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A B S T R A C T

Explainable artificial intelligence (XAI) is an interactive platform that assists users in comprehending the de
cisions and predictions made by machine learning (ML) models. This allows users to enhance their knowledge of 
ML models and their functioning, which not only helps in mitigating bias and errors but also aids in improving 
user decision-making confidence. XAI, due to its ability to increase the model output interpretation, has gained 
significant attention in biological wastewater treatment plants (WWTPs). This is owing, in particular, to the fact 
that it facilitates the experts in steering knowledge about the predictions and decisions made by ML, thus 
guaranteeing that the model decisions are fair and unbiased. ML has made amazing advances in recent years, 
thanks to its exponential growth in possessing the power to process massive volumes of data, allowing it to be 
widely embraced in WWTPs. This review seeks to illustrate the potential of XAI for WWTP applications such as 
process modeling and control, soft sensing, fusion of data, and the internet of things, and fill the knowledge gap 
by thoroughly introducing XAI techniques and their use in smart wastewater engineering. Overall, the features of 
XAI can aid in establishing reliable and efficient water resource management, which is quintessential to 
achieving environmental sustainability. It is envisioned that the prospects offered would spark new lines of study, 
helping to reduce the current skepticism and apprehension about ML adoption and integration in WWTP.

1. Introduction

The accessibility of clean water is regarded as being of utmost 
importance around the world because of the growing world population 
and the consequent rise in the influence of pollutants on the climate, as 
well as the conversion of land into freshwater habitats (Sagan et al., 
2020). Contamination of the waters is caused mostly by both inorganic 
and organic residue, sediments, radioactive chemicals, effluents, sewers, 
and toxic metals (Dubey et al., 2015). Indeed, prompt sewage treatment 
to clean up polluted water is necessary in order to meet emission reg
ulations (Yu et al., 2018). Recent breakthroughs in modeling techniques 
to support the related systems have led to dramatic gains in biological 
wastewater treatment plants (WWTPs). The WWTPs are large and 
complex systems facilitating the treatment of wastewater generated 

from industries through numerous interconnected processes such as 
chemical breakdown treatments, filtration, clarification, and biological 
processes. They have the capacity to treat harmful substances present in 
water so that the water can either be safely returned to the environment 
or reused. This clearly marks the importance of maintaining and man
aging these treatment plants to ensure the efficient and effective treat
ment of wastewater. Additionally, efforts have been made to reform the 
waste management procedures so that they are more lucrative and 
environmentally friendly through the use of advanced technologies. For 
the WWTP process to be effective in terms of cost and operations, 
modeling and optimizing are of utmost importance, which are usually 
carried out by “regression” and “time series” analysis (Shojaeimehr 
et al., 2014). The advantages of these methods lie in their relative ease of 
use and practicality in application. However, it is important to consider 
their very limited predictive abilities under certain circumstances, 
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especially when non-linear patterns and a lot of noisy data are available 
(Rajaee et al., 2019). The underlying fact might be due to the complex 
relationships between the variables and high variability in the data, 
making it difficult to capture the data behavioural patterns. As a result of 
this fact, this significant interest leads the researchers to pursue alter
native approaches in which the processes are integrated with machine 
learning (ML) and deep learning (DL) models for capturing data 
behavioural patterns, thereby providing the platform for more accurate 
predictions (Liu et al., 2023). The latest advancement of ML has resulted 
in significant advancements in the water sector (WS) such as capturing 
big data, pattern recognition, intelligent search, and creating 
human-computer interfaces. These features of ML/DL technology will 
have a significant impact on addressing the complexities that are 
generated in the wastewater (WW), and water industries (Singh et al., 
2022). With the application of ML/DL models, one can foresee that the 
water and WW industries will have the potential to improve their effi
cient water resource handling techniques. In the context of WWTPs, 
designing an efficient process monitoring system ensures these plants 
function smoothly even under disturbances that occur due to fluctuating 
flow and load conditions. This is ensured when wastewater after treat
ment meets strict emission standards. Also, the available historical data 
generated from the process and ML techniques can be used to create 
effective WWTP process monitoring systems (Khurshid and Pani, 2023; 
Ismail et al., 2021). Safeer et al. (2022) provide a comprehensive 
overview of AI technologies used to determine source water quality 
(WQ), coagulation/flocculation, disinfection, membrane filtration, 
desalination, modeling WWTPs, membrane fouling prediction, heavy 
metal removal, and biological oxygen demand (BOD)/chemical oxygen 
demand (COD) monitoring. In one of the reviews, it has also emphasized 
that despite the success in control, optimization, and modeling achieved 
with the AI methods incorporated with the Internet of Things (IoT) and 
smart sensors, there have been consistent and widespread major prob
lems and challenges in treatment and monitoring in WWTP (Lowe et al., 
2022). The abbreviations used in this manuscript are detailed in the 
nomenclature section.

In recent days, to leverage the advantage of AI over process in
dustries, a significant step has been made by data scientists by creating 
better classifications and modifications in ML models as an enroute to
wards DL with hybrid combination techniques. In a few instances, these 

DL techniques appear to be more effective, noise-resistant, and accurate 
than conventional models. The underlying problem with such models, 
despite their obvious effectiveness, is that it may not be clear how or 
why they make particular conclusions or how they handle actual data. 
This makes water professionals not to trust over the conclusions 
generated from the DL models unless there are proper or reliable 
interpretable explanations. This leads to factors for reducing the use
fulness of DL models created by modifying and updating the existing ML 
models. This challenge is particularly noticeable in circumstances when 
a high level of reliability is required, which is typical in the WS. With the 
expanded range of computing WW systems and the fact that it requires 
better predictability for a greater variety of datasets, DL has recently 
achieved significant advancements. The input data in this DL procedure 
will train independently using convolutional neural networks (CNN), 
long short-term memory (LSTM), bidirectional LSTM, support vector 
regression (SVR), deep feed-forward networks (DFFN), etc. According to 
Singh et al., 2022); Sheik et al., 2024c. Three components known as data 
pre-processing, feature extraction and recognition, and model optimi
zation make up DL models (Ning et al., 2020). The ML algorithm was 
employed to force the user to decide regarding their water processes, but 
individuals were unaware of the ML’s output or the process by which it 
arrived at its conclusion. This problem has prompted the development of 
new methods and ideas over the past few years to make ML/DL models 
more comprehensible and hence increase the quality of their output. The 
term “explainable artificial intelligence” (XAI) is used to refer to this 
idea in the scientific community (Gunning et al., 2019). In order to 
maintain the superior performance and precision of ML/DL models, XAI 
helps scientists, developers, experts in the field, and users better un
derstand exactly how the models work inside. This way it creates the 
possibility for humans to retain the intellectual oversight on the methods 
adopted by these models to achieve the desired output. The feature of 
understanding the working process of ML models helps users to imple
ment reliable decision-making (DM) on the process systems.

In the literature, several XAI methods are usually used with ML/DL 
models (Gupta et al., 2022; Ba-Alawi et al., 2023a, 2023b, 2023c). The 
practical use of XAI in the WW and water domain has only started. Fig. 1
(A) describes the modeling road path from 1960 to 2020 in WWTP. It 
depicts the modeling roadmap from mathematical modeling, computa
tional fluid dynamics, and the application of advanced controllers to 

Nomenclature

AI Artificial intelligence
ASM Activated sludge model
ADM Anaerobic digestion model
BSM Benchmark simulation model
BOD Biochemical Oxygen Demand
BiLSTM Bidirectional long short-term memory
COD Chemical oxygen demand
Chl-a Chlorophyll a
DM Decision making
DL Deep learning
DT Decision tree
DNN Deep neural network
EQ Effluent quality
GAO Glycogen-accumulating organisms
IoT Internet of Things
LR Linear regression
LSTM Long short-term memory
ML Machine learning
MNN Mechanical Neural Network
MAPE Mean absolute percentage error
MSE Mean square error

MAE Mean absolute error
RMSE Root mean square error
PAO Phosphorus-accumulating organisms
RF Random forest
SVM Support vector machine
SVRL Regression with the linear kernel
SVI Sludge Volume Index
RL Reinforcement learning
RQ Research questions
R2 Coefficient of determination
RNN Recurrent Neural Networks
RBF Radial Basis Function
TSS Total suspended solids
TN Total nitrogen
TP Total phosphorous
TKN Total Kjeldahl Nitrogen
WWTP Wastewater treatment plant
WQ Water quality
WW Wastewater
WS Water Sector
XAI Explainable artificial intelligence
XGB Xtreme gradient boost
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data-driven modeling (ML, DL, and XAI). Fig. 1(B) illustrates the com
parison of conventional AI and XAI applications on WWTP which depicts 
the concepts of traditional AI and XAI and how these models will help 
decision-making. When compared to mechanistic models (e.g., BSM1, 
BSM2) (Sheik et al., 2023), the advantages of ML/DL-based WWTP 
process modeling include (a) shorter execution time, (b) no requirement 
for multi-disciplinary knowledge related to biokinetics (enzymatic re
actions), microbiome (types of microorganisms), heat/mass transfer, 
and (c) avoidance of model recalibration if trained on large datasets. 
Although a wide range of regression and classification models have been 
developed to predict biogas yield, process stability parameters, and 
effluent quality indicators (El-Rawy et al., 2021; Ly et al., 2022), the 
researchers are yet skeptical due to the black-box nature of ML tech
niques. There are two kinds of ML techniques: (I) black-box ML and (II) 
explainable ML which is comparable to white-box, with the latter 
seeking to provide a deeper comprehension of the functional reliance of 
the output on the input. It should be noted that the ML scientific com
munity supports the use of explainable (or interpretable) ML in all sce
narios. Several recent studies on industrial process modeling have 
proved the benefits of ML combined with numerous explainability 
metrics such as feature importance testing, partial dependence analysis, 
and so on (Wang et al., 2022b; Zhang et al., 2023a, 2023b, 2023c; Wang 
et al., 2021; Park et al., 2022a, 2022b). The investigation’s current 

inquiry question is, “What is XAI in WS in the context of quality 
assessment, bias risk, and data fusion?” As a result, the authors suggest a 
systematic assessment of the available literature which attempts to 
provide information on XAI in WS and to assist scholars in identifying 
present gaps and solutions. Furthermore, this work delivers a 
cutting-edge contribution by creating a comprehensive map of XAI in 
the water treatment sector to create a coherent taxonomy system, aiding 
users with a thorough understanding of XAI in WWTPs. The bibliometric 
evaluation presented in section 2 was utilized to reorganize and sum
marize the findings of earlier studies, as well as the general knowledge 
picture, by offering a mapping analysis for the research stream of XAI 
usage in the WS (Zhang et al., 2023).

The purpose of this research is to assist in spotlighting the signifi
cance of XAI in the wastewater treatment division and aiding to 
contribute towards a more sustainable and environmentally friendly 
approach to managing water resources in the WWTP sector. Previous 
studies of XAI models for WW processes focused on the translation from 
advancement to practice (Zahra et al., 2023a, 2023b), and the applica
tion of data-driven models in general (Singh et al., 2022). Recent deep 
learning reviews look at the use of XAI in urban water supply and sewage 
infrastructure (Liu et al., 2023), as well as in drinking water process 
systems (Alam et al., 2022) and membrane-based treatment systems 
(Jawad et al., 2021). However, the methodologies and applications of 

Fig. 1. (A) The technological advancement path for WWTP, and (B) Concepts of XAI for WWTP applications.
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XAI devised in this innovative field of study on WWTP have not been 
thoroughly examined regarding the positive and negative aspects. To the 
best of our knowledge, there are currently limited comprehensive arti
cles on XAI-based models and their applications on WWTPs. Overall, in 
this review, we explore the potential of XAI techniques to enhance the 
understanding of the ML model’s working mechanisms and to improve 
the DM process in the context of achieving optimal design and control 
over WWTPs. The scope of the review paper covers. 

• An up-to-date comprehensive review of the explainable AI models 
and their application into WWTPs.

• Research questions on applying XAI in WWTPs and in-depth analysis 
on literature search.

• The fusion of XAI techniques in WWTPs with a focus on process 
modeling, data handling, control systems, soft sensing, and the 
Internet of Things.

• Bridging gaps and unlocking potentials of XAI in the usage of 
WWTPs.

• Discusses several challenges and reveals future trends for XAI 
research in WWTPs.

2. Bibliographic analysis

Following a keyword search on Google Scholar (GS), PUBMED (PM), 
Scopus (SP), Science Direct (SD), and Web of Science (WofS) databases, 
the statistics of publications have been collected and reported by the 
authors on the topics XAI and WWTP, and ML and WWTP. XAI and 
Wastewater treatment: GS (18200), SD (2627), PM (D’Alterio et al., 
2020), SP (Ba-Alawi et al., 2023a), and WofS (Alvi et al., 2022). ML and 
Wastewater treatment: GS (25000), SD (7680), SP (990), PM (433), and 
WofS (638). The statistical precis of XAI on WWTP is illustrated in Fig. 2
(A). In summary, the number of publications for the provided keywords 
varied across the different databases. However, there are several articles 
from the provided references that discuss topics relevant to the opti
mization of WWTP, the use of AI, ML/DL in process systems, and XAI 
application in process systems. In general, the methodology adopted for 
bibliographic analysis served the purpose of this review. The re006Ca
tive and generic keywords used in this study were: ’’AI, XAI, and 
WWTP.” Furthermore, the Scopus database, which is one of the most 
trustworthy scientific databases has been chosen as this study’s primary 
data source. Information was gathered between 2014 and 2024, and 
each keyword has been checked individually. A maximum of less than 
50 ″new’’ OR ″highly cited’’ articles were retrieved and translated to 
CSV files for each round of search. VOS viewer, a freely available and 
freely accessible bibliometric tool, is used to evaluate information. For 
specific topics like XAI in WWTP, there are less than 650 publications in 
the period of 2043 to 2024. The initial data mapping result is shown in 
Fig. 2(B).

Following the loading of data into VOSviewer, data filtration was 
initiated to remove unrelated repetitive keywords (such as paper, study, 
etc.), and various combinations of the terms (WW and WS) were merged 
and accounted for as one unique term. The research on XAI and WS can 
be divided into three groups (colors). Large circles indicate the signifi
cance and repetition of keywords like WW, different models, and sensors 
(XAI, WQ, etc.). Furthermore, the closer the distance between two items 
the more prominent interactions between two items implying that there 
is overlap among two keywords. Overall, the bibliometric analysis tool 
provided valuable insights into the current state of research on ML and 
XAI in WWTP.

3. Methodology

3.1. Review of XAI in wastewater treatment

As the application of ML/DL spreads and gets intertwined in process 
systems design, an emphasis is now put on comprehending about the 

algorithmic DM process. Subsequently, this allows numerous other 
fields, organizations, and researchers to focus on the need to change 
from emphasizing model correctness to explainability. This represents a 
paradigm shift in understanding the degree of accuracy achieved by ML 
systems in predicting the process outcomes (Angelov et al., 2021). 
Explainability is a critical tool in ensuring the DM process of ML models 
and the outcomes that are produced by these models are transparent and 
fair. This aids in comprehending the limitations and uncertainties of ML 
models in predicting the process outcomes, thereby fostering researchers 
the need to develop more reliable, ethical, and logical ML models for 
process industries such as WWTP- “A smart infrastructure.” The choice 
of methodology to use XAI for a particular problem depends on a 
trade-off between model performance and explainability (Arrieta et al., 
2020; Sokol et al., 2022). However, the existing literature emphasizes 
that there is not much attention given to explaining the working 
methodology of ML models which are integrated with the process sys
tems, such as WWTP.

In general, there are two categories of ML models namely transparent 
and opaque models as shown in Fig. 3(A). The transparent models 
sometimes perform poorly and they either underestimate or over
estimate the state variables of process systems. To avoid this uncer
tainty, models such as the RF, SVM, CNN, MNN, and RNN are sometimes 
employed in place of them. Models can sometimes be highly opaque 
representing a black box model making users difficult to comprehend 
the working methodology of a model (Rudin, 2019). The black box 
model typically requires users to engage in post-hoc explainability ef
forts to attempt and create possible explanations related to the working 
procedures of opaque AI models (Hasenstab et al., 2023). A greater 
understanding of the internal working mechanisms and features of an 
opaque model will be attained by building proper explainable strategies. 
Notably, there are distinct differences between model-agnostic and 
model-specific based on the nature of the techniques used to explain 
machine learning models in post hoc explainability as shown in Fig. 3
(A). A model-agnostic model works for all models. In this, the techniques 
of XAI are to be broadly applicable in a manner adaptable enough to 
function only on the basis of connecting a model’s input to its output, 
independent of the inherent architecture of the model (Dieber and Kir
rane, 2020). In contrast, the model-specific models only work for a 
specific single or a group of models (Speith, 2022). Also, in this the XAI 
techniques frequently capitalize on understanding a particular model 
and seek to increase transparency aiming to shed light on how the model 
arrives at its prediction of process state variables, making it easier for 
users to trust and comprehend the decisions made by the model (Bach 
et al., 2015). Tritscher et al. (2020) suggest that through simplification 
of a model at first allows users to understand the underlying working 
mechanism of the model, which thereby helps ultimately in identifying 
the desired data predicting patterns. Starting with a simplified model, 
researchers thereafter can progressively plan to enhance and extend the 
model through iterations by systematically integrating the additional 
variables and complexities. This methodological approach in turn gua
rantees that the resulting model comprehensively captures all the 
phenomenological complexities associated with the working systems. 
This way it helps the enhanced iterative ML models in maintaining the 
interpretability and thereby resulting in a potent tool for understanding 
and making well-informed decisions. The application of ML/DL and RL 
models are largely used in terms of publications and practical usages in 
the WWTP field according to Alvi et al., 2023); Singh et al., 2022; Croll 
et al., 2023. If a model can be understood independently, it is considered 
transparent. In contrast, transparency serves as the opposite of a “black 
box” (Adadi and Berrada, 2018). According to Gilpin et al. (2018), 
interpretability and explainability are capable of delivering in
terpretations and explanations in a human-understandable way. In the 
case of opaque models, they are difficult to interpret necessitating the 
post hoc explainability techniques in interpreting the opaque models 
after training without degrading their predictive performance (Lipton, 
2018; Speith, 2022).
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Fig. 2. (A)A precis of the procedure for identifying, selecting, and including relevant contributions (B) Co-occurrence network map of author keywords or ML 
with XAI.
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Therefore, this review presents the post hoc explainability tech
niques paving the way to interpret the working procedure of models 
rather than directly reporting the application of ML/DL and RL models 
onto WWTP. The ontology of the XAI taxonomy with post hoc method 
categories are shown in Fig. 3(A). With a high flow of publications 
published each year, XAI is expanding tremendously as a field of study 
for future application into complex processes such as industrial and 
financing sectors (Yang et al., 2022). It’s difficult to evaluate recent XAI 
improvements in the WWTP sector. However, the tenets, models, and 
post-hoc justifications serve as a foundation for comprehending the 
particular features and specifications of XAI in application into WWTPs. 
Very few research publications presented the idea of XAI in WWTP 
(Wang et al., 2022a, 2022b, 2022c; Wang et al., 2021). However, the 
lack of comprehensive studies makes it difficult to assess the true impact 
and effectiveness of XAI in the WWTP sector. This review aims to pro
vide more practical insights and advantages associated with the appli
cation of XAI in WWTP operations.

3.1.1. Post hoc explainability
Even though the semantic implications of these clauses are similar, 

they require various levels of AI before humans will accept them. The 

high-level ontology and taxonomy of XAI can be found in the details 
below for further information. A transparent model aids in displaying 
transparency in the decisions made by the models in predicting the 
states of the process systems. The k-nearest neighbors (kNN), decision 
trees, rule-based learning, Bayesian networks, and so forth are examples 
of typical transparent models (Adadi and Berrada, 2018). These models 
frequently produce transparent decisions, but openness alone does not 
ensure that a model will be easily understood. One must have the ability 
to comprehend the working scenario and the DM process of the models. 
This way it aids users in improving the DM process of the models by 
modifying the existing model’s programming scripts to predict the 
outcomes of any complex process systems such as WWTP. The concep
tual framework at the basis of the proposed goal is represented in Fig. 3
(B) whereby methods for explainability are built from automatically 
induced models using explanators, and these can be evaluated by 
employing notions and metrics of WWTP operations. In Fig. 3(B) the 
explanation methods generate outputs based on AI model predictions. 
These outputs flow into the evaluation approaches, where they are 
assessed using key metrics. Feedback arrows from evaluation ap
proaches go back to the methods, showing the need for continuous 
improvement based on evaluation results. User feedback is intertwined 

Fig. 3. (A) Various artificial intelligence models that are involved in WWTP (B) Diagrammatic view of XAI with the interaction between methods for explanations 
and their evaluation approaches in WWTP.
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with the evaluation loop, providing insights into whether explanations 
meet practical WWTP needs. The explanation types that are essential in 
post hoc explainability can be categorized as below. 

• Feature-relevant explanation: This is a concept that can be closely 
related to a simplified explanation of the model’s feature influencing 
the prediction of the process outcomes. After all potential combi
nations have been considered, this kind of XAI technique aims to 
assess a model’s feature according to its average expected marginal 
contribution to the model’s choice for the prediction (Chen et al., 
2019).

• Visual explanation: According to Chattopadhay et al. (2018), this 
kind of XAI technique is centered on visualization. Therefore, the 
interpretation of the prediction or judgment over the input data can 
be facilitated by utilizing the family of data visualization tools.

• Local explanation: According to Selvaraju et al. (2017), local ex
planations provide insight into how the model functions in a limited 
region surrounding a particular instance of interest. The region of 
interest can either be a case of identifying the model’s sensitivity to 
certain inputs and highlighting any biases or limitations it may have 
or to understanding how deterrent the features of the model are in 
predicting the process outcomes. For instance, the local explanations 
are valuable in knowing the DM process of a model as they shed light 
on the specific features that contribute to a prediction of process 
outcomes. This knowledge can help identify areas where the model 
may not accurately predict outcomes, enabling researchers to refine 
and improve the model’s performance in sensitive regions to make 
them function more robust.

The terms “explainability” and “interpretability” which are 
commonly used in the ML field are sometimes deemed inadequate since 
they do not address every potential issue related to comprehending 
“black box” models (Burkart and Huber, 2020). Explainability refers to 
the ability of the model to provide insights into the reasons behind its 
decisions or predictions, making them understandable to users. It is 
essential in the process industries to generate human-understandable 
explanations for model outputs. The explainability focuses more on 
post-hoc explanations of the model’s behaviour, even for complex 
models like DL networks. For explaining black-box models techniques 
like feature importance, surrogate models, or visualizations (e.g., SHAP 
values, LIME) are used. On the other hand, interpretability refers to the 
degree to which a human can understand the cause of a decision made 
by an AI model. A model is interpretable if its internal mechanics (like its 
parameters or decision rules) are clear and understandable. It focuses on 
how easily a person can comprehend the internal mechanics of the 
model in predicting the outcomes of WWTP operations. It is about the 
clarity of the relationship between inputs and outputs. Highly inter
pretable models (like decision trees) provide simple, intuitive insight 
into how decisions are made. In the domain of XAI technology, both 
concepts aim to make AI decisions more transparent when they are 
applied to different types of models and scenarios.

Explainability along with interpretability is needed most of the time 
to triumph over user’s trust and obtain significant insights into the 
motivations, decisions, and causes behind “black box” techniques. It’s 
not always the case that explainable models translate well by default. 
Adadi and Berrada (2018) divide the XAI taxonomy in the literature 
currently in use by (a) scope (Chen et al., 2019) (b) usage (Tritscher 
et al., 2020) (c) methodology (Dieber and Kirrane, 2020). According to 
Phillips et al. (2020), there are “Four Principles of XAI” that explain the 
scenarios of XAI which are increasingly importance in any process 
application. These principles outline the essential requirements that an 
AI must meet to qualify as an XAI in WWTP, and they are as follows. 

✓ Explanation: An AI system must provide justification, proof, or both 
for every action it makes in the process of WWTP.

✓ Meaningful: The AI system’s explanations must be intelligible and 
significant to its consumers. Since several user groups may have 
varied wants and backgrounds, the AI system’s explanation must be 
customized to each group’s unique traits and requirements when it 
tends to apply for the WWTP.

✓ Accuracy: In accordance with this concept, the AI system’s expla
nation must correctly interpret and predict the workings process of 
the WWTP system.

✓ Knowledge limits: AI systems must be able to recognize the situations 
that are to be generated in which they were not intended to obtain in 
any WWTP process. Failing to do so makes their responses could not 
be trustworthy to the users anymore.

3.2. Research questions of XAI in WWTP

In the context of XAI-based WWTP’s parameter prediction, the goal- 
question-metric (GQM) approach is employed (Rini and Berghout, 
1999) to gain a critical understanding of the performance of the selected 
models through XAI tools in predicting the outcomes of the process. In 
the context of WWTP operations, the XAI approaches experts mainly 
from two domains, a manager water quality test, and an operational 
process manager. Engaging XAI experts with the domain experts helps 
not only to grasp the data supplied very easily but also aids in ascer
taining the concerns regarding explainability, thereby allowing AI ex
perts to enhance the working functionality of the XAI tools. The 
“working functionality” of XAI tools refers to the specific methods, 
techniques, and processes to provide transparency and explainability in 
AI models. These functionalities are designed to help users, particularly 
non-experts, understand how AI models make decisions or predictions. 
The key working functionalities of XAI tools include model-agnostic 
explanations, feature importance, bias detection, and fairness analysis, 
local & global explanations, etc. The close collaboration between the AI 
expert and process domain experts helps ensure that the explanations 
generated by the XAI tools are relevant and meaningful, thereby 
enhancing the credibility and practicality of the XAI tools in WWTP 
applications. To assess how disruptive the XAI tool explanations are 
when contrasted with domain experts’ previous WWTP understandings, 
one can formulate and explore the following research questions for in
vestigations (RQ). 

RQ:1- How accurate is the XAI-enabled ML/DL system in predicting 
WWTPs?

Response: The prediction accuracy of the process outcomes after 
training the data set generated from the processing system gives insight 
to any domain expert about the working efficiency of the XAI. However, 
one has to be aware that the efficiency in predicting the state variables of 
WWTPs depends on various factors like the quality and the quantity of 
data generated, the degree of complexities involved in the process, the 
explainable techniques available to make the DM process of ML and DL 
models more transparent. In the scenario of evaluating the working 
performance of XAI, domain expertise is crucial for restructuring and 
redesigning the models to increase the level of accuracy of XAI in 
providing meaningful explanations of the ML/DL models used for the 
prediction of the process outcomes without deviating from the under
lying principles of WWTPs. The “working performance” of an XAI model 
refers to how well the model operates regarding its core objectives, 
which are to provide accurate and interpretable results. In the context of 
XAI, “working performance” can be broken down into two key di
mensions 1) Predictive Performance and 2) Explanatory Performance. 
For XAI models, both predictive and explanatory performance must be 
balanced. A highly accurate model that cannot explain its results is less 
useful in situations where accountability or transparency is required, 
like in healthcare, finance, or legal applications. So, the working per
formance of an XAI model is a measure of how effectively it performs its 
tasks while providing understandable and reliable explanations for its 
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actions. To interpret and understand the predictions of ML/DL models 
one can choose to work with techniques such as LIME, PDP, and SHAP 
(Parsa et al., 2020; Alvi et al., 2023). 

RQ:2- When the ML/DL solution with XAI support forecasts WWTP 
events, how much noise is present?

Response: The noise occurrence in predictions is often influenced by 
factors such as the quality of the data and the model complexity towards 
data sensitivity. To train the model, one has to first plan the mitigative 
steps to reduce the noise in the data. Noisy and inconsistent data usually 
lead to poor performance of the ML/DL models in predicting the desired 
process outcomes. Further, the presence of complexity and sensitivity in 
the models not only captures the unwanted noise but also overfits or 
underfits the data, thereby not making reasonable predictions. To avoid 
model dysfunctionality due to the dynamic variation in the WWTP 
process, it is highly recommended to create and adopt a holistic 
approach in regularly updating the model with new data and monitoring 
its performance. This way, it helps the users enhance and tune the model 
to make the model more adaptive and reliable to evolving conditions 
and, as a result, reduce the impact of noise. It is also recommended to 
know that for post-hoc predictions, techniques such as LIME, PDP, FI, 
and SHAP can be employed to gain greater insights into understanding 
the model’s performance under different conditions. This way, it helps 
users perceive the potential ways to fine-tune the model, making it more 
reliable and adaptable (Chen et al., 2019; Wang et al., 2022a). 

RQ:3- To what extent do the XAI tools produce simple explanations?

Response: One can assess the simplicity of these products by using 
both quantitative measurements and expert interviews. To measure 
simplicity quantitatively, one should calculate the entropy of explana
tions generated by XAI tools. Entropy quantifies uncertainty and can 
indicate the distinctiveness and variability of explanations. Addition
ally, conducting interviews with domain specialists will provide valu
able insights into explanations from various XAI tools, facilitating to 
gathering of expert opinions and assessing the reliability and adapt
ability of XAI. The synergistic approach of combining expert opinions 
with quantitative measures can help determine if the explanations 
produced by XAI are easy to comprehend, enhancing the DM process for 
better predictions (Dwivedi et al., 2023; Páez et al., 2019). 

RQ:4- How reliable are the justifications produced by the XAI tools?

Response: Investigating the soundness of an explanation can be 
challenging because it depends on the interests of the user’s history, as 
Gilpin et al. (2018) have emphasized. Nevertheless, XAI tools such as 
LRP (Love et al., 2023), SHAP (Wang et al., 2022a, 2022b, 2022c), and 
DeepLIFT (Zahra et al., 2023a, 2023b) all sometimes mask the most 
important data values, limiting the XAI tool’s ability to generate simpler 
explanations. In general, the reliability of the justifications provided by 
XAI tools depends on several factors. At first, it depends on the algorithm 
of the model used by the XAI tool. Some models help provide justifica
tions in a more transparent and interpretable way while the other are 
quite complex and challenging to interpret. Second, it is clear that the 
quality and quantity of data have an impact on the training of XAI tools. 
Effective training of the XAI tool with diverse data aids in producing 
reliable justifications. However, if the training data is biased or incom
plete, the explanations may lack reliability. Further, the role of the 
domain expert also plays a crucial part in making the justifications or 
explanations provided by the XAI tool more reliable. Overall, adopting 
approaches to test and validate XAI tools rigorously by experts, the 
justifications are considered to be more reliable. 

RQ:5- To what extent do the explanations provided by the XAI tools 
generate new insights?

Response: Performance is crucial to our WWTP beneficiaries. To 
justify its use, an ML/DL system needs to outperform its current system 
and be equally comprehensible. If a model deviates too far from their 
predictions, it could be hard to put users trust in XAI tools. The meth
odology in generating clear explanations about the DM process of ML 
models has the potential to lead to more accurate assessments of the 
efficiency and performance of XAI tools, allowing experts to better 
manage and optimize WWTP operations. Overall, this could result in 
cost savings, reduced environmental impact, and improved overall 
performance for WWTPs (Alvi et al., 2023; Sheik et al., 2023; Dwivedi 
et al., 2023). When it comes to high-stakes applications such as WWTP, 
the most significant metric for evaluating ML/DL model performances 
lies in accurately detecting events, ensuring that users have confidence 
in making informed decisions and implementing them in the process. 
Hence, in this review, the authors tried to introduce the concept of XAI 
which helps users comprehend the working methodology of ML models 
in predicting the outcomes of any process operation, making them feel 
more confident and empowered in their interactions with such tech
nology. This can lead to increased adoption and acceptance of AI in 
various industries.

In the context of XAI, several techniques are available for developing 
the taxonomy of explainability, aimed at improving interpretability and 
providing transparency and comprehensibility to the behaviour and 
decisions of AI architectures being employed for human users. The 
techniques also aid in identifying any biases or limitations within the 
model. Although certain XAI approaches are specifically developed to 
tackle specific issues, at times it can be difficult to understand their 
fundamental intuitions. Presented here is a clear and concise signifi
cance of many prevalent XAI techniques and architectures. 

• Shapely Additive Explanation (SHAP), for example, demonstrates 
how each of the components of a model’s prediction can be broken 
down into contributions from each input feature.

• Local Interpretable Model-Agnostic Explanations (LIME) focuses on 
providing local explanations for individual predictions rather than a 
global understanding of the entire model. It approximates complex 
models with simpler and interpretable models for better 
understanding.

• Partial Dependence Plots (PDP) directly illustrate the relationship 
between a feature and the target. The PDP can help identify the 
impact of a particular feature on the target variable, providing 
valuable insights into the behaviour of the model. They can also be 
used to detect interactions between features and non-linear 
relationships.

• The attention mechanism (AM) is a method employed in ML and AI 
to enhance the efficacy of models by directing attention toward 
pertinent information. This feature enables models to choose to focus 
on specific portions of the input data which is critical to the process 
of study, allocating variable levels of significance or weight to indi
vidual components.

• Decision-making in rule-based systems is characterized by trans
parency and clarity. The presence of explicit rules in systems enables 
human users to track the source of each choice, which is based on the 
manifestation of particular conditions.

• A counterfactual explanation aims to address inquiries such as “What 
modifications to the input features would have led to an alternative 
prediction?” This facilitates the comprehension of the decision- 
making process of the model by users.

Besides the above-discussed XAI methods, techniques such as Inte
grated Gradients (IG), Layer-Wise Relevance Propagation (LWRP), and 
many more can be employed, depending on the complexity associated 
with the data, to interpret and understand the inner workings of com
plex models. All of these techniques are useful in gaining insights into 
how complex ML models make predictions and the important features 
driving those predictions (Shao et al., 2023). Overall, these techniques 
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adhere to the idea that “simpler explanations are preferred over more 
likely complicated ones,” which is also the basic ideology to be followed 
in addressing the queries raised in RQs.

4. XAI in wastewater treatment plants

Mechanistic modeling has dominated the field for the past several 
decades when it comes to explaining both biological and chemical re
actions occurring in WWTPs (Mannina et al., 2016). For the design and 
simulations to be more effective, mechanistic models like the Interna
tional Water Association (IWA) ASM series and ADM1 rely on governing 
mechanisms rather than conveniently supporting the systematic study of 
complex systems in data-rich contexts. However, the WW sector has 
been using data-driven modeling techniques for a wide range of appli
cations and has seen a sharp increase in use in recent years. Anomaly 
detection, performance prediction, process management and automa
tion, soft sensing, diagnostics, and missing data imputation are many 
examples of applications that use XAI. The use of XAI models in WWTP is 
the main topic of this section.

4.1. Process modeling and simulation in WWTPs

In the WW sector, XAI techniques are emerging as effective tools for 
forecasting the performance of ML models in predicting the EQ pa
rameters. XAI can be a prospective tool that can be used in WW pro
cesses without the requirement for underlying mechanistic concepts, 
which is driving its adoption in activated sludge (AS) and anaerobic 
digestion (AD) systems.

4.1.1. XAI techniques for modeling and simulation of WWTPs
For generating insights into the performance of the ML model’s 

prediction over WQ parameters in WWTP, XAI methods such as SHAP 
and PDP have received the greatest research attention. More particu
larly, generating explanations about which particular input feature of 
the WWTP has an influence over predicting the critical variables such as 
sludge volume index (SVI), sludge quantity, TN, TP, COD, TSS, etc. (Alvi 
et al., 2022; Wongburi and Park, 2022; Ba-Alawi et al., 2023c; Shao 
et al., 2023). For process modeling tasks like forecasting important 
performance factors and locating areas where WWTPs may be improved, 
DL models in combination with XAI techniques have proven to be more 
promising and effective tools. Similarly, for regression tasks using time 
series data sets, XAI utilizes techniques such as SHAP, FI, and PDP to 
explain the predictions of ML models. Overall, XAI is an effective tech
nique for revealing how specific model traits affect model predictions. 
Each feature is given a value that indicates how much it contributes to 
the model’s output. DL models, such as DNN, LSTM, and BiLSTM (Alvi 
et al., 2023; Farhi et al., 2021; Zhang et al., 2023a, 2023b, 2023c), help 
improve the efficiency, accuracy, and effectiveness of various processes 
involved in the treatment of WW. However, their complexity often 
makes it challenging to understand why they make specific predictions, 
which can be a problem in critical applications where interpretability 
and transparency are required. Although XAI models have the potential 
to provide the explanations for ML model’s ability to predict important 
variables of the processes, there is a noticeable lack of research articles 
explicitly focusing on their use in the predictive control of EQ. In gen
eral, XAI allows one to effectively explore how specific model attributes 
affect model predictions. It assigns a number to each feature, indicating 
how much impact it has on the model’s output. By understanding the 
impact of each attribute, decision-makers can make informed adjust
ments to optimize the process and ensure desired outcomes. As the field 
of XAI advances, more sophisticated models and approaches are ex
pected to emerge to address the shortcomings and challenges of current 
methods.

4.1.2. Real-time WWTP modeling and simulation, and assessment through 
XAI techniques - case studies

The idea of implementing XAI techniques on a real-time WWTP has 
been explored by many researchers to comprehend the influence of 
input parameters over the predictive output of the plant. Two different 
case studies have been considered in this study to know how the XAI 
technique like SHAP provided the explanations on how the sludge vol
ume index and the sludge quantity generated are influenced by the input 
parameters of a WWTP. The readers of this manuscript are encouraged 
to explore the literature presented in Table 1 as it presents the literature 
available on applications of ML and XAI models on the data obtained 
from real-time WWTPs. Table 1 also highlights the user’s variable of 
interest to predict and control, and the models and techniques employed 
in doing so which helped in generating explanations to understand the 
impact of input parameters on predictive outputs generated by WWTP.

Case study 1: Performance evaluation of ML (RNN) with XAI (SHAP) 
model in predicting sludge volume index (SVI) on a real-time WWTP 
data.

One of the most crucial operational variables in an activated sludge 
process is the Sludge Volume Index (SVI). SVI is difficult to anticipate 
because of the nonlinearity of the data and the unpredictability of the 
operating conditions. Wongburi and Park (2022) explored Recurrent 
Neural Network (RNN) with XAI (SHAP), using complex time-series data 
obtained from Nine Springs WWTP in Madison, Wisconsin. The sche
matic of this case study is shown in Fig. 4. The data was used to predict 
SVI using ML (RNN) and interpret the prediction result using XAI 
(SHAP). Initially, the data was collected from 1996 to 2020, which was 
then divided into three datasets to check the efficacy of the model over 
datasets created over different periods. The first dataset is the actual 
data collected from 1996 to 2020; the second data set was created from 
2010 to 2020 because of the presence of significant errors in the data 
obtained in 2000; and the third dataset was created from 2010 to 2020 
by removing the out-of-range (50–150 mL/g) SVI values. As a first step, 
the data was collected, analyzed, and cleaned using the Python and data 
analytics approaches. Following data cleaning, the RNN model was 
applied to the different datasets created to predict SVI values accurately. 
The XAI techniques were then applied to interpret the model’s pre
dictions and provide insights into the factors influencing SVI values. In 
data-based process assessment, it is always important to know which 
input parameter is influencing more on the output parameter. In this 
study, the input parameters such as flow rate, influent BOD, Total Sus
pended Solids (TSS), Total Kjeldahl Nitrogen (TKN), Ammoniacal Ni
trogen (NH3-N), Total Phosphorus (TP), and organic loading were 
selected as influencing factors on the output parameter Sludge Volume 
Index (SVI). After training the RNN model using all the datasets, it was 
found that for the first dataset, the prediction gave an RMSE value of 
4.161 and an MAE value of 3.284. For the second dataset, the prediction 
model performed better, which resulted in lower RMSE (3.360) and 
MAE (2.156) values in comparison to the first dataset. Similar types of 
trends were observed for the third dataset. The results of the study 
demonstrated that the RNN design is effective in handling typical fluc
tuations that occur in the activated sludge systems, but selecting the 
relevant data using data analysis is one of the key steps in making the 
model perform better. Finally, the prediction result was explained using 
the Shapley interpretation to check which parameter is influencing 
much on SVI. It was found that the organic loading, which is related to 
influent BOD and flow rate, primarily affects SVI. The insights obtained 
through the results of this study suggest that improving the aeration of 
the system can lead to better control over SVI.

Case study 2: Application of ML models with XAI (SHAP) in pre
dicting sludge production on a real-time WWTP data.

Sludge is produced from urban sewage in China due to its extensive 
WWTP investment. China had 2827 WWTP with 60.16 billion cubic 
meters of processing capacity in 31 provinces, municipalities, and 
autonomous areas in 2021. About 14.229 million metric tons of dry 
sludge are produced, making it difficult either to use or treat the sludge 
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effectively. This marked the importance of predicting the sludge pro
duction data and identifying the key factors that influence sludge pro
duction. Shao et al. (2023) used nine different ML models to predict the 
sludge production data obtained from Liaoning WWTP in China. The 
schematic of this case study is shown in Fig. 5. It came to know that for 
the data collected, XGBoost predicts better than other ML and ensemble 
learning models when metrics are compared. Its RMSE, MAE, MAPE, 
and R2 are 4.4815, 2.1169, 1.7032, 0.0415, and 0.8218. Ensemble 
learning fits highly nonlinear data better than the RF model, which has 
proven to be the second-best algorithm only to XGBoost. Traditional 
base learners like DTs, lasso regression, and kernel ridge regression 
forecast the prediction of sludge generation very poorly. On the other 
hand, complicated models like FCNNs have many parameters 

demanding a greater time in training the model. Despite equal predic
tion accuracy, NNs are not considered to be cost-effective when 
compared to XGBoost and RFs. It was also inferred in this study that on 
small and medium-scale datasets, complex ensemble learning models 
outperform base learners in prediction accuracy. To infer the details on 
influencing parameters over sludge production, the SHAP methodology 
is employed in interpreting the predictions of the XGBoost model. The 
method helps in interpreting the influence of each variable on pre
dictions, which demonstrates the model’s sensitivity to certain attri
butes. According to the SHAP plot, the influent wastewater volume (Q) 
and environmental temperature (T) were found to have the most sub
stantial influences on the prediction of sludge generation. These results 
correspond with the input feature contributions of the XGBoost model. It 

Table 1 
Applications of ML and XAI models in WWTP.

S. 
No

Variables ML & XAI models Comment Performance matrix Reference

1 TSS and OP RF (ML), DNN (ML), VIM (XAI), 
PDP (XAI)

DNN models were used to build and validate RF 
models, and then VIM and PDP studies were 
carried out. VIM determined the factors that had 
the greatest impact on the effluent parameters (in 
this case, TSSe and PO4e), whereas PDP clarified 
their effects on TSSe and PO4e.

R2-RF, and DNN (TSS) = 0.92 
R2-RF and DNN (PO) = 0.886 
and 0.872

Wang et al., 
2021

2 PAO and GAO LR (ML), SVRL (ML), SVR (ML), 
RBF (ML), RF (ML), and SHAP 
(XAI)

New insights into how PAOs and environmental 
factors interact may be revealed by ML-enabled 
analysis, which has immediate implications for 
the sustainable design and functioning of full- 
scale EBPR systems.

R2 = 0.4–0.7 Oh and Kim, 
2021

3 Temperature, pH, EC, DO, 
Chl-a, TUR

SHAP (XAI), FI (XAI), XGB (ML), 
PDP (XAI), and VIF (Statistical ML)

This finding showed that SHAP analysis, an XAI 
method, gives valuable information that permits 
a decrease in the necessary number of 
independent variables for creating a ML model, 
hence reducing the labor and expenses associated 
with field data collecting.

RMSE-1.872, RSR-0.630, and 
NSE-0.603

Park et al., 
2022a, 2022b

4 BOD, TN, TP, TKN, TSS, NH, 
SVI, flow rate (FR)

RNN (ML), SHAP (XAI) The ability to predict SVI will help WWTPs create 
corrective actions to keep SVI steady. The 
wastewater treatment industry will benefit from 
improved operational performance, system 
management, and process dependability thanks 
to the SVI prediction model and XAI technique.

RMSE-3.360 and MAE-2.156 
for SVI

Wongburi and 
Park (2022)

5 BOD, pH, TSS, TKN, FR, 
Temp

XGBoost (ML), k-NN (ML), SHAP 
(XAI), and eight ML models

The findings of this study have shown that the use 
of ML techniques can assist preserve chemical 
resources by improving chemical dosage 
management in wastewater treatment.

R2 -0.605) for valve XGBoost, 
RF of R2-0.436. RMSE -8.056, 
and 4.466

Xu et al., 2022

6 COD, TN, FR Explainable deep multi-task 
learning UNet (DMTL-UNet) (DL), 
XGBoost (ML), KSHAP (XAI)

A promising strategy for increasing the 
effectiveness and precision of sensor diagnosis 
and reconstruction in WWTPs is the suggested 
DMTL-UNet concept

R2-0.9175 and MSE-0.08408, 
F-score − 99.08 % 
RMSE-31.1175

Ba-Alawi et al., 
2023a

7 TSS, OP RF (ML), XGboost (ML) and 
LightGBM (ML), SHAP (XAI)

The model comparison should be done from a 
variety of angles to make sure that all of the 
underlying details are exposed and looked at. It 
was found that SHAP to be really useful in this 
investigation.

RMSE-0.020 
RME- 0.0050 
R2-0.882

Wang et al., 
2022a, 2022b, 
2022c

8 COD, TSS, TN multisensor fusion-based 
automated data reconciliation and 
imputation (MFS-ARI: Data 
fusion), KSHAP (XAI)

To evaluate the effects of missing, inaccurate, 
reconciled, and imputed data on the MBR 
performance operation utilizing R2AU-Net, the 
ASM-SMP-ARS integrated MBR model was used. 
In light of this, the suggested MSF-ARI based on 
R2AU-Net might, under suitable environmental 
discharge circumstances, reduce energy 
consumption by 37.44% and the appearance of 
early fouling by 10 days.

RMSE = 1.96 
MAE = 0.31

Ba-Alawi et al., 
2023b

9 TN and TP Convolutional autoencoder (CAE) 
integrated with deep fully 
connected layers (DFC) (Neural 
Network), SHAP (XAI)

analysis-based on XAI, the relationships between 
variables and how they affected the output of the 
CAE-DFC model were clearly understood thanks 
to kernel SHAP.

R2 for TN and TP are 0.9607, 
and 0.9137

Ba-Alawi et al., 
2023c

10 Influent phosphorus and 
chemical dosage data for 
phosphorus removal, 42 
variables

OLS (Statistical ML), SVM (ML), DT 
(ML), RF (ML), ANN (ML), and 
SHAP (XAI)

Incomplete data sets can be used in this study as 
an illustration of how AI might be applied to 
process improvement and potential cost 
reduction.

R2 -0.496, accuracy of 79.7% Xu et al., 
2023a, 2023b

11 COD, BOD, SS, TN, and TP Nine ML algorithms (KRR (ML) DT 
(ML), SVR (ML), kNN (ML), FCNNs 
(ML), RF (ML), XGBoost (ML)), 
SHAP (XAI)

The novel aspect of this work is how machine 
learning algorithms were used to estimate the 
formation of sludge in wastewater treatment 
facilities.

RMSE, MAE, MAPE, and R2 
values of 4.4815, 2.1169, 
1.7032, 0.0415, and 0.8218, 
respectively

Shao et al., 
2023
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Fig. 4. The schematic of ML and SHAP applied to WWTP to predict and generate an explanation for the sludge volume index.

Fig. 5. The schematic of ML and SHAP models applied to WWTP to predict and generate an explanation for sludge quantity produced.
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can also be noted that the significance of total nitrogen has risen in the 
SHAP study of water quality indicators, but the significance of sus
pended solids has diminished. The mismatch arises because SHAP values 
emphasize the importance of each feature within individual samples, 
but the model’s feature contribution indicates the feature’s weight, 
which is optimized through overall prediction bias, leading to divergent 
outcomes between the two approaches. Overall, the insights obtained 
through the results of this study suggest that sludge production is greatly 
impacted by the input features, such as daily wastewater treatment 
volume and temperature. Keeping control over these parameters can 
help to reduce sludge production and improve the overall efficiency of 
the treatment process.

4.2. Process design and control in WWTPs

4.2.1. Adoption of XAI-based controllers in WWTPs
Since XAI techniques are becoming more and more popular for 

modeling and identifying nonlinear systems, they have also been used 
for controllers in WWTP. Plant responses can be optimized over a certain 
time horizon by creating a control based on XAI. At the same time, the 
objective function can be made simpler to lower the optimization’s 
computational requirements. Even with recent developments in XAI- 
based controllers (Machlev et al., 2022; Utama et al., 2022), the WW 
industry is still only beginning to use this strategy due to several factors. 
The reason could be a lack of knowledge and understanding of XAI 
techniques among WWTP operators and engineers. In addition, there are 
concerns about the reliability and robustness of XAI models in 
real-world applications. This represents challenges in the implementa
tion of XAI-based controllers, which may necessitate significant invest
ment in terms of training and infrastructure improvements. However, 
with the continuous advancements and success stories in XAI applica
tions, it is expected that more WWTPs will embrace this strategy in the 
near future. In the context of creating smart process control, it is crucial 
to include an optimal controller and an emerging XAI network (XAIN). 
The XAIN helps identify the system and creates predictive models for the 
controllers, improving control effectiveness. One must notice that for 
XAI-based controllers to be used practically in WWTPs, system identi
fication must be improved, and the amount of computing power needed 
for system optimization must be decreased (Kumar et al., 2018). The 
incorporation of advanced ML models such as DL and reinforcement 
learning can be a potential solution to improve system identification in 
XAI-based controllers for WWTPs.

4.2.2. Reinforcement learning and deep learning in WWTP optimization 
and control

Mohammadi et al. (2024) developed a simulator for the Deep rein
forcement learning (DRL) environment using six models to determine 
the phosphorus removal process, reaching 97% accuracy. Without 
complicated system modeling or parameter estimates, DRL algorithm 
simulation scenarios are created using SCADA data with a suitable his
torical horizon to improve process control. The study of Croll et al. 
(2023), found that deep Q-learning, proximal policy optimization, and 
synchronous advantage actor criticism performed poorly in most cir
cumstances. However, the twin delayed deep deterministic policy 
gradient (TD3) method consistently optimized control while meeting 
WWTP treatment requirements. TD3 control optimization reduced 
aeration and pumping energy requirements by 14.3% compared to 
BSM1 benchmark control. The important intermediate parameters pre
diction problem is solved using the deep neural network (DNN) model to 
guide control decisions. This study advances data-driven IoT system 
management and control, especially in circumstances with limited 
monitoring data resources (Shen et al., 2024). On influent pollution 
concentration tops and bottoms, RL responds differently. RL agents are 
more influenced by fines on tops (because of high effluent pollutant 
concentrations) and energy usage on bottoms. Finally, on weekends and 
in rainy and stormy weather, the RL agent cuts usage more than 

Proportional–integral–Derivative controls (PID). The adaptable RL 
agent can adapt to changing conditions better than PIDs 
(Hernández-del-Olmo et al., 2023), making it more efficient in man
aging and controlling the process under varying circumstances. A 
comprehensive and sophisticated explanation system, SHAP, was 
implemented to compare models and provide an in-depth analysis of the 
best model. XGboost is the optimal model for both Total Suspended 
Solids (TSS) and Orthophosphates (PO4) tasks, whereas RF is the least 
optimal model due to overfitting and polarised fitting (Wang et al., 
2022a, 2022b, 2022c). Using Proximal Policy Optimization, Filipe et al. 
(2019) proposed a method to optimize WW pumping station energy 
consumption by using deep-reinforcement learning. These models have 
shown greater potential in handling complex and non-linear systems by 
automatically extracting meaningful features from the data. Addition
ally, advancements in hardware technology, such as the development of 
specialized processors for accomplishing AI tasks, can greatly reduce the 
computing power required for real-time optimization, making 
XAI-based controllers more practical and efficient for WWTP 
applications.

4.2.3. Emerging trends: transfer learning and smart automation
The recent developments made in XAI have sparked anticipation that 

as the field develops, XAI-based controllers will be used more frequently 
in the water resource recovery sector to optimize WWTP procedures and 
tap energy usage. Even with recent developments in DL-based MPC with 
XAI, the WW sector is still only beginning to use this strategy. In addition 
to this, the use of transfer learning to process control in WWTP is still in 
its infancy, although it has gained significant attention in its growing 
stage. Thanks to transfer learning, with the transfer learning method
ology, one can easily transfer control techniques developed for one 
system to another system, reducing the time spent in creating and 
implementing new control techniques in a newer system. For instance, 
to enhance conventional PI and PID controller strategies, an LSTM-based 
proportional-integral (PI) controller was developed based on the 
Benchmark Simulation Model 1 (BSM1) system for maintaining a DO 
concentration of 2 mg/L in an aerobic tank of a simulated WWTP (Alex 
et al., 2008; Sheik et al., 2023). This LSTM-based PI controller showed 
improved control performance compared to traditional PID controllers. 
This approach can be extended to LSTM-XAI-based controllers for better 
prediction and control of process variables. Later, XAI tools such as 
SHAP, LIME, etc. can be used for interpreting the controller’s pre
dictions. Once the benchmark strategy is developed, the pre-trained 
LSTM-XAI controller network can now be transferred to control DO in 
the remaining aerobic tanks without substantial modifications to 
hyperparameter values or neural architecture. This way the methodol
ogy developed using the source model, including explanations and in
sights can be transferred to a target model for obtaining interpretability 
and predictions with the knowledge acquired by the source model. Be
sides DO, the approach can also be used for other important variables of 
WWTP such as ammonia, TN, and TSS in the aerobic, anoxic, and 
anaerobic tanks. In general, this is the area with the most scope towards 
future digitalization in terms of smart automation in WWTP, enabling 
practical control and monitoring in WWTP. However, deeper research is 
required to investigate the possible application of transfer learning in 
WWTP process control and to identify the downsides of these 
techniques.

4.3. Soft sensing

Conversely, soft sensing uses data-driven models. Data-driven 
models such as SVM, ANN, RF, and Principal component analysis 
(PCA) are used to infer the values of variables that cannot be measured, 
difficult to measure, and expensive to measure in real-time using the 
measurements that are already available (Shyu et al., 2023). The type of 
model used in inferring measurements is data specific. 
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• For instance, SVM is used when there is a highly nonlinear rela
tionship between the input variables and the target outputs. This is 
also used to handle the data comprising many input variables (pH, 
temperature, pressure, flow rate, component concentrations), lead
ing the system to high dimensional space situations.

• On the other hand, ANN is also used when highly complex non-linear 
relationships exist between the input variables and the target out
puts, which is the case in many industries. The other important 
feature of ANN is that it has self-learning capabilities, which help to 
learn the complex patterns between the input variables and target 
outputs, making them ideal for soft sensing.

• RF besides handling the nonlinearity between the variables, also 
provides information related to input variables, which are highly 
important for predictions of the target outputs. RF is also considered 
one of the most robust methods used for predictions, particularly in 
terms of missing data and even when there is noise associated with 
the data.

• In general, the high dimensional data with many input features 
makes it hard for the model to work and generate interpretations. 
The PCA model is employed in condensing the high dimensional data 
into a smaller set of newer variables. These newest variables are 
called principal components, and they are created without much 
altering the variance information from the original data sets.

The features of the above-mentioned data-driven models are 
important for soft sensing to estimate the variables that are hard to 
measure. Models that can infer the values of process variables that are 
normally challenging and expensive to quantify with hard sensors are 
known as soft sensors. Soft sensors create a model that can forecast the 
values of unknown variables or unmeasurable factors using previous 
data. The model’s ability to continuously learn from fresh data is one of 
the benefits of XAI in the creation of soft sensors. This particular feature 
of soft sensing helps in maintaining the real-time monitoring of the 
system in a more systematic way, which thereby aids in controlling the 
process more efficiently. XAI is being utilized more and more to soft- 
sense important factors for tracking processes in WWTP to guarantee 
operational excellence (Alvi et al., 2022; Wang et al., 2022c). In WWTP, 
state estimation and soft sensing have both shown promise as methods 
for predicting process variables that are challenging to measure (Xu 
et al., 2023a; Chang et al., 2023). The aforementioned literature pre
sents how XAI models can be used to enhance soft sensing and state 
estimation by giving precise estimates of process variables, which can 
lead to improved process control and optimization. It is also important 
to note that there hasn’t been much research done in this area of work to 
predict difficulties, abnormal events, and operational glitches in WWTP 
using XAI (Ching et al., 2021).

4.4. Fusion of data and information

• Importance: The fusion of data and information is an essential 
requirement for several cutting-edge technologies, including the 
Internet of Things (IoT), computer vision, and remote sensing. 
However, fusion is a somewhat nebulous notion that can take 
numerous shapes (Murray, 2021). For example, in digital vision, 
feature fusion is the combination of features (Cheng et al., 2020l; 
Murray, 2021; Alvi et al., 2023; Sheik et al., 2024b). More accurate 
conclusions may typically be drawn by correlating and combining 
data from several sources than by analyzing a single dataset alone 
(Ding et al., 2019; Ly et al., 2022). Therefore, information and data 
fusion not only enhance the explainability of ML/DL models but also 
help in reducing process disruptions by improving the DM process 
(Zaghloul et al., 2022; Singh et al., 2022; Liu et al., 2023).

• Challenges: Data fusion can happen at three levels i.e., knowledge, 
models, and data (Arrieta et al., 2020). Smirnov, and Levashova 
(2019); Jiang et al. (2021), and Ba-Alawi et al., 2023a, 2023b, 2023c
provide a thorough analysis of the reasons behind and methods by 

which fusion takes place to solve concerns associated with the IoT, 
privacy, and data security in WWTP. It is noteworthy that there is no 
relationship between data fusion and ML/DL models at the data 
level, making explainability difficult to explain the working meth
odology of ML/DL models in predicting the process variables. 
Though they perform better, there is still considerable confusion 
regarding the differences between information fusion and predictive 
modeling when using ML/DL models. The trade-off between 
explainability and performance is evident once more.

• Scope of Improvement: To obtain high-level features, the initial 
step involves the fusion of data with the initial layers of DL. This 
process tightly links the fusion and the tasks to be completed, making 
features correlated. To handle this correlation, various XAI strategies 
like LIME and SHAP have been advised by researchers (Ba-Alawi 
et al., 2023a; Wongburi and Park (2022); Park et al., 2021). The 
significance of these techniques was already discussed in the process 
modeling and simulation section of this review paper. These tech
niques help clarify how data sources are combined in a DL model, 
improving its usability. However, it is still unclear if the input fea
tures of a model may be inferred if a prior feature was known to be 
employed in that model. Further research is needed to determine the 
extent of the relationship between input features and prior features 
in a model. To gain a better understanding of what is happening in a 
model, it is recommended to enable XAI with the necessary ML/DL 
models.

• Addressing Data Privacy and Security: Empirical research 
attempting to solve data privacy issues has been lacking in the 
WWTP industry, posing a significant obstacle to XAI’s usage, 
necessitating the need to overcome it. To overcome this challenge, 
federated learning, and differential privacy are identified as effective 
methods for addressing data privacy and security while promoting 
ML use (Xu et al., 2022, 2023b; Park et al., 2022a, 2022b). Finally, to 
make progress in utilizing ML for enhancing project performance (e. 
g., productivity, quality, and safety), it’s crucial to make advance
ments toward appropriate data fusion strategies to enhance the un
derstanding and interpretability of a model’s decisions or predictions 
for better explainability. This will ensure accurate integration and 
interpretation of multiple data sources, leading to improved DM and 
problem-solving.

4.5. Using XAI on the internet of things

In the literature, there is a debate over the necessity of IoT in XAI. 
Doshi-Velez (2017) states that in certain situations, the integration of 
IoT in XAI might not be required and that the system can be trusted if the 
following conditions are met: (a) The need for IoT in XAI for better 
explainability is not a greater priority than the cost of implementing it in 
WWTP. (b) the impact of inaccurate results in the field of WWTP 
application is not too great, and (c) the problem has already been 
thoroughly studied and applied to real-world WWTP scenarios. How
ever, the literature has emphasized the necessity of XAI-IoT in complex 
systems such as WWTP. Efficient IoT integration in WWTP is crucial for 
users to effectively handle ML results, regardless of whether this is due to 
business needs, moral dilemmas, or legal issues in the water industry 
(Confalonieri et al., 2021; Karthikeyan et al., 2022).

In the context of IoT, this section looks at the requirements and ad
vantages of implementing IoT-XAI techniques in WWTP. XAI is very 
important to unravel the model behaviour in predicting the critical 
variables of a WWTP, particularly when it comes to implementing the 
decisions that are developed using the model predictions. Uncertainty 
and inefficiency in model predictions might lead to a situation where the 
decision system is impacted and may have significant consequences for 
the overall performance and effectiveness of the WWTP. The uncertainty 
and inefficient model predictions can be due to data abnormalities, 
which may occur for many reasons. For instance, in AI-driven processes 
that are completely data-driven, there might be situations of 
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misrepresentation of data due to sensor failures or deviation of any 
equipment from normal operation, creating anomalies in the process 
system. Due to data anomalies, unexpected deviations could appear in 
the ML algorithm’s training set. This could lead to inaccurate predictions 
or decisions, which can have serious consequences in complex processes 
such as WWTP. Integration of IoT with XAI can help address these 
failures by leveraging already-existing past data. The IoT in general, 
which has the ability to collect, process, and analyze real-time data, can 
overcome the impact of data anomalies in predicting process outcomes. 
At any given instant in a sensor failure situation, it can make use of past 
data to process it into ML models for the purpose of predicting process 
outcomes without any delay. Further, with the history of the past, IoT 
can also detect patterns and anomalies that may indicate potential 
sensor failures or degradation in process performance. With the IoT 

platforms, one can utilize predictive maintenance techniques, where 
models are trained on historical data to predict when sensors are likely 
to fail or require maintenance. This enables more accurate predictions 
and proactive DM, ultimately creating the synergy between IoT and AI to 
improve the accuracy and reliability of predictions and decisions. 
However, it has been observed that very few research articles specif
ically emphasize the use of IoT tools with XAI models in the predictive 
control of WWTP, even though such tools have a lot of potential for 
prediction and control. Fig. 6(A) depicts the flow path toward the usage 
of XAI for prediction and control in WWTP and Fig. 6(B) IoT integration 
in XAI for seeking different applications in WWTP.

Fig. 6. (A) Flow path of usage of XAI for prediction and control in WWTP (B) IoT in WWTP for seeking different applications.
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4.6. Future research directions, scope, and challenges

Future research in Explainable Artificial Intelligence (XAI) for 
wastewater treatment should prioritize the development of domain- 
specific interpretable models that can effectively integrate with future 
technologies such as the Internet of Things (IoT), digital twins, and edge 
computing. Furthermore, the development of techniques for interpret
able reinforcement learning, energy optimization, and human-centered 
interfaces will guarantee that Explainable Artificial Intelligence (XAI) 
not only improves performance but also promotes confidence and 
transparency among plant operators and regulatory authorities. The 
following aspects can be the prospective research approaches that can be 
thought of in the context of XAI technology. 

• Create digital twin models that can replicate the WWTP and include 
XAI to offer valuable insights into their recommendations. An AI- 
powered digital twin might replicate various operational situations 
and provide explanations for why specific modifications (such as 
decreasing aeration levels to monitor DO or increasing the chemical 
dosage to reach the optimal pH value of the process) would enhance 
efficiency.

• Exploring techniques to integrate sensor data in real-time while 
providing clear explanations of AI model results. One example is 
elucidating the reasons towards the need for modifications in 
chemical dosage when there is a rapid shift in pH sensor readings and 
the interaction between several IoT sensors in facilitating such 
adjustments.

• Focus on developing interpretable RL methods specifically for 
wastewater treatment. For example, incorporating explainable 
reward functions where the optimization objectives (e.g., mini
mizing energy use or chemical waste) are aligned with human- 
understandable metrics, like cost savings or environmental impact. 
Integrating RL into process control and addressing potential biases in 
ML models are essential for building robust, reliable, and fair AI 
systems in WWTP applications. Many WWTPs already use well- 
established control methods like PID controllers or Model Predic
tive Control (MPC). One should develop integrating RL into these 
systems without causing disruptions for better control and efficiency.

It is undeniably difficult to stay up to date with the most recent ad
vancements in XAI research due to its development, which is happening 
at a rapid pace. However, it is crucial for researchers and practitioners to 
continually educate themselves to keep pace with new XAI de
velopments and make meaningful contributions to applying them to 
WWTP, paving the way for creating research opportunities towards 
building a smart and sustainable water industry.

Additionally, XAI offers a crucial step in developing process fairness 
and considering bias during the algorithmic DM process (Mougen et al., 
2021). Furthermore, XAI enhances transparency and trust by offering 
explanations for algorithmic decisions. This ultimately leads to better 
user understanding and acceptance of ML systems and increased public 
trust in the field. For this to happen, the following areas need to be 
addressed and prioritized. 

(a) developing frameworks to bridge the gap between WWTP experts 
and XAI developers for smooth design and implementation.

(b) establishing a framework for independent auditing and valida
tion of models.

(c) promoting transparency and explainability in algorithmic DM 
processes.

(d) fostering trust and public confidence in employing algorithmic 
systems by emphasizing the importance of their usage in 
leveraging process system behaviour.

(e) emphasizing the importance of the process of data fusion to 
enhance explainability and improve DM capabilities, which is 
crucial in establishing efficient and effective algorithmic systems. 

These areas are crucial for understanding the potential of XAI in 
improving water treatment and management.

The literature that is currently available highlights the conflicting 
scenarios that arise in the field of developing and implementing XAI in 
WWTPs (Belle, and Papantonis, 2021a, 2021b; Khalil et al., 2023; Yang 
et al., 2022; Shao et al., 2023). While they are being developed, there is 
often a lack of consensus regarding explicit objectives for explainability 
and techniques to evaluate the quality of explanations. One reason 
might be attributed to the fact that there is a lack of collaboration be
tween the varying professions and expertise levels of individuals 
involved in XAI research and development. The other reason could be 
the necessity for different models tailored to specific datasets that 
pertain to individual process systems, depending on their complexity 
levels. This makes everyone agree that the process of assessing expla
nation approaches is not rigorous enough (Doshi-Velez and Kim, 2017), 
a critical issue that needs to be addressed in order to advance XAI. Often 
the evaluation criteria for successful implementation of XAI in WWTPs is 
primarily based on both the opinions of computer scientists and WWTP 
process managers. For example, computer scientists mostly act as de
velopers of XAI, and WWTP process managers act as experts in evalu
ating the working efficacy of XAI based on the explanations they 
provide. Thus, in the context of implementing XAI in WWTP, the 
collaboration between different professions is essential to meet the 
unique needs, expectations, and demands for the successful integration 
of XAI into WWTPs (Langer et al., 2021; Love et al., 2023). Fig. 7 depicts 
the usage of the XAI application for WWTP with a flowchart and future 
directions. Also, when we speak in the context of process control, XAI 
can benefit in identifying the key variables (such as WQ parameters, 
dissolved oxygen, and flow rates) that significantly influence 
decision-making models. XAI models like SHAP or LIME can visually 
represent model decisions. AI systems could use these visualizations to 
provide operators in control rooms with a clear understanding of the 
rationale behind specific control actions. Additionally, with IoT sensor 
data, AI models frequently identify anomalies. However, XAI can 
explain these anomalies by illuminating the patterns that gave rise to the 
detection. This is essential for early fault diagnosis or preventing false 
positives. Data from IoT devices may be noisy or unreliable. The model’s 
response to this noise can be explained by XAI, which also reveals which 
sensor data is most trustworthy for making decisions. Understanding 
how soft sensors estimate the values of unmeasured variables will help 
XAI improve soft sensor credibility. Also, when WWTP operators use soft 
sensors with lower confidence in their estimations, XAI may be able to 
help them understand prediction uncertainty and make better 
judgments.

The concept of XAI gained prominence in the context of WWTP when 
process managers expressed dissatisfaction with the lack of established 
standards for process assessment. This need for better process assess
ment to enhance plant operation has sparked lively debates between AI 
developers and WWTP process experts, propelling the field of XAI ahead. 
As a whole, meeting process manager demands is the primary driver 
behind XAI’s growing appeal for enhancing WWTP operations. The 
literature clearly shows how keen researchers are to use newly devel
oped models to tackle complex process system problems. Table 2 reports 
the summary of XAI taxonomies and methods. Table 3 reports the 
comparison of different modeling strategies in WWTP. A lot of evidence 
suggests that humans have over-trusted ML systems in the past, and 
there is still a long way to go before they can trust ML systems 
completely in the present. XAI has significant limitations, which are 
detailed below, in addition to the advantages and possibilities it offers in 
the field of complex decision systems (Watson, 2020; Xu et al., 2023a, 
2023b). Some basic concepts in XAI are unclear or contradictory because 
there is no standard terminology existing in the field of XAI, which leads 
to confusion and differing interpretations between the developers and 
the users. For example, while everyone agrees that explanations by 
models should be precise, it’s uncertain whether the focus should be on 
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the data generation process or the target model. Some argue that the 
focus should be on the data-generation process, while others argue that 
the focus should be on the target model. This lack of standard termi
nology will not only hamper the advancement of XAI application tech
niques but also cause philosophical debates that often lead to confusion 
and unproductive conversations. Hence, it is crucial to establish a 
common understanding and terminology in the field of XAI. Also, the 
lack of a measurable indicator to verify the accuracy of interpretability 
in the ML/DL models used always poses challenges. To overcome chal
lenges in evaluating the accuracy of the model’s interpretability, the 
systems field’s expertise should be taken into consideration. Involving 
process expertise can help AI developers choose the appropriate ML/DL 
models specific to the data to produce the desired outcomes. This can 
lead to a more reliable method for choosing ML/DL models that are 
specific to user needs, leading to an accurate evaluation of the model’s 
interpretability and performance in real-world scenarios.

In the WWTP sector, interpretability becomes a significant challenge 
when employing complex models like deep neural networks (DNNs) and 
reinforcement learning (RL) to analyze or predict critical process vari
ables. These models are powerful but often difficult to understand, 
creating a need for reliable interpretability to ensure transparency and 
build trust among the process operators. DNNs, for instance, are 
frequently criticized as “black boxes” because they make predictions in 
ways that are not easily understood by domain experts. Similarly, RL 
models, which rely on trial-and-error learning, are also challenging to 
explain, as their decision-making processes are less intuitive. The lack of 
interpretability makes it difficult to deploy these models in real-time 
operations within WWTPs, where quick and clear decision-making is 
essential. To overcome these limitations, researchers must focus on 
improving the interpretability of complex models in the WWTP context. 
One approach is to develop techniques like saliency maps, which visu
ally highlight the most influential parts of the input data that drive the 
model’s decisions. Another promising direction is integrating inter
pretable models, such as decision trees, with complex models like DNNs 
and RL. This hybrid approach can provide both the accuracy of 
advanced models, and the transparency needed for practical deploy
ment, offering a balance between performance and clarity. Adopting 
these techniques will not only enhance trust but also enable real-time 

deployment of these advanced models in critical WWTPs. Although 
there are challenges and opportunities related to integrating XAI with 
different technologies, there has to be considerable ideas related to the 
scalability of XAI in WWTP, real-time deployment, and handling noisy 
data. These can be outlined with the following research questions, which 
can also be an enroute to further scope and challenges with a brief 
explanation about how they can impact the successful implementation 
of XAI in wastewater treatment plants. 

RQ: How can the scalability of XAI in WWTPs be planned to manage 
the complexity and size involved with WWTP operations?

Response: WWTPs are large and complex systems involving 
numerous interconnected processes such as chemical breakdown treat
ments, filtration, and biological processes. Each of these processes 
generates a vast amount of data, which is quite complex and difficult to 
interpret in real-time. Scaling XAI techniques to handle the complexities 
involved in the WWTPs is crucial. WWTPs, which are larger in size and 
incorporated with complex control systems, demand XAI solutions to 
evolve in a way that can handle massive datasets without compromising 
on providing clear and interpretable insights to operators. This can help 
them make informed decisions to optimize performance and efficiency. 
On the other hand, it is also necessary to investigate how XAI techniques 
or methods perform in real-time scenarios to ensure their effectiveness 
and reliability in the dynamic environment of WWTPs. This could 
further assist in highlighting the areas of optimization in a typical large- 
scale WWTP. Although there are huge complexities associated with the 
scalability of XAI, a promising direction is to break down the complex
ities by developing hierarchical XAI frameworks, where explanations 
are provided in-depth for each subsystem involved in the WWTP. These 
frameworks help in explaining the decisions at both the individual 
process level (e.g., why a chemical dosage was made to adjust pH) and at 
the system-wide level (e.g., how different modifications across various 
processes affect overall plant performance). This approach of multi-level 
interpretability can help plant operators understand both localized and 
broader system dynamics associated with the WWTP. Also, handling 
large data sets in real-time to provide interpretable outputs is quite 
complex. It is advisable to explore the potential of cloud-based or 

Fig. 7. Usage of XAI application for WWTP with flowchart and future direction.
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Table 2 
Summary of XAI taxonomies and methods.

XAI approaches Model patterns Remarks References

Functioning- 
based model

Linear Model, 
Decision Trees, 
Local 
Perturbations, 
Leveraging 
Framework, Meta 
Explanation, 
Architecture 
Modification, 
Partial 
Dependence Plots 
(PDP), Shapley 
Values, Local 
Interpretable 
Model-Agnostic 
Explanations

In XAI, the use of 
function-based 
models aims to shed 
light on the process 
and reasons behind 
which a 
complicated model 
makes specific 
predictions. This 
can make the 
model’s behaviour 
and judgments 
easier for users, key 
players, and 
policymakers to 
gain insight and 
trust. Choosing 
which function- 
based model to 
apply will rely on 
the particular issue 
at hand as well as 
the intricacy of the 
black-box model 
that needs to be 
described.

Karamichailidou 
et al., 2022; Han 
et al., 2019; 
Castillo et al., 
2016; Xu et al., 
2023a, 2023b, 
Confalonieri et al., 
2021; Angelov 
et al., 2021; Love 
et al., 2023

Rule-based 
model

Rule Extraction, 
explicit If-Then 
Rules, 
Transparency, 
and 
Interpretability, 
Fidelity to the 
Original Model, 
Manual or 
Automatic Rule 
Generation, 
Interpretable 
Variables, 
Consistency, and 
Fairness, Hybrid 
Models

Rule-based models 
are particularly 
useful when it 
comes to providing 
clear and human- 
readable 
explanations for AI 
choices. 
Nonetheless, they 
may not capture all 
of the intricacies 
and intricacy of 
specific activities, 
and alternative XAI 
techniques may be 
better applicable in 
some 
circumstances. The 
XAI approach of 
choice is 
determined by the 
individual 
application and its 
proportions of 
transparency, 
interpretability, 
and prediction 
performance.

Irani and Kamal, 
2014; 
Li and Gong, 
2019; 
Dupuitet al., 2007; 
Balla et al., 2022; 
Love et al., 2023

Explainable AI methods ​
Methods Model 

prediction types 
and concepts

Remarks References

SHapely 
Additive 
explanation 
(SHAP)

Summary Plot, 
Individual 
Instance Plot, 
Force Plot, 
Waterfall Plot, 
Dependency Plot, 
Interaction Value 
Plot, Feature 
Attribution 
Heatmap, Time 
Series Shapley 
Explanations, 
Text Shapley 
Explanations, 
Kernel Shap, and 
Deep Shap

The precise 
application case 
and the 
requirement for 
global or local 
interpretability 
determine the SHAP 
explanation type to 
be used. To fully 
comprehend their 
models, 
practitioners 
frequently combine 
these several 
explanation kinds. 
To increase 

Parsa et al., 2020; 
Wang et al., 
2022a, 2022b, 
2022c; Love et al., 
2023

Table 2 (continued )

XAI approaches Model patterns Remarks References

openness, equity, 
and trust in AI 
systems, SHAP is a 
flexible framework 
that can be used 
with a variety of ML 
models and data 
formats.

Fuzzy Classifier Adaptive 
Learning 
Capabilities, 
Handling 
Uncertainty, 
Interpretability, 
Fuzzy 
Partitioning, 
Fuzzy 
Aggregation, 
Linguistic 
Variables, Fuzzy 
Inference System, 
Fuzzy Rules, 
Membership 
Functions, and 
Defuzzifier.

Applications in 
wastewater such as 
expert systems, and 
control systems, all 
frequently make use 
of fuzzy classifiers 
since they require 
human judgment or 
domain knowledge 
to make decisions. 
As a result of the 
presence of hazy or 
ambiguous 
information, they 
perform best in 
situations when 
clear, rule-based, or 
probabilistic 
classifiers may not 
be effective but 
helpful tools for 
developing 
interpretable AI 
systems. Fuzzy 
classifiers are an 
important tool for 
creating 
interpretable AI 
systems because 
they provide 
transparency and 
comprehensibility 
in the realm of XAI. 
This is because their 
rules and linguistic 
variables may be 
utilized to describe 
how a decision was 
made.

D’Alterio et al., 
2020; 
Duarte et al., 
2023; 
Love et al., 2023

Gradient- 
weighted 
Class 
Activation 
Mapping 
(Grad-CAM)

Vanilla Grad- 
CAM, Grad- 
CAM++, smooth 
Grad-CAM, Grad- 
CAM with Box, 
Layer-wise Grad- 
CAM, Multi-Class 
Grad-CAM

Each form of Grad- 
CAM has unique 
benefits and 
applications, so 
choosing one to 
employ depends on 
the particular issue 
at hand as well as 
one’s tolerance for 
visual detail and 
noise. DL can be 
better understood 
and trusted by using 
these techniques, 
which act as useful 
explanation and 
interpretation tools.

Gireesh et al., 
2023; Akkajit 
et al., 2023; Love 
et al., 2023

Layer-wise 
Relevance 
Propagation 
(LRP)

Epsilon-LRP, 
Alpha-Beta LRP, 
Deeplift, Layer- 
wise Scaling LRP, 
PatternNet and 
Pattern 
Attribution, 
Sequential LRP, 
Layer-wise 
Relevance 
Visualization

The DL architecture 
and level of 
interpretability 
required will 
determine which 
LRP variation is 
best. In applications 
of WWTP such as 
process, energy, 
and autonomous 
systems, where 
model openness and 

Montavon et al., 
2019; 
Love et al., 2023

(continued on next page)
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distributed XAI models that could streamline the fast processing of large 
data sets while maintaining high accuracy and reliability in the inter
pretation of results, enabling operators to quickly react to changes in 
system behaviour. 

RQ: What are the methods for real-time deploying of XAI in WWTPs?

Response: Methods such as edge computing, hybrid systems, and 
real-time visualizations can be used effectively for the real-time 
deployment of XAI in WWTPs. In edge computing, it can be assured to 
deploy XAI directly on the local hardware where the data is generated. 
Through edge computing the data generated from the sensors and other 
monitoring devices of WWTP is processed locally. This allows XAI 
models to generate immediate predictions and explanations about how 
the input variables are related to desired process outcomes. It is also well 
known that some of the XAI models are quite complex and often take 
more time to process real-time data. This marks the need for developing 
an approach that can quickly analyze and respond to real-time data. For 
the smooth deployment of this technology, it is better to choose very 
simplified or streamlined XAI models that are particularly designed for 
quick decision-making without compromising too much on accuracy or 
interpretability. These models focus on providing explanations that are 
concise and relevant to the operator’s needs. For example, if we consider 
the parameter pH, the streamlined XAI models give a simple explanation 
to increase the chemical dosage considering the pH level has dropped 
below the required range for optimal performance. This way, by 
focusing on the key variables like pH level and flow rates, the system 
gives a clear explanation about how these variables influenced the de
cision. This will help the operator take quick action without needing to 
know every tiny detail about how the model arrived at such a decision. 

Table 2 (continued )

XAI approaches Model patterns Remarks References

accountability are 
essential, LRP 
approaches are very 
helpful for 
explaining deep 
learning models. 
Users can learn 
more about a 
model’s 
information 
processing methods 
and the features 
that have the most 
effects on how it 
makes decisions by 
examining these 
LRP versions.

Local 
Interpretable 
Model- 
agnostic 
Explanations 
(LIME)

Tabular Data 
LIME, Time Series 
LIME, Regression 
LIME, 
Multimodal 
LIME, Time Series 
Forecasting LIME, 
Structured Data 
LIME

The type of LIME to 
employ will depend 
on the specific 
scenario, the kind of 
data, and the ML 
model being 
utilized. LIME is a 
flexible XAI tool. It 
offers a method for 
producing locally 
precise and 
comprehensible 
explanations for 
model predictions, 
making it simpler 
for users to 
comprehend, 
believe in, and 
perhaps even 
troubleshoot 
complex models.

Davagdorj et al., 
2021; Love et al., 
2023; Zahra et al., 
2023a, 2023b

Table 3 
Comparison of modeling strategies in WWTP.

Modeling Advantages Limitations

Mechanistic •Established field 
with computer 
assistance and 
established models 
•Improved 
forecasting in 
novel situations 
•Adaptable to a 
scaled perspective 
in both space and 
time

•Needs an in-depth 
understanding of 
the underlying 
mechanism. 
•Mathematically 
demanding and 
can involve 
complex 
equations. 
•Numerous 
factors, and 
solvers.

Meirlaen et al., 
2001; Sheik et al., 
2023b; Monje 
et al., 2022; 
Ramin et al., 
2022

Empirical •Extremely low- 
cost 
computationally 
•Doesn’t call for 
specialized 
knowledge 
•Not limited to 
substantial 
datasets

•It is necessary to 
develop 
appropriate data 
features for 
efficient learning. 
•Can only 
symbolize a small 
subset of I/O 
connections. 
•Offers no 
understanding of 
how things work.

Raduly et al., 
2004; Poorasgari 
and Örmeci, 
2022; Langeveld 
et al., 2017

Machine 
learning

•Cost reductions 
and better 
efficiency may 
result from this. 
•This facilitates 
data-driven 
decision-making, 
which can result in 
choices that are 
more precise and 
knowledgeable. 
•It is useful for jobs 
like predictive 
maintenance, 
picture and speech 
recognition, and 
fraud detection.

•Incomplete, 
skewed, or noisy 
data might 
produce poor 
conclusions and 
erroneous 
forecasts. 
•Overfitting is 
reduced through 
the use of 
regularization 
procedures. 
•Effective 
generalization 
might vary based 
on the data and 
algorithm used.

Guo et al., 2015; 
Singh et al., 2022; 
Sheik et al., 
2024a; 
Torregrossa et al., 
2018; Ly et al., 
2022

Deep learning •Not reliant on 
choosing particular 
characteristics and 
outputs (may make 
use of process data 
that is readily 
available). 
•I/O may be 
continuous or 
categorical.

•Offers no 
understanding of 
how things work. 
•There are many 
parameters and 
hyper-parameters 
to tune, which 
calls for expertise. 
•Learning 
necessitates big 
datasets.

Zhang et al., 
2023a, 2023b, 
2023c; Alvi et al., 
2023; Li et al., 
2022

Reinforcement 
learning

•It can be used in 
domains like 
resource 
allocation, 
recommendation 
systems, and stock 
trading. 
•RL is used to solve 
optimum control- 
related problems. 
•For multi- 
objective 
optimization 
issues, it is helpful.

•In real-world 
scenarios, this can 
be too expensive or 
impracticable. 
•Policies that are 
not ideal can result 
from inadequate 
exploration. 
•Selecting the 
right 
reinforcement 
learning algorithm 
for a given task 
might be difficult.

Aponte-Rengifo 
et al., 2023; Yang 
et al., 2021; Zhou 
et al., 2022

Explainable AI •By revealing how 
AI systems make 
decisions, XAI 
helps to build trust 
in those systems. 
•Developers and 
data scientists may 
find and fix 

•The 
interpretability 
and efficacy of AI 
models are 
frequently trade- 
offs. 
•For certain usage 
circumstances, 

Ba-Alawi et al., 
2023a; Xu et al., 
2023a, 2023b; 
Duarte et al., 
2023; Bourahla 
and Bourahla, 
2022

(continued on next page)

A.G. Sheik et al.                                                                                                                                                                                                                                 Engineering Applications of Artiϧcial Intelligence 144 (2025) 110132 

18 



Further, if XAI models are able to provide real-time explanations, the 
operators who are working in a highly dynamic and complex environ
ment must be in a state to comprehend the explanations. Real-time 
visualization tools help operators to interpret and comprehend the 
model outputs by converting explanations into easily understandable 
intuitive insights. For example, in a typical WWTP control room, a 
visualization dashboard shows either the increase or decrease in DO 
level alongside a real-time explanation of why the AI model recom
mends increasing or decreasing aeration levels in a treatment tank. In 
this way, it is helpful for the operator to see both the decision and the 
explanation in an easily understandable format, thereby aiding opera
tors confidently implement the informed decisions obtained from XAI 
models. All the above methods contribute to real-time smooth deploy
ment of XAI in WWTPs in an efficient and effective manner. 

RQ: How can XAI models handle noisy and incomplete data in 
WWTPs?

Response: There are also situations where the interpretations of the 
system are inaccurate. This can happen due to various reasons, such as 
noise, incompleteness, or bias in the training data, which might result in 
inaccurate interpretations and subpar model performance. To avoid data 
discrepancies due to noise and incompleteness associated with the data, 
it is recommended to create more robust XAI models (Random Forest 
and Gradient Boosting (RFGB), Robust Regression Models, Shapley 
Additive Explanations (SHAP) with Noise-Resilient Models, etc.) that 
can handle data uncertainty and unreliability situations without losing 
accuracy. Models of this type could help us provide explanations about 
which part of the data is impacted by noise, thus allowing operators to 
rely on the model’s recommendations. On the other hand, it is recom
mended to develop appropriate data preprocessing techniques that help 
in cleaning the data or input missing data using soft sensing techniques 
based on the previous trends (historical data) available. This would lead 
to reliable predictions and explanations that can be trusted by decision- 
makers in WWTPs. The level of uncertainty in the predictions due to data 
discrepancies occurring owing to noise and incompleteness can be 
explained using uncertainty-aware XAI models (Bayesian Neural Net
works (BNNs) and Gaussian Processes (GP)). These models help not only 
in providing insights about the level of uncertainty associated with their 
predictions but also offer explanations degree of confidence that should 
be placed in the prediction made. This could help operators understand 
how much trust they can place in the prediction before making an 
informed decision, especially when dealing with noisy or incomplete 
data.

Inadequate data preprocessing procedures, such as missing values or 
inaccurate feature scaling, can also lead to inaccuracies in the func
tioning of the model’s logic. This could therefore complicate the accu
racy of reasoning of conclusions (Ba-Alawi et al., 2023b). In cases when 

certain categories or results are not adequately represented in the data, 
the explanations may excessively emphasize more common outcomes, 
therefore reducing the interpretability or generalisability of the model 
(Belle, and Papantonis, 2021a, 2021b). Models of great complexity such 
as deep neural networks or ensemble techniques (e.g., RF, gradient 
boosting) are generally challenging to interpret. Comprehending the 
internal mechanisms of these models necessitates the use of specialized 
methodologies such as LIME and SHAP to elucidate specific choices 
(Gilpin et al., 2018). More straightforward models such as linear 
regression and decision trees are easily understandable, but they may 
not possess the same level of predictive capability in comparison to other 
complex models. Presenting local explanations, which explain a single 
prediction, as opposed to global explanations, which explain the overall 
behaviour of the model, can be challenging. Local interpretations may 
logically conflict with global explanations, hence introducing com
plexities in the understanding of the model behaviour (Love et al., 
2023). This demands the need for mastery of the subject matter to be 
critical when integrating AI systems into wastewater treatment plants 
(WWTPs) to ensure that operators can accurately interpret AI-driven 
insights and make informed decisions. Without a strong grasp of the 
subject matter, it may be difficult to fully leverage the capabilities of AI 
systems in WWTP operations. Besides this, there can also be challenges 
related to how XAI can be scaled for real-time monitoring in large-scale 
plants, or how data fusion techniques can handle the growing influx of 
IoT data while maintaining interpretability.

Real-time WWTPs need to adjust the dynamic circumstances that 
occur in the plant such as production changes and machine malfunc
tions, and accordingly, the explainable artificial intelligence models 
must update their explanations. While scaling the technology of XAI in 
real-time monitoring large-scale WWTPs, there can arise several tech
nical challenges pertaining to developing efficient algorithms for real- 
time use, establishing distributed computation, data prioritization 
before it is being processed to working algorithms, and deploying scal
able XAI models. Ideally, large-scale WWTPs generate enormous 
amounts of timely data, and it is crucial that AI algorithms efficiently 
process and analyze this data to provide meaningful explanations. The 
complexities associated with the existing XAI algorithms may not be 
able to keep pace with the rapid data influx, resulting in slow or inad
equate responses. This necessitates either the development of efficient 
algorithms or the improvising the existing algorithms that can swiftly 
analyze incoming data and provide immediate explanations for DM. On 
the other hand, to enhance the speed and efficiency of XAI algorithms in 
processing the vast volumes of data that are continuously generated by 
numerous sensors and equipment, it is necessary to implement distrib
uted computing systems in large-scale WWTPs. This can offer solutions 
by spreading the computational workload across multiple machines or 
processing units. It is inevitably evident that data prioritization and 
unified model infrastructure are important for the efficient scalability of 
XAI in large plants. The advice is kept over emphasizing prioritizing 
critical data points for explanations and interpretability that reflects the 
anomalies or system failures rather than analysing all data in detail. At 
the same time, an underlying unified model infrastructure must be 
designed to scale as the WWTPs expand with new equipment, additional 
processing stages, increased processing capacity, or when processes 
become more complex promptly. The approach can aid XAI models to 
scale with these changes, ensuring that new data sources are incorpo
rated seamlessly, making it easier to monitor new systems without 
overloading the existing infrastructure. This combination of data pri
oritization and scalable infrastructure allows XAI to deliver timely 
relevant insights, even in growing large-scale WWTP operations.

The knowing of how data fusion techniques can handle the growing 
influx of IoT data while maintaining interpretability is also important in 
the context of establishing XAI in WWTPs. IoT devices produce a wide 
variety of data types, including structured, unstructured, time series, 
spatial, and categorical data. Fusing such disparate types of data while 
maintaining coherence and interpretability is complex. Advanced data 

Table 3 (continued )

Modeling Advantages Limitations 

mistakes in AI 
models and 
datasets with the 
aid of XAI. 
•XAI can direct 
maintenance or 
repair procedures 
and assist in 
determining the 
root causes of 
problems. 
•Resulting in more 
thoughtful choices 
and behaviours.

incomplete 
explanations may 
be deceptive or 
insufficient. 
•This may result in 
a lack of clarity 
and consistency 
while adopting 
and assessing XAI 
solutions. 
•AI methods might 
have trouble 
providing coherent 
explanations for 
deep neural 
networks.
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fusion techniques, such as DL, are often complex and behave as black- 
box models, which complicates interpretability. This underlies 
choosing data fusion techniques such as hierarchical fusion, sensor-level 
fusion, context-aware fusion, and feature-level fusion that contribute to 
both scalability and interpretability. These fusion techniques offer a 
more transparent way to combine different types of data and extract 
meaningful insights. Hierarchical fusion involves combining data at 
different levels of abstraction, allowing for a more holistic view of the 
information. Sensor-level fusion integrates data from multiple sensors 
and tries to reduce redundancy and noise before presenting the data to 
AI models. Context-aware fusion takes into account the surrounding 
environment to enhance the overall understanding of the data. Feature 
level fusion combines specific features from different datasets to create a 
more comprehensive representation of the information. By utilizing 
these techniques, it can be ensured that despite the growing influx of IoT 
data, the insights remain interpretable and relevant.

Large WWTPs typically consist of complex processes in which it 
necessitates controlling the critical process variables to ensure smooth 
and efficient operation without any process disruptions. Integrating 
reinforcement learning can help mitigate the risks associated with un
expected process disturbances by allowing the system to adapt and learn 
from past experiences. This adaptive learning approach enables large 
plants to make real-time adjustments based on changing conditions, 
ultimately improving overall performance and reducing downtime. For 
efficient performance through reinforcement learning, it also demands 
minimizing the severity of the biases in the data. The data imperfections 
can allow ML models to develop biases, making the models overestimate 
the water quality parameters and potentially leading to inappropriate 
control or actions. The biased ML models might incorrectly favour 
certain processes specific to WWTP or fail to detect less frequent but 
important anomalies, ultimately leading to uncontrolled inefficiencies 
in the WWTP. Therefore, it is crucial to thoroughly analyze and clean the 
data before implementing it into the machine learning algorithms. 
Regularly auditing the data, ensuring diversity in data collection, and 
applying unbiased techniques can reduce these biases. By ensuring that 
the data is accurate and free from biases, the system can effectively learn 
and adapt to inevitable disturbances that occur in the process, leading to 
more reliable and efficient operations. In summary, integrating RL into 
process control and addressing potential biases in ML models are 
essential for building robust, reliable, and fair AI systems in WWTP 
applications. In conclusion, by overcoming the aforementioned chal
lenges with the suggested scope of improvements, and by exploring 
future research directions, XAI holds great potential for implementation 
in WWTPs.

5. Conclusion

The advanced ML models are excelling in energy, water, and power 
system applications. However, consumers and water specialists could 
have difficulty understanding such algorithms if they don’t completely 
comprehend the working procedure and the rationale behind the pre
diction of outputs. Consequently, the objective of XAI is to make ML/DL 
models more credible and understandable. In order to achieve this, XAI 
focuses on developing techniques and tools that can provide explana
tions for the decisions made by ML and DL models. Over the past few 
years, XAI has gained considerable attention, facilitating researchers to 
increasingly incorporate its application into projects within the WWTP 
and WS. This research review highlights intriguing patterns in the field’s 
recent work and could provide insight into the WWTP scenarios in 
which XAI approaches are applied. Even though XAI can look easier to 
apply in reality, there are still issues to consider when using it to its 
fullest potential to improve user’s confidence. Besides having challenges 
in implementing XAI, the authors think that XAI approaches have a great 
deal of promise to explain the choices made by ML models when they are 
employed in the field of WWTP. Moreover, XAI has the capacity to meet 
the requirements of environmental quality researchers seeking 

comprehensive process assessment. In addition to various techniques 
available for explainability within XAI, the literature highlights SHAP 
and LIME as the predominant methods utilized. These methods are 
preferred for their efficacy in clarifying the processes and mechanisms 
by which models function in predicting process results. The difficulties 
and restrictions associated with embracing and applying XAI techniques 
in the realm of WWTP are significant additional topics addressed in this 
work. Furthermore, future research objectives and possible applications 
pertaining to WWTP and XAI were presented. Among these are WWTP 
monitoring, process efficiency, and effective process management and 
control. The advantages XAI possesses, like providing transparency in 
explanations for improving informed DM process, might speed up its 
integration in a variety of industrial applications. Furthermore, IoT 
integration with XAI presents promising avenues for addressing issues 
associated with predictive maintenance and anomaly detection, partic
ularly in scenarios involving sensor failures. By combining IoT sensor 
data with XAI capabilities, it becomes feasible to predict and mitigate 
potential equipment malfunctions or irregularities more effectively, 
thereby enhancing system reliability and operational efficiency. In 
summary, this work offers numerous instances and prospects of how XAI 
might be helpful in the field of WWTP.
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What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder 
perspective on XAI and a conceptual model guiding interdisciplinary XAI research. 
Artif. Intell. 296, 103473. https://doi.org/10.1016/j.artint.2021.103473.

Liu, Y., Ramin, P., Flores-Alsina, X., Gernaey, K.V., 2023. Transforming data into 
actionable knowledge for fault detection, diagnosis and prognosis in urban 
wastewater systems with AI techniques: a mini-review. Process Saf. Environ. Protect. 
172, 501–512.

Lipton, Z.C., 2018. The mythos of model interpretability: in machine learning, the 
concept of interpretability is both important and slippery. Quest 16 (3), 31–57. 
https://doi.org/10.1145/3236386.3241340.

Lowe, M., Qin, R., Mao, X., 2022. A review on machine learning, artificial intelligence, 
and smart technology in water treatment and monitoring. Water 14 (9), 1384.

Love, P.E., Fang, W., Matthews, J., Porter, S., Luo, H., Ding, L., 2023. Explainable 
artificial intelligence (XAI): precepts, models, and opportunities for research in 
construction. Adv. Eng. Inf. 57, 102024.

Ly, Q.V., Truong, V.H., Ji, B., Nguyen, X.C., Cho, K.H., Ngo, H.H., Zhang, Z., 2022. 
Exploring potential machine learning application based on big data for prediction of 
wastewater quality from different full-scale wastewater treatment plants. Sci. of the 
Tot. Environ. Times 832, 154930.

Li, X., Gong, G., 2019. Predictive control of slurry pressure balance in shield tunneling 
using diagonal recurrent neural network and evolved particle swarm optimization. 
Autom. ConStruct. 107, 102928.

Li, K., Duan, H., Liu, L., Qiu, R., van den Akker, B., Ni, B.J., Ye, L., 2022. An integrated 
first principal and deep learning approach for modeling nitrous oxide emissions from 
wastewater treatment plants. Environ. Sci. Technol. 56 (4), 2816–2826.

Machlev, R., Heistrene, L., Perl, M., Levy, K.Y., Belikov, J., Mannor, S., Levron, Y., 2022. 
Explainable Artificial Intelligence (XAI) techniques for energy and power systems: 
review, challenges and opportunities. Ener. and AI 9, 100169.

Mannina, G., Ekama, G., Caniani, D., Cosenza, A., Esposito, G., Gori, R., 
GarridoBaserba, M., Rosso, D., Olsson, G., 2016. Greenhouse gases from wastewater 
treatment–A review of modelling tools. Sci. Total Environ. 551, 254–270.

Meirlaen, J., Huyghebaert, B., Sforzi, F., Benedetti, L., Vanrolleghem, P., 2001. Fast, 
simultaneous simulation of the integrated urban wastewater system using 
mechanistic surrogate models. Water Sci. Technol. 43 (7), 301–309.

Mohammadi, E., Stokholm-Bjerregaard, M., Hansen, A.A., Nielsen, P.H., Ortiz- 
Arroyo, D., Durdevic, P., 2024. Deep learning based simulators for the phosphorus 

A.G. Sheik et al.                                                                                                                                                                                                                                 Engineering Applications of Artiϧcial Intelligence 144 (2025) 110132 

21 

http://refhub.elsevier.com/S0952-1976(25)00132-0/sref10
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref10
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref10
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref11
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref11
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref11
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref12
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref12
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref12
https://doi.org/10.3389/fdata.2021.688969
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref14
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref14
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref14
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref14
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref15
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref15
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref15
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref15
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref16
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref16
https://doi.org/10.3389/fdata.2021.688969
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref19
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref19
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref19
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref20
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref20
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref21
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref21
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref21
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref22
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref22
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref22
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref23
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref23
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref23
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref24
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref24
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref18
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref18
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref25
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref25
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref25
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref26
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref26
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref26
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref27
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref27
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref27
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref28
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref28
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref28
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref29
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref29
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref29
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref29
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref30
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref30
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref31
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref31
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref31
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref32
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref32
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref32
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref33
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref33
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref33
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref34
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref34
https://doi.org/10.1016/j.inffus.2018.12.001
https://doi.org/10.1016/j.inffus.2018.12.001
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref36
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref36
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref36
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref38
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref38
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref39
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref39
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref40
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref40
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref41
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref41
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref42
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref42
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref42
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref43
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref43
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref43
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref44
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref44
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref44
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref45
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref45
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref45
https://doi.org/10.1109/ACCESS.2023.3236575
https://doi.org/10.1109/ACCESS.2023.3236575
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref47
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref47
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref47
https://doi.org/10.1016/j.eswa.2013.06.061
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref49
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref49
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref49
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref50
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref50
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref50
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref51
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref51
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref51
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref52
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref52
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref52
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref52
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref53
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref53
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref53
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref54
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref54
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref54
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref55
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref55
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref55
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref56
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref56
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref57
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref57
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref57
https://doi.org/10.1016/j.artint.2021.103473
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref59
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref59
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref59
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref59
https://doi.org/10.1145/3236386.3241340
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref61
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref61
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref62
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref62
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref62
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref63
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref63
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref63
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref63
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref64
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref64
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref64
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref65
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref65
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref65
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref66
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref66
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref66
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref67
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref67
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref67
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref68
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref68
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref68
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref69
http://refhub.elsevier.com/S0952-1976(25)00132-0/sref69


removal process control in wastewater treatment via deep reinforcement learning 
algorithms. Eng. Appl. Artif. Intell. 133, 107992.

Monje, V., Owsianiak, M., Junicke, H., Kjellberg, K., Gernaey, K.V., Flores-Alsina, X., 
2022. Economic, technical, and environmental evaluation of retrofitting scenarios in 
a full-scale industrial wastewater treatment system. Water Res. 223, 118997.

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R., 2019. Layer-wise 
relevance propagation: an overview. Explainable AI: inter. Expla. and Visual. Deep 
Lear 193–209.

Mougen, C., Kanellos, G., Gottron, T., 2021. Desiderata for Explainable AI in Statistical 
Production Systems of the European Central Bank. https://doi.org/10.48550/ 
arXiv.2107.08045. Available at: 

Murray, B.J., 2021. Explainable Data Fusion. Doctoral Thesis, May, University of 
Missouri, MI. Available at: https://mospace.umsystem.edu/xmlui/handle/10 
355/85805.

Oh, S., Kim, Y., 2021. Machine learning application reveal dynamic interaction of 
polyphosphate-accumulating organism in full-scale wastewater treatment plant. J. of 
Wat. Process Eng. 44, 102417.

Park, J., Lee, W.H., Kim, K.T., Park, C.Y., Lee, S., Heo, T.Y., 2022a. Interpretation of 
ensemble learning to predict water quality using explainable artificial intelligence. 
Sci. Total Environ. 832, 155070.

Park, J., Ahn, J., Kim, J., Yoon, Y., Park, J., 2022b. Prediction and interpretation of water 
quality recovery after a disturbance in a water treatment system using artificial 
intelligence. Water (The Hague) 14 (15), 2423.
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