dL is

complete for LDAs of compact IVPs, thereby reducing properties of such compact IVPs to decidable

sentences in real arithmetic. This section also explores to what extent such results can be applied to

IVPs with symbolic initial conditions that are not constrained to compact sets. The main technical

results can be encapsulated in the following theorem, which asserts the provability of various

axioms and proof rules in dL.

Theorem 5.7. The following axioms and rules are syntactically derivable in dL, thus sound. Where
𝑀,𝑅 > 0 are symbolic variables, and 𝐵(𝑥), 𝑄, Γ1, Γ2, 𝑃1, 𝑃2 are FOLR formulas with 𝐵(𝑥) characterizing
a bounded set.
StepDual→ 𝑡 ≤ 𝜏 ∧ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝐵(𝑥)⟩𝑡 = 𝜏

StepDual← ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩𝑡 ≥ 𝜏 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝑄

StepEx

∀𝑦
(
𝑦 ∈ 𝐵 [𝑥0, 𝑅] → ∥ 𝑓 (𝑦)∥2 ≤ 𝑀2

)
→(

𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑥 ∈ 𝐵 [𝑥0, 𝑅]⟩𝑡 ≥ 𝑡0 +
𝑅

𝑀

)

StepExt

𝑡 = 𝑡0, 𝑃1 ⊢ Γ2
Γ1 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃1

Γ2 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1]𝑃2
𝑡 ≤ 𝑡0, Γ1 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1] ((𝑡 ≤ 𝑡0 → 𝑃1) ∧ (𝑡 > 𝑡0 → 𝑃2))

Remark 5.8. These axioms are capable of symbolically simulating a basic algorithm for certifying

existence of ODEs, which essentially mimics the classical proof [30], such an algorithm has also

been presented explicitly in more recent work [27]. Example 5.10 shows how this can be done.

The following provides some intuitive explanation for the axioms/proof rules in Theorem 5.7.

—Axioms StepDual→, StepDual← provide a duality between box and diamond modalities on

compact time horizons for ODEs. These axioms are useful in proving that the flow is bounded

within some bounded set over a fixed time interval. It is also worth noting that while axiom

StepDual→ requires a bounded set, axiom StepDual← places no requirements on the domain

constraint 𝑄 as it follows from the uniqueness of flows for ODEs.
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—Axiom StepEx is a quantitative version of the classical Picard-Lindelöf theorem presented in

the language of dL, allowing one to symbolically prove that the solution exists for a duration

of
𝑅
𝑀
, which is a lower-bound on how long it takes for the solution to escape the ball 𝐵 [𝑥0, 𝑅].

— Proof rule StepExt provides a way of concatenating information proven for different time

steps together over the entire time step. Similar to the proof of computability of solutions to

IVPs [27] which iteratively chains up Picard iterations at various time steps.

All of the above axioms/proof rules are syntactically derivable using just dL’s axiomatization [45, 52].

It is important to note that the axioms in Theorem 5.7 hold symbolically and are not limited to

compact IVPs (e.g., 𝑥0, 𝜏, 𝑡,𝑇 ,𝑀, 𝑅 are symbolic variables).

In order to prove Theorem 5.7, the following lemma is needed, which establishes the provability

of many fundamental properties of ODEs, and is therefore of independent interest.

Lemma 5.9. The following axioms are derivable in dL, where 𝑄,𝑄1, 𝑄2 are FOLR formulas and 𝑒 is
a term.

Rev 𝑃→[𝑥 ′ = 𝑓 (𝑥)&𝑄]⟨𝑥 ′ = −𝑓 (𝑥)&𝑄⟩𝑃

Stuck 𝑡 = 𝑡0→ ([𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃 ↔ 𝑃)

Idem ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃→⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃⟩𝑃

Uniq’

⟨𝑥 ′=𝑓 (𝑥)&𝑄1⟩𝑃1 ∧ ⟨𝑥 ′=𝑓 (𝑥)&𝑄2⟩𝑃2→
⟨𝑥 ′=𝑓 (𝑥)&𝑄1∧𝑄2⟩ (𝑃1∧⟨𝑥 ′=𝑓 (𝑥)&𝑄2⟩𝑃2) ∨⟨𝑥 ′=𝑓 (𝑥)&𝑄1∧𝑄2⟩ (𝑃2∧⟨𝑥 ′=𝑓 (𝑥)&𝑄1⟩𝑃1)

IVT

𝑒 ≤ 0 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑡 = 𝜏 ∧ 𝑒 > 0) →
⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 < 𝜏 ∧ 𝑒 ≤ 0⟩𝑒 = 0

While Lemma 5.9’s purpose in this article is solely to prove Theorem 5.7, they also convey helpful

properties of ODEs that are useful for other purposes. The following provides some intuition for

these axioms.

—Axiom Rev says that if a property 𝑃 is true, then after flowing along some ODE one can

always flow back to a state where 𝑃 is true. A sort of “there and back” quantification that

says the current state can always be reached by reversing the ODE flow. This axiom (and its

proof) has already been implemented in KeYmaera X’s tactics library, but we reproduce a

proof here for completeness.

—Axiom Stuck expresses that the ODE 𝑡 ′ = 1 is strictly monotone, and therefore does not have

any fixed points. Thus, if the current state has 𝑡 = 𝑡0 and the domain constraint includes

𝑡 ≤ 𝑡0, then the overall dynamical system is stuck and necessarily cannot evolve, resulting in

the RHS of the axiom.

—Axiom Idem expresses an “idempotence” property of diamond modalities. If the current state

can flow along some ODE to a target region, then every state along this flow can also flow to

the target region. One can also view this as a statement on the uniqueness of flows [45].

—Axiom Uniq’ is a more fine-grained version of dL’s uniqueness axiom [45] that deals with two

potentially distinct target regions. While the implication looks complicated, it just says that

if the flow along the same ODE can reach two regions 𝑃1, 𝑃2 under the domain constraints

𝑄1, 𝑄2 respectively, then by uniqueness of flows one flow will be the prefix of the other.

—Axiom IVT internalizes the classical intermediate value theorem within dL, saying if the term
𝑒 is initially non-positive and becomes positive along some flow, then it necessarily reaches

𝑒 = 0 along the way and will do so while remaining in 𝑒 ≤ 0.

Proofs of Lemma 5.9 and Theorem 5.7 are provided in Appendix B.
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The main use of Theorem 5.7 in this article is to establish completeness results for compact IVPs.

However, as the axioms/proof rules in Theorem 5.7 are fully symbolic, they also enable deductive rea-

soning for general symbolic IVPs which is of independent interest, one such example is given below.

Example 5.10 (Symbolic Maximal Interval of Existence). Consider the simple uni-variate ODE

𝑥 ′ = 𝑥2 + 1 with symbolic initial condition 𝑥 (0) = 𝑥0. Its exact solution is

𝑥 (𝑡) ≡ tan(arctan(𝑥0) + 𝑡)
Thus, the (right) maximal interval of existence of the corresponding solution is [0, 𝜋

2
−arctan(𝑥0)),

note that 𝑥0 is a symbolic variable rather than a fixed constant. This example shows how dL can

essentially prove this symbolic interval of existence. Since arctan(𝑥0) is not expressible in dL, we
approximate arctan(𝑥) (and 𝜋

2
− arctan(𝑥)) informally via its series expansion at infinity

arctan(𝑥) ∼ 𝜋
2

− 1

𝑥
+ 1

3𝑥3
+ 𝑜

(
1

𝑥4

)
𝜋

2

− arctan(𝑥) ∼ 1

𝑥
− 1

3𝑥3
+ 𝑜

(
1

𝑥4

)
With Theorem 5.7, it can be shown that for all 𝜀 ∈ Q+ however small, the following formula

(parametrized by 𝜀) is derivable in dL9 (the same technique in this example also works for higher-

order bounds)

𝑥 = 𝑥0 ∧ 𝑡 = 0 ∧ 𝑥0 > 0→ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
In other words, for every 𝜀 > 0, one can symbolically prove that the (right) maximal interval of

existence is at least (1− 𝜀) ( 1
𝑥
− 1

3𝑥3
). Importantly, such a bound is interesting because 𝑥0 is symbolic

and can be unbounded, hence the provability of this formula does not directly follow from the

completeness results for compact IVPs. Indeed, for 𝑥0 sufficiently small the bound tends to −∞,
which is trivially satisfied. The assumption of 𝑥0 > 0 is added for clarity in derivations only, and an

identical formula can also be derived for 𝑥0 < 0.

A complete proof of this example is provided in Appendix B. Themain idea is to derive a numerical

approximation purely symbolically using StepEx. For a symbolic initial value 𝑥0, bounding the

maximum derivative in 𝐵(𝑥0, 𝑥0) gives some positive duration of existence. Running this procedure

iteratively for 𝑛 steps gives rise to 𝑛 such values, adding these up with axiom StepExt gives a

lower-bound on the duration of existence while remaining in the region 𝐵(𝑥0, 𝑛𝑥0). By picking

𝑛 ∈ N large enough (independent of 𝑥0), this procedure proves the desired lower-bound.

With Theorem 5.7, various completeness properties of dL for compact IVPs can now be proven.

The following theorem states that all true safety properties of compact IVPs can be proven provided

that the safety set is open.

Theorem 5.11 (Completeness for Bounded Safety). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP
and 𝑂 (𝑥) a FOLR formula characterizing a bounded open set. Then dL is complete for formulas of the
form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑂 (𝑥)
i.e., the following equivalence holds

|=𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑂 (𝑥) ⇐⇒
⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑂 (𝑥)

9
Since 𝑥0 ≠ 0 is enforced, the value

1

𝑥
0

is defined uniquely as some 𝑐 such that 𝑐𝑥0 = 1.
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Proof. The ⇐= implication is soundness and follows by soundness of dL’s axiomatization

[38, 45, 52], so it remains to prove the =⇒ implication. To this end, let us assume the validity

of such a formula. Since 𝑂 (𝑥) is a bounded set, this implies that the flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛

of the compact IVP is well-defined as it does not exhibit finite time blow-up. By validity of the

formula, we have 𝜑 (J𝐶K , [𝑡0,𝑇 ]) ⊆ 𝑂 (𝑥). Since 𝑂 (𝑥) is open and 𝜑 (J𝐶K , [𝑡0,𝑇 ]) is compact, there

necessarily exists some 𝜀 ∈ Q+ such that 𝐵(𝜑 (J𝐶K , [𝑡0,𝑇 ]), 𝜀) ⊆ J𝑂K. For each 𝑛 ∈ N, denote by 𝜃𝑛
the (vectorial) polynomial of error at most 2

−𝑛
as computed by Theorem 5.5. Now note that for all

sufficiently large 𝑛 ∈ N, the following formulas will be valid

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 − 𝜃𝑛 (𝑥0, 𝑡)∥2 ≤ 2
−2𝑛

∀𝑥0∀𝑡 (𝐶 (𝑥0) ∧ 𝑡0 ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 → 𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K)

Furthermore, they are both provable via Theorem 5.5 and R respectively. Thus, doing a bounded

search on 𝑛 ∈ N will find one where the two formulas above are provable. From this applications

of V,dW on the first formula proves

𝐶 (𝑥) ∧ 𝑥 =𝑥0 ∧ 𝑡 =𝑡0 → [𝑥 ′= 𝑓 (𝑥), 𝑡 ′=1&𝑡 ≤ 𝑇 ]
(
𝑡0 ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ∧𝐶 (𝑥0) ∧ ∥𝑥 − 𝜃𝑛 (𝑥0, 𝑡)∥2 ≤ 2

−2𝑛 )
Another application of V (LemmaB.1) brings the second formula in, proving

𝐶 (𝑥)∧𝑥 =𝑥0∧𝑡 =𝑡0 → [𝑥 ′= 𝑓 (𝑥), 𝑡 ′=1&𝑡 ≤ 𝑇 ]
(
𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K ∧ ∥𝑥 − 𝜃𝑛 (𝑥0, 𝑡)∥2 ≤ 2

−2𝑛 )
The desired formula of𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ]𝑂 (𝑥) then follows by applying

K and R, completing the proof. □

Beyond safety properties, the following theorem establishes that dL is also complete for durations

of existence. If the flow of a compact IVP exists on the time interval [0,𝑇 ], then it provably exists.

Theorem 5.12 (Completeness for Bounded Existence). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact
IVP. dL is complete for formulas of the form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩𝑡 ≥ 𝑇

Where 𝑇 ∈ Q+ is a rational constant. i.e., the following equivalence holds

|=𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩𝑡 ≥ 𝑇 ⇐⇒
⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩𝑡 ≥ 𝑇

Proof. Again ⇐= follows from dL’s soundness [41, 45, 52], so it suffices to prove =⇒ .

Assuming that such a formula is valid, the flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 of the compact IVP is

necessarily well-defined and therefore does not exhibit finite time blow-up on the time interval

[𝑡0,𝑇 ]. Thus, for all sufficiently large 𝑅 ∈ Q+, the following formula will be valid

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 ∥2 < 𝑅2

By Theorem 5.11, this will furthermore be provable in dL because ∥𝑥 ∥2 < 𝑅2 is open. Thus, we
may do a search for 𝑅 ∈ Q+ until we find a value for which the formula above is provable. Once

such a value is found, the desired formula can be proven via the following derivation

StepDual→ ,dRW⟨·⟩

∗
⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝑥 ∥2 < 𝑅2

⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩𝑡 ≥ 𝑇
where the premise is proven by application of Lemma 5.3. This completes the proof. □
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Theorem 5.11 and Theorem 5.12 do not require the flow of the compact IVP to be well-defined a

priori, as dL is capable of proving this from the validity of the formulas in question.

There is a natural dual part to Theorem 5.11, involving liveness formulas of the form

⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥)

dL is indeed also complete for formulas of this form, and the requirements on 𝑂 (𝑥) can even be

slightly relaxed in comparison with the earlier theorems to just characterizing an open set that is

not necessarily bounded.

Theorem 5.13 (Completeness for liveness). Let (𝑓 (𝑥),𝐶 (𝑥), [𝑡0,𝑇 ]) be a compact IVP with
well-defined flow 𝜑 : J𝐶K × [𝑡0,𝑇 ] → R𝑛 and 𝑂 (𝑥) a FOLR formula characterizing an open set. Then
dL is complete for formulas of the form

𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥)

i.e., the following equivalence holds

|=𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥) ⇐⇒
⊢ 𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥)

Proof. As ⇐= is soundness, we only handle =⇒ , so suppose that the formula is valid. Similar

to the proof of Theorem 5.11, denote by 𝜃𝑛 the (vectorial) polynomial of error at most 2
−𝑛

as

computed by Theorem 5.5 for each 𝑛 ∈ N. Now (computably) search for some 𝑛 ∈ N such that the

following formulas are valid (note that the first formula is always valid by construction of 𝜃𝑛)

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝜃𝑛 (𝑥0, 𝑡) − 𝑥 ∥2 ≤ 2
−2𝑛

∀𝑥0 ∈ J𝐶K∃𝑡 (𝑡0 ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ∧ 𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K)

For this to be a well-defined procedure, we prove that such an 𝑛 ∈ N necessarily exists. Suppose

for the sake of contradiction that this is false, then for all 𝑛 ∈ N, the following hold:

(1) ∥𝜃𝑛 − 𝜑 ∥𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) ≤ 2
−𝑛

(2) There exists some 𝑧𝑛 ∈ J𝐶K such that for all 𝑡 ∈ [𝑡0,𝑇 ], 𝐵 [𝜃𝑛 (𝑧𝑛, 𝑡), 2−𝑛] ⊈ J𝑂K.
Since J𝐶K is compact, we may assume without loss of generality (by re-indexing if necessary), that

the sequence 𝑧𝑛 → 𝑧 ∈ J𝐶K converges to some 𝑧. To achieve a contradiction, it suffices to show that

𝜑 (𝑧, 𝑡) ∉ J𝑂K for all 𝑡 ∈ [𝑡0,𝑇 ]. Let 𝑡 ∈ [𝑡0,𝑇 ] be arbitrary and denote 𝑑 : R𝑛 → R as the distance

function associated to the closed set J𝑂K𝐶 . For all 𝑛 ∈ N, we have

𝑑 (𝜑 (𝑧, 𝑡)) ≤ 𝑑 (𝜃𝑛 (𝑧𝑛, 𝑡)) + ∥𝜃𝑛 (𝑧𝑛, 𝑡) − 𝜑 (𝑧, 𝑡)∥
≤ 2
−𝑛 + ∥𝜃𝑛 (𝑧𝑛, 𝑡) − 𝜑 (𝑧, 𝑡)∥ (by choice of 𝑧𝑛 in (2))

≤ 2
−𝑛 + ∥𝜃𝑛 (𝑧, 𝑡) − 𝜑 (𝑧, 𝑡)∥ + ∥𝜃𝑛 (𝑧𝑛, 𝑡) − 𝜃𝑛 (𝑧, 𝑡)∥

≤ 2
−𝑛 + ∥𝜃𝑛 − 𝜑 ∥𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) + ∥𝜃𝑛 (𝑧𝑛, 𝑡) − 𝜑 (𝑧𝑛, 𝑡)∥ + ∥𝜑 (𝑧𝑛, 𝑡) − 𝜃𝑛 (𝑧, 𝑡)∥

≤ 2
−𝑛+1 + ∥𝜃𝑛 − 𝜑 ∥𝐶0 (J𝐶K×[𝑡0,𝑇 ] ) + ∥𝜑 (𝑧𝑛, 𝑡) − 𝜑 (𝑧, 𝑡)∥ + ∥𝜑 (𝑧, 𝑡) − 𝜃𝑛 (𝑧, 𝑡)∥

≤ 2
−𝑛+2 + ∥𝜑 (𝑧𝑛, 𝑡) − 𝜑 (𝑧, 𝑡)∥

𝑛→∞−−−−→ 0

where the final convergence uses the fact that 𝜑 is continuous. Since the argument above holds

for all 𝑡 ∈ [𝑡0,𝑇 ], this shows 𝜑 (𝑧, [𝑡0,𝑇 ]) ∩ J𝑂K = ∅, a contradiction. Thus, there necessarily exists

some 𝑛 such that both formulas are valid and therefore provable via Theorem 5.5 and R. To continue,

first note that the following is provable

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K
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with derivation

→R

⟨&⟩,∃R

𝐾 ⟨·⟩

⟨′ ⟩,R

R
∗

𝐶 (𝑥), 𝑥 = 𝑥0 ⊢ ∃𝑡 (𝑡0 ≤ 𝑡 ∧ 𝑡 ≤ 𝑇 ∧ 𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K)
𝐶 (𝑥), 𝑥 = 𝑥0, 𝑡 = 𝑡0 ⊢ ⟨𝑡 ′ = 1⟩ (𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K ∧ 𝑡 ≤ 𝑇 )

𝐶 (𝑥), 𝑥 = 𝑥0, 𝑡 = 𝑡0 ⊢ ⟨𝑡 ′ = 1⟩ (𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K ∧ [𝑡 ′ = −1] (𝑡 ≥ 𝑡0 → 𝑡 ≤ 𝑇 ))
𝐶 (𝑥), 𝑥 = 𝑥0, 𝑡 = 𝑡0 ⊢ ⟨𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K

⊢ 𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K
where the final application of R is sound by the construction of 𝑛, and axiom 𝐾 ⟨·⟩ was applied
assuming 𝑡 ≤ 𝑇 → [𝑡 ′ = −1]𝑡 ≤ 𝑇 , which is a valid invariant and can be proven by dInv. Next, the

following formula can be derived with a direct application of axiom BDG⟨·⟩
𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K

which uses the (provable) formulas

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝜃𝑛 (𝑥0, 𝑡) − 𝑥 ∥2 ≤ 2
−2𝑛

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K

Finally, applying axioms DR⟨·⟩,dW⟨·⟩ with the (provable) formulas

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ] ∥𝜃𝑛 (𝑥0, 𝑡) − 𝑥 ∥2 ≤ 2
−2𝑛

𝐶 (𝑥) ∧ 𝑥 = 𝑥0 ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K

proves

𝐶 (𝑥) ∧𝑥 =𝑥0 ∧ 𝑡 =𝑡0 → ⟨𝑥 ′= 𝑓 (𝑥), 𝑡 ′=1&𝑡 ≤ 𝑇 ⟩(𝐵 [𝜃𝑛 (𝑥0, 𝑡), 2−𝑛] ⊆ J𝑂K∧ ∥𝜃𝑛 (𝑥0, 𝑡) − 𝑥 ∥2 ≤ 2
−2𝑛)

another application of 𝐾 ⟨·⟩ gives
𝐶 (𝑥) ∧ 𝑡 = 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑇 ⟩𝑂 (𝑥)

completing the proof of completeness for open properties. □

6 Conclusion
By unifying both deductive and numerical techniques, this article establishes several completeness

properties of compact IVPs. On a theoretical level, this proves complete reasoning principles for

compact IVPs from purely qualitative properties. On a practical level, these results show that it is

possible both to enjoy the capabilities of numerical methods, whilst retaining the rigorous level

of trust provided by deductive, symbolic proofs. Alternatively, one could view such completeness

results as a strengthening in the uniformity of such numerical algorithms. Standard numerical

algorithms take in a single input and compute a corresponding output. As such, a different certifying

proof of the output is needed for each individual input. This article improves on the level of

uniformity for compact IVPs and establishes that there exists a single, symbolic proof in dL which

proves the desired properties of the given compact IVP for all initial conditions from the compact

domain.

To achieve these completeness results, the article crucially establishes that rigorous error bounds

can be proved in dL by reducing them down to differential invariance questions, providing a

modular, rigorous way of verifying error bounds for numerical approximations. Utilizing this result,

this article then proves that dL is complete for (open and bounded) safety and liveness properties,

as well as convergence for compact IVPs. This proof-theoretic result shows that not only is dL
expressive enough, its axiomatization is also powerful enough to prove all such true properties

of compact IVPs. The article also presented derivations of several classical theorems in dL along
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the way to establishing completeness, which are of independent interest, notably including the

Weierstrass approximation theorem, intermediate value theorem and the correspondence between

global existence of flows and absence of finite time blow-up.

For future work, it would be interesting to establish specific classes of LDAs that are general

enough to preserve the completeness results while having a more tractable complexity in proving

their error bounds in the sense of Theorem 5.1.
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Appendix
A dL Axiomatization
This section provides a complete record of dL’s axiomatization that is needed for the article.

Theorem A.1 ([40, 45, 52]). The following are sound axioms of dL. In axioms Cont, Dadj, BDG, the
variables 𝑦 is fresh. In axiom BDG, 𝑄 (𝑥) is required to be a formula of real arithmetic.

R
Γ ⊢ Δ (if

∧
𝑃 ∈Γ 𝑃→

∨
𝑄∈Δ𝑄 is valid in FOLR)

⟨·⟩ ⟨𝛼⟩𝑃 ↔ ¬[𝛼]¬𝑃

⟨′⟩ ⟨𝑥 ′ = 𝑓 (𝑥)⟩𝑝 (𝑥) ↔ ∃𝑡≥0 ⟨𝑥 :=𝑦 (𝑡)⟩𝑝 (𝑥) (𝑦′ (𝑡) = 𝑓 (𝑦))

B
′ ⟨𝑥 ′ = 𝑓 (𝑥) &𝑄 (𝑥)⟩∃𝑦𝑃 (𝑥,𝑦) ↔ ∃𝑦 ⟨𝑥 ′ = 𝑓 (𝑥) &𝑄 (𝑥)⟩𝑃 (𝑥,𝑦) (𝑦 ∉ 𝑥)

K [𝛼] (𝜑→𝜓 )→([𝛼]𝜑→[𝛼]𝜓 )

V 𝜑→[𝛼]𝜑 (no free variable of 𝜑 is bound by 𝛼)

G

⊢ 𝜑
Γ ⊢ [𝛼]𝜑

dW

𝑄 ⊢ 𝑃
Γ ⊢ [𝑥 ′ = 𝑓 (𝑥) &𝑄]𝑃

dC

Γ ⊢ [𝑥 ′ = 𝑓 (𝑥) &𝑄]𝐶,Δ Γ ⊢ [𝑥 ′ = 𝑓 (𝑥) & (𝑄 ∧𝐶)]𝑃,Δ
Γ ⊢ [𝑥 ′ = 𝑓 (𝑥) &𝑄]𝑃,Δ

DG [𝑥 ′ = 𝑓 (𝑥) &𝑄 (𝑥)]𝑃 (𝑥) ↔ ∃𝑦 [𝑥 ′ = 𝑓 (𝑥), 𝑦′ = 𝑎(𝑥) · 𝑦 + 𝑏 (𝑥) &𝑄 (𝑥)]𝑃 (𝑥)

DGi [𝑥 ′ = 𝑓 (𝑥) &𝑄 (𝑥)]𝑃 (𝑥)→∀𝑦 [𝑥 ′ = 𝑓 (𝑥), 𝑦′ = 𝑔(𝑥,𝑦) &𝑄 (𝑥)]𝑃 (𝑥)

[&] [𝑥 ′ = 𝜃&𝜒]𝜑 ↔ ∀𝑡0=𝑐0 [𝑥 ′ = 𝜃 ] ( [𝑥 ′ = −𝜃 ] (𝑐0 ≥ 𝑡0 → 𝜒) → 𝜑)

DX [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝑃 ↔ (𝑄 → 𝑃 ∧ [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝑃) (𝑥 ′ ∉ 𝑃,𝑄)

Uniq ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩𝑃 ↔ (⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1⟩𝑃) ∧ (⟨𝑥 ′ = 𝑓 (𝑥)&𝑄2⟩𝑃)

Cont 𝑥 = 𝑦→ (⟨𝑥 ′ = 𝑓 (𝑥)&𝑒 > 0⟩𝑥 ≠ 𝑦 ↔ 𝑒 > 0) (𝑓 (𝑥) ≠ 0)

Dadj ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 (𝑥)⟩𝑥 = 𝑦 ↔ ⟨𝑦′ = −𝑓 (𝑦)&𝑄 (𝑦)⟩𝑦 = 𝑥

RI [𝑥 ′ = 𝑓 (𝑥)]𝑃 ↔ ∀𝑦 [𝑥 ′ = 𝑓 (𝑥)&𝑃 ∨ 𝑥 = 𝑦] (𝑥 = 𝑦 → 𝑃 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑃 ∨ 𝑥 = 𝑦⟩𝑥 ≠ 𝑦)

BDG

[𝑥 ′ = 𝑓 (𝑥), 𝑦′ = 𝑔(𝑥,𝑦)&𝑄 (𝑥)] ∥𝑦∥2 ≤ 𝑝 (𝑥)
→ ([𝑥 ′ = 𝑓 (𝑥)&𝑄 (𝑥)]𝑃 (𝑥) ↔ [𝑥 ′ = 𝑓 (𝑥), 𝑦′ = 𝑔(𝑥,𝑦)&𝑄 (𝑥)]𝑃 (𝑥))

Remark A.2. In axioms [&] and Cont, it is assumed that the ODE 𝑥 ′ = 𝑓 (𝑥) includes a clock
variable 𝑐′

0
= 1. This assumption can be made without loss of generality since a clock variable can

always be added using DG. The variable 𝑡0 is also assumed to be fresh in [&].

The following derivable axioms will also be used.
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Theorem A.3 ([40, 45, 52]). The following axioms are derivable in dL, where 𝑒 is a term. In axiom
BDG⟨·⟩, 𝑄 (𝑥) is required to be a formula of real arithmetic.

DR⟨·⟩ [𝑥 ′ = 𝑓 (𝑥)&𝑅]𝑄→ (⟨𝑥 ′ = 𝑓 (𝑥)&𝑅⟩𝑃 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃)

dRW⟨·⟩
𝑅 ⊢ 𝑄 Γ ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑅⟩𝑃

Γ ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃

BDG⟨·⟩ [𝑥
′ = 𝑓 (𝑥), 𝑦′ = 𝑔(𝑥,𝑦)&𝑄 (𝑥)] ∥𝑦∥2 ≤ 𝑝 (𝑥)
→ (⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 (𝑥)⟩𝑃 (𝑥) → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑦′ = 𝑔(𝑥,𝑦)&𝑄 (𝑥)⟩𝑃 (𝑥))

𝐾 ⟨·⟩ [𝛼] (𝜑 → 𝜓 ) → (⟨𝛼⟩𝜑 → ⟨𝛼⟩𝜓 )

⟨⟩∨ ⟨𝛼⟩ (𝜑 ∨𝜓 ) ↔ ⟨𝛼⟩𝜑 ∨ ⟨𝛼⟩𝜓

[]∧ [𝛼] (𝜑 ∧𝜓 ) ↔ [𝛼]𝜑 ∧ [𝛼]𝜓

Enc

Γ ⊢ 𝑒 ≥ 0 Γ ⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ 𝑒 ≥ 0]𝑒 > 0

Γ ⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝑒 > 0

Remark A.4. This article adopts “rich-test” dL which allows domain constraints 𝑄 to be general

dL formulas with modalities rather than just first order formulas of arithmetic unless explicitly

restricted otherwise. Thus one should be cautious when employing previous axiomatization [45,

52] and ensure that they are still sound. Indeed, while earlier works stated the soundness of

such axioms under the assumption of “poor-test” dL, the proofs are more general and extend to

“rich-test” dL.

This concludes the brief overview of dL’s proof calculus that will be needed for this article. The

usual FOL proof rules are listed below for completeness [38].

¬L
Γ ⊢ 𝑃,Δ
Γ,¬𝑃 ⊢ Δ

∧L
Γ, 𝑃,𝑄 ⊢ Δ
Γ, 𝑃 ∧𝑄 ⊢ Δ

∨L
Γ, 𝑃 ⊢ Δ Γ, 𝑄 ⊢ Δ

Γ, 𝑃 ∨𝑄 ⊢ Δ

¬R
Γ, 𝑃 ⊢ Δ
Γ ⊢ ¬𝑃,Δ

∧R
Γ ⊢ 𝑃,Δ Γ ⊢ 𝑄,Δ

Γ ⊢ 𝑃 ∧𝑄,Δ

cut

Γ ⊢ 𝐶,Δ Γ,𝐶 ⊢ Δ
Γ ⊢ Δ

∨R
Γ ⊢ 𝑃,𝑄,Δ
Γ ⊢ 𝑃 ∨𝑄,Δ

→L

Γ ⊢ 𝑃,Δ Γ, 𝑄 ⊢ Δ
Γ, 𝑃→𝑄 ⊢ Δ

∀L
Γ, 𝑝 (𝑒) ⊢ Δ

Γ,∀𝑥 𝑝 (𝑥) ⊢ Δ (arbitrary term 𝑒)

∃L
Γ, 𝑝 (𝑦) ⊢ Δ

Γ, ∃𝑥 𝑝 (𝑥) ⊢ Δ (𝑦 ∉ Γ,Δ,∃𝑥 𝑝 (𝑥))

→R

Γ, 𝑃 ⊢ 𝑄,Δ
Γ ⊢ 𝑃→𝑄,Δ

∀R
Γ ⊢ 𝑝 (𝑦),Δ

Γ ⊢ ∀𝑥 𝑝 (𝑥),Δ (𝑦 ∉ Γ,Δ,∀𝑥 𝑝 (𝑥))

∃R
Γ ⊢ 𝑝 (𝑒),Δ

Γ ⊢ ∃𝑥 𝑝 (𝑥),Δ (arbitrary term 𝑒)

id

∗
Γ, 𝑃 ⊢ 𝑃,Δ
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B Derived Axioms and Proof Rules
This section proves Lemma 5.9 and subsequently Theorem 5.7. The following lemma proves useful

properties of constant assumptions and a diamond analog of axiom [&].

Lemma B.1 ([45, Appendix A.2]). The following axioms/proof rules are derivable and thus sound,
where 𝑅(𝑦) is a dL formula only depending on its free variables 𝑦 which has no differential equation
in 𝑥 ′ = 𝑓 (𝑥).

dW⟨·⟩ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃→⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩ (𝑃 ∧𝑄)

V

Γ ⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ 𝑅(𝑦)]𝑃
Γ, 𝑅(𝑦) ⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝑃

V

∗
Γ, ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑃 ∧ 𝑅(𝑦)) ⊢ 𝑅(𝑦)

V

∗
𝑅(𝑦), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑃 ∧ 𝑅(𝑦))

⟨&⟩ ⟨𝑥 ′ = 𝜃&𝜒⟩𝜑 ↔ ∃𝑡0=𝑐0⟨𝑥 ′ = 𝜃⟩ (𝜑 ∧ [𝑥 ′ = −𝜃 ] (𝑐0 ≥ 𝑡0 → 𝜒))

Proof. Axiom dW⟨·⟩ can be derived as follows

𝐾 ⟨·⟩

K

dW

∗
⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄]𝑄

⊢ [𝑥 ′ = 𝑓 (𝑥)&𝑄] (𝑃 → 𝑃 ∧𝑄)
⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩ (𝑃 ∧𝑄)

The last proof rule labeled as V can be derived using dW⟨·⟩

DR⟨·⟩,V

dW⟨·⟩

dRW⟨·⟩
∗

⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ 𝑅(𝑦)⟩(𝑃 ∧ 𝑅(𝑦)) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑃 ∧ 𝑅(𝑦))
⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ 𝑅(𝑦)⟩𝑃 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑃 ∧ 𝑅(𝑦))
𝑅(𝑦), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑃 ∧ 𝑅(𝑦))

Axiom ⟨&⟩ can be derived directly from axioms [&],⟨·⟩, and the remaining proof-rules have been

derived in earlier works [45, Appendix A.2]. □

Axiom dW⟨·⟩ asserts that domain constraints are always satisfied along the flow, the next three

proof rules assert that the truth of constant properties remain unchanged along the ODE flows,

all special cases of axiom V [45, Appendix A.2] and thus have the same name. Similar to earlier

works [45], manipulations of constant properties in derivations will be abbreviated with V. Axiom

⟨&⟩ is the diamond analog of [&], similar to [&], 𝑐′
0
= 1 is a clock variable in 𝑥 ′ = 𝑓 (𝑥) and 𝑡0

is fresh.

Proof of Lemma 5.9. Rev: Suppose for the sake of contradiction that the claim was false, there

would be some state along the flow of 𝑥 ′ = 𝑓 (𝑥) such that reversing the flow does not return to the

original state where 𝑃 is true. But this directly contradicts axiom Dadj, which says that it is always

possible to reach the initial state by following the reverse flow.
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→R,⟨·⟩,¬R

𝐾 ⟨·⟩,G

B
′

∃L

cut,𝐾 ⟨·⟩

V

Dadj

V

⟨·⟩,¬L,id
∗

𝑃 (𝑥), ⟨𝑦′ = −𝑓 (𝑦)&𝑄⟩𝑃 (𝑦), [𝑦′ = −𝑓 (𝑦)&𝑄]¬𝑃 (𝑦) ⊢ ⊥
𝑃 (𝑥), ⟨𝑦′ = −𝑓 (𝑦)&𝑄⟩𝑥 = 𝑦, [𝑦′ = −𝑓 (𝑦)&𝑄]¬𝑃 (𝑦) ⊢ ⊥
𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑥 = 𝑦, [𝑦′ = −𝑓 (𝑦)&𝑄]¬𝑃 (𝑦) ⊢ ⊥

𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑥 = 𝑦 ∧ [𝑦′ = −𝑓 (𝑦)&𝑄]¬𝑃 (𝑦)) ⊢ ⊥
1○

𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑥 = 𝑦 ∧ [𝑥 ′ = −𝑓 (𝑥)&𝑄]¬𝑃 (𝑥)) ⊢ ⊥
𝑃 (𝑥), ∃𝑦⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑥 = 𝑦 ∧ [𝑥 ′ = −𝑓 (𝑥)&𝑄]¬𝑃 (𝑥)) ⊢ ⊥
𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(∃𝑦 (𝑥 = 𝑦) ∧ [𝑥 ′ = −𝑓 (𝑥)&𝑄]¬𝑃 (𝑥)) ⊢ ⊥

𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩[𝑥 ′ = −𝑓 (𝑥)&𝑄]¬𝑃 (𝑥) ⊢ ⊥
⊢ 𝑃 (𝑥)→[𝑥 ′ = 𝑓 (𝑥)&𝑄]⟨𝑥 ′ = −𝑓 (𝑥)&𝑄⟩𝑃 (𝑥)

The open premise resulting from a cut with 𝑥 = 𝑦 ∧ [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥) →
[𝑦′ = 𝑓 (𝑦)&𝑄]¬𝑃 (𝑦) is

1○ ≡ 𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥) ⊢ [𝑦′ = 𝑓 (𝑦)&𝑄]¬𝑃 (𝑦)

To complete the proof of Rev, premise 1○ needs to be resolved.

⟨·⟩,¬R

G,𝐾 ⟨·⟩

B
′

∃L

𝐾 ⟨·⟩

V

Dadj

V,𝐾 ⟨·⟩

Dadj

V

𝐾 ⟨·⟩

⟨ ·⟩,¬L,id
∗

𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃 (𝑥) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩(𝑥 = 𝑧 ∧ 𝑃 (𝑧)) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑥 = 𝑧, 𝑃 (𝑧) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑧′ = −𝑓 (𝑧)&𝑄⟩𝑧 = 𝑥, 𝑃 (𝑧) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑧′ = −𝑓 (𝑧)&𝑄⟩𝑧 = 𝑦, 𝑃 (𝑧) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩𝑦 = 𝑧, 𝑃 (𝑧) ⊢ ⊥

𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩(𝑦 = 𝑧 ∧ 𝑃 (𝑧)) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩(𝑦 = 𝑧 ∧ 𝑃 (𝑦)) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥),∃𝑧⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩(𝑦 = 𝑧 ∧ 𝑃 (𝑦)) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩(∃𝑧 (𝑦 = 𝑧) ∧ 𝑃 (𝑦)) ⊢ ⊥

𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥), ⟨𝑦′ = 𝑓 (𝑦)&𝑄⟩𝑃 (𝑦) ⊢ ⊥
𝑥 = 𝑦, [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 (𝑥) ⊢ [𝑦′ = 𝑓 (𝑦)&𝑄]¬𝑃 (𝑦)

This completes the proof of axiom Rev.

Stuck: While there might be easier ways to prove this, the completeness axiom dInv for differential

invariants gives the difficult direction immediately.

→R

→R

1○
𝑡 = 𝑡0, 𝑃 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃

DX

R
∗

𝑡 = 𝑡0, 𝑡 ≤ 𝑡0 → 𝑃 ⊢ 𝑃
𝑡 = 𝑡0, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃 ⊢ 𝑃

𝑡 = 𝑡0 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃 ↔ 𝑃

⊢ 𝑡 = 𝑡0 → ([𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃 ↔ 𝑃)

Premise 1○ is easily proven by noting that if 𝑥 = 𝑥0 initially, then 𝐼 ≡ 𝑡 = 𝑡0 ∧ 𝑥 = 𝑥0 is a valid

differential invariant of the ODE 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0, and can therefore be proven via dInv.
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cut,∃L

dC

V,dW

∗
𝑃 (𝑥0, 𝑡0) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 ∧ 𝐼 ]𝑃 (𝑥, 𝑡)

dInv

∗
⊢ 𝐼 → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝐼

𝑡 = 𝑡0, 𝑥 = 𝑥0, 𝑃 (𝑥0, 𝑡0) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃 (𝑥, 𝑡)
𝑡 = 𝑡0, 𝑃 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃

This completes the proof of Stuck. The following useful corollary of Stuck will be used in future

derivations.

𝑡 = 𝑡0 ∧ ¬𝑃 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩𝑃 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 > 𝑡0)

Semantically this is not surprising, if 𝑃 is not satisfied at the initial state, then there must be some

evolution along the ODE to reach a state where 𝑃 is true, and since 𝑡 ′ = 1 is strictly increasing,

such a state must also satisfy 𝑡 > 𝑡0. However, axiom Stuck provides a syntactic derivation of the

axiom. The derivation begins with axiom B
′
to quantify the final time value reached, cutting in

an appropriate domain constraint that captures the monotonicity of 𝑡 ′ = 1 then completes the

derivation with an application of axiom Stuck.

→R,𝐾 ⟨·⟩

B
′
,∃L

𝐾 ⟨·⟩

K

V

cut

dRW⟨·⟩,𝐾 ⟨·⟩

¬R

DR⟨·⟩,V

⟨·⟩,¬L

Stuck

∗
𝑡 = 𝑡0,¬𝑃 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]¬𝑃
𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩𝑃 ⊢ ⊥

𝑡 = 𝑡0, 𝑠 ≤ 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑠⟩𝑃 ⊢ ⊥
𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑠⟩𝑃 ⊢ 𝑠 > 𝑡0

𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ 𝑠 > 𝑡0
2○

𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ 𝑠 > 𝑡0
𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄]𝑠 > 𝑡0

𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄] (𝑃 ∧ 𝑡 = 𝑠 → 𝑃 ∧ 𝑡 > 𝑡0)
𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 > 𝑡0)

𝑡 = 𝑡0,¬𝑃, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ ∃𝑠 (𝑡 = 𝑠)) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 > 𝑡0)
⊢ 𝑡 = 𝑡0 ∧ ¬𝑃 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩𝑃 → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 > 𝑡0)

The open premise 2○ arising from cutting in ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩(𝑃 ∧ 𝑡 = 𝑠) is:

2○ ≡ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠)

It therefore remains to prove 2○, which follows directly from axiom ⟨&⟩ with clock variable

𝑡 ′ = 1 and noting that 𝑡 ≤ 𝑠 → [𝑥 ′ = −𝑓 (𝑥), 𝑡 ′ = −1]𝑡 ≤ 𝑠 is a valid differential invariant, we also

make the following abbreviation for clarity.

𝐴 ≡ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠)

⟨&⟩,∃L

dInv,𝐾 ⟨·⟩

⟨&⟩,id
∗

𝑡0 = 𝑡, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩ (𝑃 ∧ 𝑡 = 𝑠 ∧ [𝑥 ′ = −𝑓 (𝑥), 𝑡 ′ = −1] (𝑡 ≥ 𝑡0 → 𝑄 ∧ 𝑡 ≤ 𝑠)) ⊢ 𝐴
𝑡0 = 𝑡, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1⟩ (𝑃 ∧ 𝑡 = 𝑠 ∧ [𝑥 ′ = −𝑓 (𝑥), 𝑡 ′ = −1] (𝑡 ≥ 𝑡0 → 𝑄)) ⊢ 𝐴
⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠)

This completes the proof. The corollaries of Stuck are recorded below as axioms, the positive

time versions (i.e., Stuck
+
,Mont

+
) have been derived above, and the negative time versions can be

derived in exactly the same fashion with 𝑡 ′ = −1 instead of 𝑡 ′ = 1.

Stuck
+ 𝑡 = 𝑡0 ∧ ¬𝑃 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩𝑃→⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 > 𝑡0)

Stuck
− 𝑡 = 𝑡0 ∧ ¬𝑃 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = −1&𝑄⟩𝑃→⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = −1&𝑄⟩ (𝑃 ∧ 𝑡 < 𝑡0)

J. ACM, Vol. 72, No. 6, Article 41. Publication date: November 2025.



Axiomatization of Compact Initial Value Problems: Open Properties 41:43

Premise 2○ and its negative time version will also be useful.

Mont
+ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠)→⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠)

Mont
− ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = −1&𝑄⟩ (𝑃 ∧ 𝑡 = 𝑠)→⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = −1&𝑄 ∧ 𝑡 ≥ 𝑠⟩ (𝑃 ∧ 𝑡 = 𝑠)

It is useful to note that by utilizing axiom B
′
, the condition 𝑡 = 𝑠 in axioms Mont

+
,Mont

−
can

also be substituted by 𝑡 ≤ 𝑠 and 𝑡 ≥ 𝑠 respectively.
Idem: The derivation of axiom Idem heavily relies upon axiom ⟨&⟩ to repeatedly remove domain

constrains within modalities. The following abbreviation will be useful in its derivation.

𝐴 ≡ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄)

The proof first applies ⟨&⟩ with the clock variable 𝑐0 to the antecedent followed by Skolemizing

the initial time value with ∃L to the witness 𝑡0. Similarly, the second application of ⟨&⟩ is applied
to the succedent followed by Skolemizing the clock variable to the same witness 𝑡0. Axiom 𝐾 ⟨·⟩
then reduces the open premise to proving an implication between the inner box-modalities that

arised from ⟨&⟩.

⟨&⟩

∃L

⟨&⟩

∃R

[ ]∧,𝐾 ⟨·⟩

𝐾 ⟨·⟩

∧R,id

1○
𝑃,𝐴 ⊢ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃)

𝑃,𝐴 ⊢ 𝑃 ∧𝐴 ∧ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃)
𝑡0 = 𝑐0, ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧𝐴) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧𝐴 ∧ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃))
𝑡0 = 𝑐0, ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧𝐴) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃))

𝑡0 = 𝑐0, ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧𝐴) ⊢ ∃𝑠0 = 𝑐0⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑠0 → 𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃))
𝑡0 = 𝑐0, ⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧𝐴) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃⟩𝑃

∃𝑡0 = 𝑐0⟨𝑥 ′ = 𝑓 (𝑥)⟩ (𝑃 ∧ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄)) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃⟩𝑃
⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃⟩𝑃

The open premise 1○ can now be proven by first negating the succedent and then applying axiom

Mont
−
. Recall that 𝑥 ′ = −𝑓 (𝑥) is assumed to contain the clock variable 𝑐′

0
= −1 and therefore

Mont
−
is applicable with the time variable 𝑡 being 𝑐0.

⟨·⟩,¬R

Mont
−

DR⟨·⟩

Rev

⟨·⟩,¬L,id
∗

[𝑥 ′ = −𝑓 (𝑥)&𝑄]⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃, ⟨𝑥 ′ = −𝑓 (𝑥)&𝑄⟩[𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 ⊢ ⊥
𝑃, ⟨𝑥 ′ = −𝑓 (𝑥)&𝑄⟩[𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 ⊢ ⊥

𝑃, [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄) , ⟨𝑥 ′ = −𝑓 (𝑥)&𝑐0 ≥ 𝑡0⟩[𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃 ⊢ ⊥
𝑃, [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄) , ⟨𝑥 ′ = −𝑓 (𝑥)⟩ (𝑐0 ≥ 𝑡0 ∧ [𝑥 ′ = 𝑓 (𝑥)&𝑄]¬𝑃) ⊢ ⊥
𝑃, [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → 𝑄) ⊢ [𝑥 ′ = −𝑓 (𝑥)] (𝑐0 ≥ 𝑡0 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄⟩𝑃)

Uniq’: Before deriving this axiom, we make the following abbreviations for brevity:

𝐴 ≡ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1⟩𝑃1
A ≡ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝐴⟩𝑃1
𝐵 ≡ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄2⟩𝑃2
B ≡ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄2 ∧ 𝐵⟩𝑃2
𝐶 ≡ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃1 ∧ 𝐵) ∨ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃2 ∧𝐴)
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→R,Idem

𝐾 ⟨·⟩,Uniq

⟨⟩∨

dW⟨·⟩,dRW⟨·⟩

id

∗
⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃1 ∧ 𝐵) ∨ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃2 ∧𝐴) ⊢ 𝐶
⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2 ∧𝐴 ∧ 𝐵⟩𝑃1 ∨ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2 ∧𝐴 ∧ 𝐵⟩𝑃2 ⊢ 𝐶

⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2 ∧𝐴 ∧ 𝐵⟩ (𝑃1 ∨ 𝑃2) ⊢ 𝐶
A,B ⊢ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃1 ∧ 𝐵) ∨ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃2 ∧𝐴)
⊢ 𝐴 ∧ 𝐵 → ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃1 ∧ 𝐵) ∨ ⟨𝑥 ′ = 𝑓 (𝑥)&𝑄1 ∧𝑄2⟩ (𝑃2 ∧𝐴)

IVT: Classically, the intermediate value theorem is usually proven directly from the completeness

of R (and indeed they are equivalent), so it might be expected that axiom RI is utilized. Indeed, the

derivation relies upon the derived proof rule Enc, which itself relies on RI. The derivation begins

by contradiction, negating the succedent and applying Enc proves that 𝑒 < 0 always holds along

the flow under the domain constraint 𝑡 < 𝜏 . Note that 𝑒 ≠ 0 under the domain constraint of 𝑒 ≤ 0

reduces down to 𝑒 < 0 by K.

→R,⟨·⟩

¬R,K

Enc

1○
𝑒 ≤ 0, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑡 = 𝜏 ∧ 𝑒 > 0) , [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 < 𝜏]𝑒 < 0 ⊢ ⊥

𝑒 ≤ 0, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑡 = 𝜏 ∧ 𝑒 > 0) , [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 < 𝜏 ∧ 𝑒 ≤ 0]𝑒 < 0 ⊢ ⊥
𝑒 ≤ 0, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑡 = 𝜏 ∧ 𝑒 > 0) ⊢ ¬[𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 < 𝜏 ∧ 𝑒 ≤ 0]𝑒 ≠ 0

⊢ 𝑒 ≤ 0 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩ (𝑡 = 𝜏 ∧ 𝑒 > 0) → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 < 𝜏 ∧ 𝑒 ≤ 0⟩𝑒 = 0

Continuing from 1○, the derivation crucially relies on Dadj which flows along the reverse ODE

𝑥 ′ = −𝑓 (𝑥), 𝑡 ′ = −1 to reach a state where 𝑡0 < 𝑡 < 𝜏 ∧ 𝑒 > 0, with 𝑡0 being the initial time value.

Semantically, we have found a flow along 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1 to a state where both 𝑡 < 𝜏 and 𝑒 > 0 are

true, contradicting the fact that 𝑒 < 0 holds along the flow while 𝑡 < 𝜏 . Synthesizing the argument

above within dL first requires extensive use of B
′
to instantiate extra variables which allows us to

apply axiom Cont, flowing to a state where both 𝑡 < 𝜏 and 𝑒 > 0 hold. A final application of Uniq’

then gives the desired contradictions. Again for brevity, we first make the following abbreviation.

𝛼 (𝑥, 𝑡) ≡ 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1

−𝛼 (𝑥, 𝑡) ≡ 𝑥 ′ = −𝑓 (𝑥), 𝑡 ′ = −1
𝐴(𝑥, 𝑡, 𝜏) ≡ [𝛼 (𝑥, 𝑡)&𝑄 (𝑥, 𝑡) ∧ 𝑡 < 𝜏]𝑒 (𝑥, 𝑡) < 0

𝐾 ⟨·⟩
B
′
,∃L

V,Dadj

V

Cont,Stuck
−

Uniq’,∨L
1○ 2○

𝑒 (𝑥, 𝑡 ) ≤ 0, 𝐴(𝑥, 𝑡, 𝑠 ), 𝑒 (𝑦, 𝜏 ) > 0, ⟨−𝛼 (𝑦, 𝜏 )&𝑄 (𝑦, 𝜏 ) ⟩ (𝑥 = 𝑦 ∧ 𝜏 = 𝑡 ) , ⟨−𝛼 (𝑦, 𝜏 )&𝑒 (𝑦, 𝜏 ) > 0⟩ (𝜏 < 𝑠 ) ⊢ ⊥
𝑒 (𝑥, 𝑡 ) ≤ 0, 𝐴(𝑥, 𝑡, 𝑠 ), 𝑒 (𝑦, 𝜏 ) > 0, 𝑦 = 𝑧, 𝜏 = 𝑠, ⟨−𝛼 (𝑦, 𝜏 )&𝑄 (𝑦, 𝜏 ) ⟩ (𝑥 = 𝑦 ∧ 𝜏 = 𝑡 ) ⊢ ⊥
𝑒 (𝑥, 𝑡 ) ≤ 0, 𝐴(𝑥, 𝑡, 𝜏 ), 𝑒 (𝑦, 𝜏 ) > 0, 𝑦 = 𝑧, 𝜏 = 𝑠, ⟨−𝛼 (𝑦, 𝜏 )&𝑄 (𝑦, 𝜏 ) ⟩ (𝑥 = 𝑦 ∧ 𝜏 = 𝑡 ) ⊢ ⊥

𝑒 (𝑥, 𝑡 ) ≤ 0, ⟨𝛼 (𝑥, 𝑡 )&𝑄 (𝑥, 𝑡 ) ⟩ (𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ 𝑡 = 𝜏 ∧ 𝜏 = 𝑠 ∧ 𝑒 (𝑥, 𝑡 ) > 0) , 𝐴(𝑥, 𝑡, 𝜏 ) ⊢ ⊥
𝑒 (𝑥, 𝑡 ) ≤ 0, ⟨𝛼 (𝑥, 𝑡 )&𝑄 (𝑥, 𝑡 ) ⟩ (∃𝑦 = 𝑥 ∧ ∃𝑧 = 𝑥 ∧ ∃𝑠 = 𝜏 ∧ 𝑡 = 𝜏 ∧ 𝑒 (𝑥, 𝑡 ) > 0) , 𝐴(𝑥, 𝑡, 𝜏 ) ⊢ ⊥

𝑒 (𝑥, 𝑡 ) ≤ 0, ⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 (𝑥, 𝑡 ) ⟩ (𝑡 = 𝜏 ∧ 𝑒 (𝑥, 𝑡 ) > 0) , 𝐴(𝑥, 𝑡, 𝜏 ) ⊢ ⊥

Where the open premises arising from Uniq’,∨L are

1○ ≡ 𝑒 (𝑥, 𝑡) ≤ 0, ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠)) ⊢ ⊥
2○ ≡ 𝐴(𝑥, 𝑡, 𝑠), ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏)) ⊢ ⊥

Intuitively, 1○ yields a contradiction since the first diamond modality flows to a state where

𝑒 (𝑦, 𝜏) = 𝑒 (𝑥, 𝑡) ≤ 0 is true, but the second diamond modality requires 𝑒 (𝑦, 𝜏) > 0 as a domain

constraint. Since the domain constraint is not satisfied, the overall formula is indeed false. For 2○,
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another application of Dadj to the inner modality gives a flow that contradicts 𝐴(𝑥, 𝑡, 𝑠). We deal

with 1○ first:

V

𝐾 ⟨·⟩,V

⟨·⟩,¬L

DX

→R

R

∗
⊥ ⊢ 𝜏 ≥ 𝑠 ∧ [−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0] (𝜏 ≥ 𝑠)

𝑒 (𝑦, 𝜏) ≤ 0, 𝑒 (𝑦, 𝜏) > 0 ⊢ 𝜏 ≥ 𝑠 ∧ [−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0] (𝜏 ≥ 𝑠)
𝑒 (𝑦, 𝜏) ≤ 0 ⊢ 𝑒 (𝑦, 𝜏) > 0→ 𝜏 ≥ 𝑠 ∧ [−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0] (𝜏 ≥ 𝑠)

𝑒 (𝑦, 𝜏) ≤ 0 ⊢ [−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0] (𝜏 ≥ 𝑠)
𝑒 (𝑦, 𝜏) ≤ 0, ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠) ⊢ ⊥

𝑒 (𝑥, 𝑡) ≤ 0, ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑒 (𝑦, 𝜏) ≤ 0 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠)) ⊢ ⊥
𝑒 (𝑥, 𝑡) ≤ 0, ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠)) ⊢ ⊥

Continuing with the proof of 2○, we have:

V,dW⟨·⟩

𝐾 ⟨·⟩,V

Dadj

Mont
+

DR⟨·⟩,V

⟨·⟩

¬L,id
∗

𝐴(𝑥, 𝑡, 𝑠),¬𝐴(𝑥, 𝑡, 𝑠) ⊢ ⊥
𝐴(𝑥, 𝑡, 𝑠), ⟨𝛼 (𝑥, 𝑡)&𝑄 (𝑥, 𝑡) ∧ 𝑡 < 𝑠⟩ (𝑒 (𝑥, 𝑡) > 0) ⊢ ⊥

𝐴(𝑥, 𝑡, 𝑠), 𝑒 (𝑦, 𝜏) > 0, 𝜏 < 𝑠, ⟨𝛼 (𝑥, 𝑡)&𝑄 (𝑥, 𝑡) ∧ 𝑡 ≤ 𝜏⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏) ⊢ ⊥
𝐴(𝑥, 𝑡, 𝑠), 𝑒 (𝑦, 𝜏) > 0, 𝜏 < 𝑠, ⟨𝛼 (𝑥, 𝑡)&𝑄 (𝑥, 𝑡)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏) ⊢ ⊥
𝐴(𝑥, 𝑡, 𝑠), 𝑒 (𝑦, 𝜏) > 0, 𝜏 < 𝑠, ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏) ⊢ ⊥

⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏)>0⟩ (𝐴(𝑥, 𝑡, 𝑠) ∧ 𝑒 (𝑦, 𝜏)>0 ∧ 𝜏<𝑠 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏)) ⊢ ⊥
𝐴(𝑥, 𝑡, 𝑠), ⟨−𝛼 (𝑦, 𝜏)&𝑒 (𝑦, 𝜏) > 0⟩ (𝜏 < 𝑠 ∧ ⟨−𝛼 (𝑦, 𝜏)&𝑄 (𝑦, 𝜏)⟩ (𝑥 = 𝑦 ∧ 𝑡 = 𝜏)) ⊢ ⊥

This concludes the proof of Lemma 5.9. Note that for IVT, axiom B
′
allows us to relax the

condition of 𝑡 = 𝜏 in the antecedent to 𝑡 ≤ 𝜏 without loss of provability. □

Proof of Theorem 5.7. StepDual→: To derive this axiom, we first utilize BDG to cut in the

formula

⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏
after which an application of DR⟨·⟩ will give the desired outcome.

→R,cut

1○
𝑡 ≤ 𝜏, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏

2○

⊢ 𝑡 ≤ 𝜏 ∧ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) → ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝐵(𝑥)⟩𝑡 = 𝜏
Where the premises arising from cut are

1○ ≡ 𝑡 ≤ 𝜏, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏
2○ ≡ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤𝜏]𝐵(𝑥), ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤𝜏⟩𝑡 = 𝜏 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝐵(𝑥)⟩𝑡 = 𝜏

To prove 1○, axiom BDG reduces the problem to proving [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏] ∥𝑥 ∥2 ≤ 𝑝 (𝑡),
where 𝑝 (𝑡) is some polynomial in terms of 𝑡 . Since 𝐵(𝑥) is a bounded set, the FOLR formula

∃𝐷∀𝑥 (𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷) is valid, and therefore 𝑝 (𝑡) can be simply be chosen to be 𝑝 (𝑡) ≡ 𝐷 for

some 𝐷 ∈ Q+ a witness of the FOLR formula. Expressing this argument in sequent form gives:

cut,∃L,R

BDG⟨·⟩

3○ ⟨′ ⟩
∗

𝑡 ≤ 𝜏 ⊢ ⟨𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏
𝑡≤𝜏,∀𝑥

(
𝐵(𝑥) → ∥𝑥 ∥2 ≤𝐷

)
, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏

𝑡 ≤ 𝜏, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏
Where

3○ ≡ ∀𝑥
(
𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷

)
, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏] ∥𝑥 ∥2 ≤ 𝐷
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3○ is proven by first applying dC to cut in the domain constraint𝐵(𝑥) to the succedent, after which
an application of dW completes the proof since the formula ∀𝑥

(
𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷

)
is independent

of the ODE 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1.

dC

dW

R
∗

∀𝑥
(
𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷

)
, 𝑡 ≤ 𝜏 ∧ 𝐵(𝑥) ⊢ ∥𝑥 ∥2 ≤ 𝐷

∀𝑥
(
𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷

)
⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏 ∧ 𝐵(𝑥)] ∥𝑥 ∥2 ≤ 𝐷

∀𝑥
(
𝐵(𝑥) → ∥𝑥 ∥2 ≤ 𝐷

)
, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥) ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏] ∥𝑥 ∥2 ≤ 𝐷

The open premise 3○ has been proven and therefore so has 1○. 2○ is now proved utilizing DR⟨·⟩
to add in the domain constraint of 𝐵(𝑥).

DR⟨·⟩

dRW⟨·⟩
∗

⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏 ∧ 𝐵(𝑥)⟩𝑡 = 𝜏 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝐵(𝑥)⟩𝑡 = 𝜏
[𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏]𝐵(𝑥), ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩𝑡 = 𝜏 ⊢ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝐵(𝑥)⟩𝑡 = 𝜏

This completes the proof of StepDual→.
StepDual←: For brevity, first make the following abbreviations:

𝐴 ≡⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄⟩𝑡 ≥ 𝜏
𝐵 ≡⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩¬𝑄

Axiom StepDual← says that if there is some flow of the ODE 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 where time

surpasses 𝜏 , then every flow of this ODE before time 𝑡 = 𝜏 will remain within the domain constraint

𝑄 . Alternatively, this axiom is precisely the uniqueness property of ODE flows. Consequently, our

derivation will follow the classical soundness argument. If the implication is not valid, then there

are two disjoint flows of the ODE, contradicting Uniq’. For brevity, we also make the following

abbreviations:

→R,⟨·⟩,¬R
Uniq’

∨L

1○
⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏 ⟩ (𝑡 ≥ 𝜏 ∧ 𝐵) ⊢ ⊥ dW⟨·⟩

V

∗
⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏 ⟩ (¬𝑄 ∧𝑄 ∧𝐴) ⊢ ⊥
⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏 ⟩ (¬𝑄 ∧𝐴) ⊢ ⊥

⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏 ⟩ (𝑡 ≥ 𝜏 ∧ 𝐵) ∨ ⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏 ⟩ (¬𝑄 ∧𝐴) ⊢ ⊥
⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ⟩𝑡 ≥ 𝜏, ⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑡 ≤ 𝜏 ⟩¬𝑄 ⊢ ⊥
⊢ ⟨𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑄 ⟩𝑡 ≥ 𝜏 → [𝑥 ′ = 𝑓 (𝑥 ), 𝑡 ′ = 1&𝑡 ≤ 𝜏 ]𝑄

The right branch arising from ∨L closes easily by noting ¬𝑄 ∧𝑄 ≡ ⊥ and applying axiom dW⟨·⟩.
For 1○, 𝐵 says there is some flow along 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏 reaching ¬𝑄 . But since the first
diamond modality already reaches a state where 𝑡 ≥ 𝜏 , there cannot possibly be any non-trivial

evolution, and therefore 𝑄 must remain true, a contradiction.

dW⟨·⟩

𝐾 ⟨·⟩,Stuck

V

∗
⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏⟩ (𝑡 = 𝜏 ∧𝑄 ∧ ¬𝑄) ⊢ ⊥

⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏⟩ (𝑡 = 𝜏 ∧𝑄 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩¬𝑄) ⊢ ⊥
⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑄 ∧ 𝑡 ≤ 𝜏⟩ (𝑡 ≥ 𝜏 ∧ 𝐵) ⊢ ⊥

where we used Stuck by negating the succedent, resulting in

𝑡 = 𝜏 → (⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝜏⟩¬𝑄 ↔ ¬𝑄)
this completes the derivation of StepDual←.
StepEx: Derivation of StepEx mostly follows from axioms IVT and dInv. Mathematically, the

boundedness requirement on 𝑓 (𝑥) implies ∥𝑥 (𝑡) − 𝑥0∥ ≤ 𝑀 (𝑡 − 𝑡0), essentially the multivariate

mean value theoremwhere 𝑥 (𝑡) is the flow of 𝑥 ′ = 𝑓 (𝑥), 𝑥 (𝑡0) = 𝑥0 at time 𝑡 . By StepDual→ and IVT,

J. ACM, Vol. 72, No. 6, Article 41. Publication date: November 2025.



Axiomatization of Compact Initial Value Problems: Open Properties 41:47

if the axiom does not hold, then there exists some point where the bound ∥𝑥 (𝑡) − 𝑥0∥ ≤ 𝑀 (𝑡 − 𝑡0)
is violated, resulting in a contradiction. The derivation is as follows (max𝑦∈𝐵 [𝑥0,𝑅 ] ∥ 𝑓 (𝑦)∥2 ≤ 𝑀2

abbreviates ∀𝑦 (𝑦 ∈ 𝐵 [𝑥0, 𝑅] → ∥ 𝑓 (𝑦)∥2 ≤ 𝑀2)).

→R,→R

StepDual→

⟨·⟩,¬R

IVT

cut

1○ 2○
max𝑦∈𝐵 [𝑥

0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2, 𝑥 =𝑥0, 𝑡 =𝑡0, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 < 𝑡0 + 𝑅

𝑀
∧ 𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ⟩ ∥𝑥 − 𝑥0 ∥2=𝑅2 ⊢ ⊥

max𝑦∈𝐵 [𝑥
0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2, 𝑥 =𝑥0, 𝑡 =𝑡0, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑅

𝑀
⟩ ∥𝑥 − 𝑥0 ∥2 > 𝑅2 ⊢ ⊥

max𝑦∈𝐵 [𝑥
0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2, 𝑥 =𝑥0, 𝑡 =𝑡0 ⊢ [𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑅

𝑀
]𝑥 ∈ 𝐵 [𝑥0, 𝑅 ]

max𝑦∈𝐵 [𝑥
0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2, 𝑥 =𝑥0, 𝑡 =𝑡0 ⊢ ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ⟩𝑡 ≥ 𝑡0 + 𝑅

𝑀

⊢ max𝑦∈𝐵 [𝑥
0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2 →

(
𝑥 =𝑥0 ∧ 𝑡 =𝑡0 → ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ⟩𝑡 ≥ 𝑡0 + 𝑅

𝑀

)
Where we are cutting in the differential invariant representing the multivariate mean value

theorem at the last step, giving:

𝛼 (𝑥, 𝑡) ≡ 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 < 𝑡0 +
𝑅

𝑀
∧ 𝑥 ∈ 𝐵 [𝑥0, 𝑅]

𝐼 (𝑥, 𝑡) ≡ 𝐷 (𝑥, 𝑡) → [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑥 ∈ 𝐵 [𝑥0, 𝑅] ∧ max

𝑦∈𝐵 [𝑥0,𝑅 ]
∥ 𝑓 (𝑦)∥2 ≤ 𝑀2]𝐷 (𝑥, 𝑡)

𝐷 (𝑥, 𝑡) ≡ ∥𝑥 − 𝑥0∥2 ≤ 𝑀2 (𝑡 − 𝑡0)2 ∧ 𝑡 ≥ 𝑡0
1○ ≡ 𝑥 = 𝑥0, 𝑡 = 𝑡0, max

𝑦∈𝐵 [𝑥0,𝑅 ]
∥ 𝑓 (𝑦)∥2 ≤ 𝑀2, 𝐼 (𝑥, 𝑡), ⟨𝛼 (𝑥, 𝑡)⟩ ∥𝑥 − 𝑥0∥2 = 𝑅2 ⊢ ⊥

2○ ≡ ⊢ 𝐼 (𝑥, 𝑡)

2○ is derived first. By the completeness of differential invariants, it is suffices to establish the

validity of 𝐼 (𝑥, 𝑡) semantically. To show that 2○ holds semantically, let𝜔 ∈ S be some arbitrary state

where𝜔 |= 𝐷 . Let 𝜑 : [0, 𝜏] → S be any solution satisfying the ODE 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1 with 𝜑 (0) = 𝜔
and 𝜑 (𝑡) |= 𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1∧𝑥 ∈ 𝐵 [𝑥0, 𝑅] ∧max𝑦∈𝐵 [𝑥0,𝑅 ] ∥ 𝑓 (𝑦)∥2 ≤ 𝑀2

for all 𝑡 ∈ [0, 𝜏]. We want

to show that 𝜑 (𝜏) |= 𝐷 as well. To this end, let us denote 𝑥 (𝑡) = 𝜑 (𝑡) (𝑥) as the trajectory of 𝑥 under

the given ODE. The triangle inequality together with the multivariate mean value theorem gives

∥𝑥 (𝜏) − 𝑥0∥ ≤ ∥𝑥 (0) − 𝑥0∥ + ∥𝑥 (𝜏) − 𝑥 (0)∥ ≤ 𝑀 (𝜑 (0) (𝑡) − 𝑡0) + max

𝜁 ∈[𝑡0,𝜏 ]
∥𝑥 ′ (𝜁 )∥ 𝜏

Note that taking square roots implicitly used the assumption𝜑 (0) |= 𝐷 and therefore𝜑 (0) (𝑡)−𝑡0 ≥
0. We will write 𝑥0 (and similarly 𝑡0) instead of 𝜑 (𝑠) (𝑥0) for all 𝑠 ∈ [0, 𝜏], as 𝑥0, 𝑡0 are just constants
along the given ODE, and will therefore not vary along 𝜑 . Since 𝜑 |= 𝑥 ′ = 𝑓 (𝑥) ∧ 𝑥 ∈ 𝐵 [𝑥0, 𝑅] ∧
max𝑦∈𝐵 [𝑥0,𝑅 ] ∥ 𝑓 (𝑦)∥2 ≤ 𝑀2

, this gives the bound max𝜁 ∈[𝑡0,𝜏 ] ∥𝑥 ′ (𝜁 )∥ ≤ 𝑀 and consequently the

following bound on ∥𝑥 (𝜏) − 𝑥0∥

∥𝑥 (𝜏) − 𝑥0∥ ≤ 𝑀 (𝜑 (0) (𝑡) − 𝑡0) + max

𝜁 ∈[𝑡0,𝜏 ]
∥𝑥 ′ (𝜁 )∥ 𝜏 ≤ 𝑀 (𝜑 (0) (𝑡) − 𝑡0) +𝑀𝜏

=𝑀 (𝜏 + 𝜑 (0) (𝑡) − 𝑡0)

Finally, 𝜑 |= 𝑡 ′ = 1 implies 𝜑 (𝑠) (𝑡) = 𝑠 +𝜑 (0) (𝑡) since the solution to 𝑡 ′ = 1 is just 𝑡 (𝑠) = 𝑠 + 𝑡 (0).
In particular, this yields 𝜏 + 𝜑 (0) (𝑡) = 𝜑 (𝜏) (𝑡), so we have

∥𝑥 (𝜏) − 𝑥0∥ ≤ 𝑀 (𝜏 + 𝜑 (0) (𝑡) − 𝑡0) =𝑀 (𝜑 (𝜏) (𝑡) − 𝑡0)

Squaring both sides then gives the desired claim of 𝜑 (𝜏) |= 𝐷 , proving 𝐼 (𝑥, 𝑡) to be valid.

Consequently 2○ closes by a single application of axiom dInv.
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For premise 1○:

→L

dW⟨·⟩

dRW⟨·⟩

𝐾 ⟨·⟩,R
⟨·⟩,¬L,id

∗
[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ]𝐷 (𝑥, 𝑡 ), ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ⟩¬𝐷 (𝑥, 𝑡 ) ⊢ ⊥

[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ]𝐷 (𝑥, 𝑡 ), ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ⟩
(
∥𝑥 − 𝑥0 ∥2=𝑅2 ∧ 𝑡 − 𝑡0 < 𝑅

𝑀

)
⊢ ⊥

[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ]𝐷 (𝑥, 𝑡 ), ⟨𝛼 (𝑥, 𝑡 ) ⟩
(
∥𝑥 − 𝑥0 ∥2=𝑅2 ∧ 𝑡 − 𝑡0 < 𝑅

𝑀

)
⊢ ⊥

[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑥 ∈ 𝐵 [𝑥0, 𝑅 ] ]𝐷 (𝑥, 𝑡 ), ⟨𝛼 (𝑥, 𝑡 ) ⟩ ∥𝑥 − 𝑥0 ∥2=𝑅2 ⊢ ⊥
𝑥 =𝑥0, 𝑡 =𝑡0,max𝑦∈𝐵 [𝑥

0
,𝑅 ] ∥ 𝑓 (𝑦) ∥2 ≤ 𝑀2, 𝐼 (𝑥, 𝑡 ), ⟨𝛼 (𝑥, 𝑡 ) ⟩ ∥𝑥 − 𝑥0 ∥2=𝑅2 ⊢ ⊥

This completes the derivation of StepEx.

StepExt: The main idea in deriving this axiom is to note that IVT and Uniq’ allows one to

decompose diamond modalities into different time steps, from which the premises allow us to

complete the proof. We denote the premises as a○, b○, c○ and will indicate when they are used

during the derivation, where:

a○ ≡ Γ1 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃1
b○ ≡ Γ2 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1]𝑃2
c○ ≡ 𝑡 = 𝑡0, 𝑃1 ⊢ Γ2

⟨·⟩,¬R

⟨⟩∨
1○ 2○

𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ ((𝑡 ≤ 𝑡0 ∧ ¬𝑃1) ∨ (𝑡 > 𝑡0 ∧ ¬𝑃2)) ⊢ ⊥
𝑡 ≤ 𝑡0, Γ1 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1] ((𝑡 ≤ 𝑡0 → 𝑃1) ∧ (𝑡 > 𝑡0 → 𝑃2))

With the open premises being

1○ ≡ 𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 ≤ 𝑡0 ∧ ¬𝑃1) ⊢ ⊥

2○ ≡ 𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2) ⊢ ⊥
Premise 1○ is proven first, noting that the diamond modality directly contradicts a○ after applying

Mont
+
to add in the domain constraint of 𝑡 ≤ 𝑡0.

Mont
+

dRW⟨·⟩

𝐾 ⟨·⟩

cut

⟨·⟩,¬L,id
∗

𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩¬𝑃1, [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃1 ⊢ ⊥
3○

𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩¬𝑃1 ⊢ ⊥
𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩(𝑡 ≤ 𝑡0 ∧ ¬𝑃1) ⊢ ⊥

𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1 ∧ 𝑡 ≤ 𝑡0⟩ (𝑡 ≤ 𝑡0 ∧ ¬𝑃1) ⊢ ⊥
𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 ≤ 𝑡0 ∧ ¬𝑃1) ⊢ ⊥

And 3○ is

3○ ≡ Γ1 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑃1 ≡ a○

In other words, 1○ derives with premise a○. We prove premise 2○ next, by first applying axiom

IVT on the term 𝑒 ≡ 𝑡 − 𝑡0.

IVT

Uniq’,∨L
4○ 5○

𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2) , ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩𝑡 = 𝑡0 ⊢ ⊥
𝑡 ≤ 𝑡0, Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2) ⊢ ⊥
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Where the open premises are the ones arising from the disjunction in Uniq’, we have:

4○ ≡ Γ1, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩ (𝑡 = 𝑡0 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2)) ⊢ ⊥
5○ ≡ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩𝑡 = 𝑡0) ⊢ ⊥

Premise 5○ is resolved first, noticing that the inequality 𝑡 > 𝑡0 contradicts with the domain

constraint of the second diamond modality, so axiom DX yields the desired derivation.

V

⟨·⟩,¬L

DX

→R

R
∗

𝑡 > 𝑡0, 𝑡 ≤ 𝑡0,¬𝑃2 ⊢ 𝑡 = 𝑡0 ∧ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑡 = 𝑡0
𝑡 > 𝑡0,¬𝑃2 ⊢ 𝑡 ≤ 𝑡0 → 𝑡 = 𝑡0 ∧ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑡 = 𝑡0

𝑡 > 𝑡0,¬𝑃2 ⊢ [𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0]𝑡 = 𝑡0
𝑡 > 𝑡0,¬𝑃2, ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩𝑡 = 𝑡0 ⊢ ⊥

⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0 + 𝑡1⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ∧ ⟨𝑥 ′ = 𝑓 (𝑥), 𝑡 ′ = 1&𝑡 ≤ 𝑡0⟩𝑡 = 𝑡0) ⊢ ⊥

We now prove the remaining premise 4○. Intuitively speaking, the first diamond modality reaches

some state where 𝑡 = 𝑡0, 𝑃1 are both true (by premise a○), from which premise c○ implies the truth

of Γ2, and therefore premise b○ gives a contradiction with the second modality. This gives the

following derivation, where each of a○, b○, c○ indicates the corresponding assumption being cut

in:

cut,DR⟨·⟩
dW⟨·⟩

V

cut

cut,→L

⟨·⟩,¬L
K

∗
[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ]𝑃2 ⊢ [𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ] (𝑡 ≤ 𝑡0 ∨ 𝑃2 )
[𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ]𝑃2, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ⊢ ⊥

b○

Γ2, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ⊢ ⊥
c○

𝑡 =𝑡0, 𝑃1, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ⊢ ⊥
⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 ∧ 𝑃1 ⟩ (𝑡 =𝑡0 ∧ 𝑃1 ∧ ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ) ⊢ ⊥
Γ1, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 ∧ 𝑃1 ⟩ (𝑡 =𝑡0 ∧ ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ) ⊢ ⊥

a○

Γ1, ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 ⟩ (𝑡 =𝑡0 ∧ ⟨𝑥 ′= 𝑓 (𝑥 ), 𝑡 ′=1&𝑡 ≤ 𝑡0 + 𝑡1 ⟩ (𝑡 > 𝑡0 ∧ ¬𝑃2 ) ) ⊢ ⊥

This completes the derivation of StepExt and thus also completing the proof of Theorem 5.7. □

The last part completes the proof of Example 5.10.

Proof of Example 5.10. Let 𝜀 ∈ Q+ be arbitrary, and assumewithout loss of generality that 𝜀 < 1.

The main idea of the derivation is to iteratively apply axiom StepEx to obtain (shrinking) iterates of

existence intervals using 𝑅 = 𝛼 |𝑥0 | for some suitably chosen 𝛼 ∈ Q+, these existence intervals can
be chained together using StepExt, giving the desired proof. First pick 𝛼 ∈ Q+ sufficiently small

and 𝑁 ∈ N sufficiently large such that the following hold

—
1

𝛼+1 −
1

𝛼𝑁+1 > 1 − 𝜀
—

1

𝛼+1 −
1

𝛼𝑁+1 ≥
1

(𝛼+1)3 .

such choices are possible since 𝑁 ∈ N is allowed to be arbitrarily large and dependent on 𝛼 .

The derivation will use 𝑁 steps of StepEx to show that 𝑥 (𝑡) is bounded in 𝐵 [𝑥0, 𝛼𝑁𝑥0] for 𝑡 ∈
[0, (1 − 𝜀) ( 1

𝑥0
− 1

3𝑥3
0

)) from which the desired claim concludes by axiom StepDual→. Note that the

bound max𝑦∈𝐵 (𝑥0,𝑛𝑥0 ) |𝑥2 + 1| ≤ (𝑛 + 1)2𝑥20 + 1 holds for all 𝑛 ∈ N. The derivation first begins by

handling the trivial case where
1

𝑥0
− 1

3𝑥3
0

< 0 holds.
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→R,cut,R

∨L

⟨·⟩,¬R

DX

R
∗

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0, 1

𝑥0
− 1

3𝑥3
0

< 0, 𝑡 < (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
⊢ ⊥

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0, 1

𝑥0
− 1

3𝑥3
0

< 0, [𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1]𝑡 < (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
⊢ ⊥

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0, 1

𝑥0
− 1

3𝑥3
0

< 0 ⊢ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

) 1○

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0, 1

𝑥0
− 1

3𝑥3
0

< 0 ∨ 1

𝑥0
− 1

3𝑥3
0

≥ 0 ⊢ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
⊢ 𝑥 = 𝑥0 ∧ 𝑡 = 0 ∧ 𝑥0 > 0→ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)

(
1

𝑥0
− 1

3𝑥3
0

)
The remaining premise 1○ represents the case where

1

𝑥0
− 1

3𝑥3
0

≥ 0

1○ ≡ 𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0,
1

𝑥0
− 1

3𝑥3
0

≥ 0 ⊢ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
The derivation of 1○ begins with axiom StepDual→ and the bounded set 𝐵 [𝑥0, 𝛼𝑁𝑥0] (closed ball

centered around 𝑥0 with radius 𝛼𝑁𝑥0), followed by repeated applications of StepEx and StepExt. It

uses the following constructs:

— Define the sequence {𝑡𝑛}0≤𝑛≤𝑁 recursively with 𝑡0 = 0, 𝑡𝑛 = 𝑡𝑛−1 + 𝛼𝑥0
(𝛼𝑛+1)2𝑥2

0
+1 .

— For each 0 ≤ 𝑛 ≤ 𝑁 , define the ODEs

𝛾𝑛 ≡ 𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1&𝑡 ≤ 𝑡𝑛
𝛽𝑛 ≡ 𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1&𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑛𝑥0]

— For each 1 ≤ 𝑛 ≤ 𝑁 , define the formula

Γ𝑛 ≡ 𝑥0 > 0 ∧ 𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑛𝑥0] ∧ 𝑡 = 𝑡𝑛
where 𝛼𝑛𝑥0 denotes standard multiplication. Note that crucially the upper bound 𝑁 and the

parameter 𝛼 are constant, fixed values.

Note that formulas of the form

𝜑𝑛 ≡ Γ𝑛 → [𝛾𝑛+1] (𝑥0 > 0 ∧ 𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0])
are valid and derivable from axiom StepEx for every 0 ≤ 𝑛 ≤ 𝑁 − 1, the proof is as follows.

→R,V

cut,StepEx,dRW⟨·⟩

StepDual←

id

∗
[𝛾𝑛+1]𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0] ⊢ [𝛾𝑛+1]𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0]

⟨𝛽𝑛+1⟩𝑡 ≥ 𝑡𝑛+1 ⊢ [𝛾𝑛+1]𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0]
2○

Γ𝑛 ⊢ [𝛾𝑛+1]𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0]
⊢ Γ𝑛 → [𝛾𝑛+1] (𝑥0 > 0 ∧ 𝑥 ∈ 𝐵 [𝑥0, 𝛼 (𝑛 + 1)𝑥0])

Where the open premise 2○ arising from cut is

⊢ ∀𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑛𝑥0]∀𝑦 ∈ 𝐵 [𝑥, 𝛼𝑥0]


𝑦2 + 1

 ≤ (𝛼 (𝑛 + 1) + 1)2𝑥2

0
+ 1

which is valid as 𝑦2 + 1 is maximized when |𝑦 | is maximized, therefore the maximum is attained

when 𝑦 = 𝑥0 + 𝛼𝑛𝑥0 + 𝛼𝑥0 = (𝛼 (𝑛 + 1) + 1)𝑥0 and the premise is proven by axiom R. We can now

derive the example.
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StepDual→

dC,dW

3○
𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0 ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0]

R
∗

𝑡 ≤ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
⊢ 𝑡 ≤ 𝑡𝑁

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0 ⊢ [𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1&𝑡 ≤ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0]

𝑥 = 𝑥0, 𝑡 = 0, 𝑥0 > 0, 1

𝑥0
− 1

3𝑥3
0

≥ 0 ⊢ ⟨𝑥 ′ = 𝑥2 + 1, 𝑡 ′ = 1⟩𝑡 ≥ (1 − 𝜀)
(
1

𝑥0
− 1

3𝑥3
0

)
The resolution of the right premise with axiom R requires justification, it is not trivial that the

inequality 𝑡𝑁 ≥ (1− 𝜀) ( 1𝑥0 −
1

3𝑥3
0

) holds. Lower-bounding 𝑡𝑁 with the corresponding integral yields:

𝑡𝑁 =

𝑁∑︁
𝑛=1

𝛼𝑥0

(𝛼𝑛 + 1)2𝑥2
0
+ 1
≥
∫ 𝑁

1

𝛼𝑥0

(𝛼𝑡 + 1)2𝑥2
0
+ 1

𝑑𝑡 = arctan((𝛼𝑁 + 1)𝑥0) − arctan((𝛼 + 1)𝑥0)

It is well-known that the bound

𝜋

2

− 1

𝑥
≤ arctan(𝑥) ≤ 𝜋

2

− 1

𝑥
+ 1

3𝑥3

holds for all 𝑥 > 0 (can be derived from standard Taylor bounds of arctan(𝑥) and the identity

arctan(𝑥) + arctan( 1
𝑥
) = 𝜋

2
). Utilizing this, we have

𝑡𝑁 ≥ arctan((𝛼𝑁 + 1)𝑥0) − arctan((𝛼 + 1)𝑥0)

≥ arctan((𝛼𝑁 + 1)𝑥0) −
𝜋

2

+ 1

(𝛼 + 1)𝑥0
− 1

3(𝛼 + 1)3𝑥3
0

≥ 𝜋
2

− 1

(𝛼𝑁 + 1)𝑥0
− 𝜋

2

+ 1

(𝛼 + 1)𝑥0
− 1

3(𝛼 + 1)3𝑥3
0

=
1

𝑥0

(
1

𝛼 + 1 −
1

𝛼𝑁 + 1

)
− 1

3𝑥3
0

(
1

(𝛼 + 1)3

)
≥
(

1

𝛼 + 1 −
1

𝛼𝑁 + 1

) (
1

𝑥0
− 1

3𝑥3
0

)
where the final inequality follows from the assumption that

1

𝛼+1 −
1

𝛼𝑁+1 ≥
1

(𝛼+1)3 . Finally, since
1

𝛼+1−
1

𝛼𝑁+1 ≥ 1−𝜀 by construction, the desired bound holds and the application of axiom R is justified.

At last, the derivation of 3○ can be completed by iteratively applying axioms StepEx,StepExt, note

that by construction 𝑡 = 𝑡𝑛, 𝑥0 > 0, 𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑛𝑥0] ⊢ Γ𝑛 is always valid.

cut,StepEx

→L

StepExt,→L

StepExt,→L

StepExt,→L

id

∗
𝑥0 > 0, 𝑡 =0, [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ] ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ]

· · ·
𝑥0 > 0, 𝑡 =0, [𝛾2 ]𝑥 ∈ 𝐵 [𝑥0, 2𝛼𝑥0 ] ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ]

R
∗

𝑡 =𝑡1, 𝑥0 > 0, 𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑥0 ] ⊢ Γ1
StepEx

∗
𝜑1

𝑥0 > 0, 𝑡 =0, [𝛾1 ] (𝑥0 > 0 ∧ 𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ] ) ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ]
𝑥 =𝑥0, 𝑡 =0, 𝑥0 > 0, 𝜑0 ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ]
𝑥 =𝑥0, 𝑡 =0, 𝑥0 > 0 ⊢ [𝛾𝑁 ]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑁𝑥0 ]

Where the abbreviated derivation consists of 𝑁 levels, at the 𝑛-th level [𝛾𝑛]𝑥 ∈ 𝐵 [𝑥0, 𝛼𝑛𝑥0] is
proven via applications of StepEx,StepExt, this completes the derivation of the example. Note that

when choosing the parameters 𝛼, 𝑁 , all sufficiently small 𝛼 and all sufficiently large 𝑁 will suffice.

As an example, suppose that the desired error threshold is 1 − 0.1 = 0.9 with 𝜀 = 0.1, then 𝛼 = 0.01

and 𝑁 = 10
4
works. □
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