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ARTICLE INFO ABSTRACT

Keywords: Explainable artificial intelligence (XAI) is an interactive platform that assists users in comprehending the de-
Explainable artificial intelligence cisions and predictions made by machine learning (ML) models. This allows users to enhance their knowledge of
Trustworthiness of artificial intelligence ML models and their functioning, which not only helps in mitigating bias and errors but also aids in improving
Macmne'leam}ng user decision-making confidence. XAI, due to its ability to increase the model output interpretation, has gained
Process modeling and control . e L. . L. . . .
Smart water engineering significant attention in biological wastewater treatment plants (WWTPs). This is owing, in particular, to the fact
Wastewater treatment plants that it facilitates the experts in steering knowledge about the predictions and decisions made by ML, thus
guaranteeing that the model decisions are fair and unbiased. ML has made amazing advances in recent years,
thanks to its exponential growth in possessing the power to process massive volumes of data, allowing it to be
widely embraced in WWTPs. This review seeks to illustrate the potential of XAI for WWTP applications such as
process modeling and control, soft sensing, fusion of data, and the internet of things, and fill the knowledge gap
by thoroughly introducing XAI techniques and their use in smart wastewater engineering. Overall, the features of
XAl can aid in establishing reliable and efficient water resource management, which is quintessential to
achieving environmental sustainability. It is envisioned that the prospects offered would spark new lines of study,
helping to reduce the current skepticism and apprehension about ML adoption and integration in WWTP.

from industries through numerous interconnected processes such as
chemical breakdown treatments, filtration, clarification, and biological

1. Introduction processes. They have the capacity to treat harmful substances present in
water so that the water can either be safely returned to the environment

The accessibility of clean water is regarded as being of utmost or reused. This clearly marks the importance of maintaining and man-
importance around the world because of the growing world population aging these treatment plants to ensure the efficient and effective treat-
and the consequent rise in the influence of pollutants on the climate, as  ment of wastewater. Additionally, efforts have been made to reform the
well as the conversion of land into freshwater habitats (Sagan et al., waste management procedures so that they are more lucrative and
2020). Contamination of the waters is caused mostly by both inorganic environmentally friendly through the use of advanced technologies. For
and organic residue, sediments, radioactive chemicals, effluents, sewers, the WWTP process to be effective in terms of cost and operations,
and toxic metals (Dubey et al., 2015). Indeed, prompt sewage treatment modeling and optimizing are of utmost importance, which are usually
to clean up polluted water is necessary in order to meet emission reg- carried out by “regression” and “time series” analysis (Shojaeimehr
ulations (Yu et al., 2018). Recent breakthroughs in modeling techniques etal., 2014). The advantages of these methods lie in their relative ease of
to support the related systems have led to dramatic gains in biological use and practicality in application. However, it is important to consider
wastewater treatment plants (WWTPs). The WWTPs are large and their very limited predictive abilities under certain circumstances,

complex systems facilitating the treatment of wastewater generated
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Nomenclature

Al Artificial intelligence

ASM Activated sludge model

ADM Anaerobic digestion model
BSM Benchmark simulation model
BOD Biochemical Oxygen Demand

BiLSTM Bidirectional long short-term memory
COD Chemical oxygen demand

Chl-a Chlorophyll a

DM Decision making

DL Deep learning

DT Decision tree

DNN Deep neural network

EQ Effluent quality

GAO Glycogen-accumulating organisms
IoT Internet of Things

LR Linear regression

LSTM Long short-term memory

ML Machine learning

MNN Mechanical Neural Network
MAPE  Mean absolute percentage error
MSE Mean square error

MAE Mean absolute error

RMSE Root mean square error

PAO Phosphorus-accumulating organisms
RF Random forest

SVM Support vector machine

SVRL Regression with the linear kernel
SVI Sludge Volume Index

RL Reinforcement learning

RQ Research questions

R2 Coefficient of determination
RNN Recurrent Neural Networks

RBF Radial Basis Function

TSS Total suspended solids

TN Total nitrogen

TP Total phosphorous

TKN Total Kjeldahl Nitrogen

WWTP  Wastewater treatment plant

wWQ Water quality

ww Wastewater

WS Water Sector

XAI Explainable artificial intelligence
XGB Xtreme gradient boost

especially when non-linear patterns and a lot of noisy data are available
(Rajaee et al., 2019). The underlying fact might be due to the complex
relationships between the variables and high variability in the data,
making it difficult to capture the data behavioural patterns. As a result of
this fact, this significant interest leads the researchers to pursue alter-
native approaches in which the processes are integrated with machine
learning (ML) and deep learning (DL) models for capturing data
behavioural patterns, thereby providing the platform for more accurate
predictions (Liu et al., 2023). The latest advancement of ML has resulted
in significant advancements in the water sector (WS) such as capturing
big data, pattern recognition, intelligent search, and creating
human-computer interfaces. These features of ML/DL technology will
have a significant impact on addressing the complexities that are
generated in the wastewater (WW), and water industries (Singh et al.,
2022). With the application of ML/DL models, one can foresee that the
water and WW industries will have the potential to improve their effi-
cient water resource handling techniques. In the context of WWTPs,
designing an efficient process monitoring system ensures these plants
function smoothly even under disturbances that occur due to fluctuating
flow and load conditions. This is ensured when wastewater after treat-
ment meets strict emission standards. Also, the available historical data
generated from the process and ML techniques can be used to create
effective WWTP process monitoring systems (Khurshid and Pani, 202.3;
Ismail et al., 2021). Safeer et al. (2022) provide a comprehensive
overview of Al technologies used to determine source water quality
(WQ), coagulation/flocculation, disinfection, membrane filtration,
desalination, modeling WWTPs, membrane fouling prediction, heavy
metal removal, and biological oxygen demand (BOD)/chemical oxygen
demand (COD) monitoring. In one of the reviews, it has also emphasized
that despite the success in control, optimization, and modeling achieved
with the AI methods incorporated with the Internet of Things (IoT) and
smart sensors, there have been consistent and widespread major prob-
lems and challenges in treatment and monitoring in WWTP (Lowe et al.,
2022). The abbreviations used in this manuscript are detailed in the
nomenclature section.

In recent days, to leverage the advantage of Al over process in-
dustries, a significant step has been made by data scientists by creating
better classifications and modifications in ML models as an enroute to-
wards DL with hybrid combination techniques. In a few instances, these

DL techniques appear to be more effective, noise-resistant, and accurate
than conventional models. The underlying problem with such models,
despite their obvious effectiveness, is that it may not be clear how or
why they make particular conclusions or how they handle actual data.
This makes water professionals not to trust over the conclusions
generated from the DL models unless there are proper or reliable
interpretable explanations. This leads to factors for reducing the use-
fulness of DL models created by modifying and updating the existing ML
models. This challenge is particularly noticeable in circumstances when
a high level of reliability is required, which is typical in the WS. With the
expanded range of computing WW systems and the fact that it requires
better predictability for a greater variety of datasets, DL has recently
achieved significant advancements. The input data in this DL procedure
will train independently using convolutional neural networks (CNN),
long short-term memory (LSTM), bidirectional LSTM, support vector
regression (SVR), deep feed-forward networks (DFEN), etc. According to
Singh et al., 2022); Sheik et al., 2024c. Three components known as data
pre-processing, feature extraction and recognition, and model optimi-
zation make up DL models (Ning et al., 2020). The ML algorithm was
employed to force the user to decide regarding their water processes, but
individuals were unaware of the ML’s output or the process by which it
arrived at its conclusion. This problem has prompted the development of
new methods and ideas over the past few years to make ML/DL models
more comprehensible and hence increase the quality of their output. The
term “explainable artificial intelligence” (XAI) is used to refer to this
idea in the scientific community (Gunning et al., 2019). In order to
maintain the superior performance and precision of ML/DL models, XAI
helps scientists, developers, experts in the field, and users better un-
derstand exactly how the models work inside. This way it creates the
possibility for humans to retain the intellectual oversight on the methods
adopted by these models to achieve the desired output. The feature of
understanding the working process of ML models helps users to imple-
ment reliable decision-making (DM) on the process systems.

In the literature, several XAI methods are usually used with ML/DL
models (Gupta et al., 2022; Ba-Alawi et al., 2023a, 2023b, 2023c). The
practical use of XAI in the WW and water domain has only started. Fig. 1
(A) describes the modeling road path from 1960 to 2020 in WWTP. It
depicts the modeling roadmap from mathematical modeling, computa-
tional fluid dynamics, and the application of advanced controllers to
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Fig. 1. (A) The technological advancement path for

data-driven modeling (ML, DL, and XAI). Fig. 1(B) illustrates the com-
parison of conventional Al and XAl applications on WWTP which depicts
the concepts of traditional Al and XAI and how these models will help
decision-making. When compared to mechanistic models (e.g., BSM1,
BSM2) (Sheik et al., 2023), the advantages of ML/DL-based WWTP
process modeling include (a) shorter execution time, (b) no requirement
for multi-disciplinary knowledge related to biokinetics (enzymatic re-
actions), microbiome (types of microorganisms), heat/mass transfer,
and (c) avoidance of model recalibration if trained on large datasets.
Although a wide range of regression and classification models have been
developed to predict biogas yield, process stability parameters, and
effluent quality indicators (El-Rawy et al., 2021; Ly et al., 2022), the
researchers are yet skeptical due to the black-box nature of ML tech-
niques. There are two kinds of ML techniques: (I) black-box ML and (II)
explainable ML which is comparable to white-box, with the latter
seeking to provide a deeper comprehension of the functional reliance of
the output on the input. It should be noted that the ML scientific com-
munity supports the use of explainable (or interpretable) ML in all sce-
narios. Several recent studies on industrial process modeling have
proved the benefits of ML combined with numerous explainability
metrics such as feature importance testing, partial dependence analysis,
and so on (Wang et al., 2022b; Zhang et al., 2023a, 2023b, 2023c; Wang
et al.,, 2021; Park et al., 2022a, 2022b). The investigation’s current
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WWTP, and (B) Concepts of XAI for WWTP applications.

inquiry question is, “What is XAl in WS in the context of quality
assessment, bias risk, and data fusion?” As a result, the authors suggest a
systematic assessment of the available literature which attempts to
provide information on XAI in WS and to assist scholars in identifying
present gaps and solutions. Furthermore, this work delivers a
cutting-edge contribution by creating a comprehensive map of XAI in
the water treatment sector to create a coherent taxonomy system, aiding
users with a thorough understanding of XAI in WWTPs. The bibliometric
evaluation presented in section 2 was utilized to reorganize and sum-
marize the findings of earlier studies, as well as the general knowledge
picture, by offering a mapping analysis for the research stream of XAI
usage in the WS (Zhang et al., 2023).

The purpose of this research is to assist in spotlighting the signifi-
cance of XAI in the wastewater treatment division and aiding to
contribute towards a more sustainable and environmentally friendly
approach to managing water resources in the WWTP sector. Previous
studies of XAI models for WW processes focused on the translation from
advancement to practice (Zahra et al., 2023a, 2023b), and the applica-
tion of data-driven models in general (Singh et al., 2022). Recent deep
learning reviews look at the use of XAl in urban water supply and sewage
infrastructure (Liu et al., 2023), as well as in drinking water process
systems (Alam et al., 2022) and membrane-based treatment systems
(Jawad et al., 2021). However, the methodologies and applications of
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XAI devised in this innovative field of study on WWTP have not been
thoroughly examined regarding the positive and negative aspects. To the
best of our knowledge, there are currently limited comprehensive arti-
cles on XAl-based models and their applications on WWTPs. Overall, in
this review, we explore the potential of XAI techniques to enhance the
understanding of the ML model’s working mechanisms and to improve
the DM process in the context of achieving optimal design and control
over WWTPs. The scope of the review paper covers.

e An up-to-date comprehensive review of the explainable Al models
and their application into WWTPs.

e Research questions on applying XAI in WWTPs and in-depth analysis
on literature search.

e The fusion of XAI techniques in WWTPs with a focus on process
modeling, data handling, control systems, soft sensing, and the
Internet of Things.

e Bridging gaps and unlocking potentials of XAI in the usage of
WWTPs.

e Discusses several challenges and reveals future trends for XAI
research in WWTPs.

2. Bibliographic analysis

Following a keyword search on Google Scholar (GS), PUBMED (PM),
Scopus (SP), Science Direct (SD), and Web of Science (WofS) databases,
the statistics of publications have been collected and reported by the
authors on the topics XAI and WWTP, and ML and WWTP. XAI and
Wastewater treatment: GS (18200), SD (2627), PM (D’Alterio et al.,
2020), SP (Ba-Alawi et al., 2023a), and WofS (Alvi et al., 2022). ML and
Wastewater treatment: GS (25000), SD (7680), SP (990), PM (433), and
WofS (638). The statistical precis of XAl on WWTP is illustrated in Fig. 2
(A). In summary, the number of publications for the provided keywords
varied across the different databases. However, there are several articles
from the provided references that discuss topics relevant to the opti-
mization of WWTP, the use of Al, ML/DL in process systems, and XAI
application in process systems. In general, the methodology adopted for
bibliographic analysis served the purpose of this review. The re006Ca-
tive and generic keywords used in this study were: Al XAI, and
WWTP.” Furthermore, the Scopus database, which is one of the most
trustworthy scientific databases has been chosen as this study’s primary
data source. Information was gathered between 2014 and 2024, and
each keyword has been checked individually. A maximum of less than
50 "new’’ OR "highly cited” articles were retrieved and translated to
CSV files for each round of search. VOS viewer, a freely available and
freely accessible bibliometric tool, is used to evaluate information. For
specific topics like XAI in WWTP, there are less than 650 publications in
the period of 2043 to 2024. The initial data mapping result is shown in
Fig. 2(B).

Following the loading of data into VOSviewer, data filtration was
initiated to remove unrelated repetitive keywords (such as paper, study,
etc.), and various combinations of the terms (WW and WS) were merged
and accounted for as one unique term. The research on XAI and WS can
be divided into three groups (colors). Large circles indicate the signifi-
cance and repetition of keywords like WW, different models, and sensors
(XAL WQ, etc.). Furthermore, the closer the distance between two items
the more prominent interactions between two items implying that there
is overlap among two keywords. Overall, the bibliometric analysis tool
provided valuable insights into the current state of research on ML and
XAI in WWTP.

3. Methodology
3.1. Review of XAI in wastewater treatment

As the application of ML/DL spreads and gets intertwined in process
systems design, an emphasis is now put on comprehending about the

Engineering Applications of Artificial Intelligence 144 (2025) 110132

algorithmic DM process. Subsequently, this allows numerous other
fields, organizations, and researchers to focus on the need to change
from emphasizing model correctness to explainability. This represents a
paradigm shift in understanding the degree of accuracy achieved by ML
systems in predicting the process outcomes (Angelov et al., 2021).
Explainability is a critical tool in ensuring the DM process of ML models
and the outcomes that are produced by these models are transparent and
fair. This aids in comprehending the limitations and uncertainties of ML
models in predicting the process outcomes, thereby fostering researchers
the need to develop more reliable, ethical, and logical ML models for
process industries such as WWTP- “A smart infrastructure.” The choice
of methodology to use XAI for a particular problem depends on a
trade-off between model performance and explainability (Arrieta et al.,
2020; Sokol et al., 2022). However, the existing literature emphasizes
that there is not much attention given to explaining the working
methodology of ML models which are integrated with the process sys-
tems, such as WWTP.

In general, there are two categories of ML models namely transparent
and opaque models as shown in Fig. 3(A). The transparent models
sometimes perform poorly and they either underestimate or over-
estimate the state variables of process systems. To avoid this uncer-
tainty, models such as the RF, SVM, CNN, MNN, and RNN are sometimes
employed in place of them. Models can sometimes be highly opaque
representing a black box model making users difficult to comprehend
the working methodology of a model (Rudin, 2019). The black box
model typically requires users to engage in post-hoc explainability ef-
forts to attempt and create possible explanations related to the working
procedures of opaque Al models (Hasenstab et al., 2023). A greater
understanding of the internal working mechanisms and features of an
opaque model will be attained by building proper explainable strategies.
Notably, there are distinct differences between model-agnostic and
model-specific based on the nature of the techniques used to explain
machine learning models in post hoc explainability as shown in Fig. 3
(A). A model-agnostic model works for all models. In this, the techniques
of XAI are to be broadly applicable in a manner adaptable enough to
function only on the basis of connecting a model’s input to its output,
independent of the inherent architecture of the model (Dieber and Kir-
rane, 2020). In contrast, the model-specific models only work for a
specific single or a group of models (Speith, 2022). Also, in this the XAI
techniques frequently capitalize on understanding a particular model
and seek to increase transparency aiming to shed light on how the model
arrives at its prediction of process state variables, making it easier for
users to trust and comprehend the decisions made by the model (Bach
et al., 2015). Tritscher et al. (2020) suggest that through simplification
of a model at first allows users to understand the underlying working
mechanism of the model, which thereby helps ultimately in identifying
the desired data predicting patterns. Starting with a simplified model,
researchers thereafter can progressively plan to enhance and extend the
model through iterations by systematically integrating the additional
variables and complexities. This methodological approach in turn gua-
rantees that the resulting model comprehensively captures all the
phenomenological complexities associated with the working systems.
This way it helps the enhanced iterative ML models in maintaining the
interpretability and thereby resulting in a potent tool for understanding
and making well-informed decisions. The application of ML/DL and RL
models are largely used in terms of publications and practical usages in
the WWTP field according to Alvi et al., 2023); Singh et al., 2022; Croll
et al., 2023. If a model can be understood independently, it is considered
transparent. In contrast, transparency serves as the opposite of a “black
box” (Adadi and Berrada, 2018). According to Gilpin et al. (2018),
interpretability and explainability are capable of delivering in-
terpretations and explanations in a human-understandable way. In the
case of opaque models, they are difficult to interpret necessitating the
post hoc explainability techniques in interpreting the opaque models
after training without degrading their predictive performance (Lipton,
2018; Speith, 2022).
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and their evaluation approaches in WWTP.

Therefore, this review presents the post hoc explainability tech-
niques paving the way to interpret the working procedure of models
rather than directly reporting the application of ML/DL and RL models
onto WWTP. The ontology of the XAI taxonomy with post hoc method
categories are shown in Fig. 3(A). With a high flow of publications
published each year, XAl is expanding tremendously as a field of study
for future application into complex processes such as industrial and
financing sectors (Yang et al., 2022). It’s difficult to evaluate recent XAI
improvements in the WWTP sector. However, the tenets, models, and
post-hoc justifications serve as a foundation for comprehending the
particular features and specifications of XAI in application into WWTPs.
Very few research publications presented the idea of XAI in WWTP
(Wang et al., 2022a, 2022b, 2022c; Wang et al., 2021). However, the
lack of comprehensive studies makes it difficult to assess the true impact
and effectiveness of XAl in the WWTP sector. This review aims to pro-
vide more practical insights and advantages associated with the appli-
cation of XAI in WWTP operations.

3.1.1. Post hoc explainability
Even though the semantic implications of these clauses are similar,
they require various levels of Al before humans will accept them. The

high-level ontology and taxonomy of XAI can be found in the details
below for further information. A transparent model aids in displaying
transparency in the decisions made by the models in predicting the
states of the process systems. The k-nearest neighbors (kNN), decision
trees, rule-based learning, Bayesian networks, and so forth are examples
of typical transparent models (Adadi and Berrada, 2018). These models
frequently produce transparent decisions, but openness alone does not
ensure that a model will be easily understood. One must have the ability
to comprehend the working scenario and the DM process of the models.
This way it aids users in improving the DM process of the models by
modifying the existing model’s programming scripts to predict the
outcomes of any complex process systems such as WWTP. The concep-
tual framework at the basis of the proposed goal is represented in Fig. 3
(B) whereby methods for explainability are built from automatically
induced models using explanators, and these can be evaluated by
employing notions and metrics of WWTP operations. In Fig. 3(B) the
explanation methods generate outputs based on AI model predictions.
These outputs flow into the evaluation approaches, where they are
assessed using key metrics. Feedback arrows from evaluation ap-
proaches go back to the methods, showing the need for continuous
improvement based on evaluation results. User feedback is intertwined
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with the evaluation loop, providing insights into whether explanations
meet practical WWTP needs. The explanation types that are essential in
post hoc explainability can be categorized as below.

e Feature-relevant explanation: This is a concept that can be closely
related to a simplified explanation of the model’s feature influencing
the prediction of the process outcomes. After all potential combi-
nations have been considered, this kind of XAI technique aims to
assess a model’s feature according to its average expected marginal
contribution to the model’s choice for the prediction (Chen et al.,
2019).

Visual explanation: According to Chattopadhay et al. (2018), this
kind of XAI technique is centered on visualization. Therefore, the
interpretation of the prediction or judgment over the input data can
be facilitated by utilizing the family of data visualization tools.
Local explanation: According to Selvaraju et al. (2017), local ex-
planations provide insight into how the model functions in a limited
region surrounding a particular instance of interest. The region of
interest can either be a case of identifying the model’s sensitivity to
certain inputs and highlighting any biases or limitations it may have
or to understanding how deterrent the features of the model are in
predicting the process outcomes. For instance, the local explanations
are valuable in knowing the DM process of a model as they shed light
on the specific features that contribute to a prediction of process
outcomes. This knowledge can help identify areas where the model
may not accurately predict outcomes, enabling researchers to refine
and improve the model’s performance in sensitive regions to make
them function more robust.

The terms “explainability” and “interpretability” which are
commonly used in the ML field are sometimes deemed inadequate since
they do not address every potential issue related to comprehending
“black box” models (Burkart and Huber, 2020). Explainability refers to
the ability of the model to provide insights into the reasons behind its
decisions or predictions, making them understandable to users. It is
essential in the process industries to generate human-understandable
explanations for model outputs. The explainability focuses more on
post-hoc explanations of the model’s behaviour, even for complex
models like DL networks. For explaining black-box models techniques
like feature importance, surrogate models, or visualizations (e.g., SHAP
values, LIME) are used. On the other hand, interpretability refers to the
degree to which a human can understand the cause of a decision made
by an Al model. A model is interpretable if its internal mechanics (like its
parameters or decision rules) are clear and understandable. It focuses on
how easily a person can comprehend the internal mechanics of the
model in predicting the outcomes of WWTP operations. It is about the
clarity of the relationship between inputs and outputs. Highly inter-
pretable models (like decision trees) provide simple, intuitive insight
into how decisions are made. In the domain of XAI technology, both
concepts aim to make AI decisions more transparent when they are
applied to different types of models and scenarios.

Explainability along with interpretability is needed most of the time
to triumph over user’s trust and obtain significant insights into the
motivations, decisions, and causes behind “black box” techniques. It’s
not always the case that explainable models translate well by default.
Adadi and Berrada (2018) divide the XAI taxonomy in the literature
currently in use by (a) scope (Chen et al., 2019) (b) usage (Tritscher
et al., 2020) (c) methodology (Dieber and Kirrane, 2020). According to
Phillips et al. (2020), there are “Four Principles of XAI” that explain the
scenarios of XAl which are increasingly importance in any process
application. These principles outline the essential requirements that an
Al must meet to qualify as an XAI in WWTP, and they are as follows.

v Explanation: An Al system must provide justification, proof, or both
for every action it makes in the process of WWTP.
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v Meaningful: The Al system’s explanations must be intelligible and
significant to its consumers. Since several user groups may have
varied wants and backgrounds, the Al system’s explanation must be
customized to each group’s unique traits and requirements when it
tends to apply for the WWTP.

v Accuracy: In accordance with this concept, the Al system’s expla-
nation must correctly interpret and predict the workings process of
the WWTP system.

v Knowledge limits: Al systems must be able to recognize the situations
that are to be generated in which they were not intended to obtain in
any WWTP process. Failing to do so makes their responses could not
be trustworthy to the users anymore.

3.2. Research questions of XAI in WWTP

In the context of XAl-based WWTP’s parameter prediction, the goal-
question-metric (GQM) approach is employed (Rini and Berghout,
1999) to gain a critical understanding of the performance of the selected
models through XAI tools in predicting the outcomes of the process. In
the context of WWTP operations, the XAl approaches experts mainly
from two domains, a manager water quality test, and an operational
process manager. Engaging XAI experts with the domain experts helps
not only to grasp the data supplied very easily but also aids in ascer-
taining the concerns regarding explainability, thereby allowing Al ex-
perts to enhance the working functionality of the XAI tools. The
“working functionality” of XAI tools refers to the specific methods,
techniques, and processes to provide transparency and explainability in
Al models. These functionalities are designed to help users, particularly
non-experts, understand how Al models make decisions or predictions.
The key working functionalities of XAI tools include model-agnostic
explanations, feature importance, bias detection, and fairness analysis,
local & global explanations, etc. The close collaboration between the Al
expert and process domain experts helps ensure that the explanations
generated by the XAI tools are relevant and meaningful, thereby
enhancing the credibility and practicality of the XAI tools in WWTP
applications. To assess how disruptive the XAI tool explanations are
when contrasted with domain experts’ previous WWTP understandings,
one can formulate and explore the following research questions for in-
vestigations (RQ).

RQ:1- How accurate is the XAl-enabled ML/DL system in predicting
WWTPs?

Response: The prediction accuracy of the process outcomes after
training the data set generated from the processing system gives insight
to any domain expert about the working efficiency of the XAI. However,
one has to be aware that the efficiency in predicting the state variables of
WWTPs depends on various factors like the quality and the quantity of
data generated, the degree of complexities involved in the process, the
explainable techniques available to make the DM process of ML and DL
models more transparent. In the scenario of evaluating the working
performance of XAI, domain expertise is crucial for restructuring and
redesigning the models to increase the level of accuracy of XAl in
providing meaningful explanations of the ML/DL models used for the
prediction of the process outcomes without deviating from the under-
lying principles of WWTPs. The “working performance” of an XAI model
refers to how well the model operates regarding its core objectives,
which are to provide accurate and interpretable results. In the context of
XAI, “working performance” can be broken down into two key di-
mensions 1) Predictive Performance and 2) Explanatory Performance.
For XAI models, both predictive and explanatory performance must be
balanced. A highly accurate model that cannot explain its results is less
useful in situations where accountability or transparency is required,
like in healthcare, finance, or legal applications. So, the working per-
formance of an XAl model is a measure of how effectively it performs its
tasks while providing understandable and reliable explanations for its
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actions. To interpret and understand the predictions of ML/DL models
one can choose to work with techniques such as LIME, PDP, and SHAP
(Parsa et al., 2020; Alvi et al., 2023).

RQ:2- When the ML/DL solution with XAI support forecasts WWTP
events, how much noise is present?

Response: The noise occurrence in predictions is often influenced by
factors such as the quality of the data and the model complexity towards
data sensitivity. To train the model, one has to first plan the mitigative
steps to reduce the noise in the data. Noisy and inconsistent data usually
lead to poor performance of the ML/DL models in predicting the desired
process outcomes. Further, the presence of complexity and sensitivity in
the models not only captures the unwanted noise but also overfits or
underfits the data, thereby not making reasonable predictions. To avoid
model dysfunctionality due to the dynamic variation in the WWTP
process, it is highly recommended to create and adopt a holistic
approach in regularly updating the model with new data and monitoring
its performance. This way, it helps the users enhance and tune the model
to make the model more adaptive and reliable to evolving conditions
and, as a result, reduce the impact of noise. It is also recommended to
know that for post-hoc predictions, techniques such as LIME, PDP, FI,
and SHAP can be employed to gain greater insights into understanding
the model’s performance under different conditions. This way, it helps
users perceive the potential ways to fine-tune the model, making it more
reliable and adaptable (Chen et al., 2019; Wang et al., 2022a).

RQ:3- To what extent do the XAl tools produce simple explanations?

Response: One can assess the simplicity of these products by using
both quantitative measurements and expert interviews. To measure
simplicity quantitatively, one should calculate the entropy of explana-
tions generated by XAI tools. Entropy quantifies uncertainty and can
indicate the distinctiveness and variability of explanations. Addition-
ally, conducting interviews with domain specialists will provide valu-
able insights into explanations from various XAl tools, facilitating to
gathering of expert opinions and assessing the reliability and adapt-
ability of XAI. The synergistic approach of combining expert opinions
with quantitative measures can help determine if the explanations
produced by XAI are easy to comprehend, enhancing the DM process for
better predictions (Dwivedi et al., 2023; Paez et al., 2019).

RQ:4- How reliable are the justifications produced by the XAI tools?

Response: Investigating the soundness of an explanation can be
challenging because it depends on the interests of the user’s history, as
Gilpin et al. (2018) have emphasized. Nevertheless, XAI tools such as
LRP (Love et al., 2023), SHAP (Wang et al., 2022a, 2022b, 2022c), and
DeepLIFT (Zahra et al., 2023a, 2023b) all sometimes mask the most
important data values, limiting the XAI tool’s ability to generate simpler
explanations. In general, the reliability of the justifications provided by
XAl tools depends on several factors. At first, it depends on the algorithm
of the model used by the XAI tool. Some models help provide justifica-
tions in a more transparent and interpretable way while the other are
quite complex and challenging to interpret. Second, it is clear that the
quality and quantity of data have an impact on the training of XAI tools.
Effective training of the XAI tool with diverse data aids in producing
reliable justifications. However, if the training data is biased or incom-
plete, the explanations may lack reliability. Further, the role of the
domain expert also plays a crucial part in making the justifications or
explanations provided by the XAI tool more reliable. Overall, adopting
approaches to test and validate XAI tools rigorously by experts, the
justifications are considered to be more reliable.

RQ:5- To what extent do the explanations provided by the XAI tools
generate new insights?
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Response: Performance is crucial to our WWTP beneficiaries. To
justify its use, an ML/DL system needs to outperform its current system
and be equally comprehensible. If a model deviates too far from their
predictions, it could be hard to put users trust in XAI tools. The meth-
odology in generating clear explanations about the DM process of ML
models has the potential to lead to more accurate assessments of the
efficiency and performance of XAI tools, allowing experts to better
manage and optimize WWTP operations. Overall, this could result in
cost savings, reduced environmental impact, and improved overall
performance for WWTPs (Alvi et al., 2023; Sheik et al., 2023; Dwivedi
et al., 2023). When it comes to high-stakes applications such as WWTP,
the most significant metric for evaluating ML/DL model performances
lies in accurately detecting events, ensuring that users have confidence
in making informed decisions and implementing them in the process.
Hence, in this review, the authors tried to introduce the concept of XAI
which helps users comprehend the working methodology of ML models
in predicting the outcomes of any process operation, making them feel
more confident and empowered in their interactions with such tech-
nology. This can lead to increased adoption and acceptance of Al in
various industries.

In the context of XAl, several techniques are available for developing
the taxonomy of explainability, aimed at improving interpretability and
providing transparency and comprehensibility to the behaviour and
decisions of Al architectures being employed for human users. The
techniques also aid in identifying any biases or limitations within the
model. Although certain XAI approaches are specifically developed to
tackle specific issues, at times it can be difficult to understand their
fundamental intuitions. Presented here is a clear and concise signifi-
cance of many prevalent XAI techniques and architectures.

e Shapely Additive Explanation (SHAP), for example, demonstrates
how each of the components of a model’s prediction can be broken
down into contributions from each input feature.

Local Interpretable Model-Agnostic Explanations (LIME) focuses on
providing local explanations for individual predictions rather than a
global understanding of the entire model. It approximates complex
models with simpler and interpretable models for better
understanding.

Partial Dependence Plots (PDP) directly illustrate the relationship
between a feature and the target. The PDP can help identify the
impact of a particular feature on the target variable, providing
valuable insights into the behaviour of the model. They can also be
used to detect interactions between features and non-linear
relationships.

The attention mechanism (AM) is a method employed in ML and Al
to enhance the efficacy of models by directing attention toward
pertinent information. This feature enables models to choose to focus
on specific portions of the input data which is critical to the process
of study, allocating variable levels of significance or weight to indi-
vidual components.

Decision-making in rule-based systems is characterized by trans-
parency and clarity. The presence of explicit rules in systems enables
human users to track the source of each choice, which is based on the
manifestation of particular conditions.

A counterfactual explanation aims to address inquiries such as “What
modifications to the input features would have led to an alternative
prediction?” This facilitates the comprehension of the decision-
making process of the model by users.

Besides the above-discussed XAI methods, techniques such as Inte-
grated Gradients (IG), Layer-Wise Relevance Propagation (LWRP), and
many more can be employed, depending on the complexity associated
with the data, to interpret and understand the inner workings of com-
plex models. All of these techniques are useful in gaining insights into
how complex ML models make predictions and the important features
driving those predictions (Shao et al., 2023). Overall, these techniques
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adhere to the idea that “simpler explanations are preferred over more
likely complicated ones,” which is also the basic ideology to be followed
in addressing the queries raised in RQs.

4. XAI in wastewater treatment plants

Mechanistic modeling has dominated the field for the past several
decades when it comes to explaining both biological and chemical re-
actions occurring in WWTPs (Mannina et al., 2016). For the design and
simulations to be more effective, mechanistic models like the Interna-
tional Water Association (IWA) ASM series and ADM1 rely on governing
mechanisms rather than conveniently supporting the systematic study of
complex systems in data-rich contexts. However, the WW sector has
been using data-driven modeling techniques for a wide range of appli-
cations and has seen a sharp increase in use in recent years. Anomaly
detection, performance prediction, process management and automa-
tion, soft sensing, diagnostics, and missing data imputation are many
examples of applications that use XAl The use of XAI models in WWTP is
the main topic of this section.

4.1. Process modeling and simulation in WWTPs

In the WW sector, XAI techniques are emerging as effective tools for
forecasting the performance of ML models in predicting the EQ pa-
rameters. XAI can be a prospective tool that can be used in WW pro-
cesses without the requirement for underlying mechanistic concepts,
which is driving its adoption in activated sludge (AS) and anaerobic
digestion (AD) systems.

4.1.1. XAI techniques for modeling and simulation of WWTPs

For generating insights into the performance of the ML model’s
prediction over WQ parameters in WWTP, XAl methods such as SHAP
and PDP have received the greatest research attention. More particu-
larly, generating explanations about which particular input feature of
the WWTP has an influence over predicting the critical variables such as
sludge volume index (SVI), sludge quantity, TN, TP, COD, TSS, etc. (Alvi
et al., 2022; Wongburi and Park, 2022; Ba-Alawi et al., 2023c; Shao
et al., 2023). For process modeling tasks like forecasting important
performance factors and locating areas where WWTPs may be improved,
DL models in combination with XAI techniques have proven to be more
promising and effective tools. Similarly, for regression tasks using time
series data sets, XAl utilizes techniques such as SHAP, FI, and PDP to
explain the predictions of ML models. Overall, XAI is an effective tech-
nique for revealing how specific model traits affect model predictions.
Each feature is given a value that indicates how much it contributes to
the model’s output. DL models, such as DNN, LSTM, and BiLSTM (Alvi
et al., 2023; Farhi et al., 2021; Zhang et al., 2023a, 2023b, 2023c), help
improve the efficiency, accuracy, and effectiveness of various processes
involved in the treatment of WW. However, their complexity often
makes it challenging to understand why they make specific predictions,
which can be a problem in critical applications where interpretability
and transparency are required. Although XAI models have the potential
to provide the explanations for ML model’s ability to predict important
variables of the processes, there is a noticeable lack of research articles
explicitly focusing on their use in the predictive control of EQ. In gen-
eral, XAl allows one to effectively explore how specific model attributes
affect model predictions. It assigns a number to each feature, indicating
how much impact it has on the model’s output. By understanding the
impact of each attribute, decision-makers can make informed adjust-
ments to optimize the process and ensure desired outcomes. As the field
of XAI advances, more sophisticated models and approaches are ex-
pected to emerge to address the shortcomings and challenges of current
methods.
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4.1.2. Real-time WWTP modeling and simulation, and assessment through
XAI techniques - case studies

The idea of implementing XAI techniques on a real-time WWTP has
been explored by many researchers to comprehend the influence of
input parameters over the predictive output of the plant. Two different
case studies have been considered in this study to know how the XAI
technique like SHAP provided the explanations on how the sludge vol-
ume index and the sludge quantity generated are influenced by the input
parameters of a WWTP. The readers of this manuscript are encouraged
to explore the literature presented in Table 1 as it presents the literature
available on applications of ML and XAI models on the data obtained
from real-time WWTPs. Table 1 also highlights the user’s variable of
interest to predict and control, and the models and techniques employed
in doing so which helped in generating explanations to understand the
impact of input parameters on predictive outputs generated by WWTP.

Case study 1: Performance evaluation of ML (RNN) with XAI (SHAP)
model in predicting sludge volume index (SVI) on a real-time WWTP
data.

One of the most crucial operational variables in an activated sludge
process is the Sludge Volume Index (SVI). SVI is difficult to anticipate
because of the nonlinearity of the data and the unpredictability of the
operating conditions. Wongburi and Park (2022) explored Recurrent
Neural Network (RNN) with XAI (SHAP), using complex time-series data
obtained from Nine Springs WWTP in Madison, Wisconsin. The sche-
matic of this case study is shown in Fig. 4. The data was used to predict
SVI using ML (RNN) and interpret the prediction result using XAI
(SHAP). Initially, the data was collected from 1996 to 2020, which was
then divided into three datasets to check the efficacy of the model over
datasets created over different periods. The first dataset is the actual
data collected from 1996 to 2020; the second data set was created from
2010 to 2020 because of the presence of significant errors in the data
obtained in 2000; and the third dataset was created from 2010 to 2020
by removing the out-of-range (50-150 mL/g) SVI values. As a first step,
the data was collected, analyzed, and cleaned using the Python and data
analytics approaches. Following data cleaning, the RNN model was
applied to the different datasets created to predict SVI values accurately.
The XAI techniques were then applied to interpret the model’s pre-
dictions and provide insights into the factors influencing SVI values. In
data-based process assessment, it is always important to know which
input parameter is influencing more on the output parameter. In this
study, the input parameters such as flow rate, influent BOD, Total Sus-
pended Solids (TSS), Total Kjeldahl Nitrogen (TKN), Ammoniacal Ni-
trogen (NHs-N), Total Phosphorus (TP), and organic loading were
selected as influencing factors on the output parameter Sludge Volume
Index (SVI). After training the RNN model using all the datasets, it was
found that for the first dataset, the prediction gave an RMSE value of
4.161 and an MAE value of 3.284. For the second dataset, the prediction
model performed better, which resulted in lower RMSE (3.360) and
MAE (2.156) values in comparison to the first dataset. Similar types of
trends were observed for the third dataset. The results of the study
demonstrated that the RNN design is effective in handling typical fluc-
tuations that occur in the activated sludge systems, but selecting the
relevant data using data analysis is one of the key steps in making the
model perform better. Finally, the prediction result was explained using
the Shapley interpretation to check which parameter is influencing
much on SVI. It was found that the organic loading, which is related to
influent BOD and flow rate, primarily affects SVI. The insights obtained
through the results of this study suggest that improving the aeration of
the system can lead to better control over SVI.

Case study 2: Application of ML models with XAI (SHAP) in pre-
dicting sludge production on a real-time WWTP data.

Sludge is produced from urban sewage in China due to its extensive
WWTP investment. China had 2827 WWTP with 60.16 billion cubic
meters of processing capacity in 31 provinces, municipalities, and
autonomous areas in 2021. About 14.229 million metric tons of dry
sludge are produced, making it difficult either to use or treat the sludge
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Table 1
Applications of ML and XAI models in WWTP.
S. Variables ML & XAI models Comment Performance matrix Reference
No
1 TSS and OP RF (ML), DNN (ML), VIM (XAI), DNN models were used to build and validate RF R2-RF, and DNN (TSS) = 0.92 Wang et al.,
PDP (XAI) models, and then VIM and PDP studies were R2-RF and DNN (PO) = 0.886 2021

2 PAO and GAO

3 Temperature, pH, EC, DO,
Chl-a, TUR

4 BOD, TN, TP, TKN, TSS, NH,

SVI, flow rate (FR)

5 BOD, pH, TSS, TKN, FR,
Temp

6 COD, TN, FR

7 TSS, OP

8 COD, TSS, TN

9 TN and TP

10 Influent phosphorus and
chemical dosage data for
phosphorus removal, 42
variables

11 COD, BOD, SS, TN, and TP

LR (ML), SVRL (ML), SVR (ML),
RBF (ML), RF (ML), and SHAP
(XAID)

SHAP (XAI), FI (XAI), XGB (ML),
PDP (XAI), and VIF (Statistical ML)

RNN (ML), SHAP (XAI)

XGBoost (ML), k-NN (ML), SHAP
(XAI), and eight ML models

Explainable deep multi-task
learning UNet (DMTL-UNet) (DL),
XGBoost (ML), KSHAP (XAI)

RF (ML), XGboost (ML) and
LightGBM (ML), SHAP (XAI)

multisensor fusion-based
automated data reconciliation and
imputation (MFS-ARI: Data
fusion), KSHAP (XAI)

Convolutional autoencoder (CAE)
integrated with deep fully
connected layers (DFC) (Neural
Network), SHAP (XAI)

OLS (Statistical ML), SVM (ML), DT
(ML), RF (ML), ANN (ML), and
SHAP (XAID)

Nine ML algorithms (KRR (ML) DT
(ML), SVR (ML), kNN (ML), FCNNs
(ML), RF (ML), XGBoost (ML)),
SHAP (XAID)

carried out. VIM determined the factors that had
the greatest impact on the effluent parameters (in
this case, TSSe and PO4e), whereas PDP clarified
their effects on TSSe and PO4e.

New insights into how PAOs and environmental
factors interact may be revealed by ML-enabled
analysis, which has immediate implications for
the sustainable design and functioning of full-
scale EBPR systems.

This finding showed that SHAP analysis, an XAI
method, gives valuable information that permits
a decrease in the necessary number of
independent variables for creating a ML model,
hence reducing the labor and expenses associated
with field data collecting.

The ability to predict SVI will help WWTPs create
corrective actions to keep SVI steady. The
wastewater treatment industry will benefit from
improved operational performance, system
management, and process dependability thanks
to the SVI prediction model and XAI technique.
The findings of this study have shown that the use
of ML techniques can assist preserve chemical
resources by improving chemical dosage
management in wastewater treatment.

A promising strategy for increasing the
effectiveness and precision of sensor diagnosis
and reconstruction in WWTPs is the suggested
DMTL-UNet concept

The model comparison should be done from a
variety of angles to make sure that all of the
underlying details are exposed and looked at. It
was found that SHAP to be really useful in this
investigation.

To evaluate the effects of missing, inaccurate,
reconciled, and imputed data on the MBR
performance operation utilizing R2AU-Net, the
ASM-SMP-ARS integrated MBR model was used.
In light of this, the suggested MSF-ARI based on
R2AU-Net might, under suitable environmental
discharge circumstances, reduce energy
consumption by 37.44% and the appearance of
early fouling by 10 days.

analysis-based on XAI, the relationships between
variables and how they affected the output of the
CAE-DFC model were clearly understood thanks
to kernel SHAP.

Incomplete data sets can be used in this study as
an illustration of how AI might be applied to
process improvement and potential cost
reduction.

The novel aspect of this work is how machine
learning algorithms were used to estimate the
formation of sludge in wastewater treatment
facilities.

and 0.872

R2 = 0.4-0.7

RMSE-1.872, RSR-0.630, and
NSE-0.603

RMSE-3.360 and MAE-2.156
for SVI

R? -0.605) for valve XGBoost,
RF of R2-0.436. RMSE -8.056,
and 4.466

R2-0.9175 and MSE-0.08408,
F-score —99.08 %
RMSE-31.1175

RMSE-0.020
RME- 0.0050
R2-0.882

RMSE = 1.96
MAE = 0.31

R2 for TN and TP are 0.9607,
and 0.9137

R2 -0.496, accuracy of 79.7%

RMSE, MAE, MAPE, and R2
values of 4.4815, 2.1169,
1.7032, 0.0415, and 0.8218,
respectively

Oh and Kim,
2021

Park et al.,
2022a, 2022b

Wongburi and
Park (2022)

Xu et al., 2022

Ba-Alawi et al.,
2023a

Wang et al.,
2022a, 2022b,
2022c

Ba-Alawi et al.,
2023b

Ba-Alawi et al.,
2023c

Xu et al.,
2023a, 2023b

Shao et al.,
2023

effectively. This marked the importance of predicting the sludge pro-
duction data and identifying the key factors that influence sludge pro-
duction. Shao et al. (2023) used nine different ML models to predict the
sludge production data obtained from Liaoning WWTP in China. The
schematic of this case study is shown in Fig. 5. It came to know that for
the data collected, XGBoost predicts better than other ML and ensemble
learning models when metrics are compared. Its RMSE, MAE, MAPE,
and R2 are 4.4815, 2.1169, 1.7032, 0.0415, and 0.8218. Ensemble
learning fits highly nonlinear data better than the RF model, which has
proven to be the second-best algorithm only to XGBoost. Traditional
base learners like DTs, lasso regression, and kernel ridge regression
forecast the prediction of sludge generation very poorly. On the other
hand, complicated models like FCNNs have many parameters

10

demanding a greater time in training the model. Despite equal predic-
tion accuracy, NNs are not considered to be cost-effective when
compared to XGBoost and RFs. It was also inferred in this study that on
small and medium-scale datasets, complex ensemble learning models
outperform base learners in prediction accuracy. To infer the details on
influencing parameters over sludge production, the SHAP methodology
is employed in interpreting the predictions of the XGBoost model. The
method helps in interpreting the influence of each variable on pre-
dictions, which demonstrates the model’s sensitivity to certain attri-
butes. According to the SHAP plot, the influent wastewater volume (Q)
and environmental temperature (T) were found to have the most sub-
stantial influences on the prediction of sludge generation. These results
correspond with the input feature contributions of the XGBoost model. It
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Fig. 4. The schematic of ML and SHAP applied to WWTP to predict and generate an explanation for the sludge volume index.
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can also be noted that the significance of total nitrogen has risen in the
SHAP study of water quality indicators, but the significance of sus-
pended solids has diminished. The mismatch arises because SHAP values
emphasize the importance of each feature within individual samples,
but the model’s feature contribution indicates the feature’s weight,
which is optimized through overall prediction bias, leading to divergent
outcomes between the two approaches. Overall, the insights obtained
through the results of this study suggest that sludge production is greatly
impacted by the input features, such as daily wastewater treatment
volume and temperature. Keeping control over these parameters can
help to reduce sludge production and improve the overall efficiency of
the treatment process.

4.2. Process design and control in WWTPs

4.2.1. Adoption of XAI-based controllers in WWTPs

Since XAI techniques are becoming more and more popular for
modeling and identifying nonlinear systems, they have also been used
for controllers in WWTP. Plant responses can be optimized over a certain
time horizon by creating a control based on XAI At the same time, the
objective function can be made simpler to lower the optimization’s
computational requirements. Even with recent developments in XAI-
based controllers (Machlev et al., 2022; Utama et al., 2022), the WW
industry is still only beginning to use this strategy due to several factors.
The reason could be a lack of knowledge and understanding of XAI
techniques among WWTP operators and engineers. In addition, there are
concerns about the reliability and robustness of XAI models in
real-world applications. This represents challenges in the implementa-
tion of XAl-based controllers, which may necessitate significant invest-
ment in terms of training and infrastructure improvements. However,
with the continuous advancements and success stories in XAI applica-
tions, it is expected that more WWTPs will embrace this strategy in the
near future. In the context of creating smart process control, it is crucial
to include an optimal controller and an emerging XAI network (XAIN).
The XAIN helps identify the system and creates predictive models for the
controllers, improving control effectiveness. One must notice that for
XAl-based controllers to be used practically in WWTPs, system identi-
fication must be improved, and the amount of computing power needed
for system optimization must be decreased (Kumar et al., 2018). The
incorporation of advanced ML models such as DL and reinforcement
learning can be a potential solution to improve system identification in
XAl-based controllers for WWTPs.

4.2.2. Reinforcement learning and deep learning in WWTP optimization
and control

Mohammadi et al. (2024) developed a simulator for the Deep rein-
forcement learning (DRL) environment using six models to determine
the phosphorus removal process, reaching 97% accuracy. Without
complicated system modeling or parameter estimates, DRL algorithm
simulation scenarios are created using SCADA data with a suitable his-
torical horizon to improve process control. The study of Croll et al.
(2023), found that deep Q-learning, proximal policy optimization, and
synchronous advantage actor criticism performed poorly in most cir-
cumstances. However, the twin delayed deep deterministic policy
gradient (TD3) method consistently optimized control while meeting
WWTP treatment requirements. TD3 control optimization reduced
aeration and pumping energy requirements by 14.3% compared to
BSM1 benchmark control. The important intermediate parameters pre-
diction problem is solved using the deep neural network (DNN) model to
guide control decisions. This study advances data-driven IoT system
management and control, especially in circumstances with limited
monitoring data resources (Shen et al., 2024). On influent pollution
concentration tops and bottoms, RL responds differently. RL agents are
more influenced by fines on tops (because of high effluent pollutant
concentrations) and energy usage on bottoms. Finally, on weekends and
in rainy and stormy weather, the RL agent cuts usage more than
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Proportional-integral-Derivative controls (PID). The adaptable RL
agent can adapt to changing conditions better than PIDs
(Hernandez-del-Olmo et al., 2023), making it more efficient in man-
aging and controlling the process under varying circumstances. A
comprehensive and sophisticated explanation system, SHAP, was
implemented to compare models and provide an in-depth analysis of the
best model. XGboost is the optimal model for both Total Suspended
Solids (TSS) and Orthophosphates (PO4) tasks, whereas RF is the least
optimal model due to overfitting and polarised fitting (Wang et al.,
2022a, 2022b, 2022c). Using Proximal Policy Optimization, Filipe et al.
(2019) proposed a method to optimize WW pumping station energy
consumption by using deep-reinforcement learning. These models have
shown greater potential in handling complex and non-linear systems by
automatically extracting meaningful features from the data. Addition-
ally, advancements in hardware technology, such as the development of
specialized processors for accomplishing Al tasks, can greatly reduce the
computing power required for real-time optimization, making
XAl-based controllers more practical and efficient for WWTP
applications.

4.2.3. Emerging trends: transfer learning and smart automation

The recent developments made in XAI have sparked anticipation that
as the field develops, XAl-based controllers will be used more frequently
in the water resource recovery sector to optimize WWTP procedures and
tap energy usage. Even with recent developments in DL-based MPC with
XAI, the WW sector is still only beginning to use this strategy. In addition
to this, the use of transfer learning to process control in WWTP is still in
its infancy, although it has gained significant attention in its growing
stage. Thanks to transfer learning, with the transfer learning method-
ology, one can easily transfer control techniques developed for one
system to another system, reducing the time spent in creating and
implementing new control techniques in a newer system. For instance,
to enhance conventional PI and PID controller strategies, an LSTM-based
proportional-integral (PI) controller was developed based on the
Benchmark Simulation Model 1 (BSM1) system for maintaining a DO
concentration of 2 mg/L in an aerobic tank of a simulated WWTP (Alex
et al., 2008; Sheik et al., 2023). This LSTM-based PI controller showed
improved control performance compared to traditional PID controllers.
This approach can be extended to LSTM-XAI-based controllers for better
prediction and control of process variables. Later, XAI tools such as
SHAP, LIME, etc. can be used for interpreting the controller’s pre-
dictions. Once the benchmark strategy is developed, the pre-trained
LSTM-XAI controller network can now be transferred to control DO in
the remaining aerobic tanks without substantial modifications to
hyperparameter values or neural architecture. This way the methodol-
ogy developed using the source model, including explanations and in-
sights can be transferred to a target model for obtaining interpretability
and predictions with the knowledge acquired by the source model. Be-
sides DO, the approach can also be used for other important variables of
WWTP such as ammonia, TN, and TSS in the aerobic, anoxic, and
anaerobic tanks. In general, this is the area with the most scope towards
future digitalization in terms of smart automation in WWTP, enabling
practical control and monitoring in WWTP. However, deeper research is
required to investigate the possible application of transfer learning in
WWTP process control and to identify the downsides of these
techniques.

4.3. Soft sensing

Conversely, soft sensing uses data-driven models. Data-driven
models such as SVM, ANN, RF, and Principal component analysis
(PCA) are used to infer the values of variables that cannot be measured,
difficult to measure, and expensive to measure in real-time using the
measurements that are already available (Shyu et al., 2023). The type of
model used in inferring measurements is data specific.
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e For instance, SVM is used when there is a highly nonlinear rela-
tionship between the input variables and the target outputs. This is
also used to handle the data comprising many input variables (pH,
temperature, pressure, flow rate, component concentrations), lead-
ing the system to high dimensional space situations.

On the other hand, ANN is also used when highly complex non-linear
relationships exist between the input variables and the target out-
puts, which is the case in many industries. The other important
feature of ANN is that it has self-learning capabilities, which help to
learn the complex patterns between the input variables and target
outputs, making them ideal for soft sensing.

RF besides handling the nonlinearity between the variables, also
provides information related to input variables, which are highly
important for predictions of the target outputs. RF is also considered
one of the most robust methods used for predictions, particularly in
terms of missing data and even when there is noise associated with
the data.

In general, the high dimensional data with many input features
makes it hard for the model to work and generate interpretations.
The PCA model is employed in condensing the high dimensional data
into a smaller set of newer variables. These newest variables are
called principal components, and they are created without much
altering the variance information from the original data sets.

The features of the above-mentioned data-driven models are
important for soft sensing to estimate the variables that are hard to
measure. Models that can infer the values of process variables that are
normally challenging and expensive to quantify with hard sensors are
known as soft sensors. Soft sensors create a model that can forecast the
values of unknown variables or unmeasurable factors using previous
data. The model’s ability to continuously learn from fresh data is one of
the benefits of XAl in the creation of soft sensors. This particular feature
of soft sensing helps in maintaining the real-time monitoring of the
system in a more systematic way, which thereby aids in controlling the
process more efficiently. XAl is being utilized more and more to soft-
sense important factors for tracking processes in WWTP to guarantee
operational excellence (Alvi et al., 2022; Wang et al., 2022c). In WWTP,
state estimation and soft sensing have both shown promise as methods
for predicting process variables that are challenging to measure (Xu
et al., 2023a; Chang et al., 2023). The aforementioned literature pre-
sents how XAI models can be used to enhance soft sensing and state
estimation by giving precise estimates of process variables, which can
lead to improved process control and optimization. It is also important
to note that there hasn’t been much research done in this area of work to
predict difficulties, abnormal events, and operational glitches in WWTP
using XAI (Ching et al., 2021).

4.4. Fusion of data and information

e Importance: The fusion of data and information is an essential
requirement for several cutting-edge technologies, including the
Internet of Things (IoT), computer vision, and remote sensing.
However, fusion is a somewhat nebulous notion that can take
numerous shapes (Murray, 2021). For example, in digital vision,
feature fusion is the combination of features (Cheng et al., 20201;
Murray, 2021; Alvi et al., 2023; Sheik et al., 2024b). More accurate
conclusions may typically be drawn by correlating and combining
data from several sources than by analyzing a single dataset alone
(Ding et al., 2019; Ly et al., 2022). Therefore, information and data
fusion not only enhance the explainability of ML/DL models but also
help in reducing process disruptions by improving the DM process
(Zaghloul et al., 2022; Singh et al., 2022; Liu et al., 2023).

Challenges: Data fusion can happen at three levels i.e., knowledge,
models, and data (Arrieta et al., 2020). Smirnov, and Levashova
(2019); Jiang et al. (2021), and Ba-Alawi et al., 2023a, 2023b, 2023c
provide a thorough analysis of the reasons behind and methods by
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which fusion takes place to solve concerns associated with the IoT,
privacy, and data security in WWTP. It is noteworthy that there is no
relationship between data fusion and ML/DL models at the data
level, making explainability difficult to explain the working meth-
odology of ML/DL models in predicting the process variables.
Though they perform better, there is still considerable confusion
regarding the differences between information fusion and predictive
modeling when using ML/DL models. The trade-off between
explainability and performance is evident once more.

Scope of Improvement: To obtain high-level features, the initial
step involves the fusion of data with the initial layers of DL. This
process tightly links the fusion and the tasks to be completed, making
features correlated. To handle this correlation, various XAl strategies
like LIME and SHAP have been advised by researchers (Ba-Alawi
et al., 2023a; Wongburi and Park (2022); Park et al., 2021). The
significance of these techniques was already discussed in the process
modeling and simulation section of this review paper. These tech-
niques help clarify how data sources are combined in a DL model,
improving its usability. However, it is still unclear if the input fea-
tures of a model may be inferred if a prior feature was known to be
employed in that model. Further research is needed to determine the
extent of the relationship between input features and prior features
in a model. To gain a better understanding of what is happening in a
model, it is recommended to enable XAI with the necessary ML/DL
models.

Addressing Data Privacy and Security: Empirical research
attempting to solve data privacy issues has been lacking in the
WWTP industry, posing a significant obstacle to XAI's usage,
necessitating the need to overcome it. To overcome this challenge,
federated learning, and differential privacy are identified as effective
methods for addressing data privacy and security while promoting
ML use (Xu et al., 2022, 2023b; Park et al., 2022a, 2022b). Finally, to
make progress in utilizing ML for enhancing project performance (e.
g., productivity, quality, and safety), it’s crucial to make advance-
ments toward appropriate data fusion strategies to enhance the un-
derstanding and interpretability of a model’s decisions or predictions
for better explainability. This will ensure accurate integration and
interpretation of multiple data sources, leading to improved DM and
problem-solving.

4.5. Using XAI on the internet of things

In the literature, there is a debate over the necessity of IoT in XAL
Doshi-Velez (2017) states that in certain situations, the integration of
IoT in XAI might not be required and that the system can be trusted if the
following conditions are met: (a) The need for IoT in XAI for better
explainability is not a greater priority than the cost of implementing it in
WWTP. (b) the impact of inaccurate results in the field of WWTP
application is not too great, and (c) the problem has already been
thoroughly studied and applied to real-world WWTP scenarios. How-
ever, the literature has emphasized the necessity of XAI-IoT in complex
systems such as WWTP. Efficient IoT integration in WWTP is crucial for
users to effectively handle ML results, regardless of whether this is due to
business needs, moral dilemmas, or legal issues in the water industry
(Confalonieri et al., 2021; Karthikeyan et al., 2022).

In the context of IoT, this section looks at the requirements and ad-
vantages of implementing IoT-XAI techniques in WWTP. XAI is very
important to unravel the model behaviour in predicting the critical
variables of a WWTP, particularly when it comes to implementing the
decisions that are developed using the model predictions. Uncertainty
and inefficiency in model predictions might lead to a situation where the
decision system is impacted and may have significant consequences for
the overall performance and effectiveness of the WWTP. The uncertainty
and inefficient model predictions can be due to data abnormalities,
which may occur for many reasons. For instance, in Al-driven processes
that are completely data-driven, there might be situations of
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misrepresentation of data due to sensor failures or deviation of any
equipment from normal operation, creating anomalies in the process
system. Due to data anomalies, unexpected deviations could appear in
the ML algorithm’s training set. This could lead to inaccurate predictions
or decisions, which can have serious consequences in complex processes
such as WWTP. Integration of IoT with XAI can help address these
failures by leveraging already-existing past data. The IoT in general,
which has the ability to collect, process, and analyze real-time data, can
overcome the impact of data anomalies in predicting process outcomes.
At any given instant in a sensor failure situation, it can make use of past
data to process it into ML models for the purpose of predicting process
outcomes without any delay. Further, with the history of the past, IoT
can also detect patterns and anomalies that may indicate potential
sensor failures or degradation in process performance. With the IoT
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platforms, one can utilize predictive maintenance techniques, where
models are trained on historical data to predict when sensors are likely
to fail or require maintenance. This enables more accurate predictions
and proactive DM, ultimately creating the synergy between IoT and Al to
improve the accuracy and reliability of predictions and decisions.
However, it has been observed that very few research articles specif-
ically emphasize the use of IoT tools with XAI models in the predictive
control of WWTP, even though such tools have a lot of potential for
prediction and control. Fig. 6(A) depicts the flow path toward the usage
of XAl for prediction and control in WWTP and Fig. 6(B) IoT integration
in XAl for seeking different applications in WWTP.
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Fig. 6. (A) Flow path of usage of XAI for prediction and control in WWTP (B) IoT in WWTP for seeking different applications.
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4.6. Future research directions, scope, and challenges

Future research in Explainable Artificial Intelligence (XAI) for
wastewater treatment should prioritize the development of domain-
specific interpretable models that can effectively integrate with future
technologies such as the Internet of Things (IoT), digital twins, and edge
computing. Furthermore, the development of techniques for interpret-
able reinforcement learning, energy optimization, and human-centered
interfaces will guarantee that Explainable Artificial Intelligence (XAI)
not only improves performance but also promotes confidence and
transparency among plant operators and regulatory authorities. The
following aspects can be the prospective research approaches that can be
thought of in the context of XAI technology.

e Create digital twin models that can replicate the WWTP and include
XAI to offer valuable insights into their recommendations. An Al-
powered digital twin might replicate various operational situations
and provide explanations for why specific modifications (such as
decreasing aeration levels to monitor DO or increasing the chemical
dosage to reach the optimal pH value of the process) would enhance
efficiency.

Exploring techniques to integrate sensor data in real-time while
providing clear explanations of AI model results. One example is
elucidating the reasons towards the need for modifications in
chemical dosage when there is a rapid shift in pH sensor readings and
the interaction between several IoT sensors in facilitating such
adjustments.

Focus on developing interpretable RL methods specifically for
wastewater treatment. For example, incorporating explainable
reward functions where the optimization objectives (e.g., mini-
mizing energy use or chemical waste) are aligned with human-
understandable metrics, like cost savings or environmental impact.
Integrating RL into process control and addressing potential biases in
ML models are essential for building robust, reliable, and fair Al
systems in WWTP applications. Many WWTPs already use well-
established control methods like PID controllers or Model Predic-
tive Control (MPC). One should develop integrating RL into these
systems without causing disruptions for better control and efficiency.

It is undeniably difficult to stay up to date with the most recent ad-
vancements in XAl research due to its development, which is happening
at a rapid pace. However, it is crucial for researchers and practitioners to
continually educate themselves to keep pace with new XAI de-
velopments and make meaningful contributions to applying them to
WWTP, paving the way for creating research opportunities towards
building a smart and sustainable water industry.

Additionally, XAI offers a crucial step in developing process fairness
and considering bias during the algorithmic DM process (Mougen et al.,
2021). Furthermore, XAl enhances transparency and trust by offering
explanations for algorithmic decisions. This ultimately leads to better
user understanding and acceptance of ML systems and increased public
trust in the field. For this to happen, the following areas need to be
addressed and prioritized.

(a) developing frameworks to bridge the gap between WWTP experts
and XAI developers for smooth design and implementation.

(b) establishing a framework for independent auditing and valida-
tion of models.

(c) promoting transparency and explainability in algorithmic DM
processes.

(d) fostering trust and public confidence in employing algorithmic
systems by emphasizing the importance of their usage in
leveraging process system behaviour.

(e) emphasizing the importance of the process of data fusion to
enhance explainability and improve DM capabilities, which is
crucial in establishing efficient and effective algorithmic systems.
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These areas are crucial for understanding the potential of XAI in
improving water treatment and management.

The literature that is currently available highlights the conflicting
scenarios that arise in the field of developing and implementing XAI in
WWTPs (Belle, and Papantonis, 2021a, 2021b; Khalil et al., 2023; Yang
et al., 2022; Shao et al., 2023). While they are being developed, there is
often a lack of consensus regarding explicit objectives for explainability
and techniques to evaluate the quality of explanations. One reason
might be attributed to the fact that there is a lack of collaboration be-
tween the varying professions and expertise levels of individuals
involved in XAI research and development. The other reason could be
the necessity for different models tailored to specific datasets that
pertain to individual process systems, depending on their complexity
levels. This makes everyone agree that the process of assessing expla-
nation approaches is not rigorous enough (Doshi-Velez and Kim, 2017),
a critical issue that needs to be addressed in order to advance XAl Often
the evaluation criteria for successful implementation of XAI in WWTPs is
primarily based on both the opinions of computer scientists and WWTP
process managers. For example, computer scientists mostly act as de-
velopers of XAI, and WWTP process managers act as experts in evalu-
ating the working efficacy of XAI based on the explanations they
provide. Thus, in the context of implementing XAI in WWTP, the
collaboration between different professions is essential to meet the
unique needs, expectations, and demands for the successful integration
of XAl into WWTPs (Langer et al., 2021; Love et al., 2023). Fig. 7 depicts
the usage of the XAI application for WWTP with a flowchart and future
directions. Also, when we speak in the context of process control, XAI
can benefit in identifying the key variables (such as WQ parameters,
dissolved oxygen, and flow rates) that significantly influence
decision-making models. XAI models like SHAP or LIME can visually
represent model decisions. Al systems could use these visualizations to
provide operators in control rooms with a clear understanding of the
rationale behind specific control actions. Additionally, with IoT sensor
data, Al models frequently identify anomalies. However, XAl can
explain these anomalies by illuminating the patterns that gave rise to the
detection. This is essential for early fault diagnosis or preventing false
positives. Data from IoT devices may be noisy or unreliable. The model’s
response to this noise can be explained by XAI, which also reveals which
sensor data is most trustworthy for making decisions. Understanding
how soft sensors estimate the values of unmeasured variables will help
XAI improve soft sensor credibility. Also, when WWTP operators use soft
sensors with lower confidence in their estimations, XAI may be able to
help them understand prediction uncertainty and make better
judgments.

The concept of XAl gained prominence in the context of WWTP when
process managers expressed dissatisfaction with the lack of established
standards for process assessment. This need for better process assess-
ment to enhance plant operation has sparked lively debates between Al
developers and WWTP process experts, propelling the field of XAI ahead.
As a whole, meeting process manager demands is the primary driver
behind XAI's growing appeal for enhancing WWTP operations. The
literature clearly shows how keen researchers are to use newly devel-
oped models to tackle complex process system problems. Table 2 reports
the summary of XAI taxonomies and methods. Table 3 reports the
comparison of different modeling strategies in WWTP. A lot of evidence
suggests that humans have over-trusted ML systems in the past, and
there is still a long way to go before they can trust ML systems
completely in the present. XAl has significant limitations, which are
detailed below, in addition to the advantages and possibilities it offers in
the field of complex decision systems (Watson, 2020; Xu et al., 2023a,
2023b). Some basic concepts in XAl are unclear or contradictory because
there is no standard terminology existing in the field of XAI, which leads
to confusion and differing interpretations between the developers and
the users. For example, while everyone agrees that explanations by
models should be precise, it’s uncertain whether the focus should be on
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Fig. 7. Usage of XAI application for WWTP with flowchart and future direction.

the data generation process or the target model. Some argue that the
focus should be on the data-generation process, while others argue that
the focus should be on the target model. This lack of standard termi-
nology will not only hamper the advancement of XAI application tech-
niques but also cause philosophical debates that often lead to confusion
and unproductive conversations. Hence, it is crucial to establish a
common understanding and terminology in the field of XAI. Also, the
lack of a measurable indicator to verify the accuracy of interpretability
in the ML/DL models used always poses challenges. To overcome chal-
lenges in evaluating the accuracy of the model’s interpretability, the
systems field’s expertise should be taken into consideration. Involving
process expertise can help Al developers choose the appropriate ML/DL
models specific to the data to produce the desired outcomes. This can
lead to a more reliable method for choosing ML/DL models that are
specific to user needs, leading to an accurate evaluation of the model’s
interpretability and performance in real-world scenarios.

In the WWTP sector, interpretability becomes a significant challenge
when employing complex models like deep neural networks (DNNs) and
reinforcement learning (RL) to analyze or predict critical process vari-
ables. These models are powerful but often difficult to understand,
creating a need for reliable interpretability to ensure transparency and
build trust among the process operators. DNNs, for instance, are
frequently criticized as “black boxes” because they make predictions in
ways that are not easily understood by domain experts. Similarly, RL
models, which rely on trial-and-error learning, are also challenging to
explain, as their decision-making processes are less intuitive. The lack of
interpretability makes it difficult to deploy these models in real-time
operations within WWTPs, where quick and clear decision-making is
essential. To overcome these limitations, researchers must focus on
improving the interpretability of complex models in the WWTP context.
One approach is to develop techniques like saliency maps, which visu-
ally highlight the most influential parts of the input data that drive the
model’s decisions. Another promising direction is integrating inter-
pretable models, such as decision trees, with complex models like DNNs
and RL. This hybrid approach can provide both the accuracy of
advanced models, and the transparency needed for practical deploy-
ment, offering a balance between performance and clarity. Adopting
these techniques will not only enhance trust but also enable real-time
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deployment of these advanced models in critical WWTPs. Although
there are challenges and opportunities related to integrating XAI with
different technologies, there has to be considerable ideas related to the
scalability of XAI in WWTP, real-time deployment, and handling noisy
data. These can be outlined with the following research questions, which
can also be an enroute to further scope and challenges with a brief
explanation about how they can impact the successful implementation
of XAI in wastewater treatment plants.

RQ: How can the scalability of XAI in WWTPs be planned to manage
the complexity and size involved with WWTP operations?

Response: WWTPs are large and complex systems involving
numerous interconnected processes such as chemical breakdown treat-
ments, filtration, and biological processes. Each of these processes
generates a vast amount of data, which is quite complex and difficult to
interpret in real-time. Scaling XAI techniques to handle the complexities
involved in the WWTPs is crucial. WWTPs, which are larger in size and
incorporated with complex control systems, demand XAI solutions to
evolve in a way that can handle massive datasets without compromising
on providing clear and interpretable insights to operators. This can help
them make informed decisions to optimize performance and efficiency.
On the other hand, it is also necessary to investigate how XAI techniques
or methods perform in real-time scenarios to ensure their effectiveness
and reliability in the dynamic environment of WWTPs. This could
further assist in highlighting the areas of optimization in a typical large-
scale WWTP. Although there are huge complexities associated with the
scalability of XAI, a promising direction is to break down the complex-
ities by developing hierarchical XAI frameworks, where explanations
are provided in-depth for each subsystem involved in the WWTP. These
frameworks help in explaining the decisions at both the individual
process level (e.g., why a chemical dosage was made to adjust pH) and at
the system-wide level (e.g., how different modifications across various
processes affect overall plant performance). This approach of multi-level
interpretability can help plant operators understand both localized and
broader system dynamics associated with the WWTP. Also, handling
large data sets in real-time to provide interpretable outputs is quite
complex. It is advisable to explore the potential of cloud-based or
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Table 2

Summary of XAI taxonomies and methods.

XAI approaches

Model patterns

Remarks

References

Functioning-
based model

Rule-based
model

Linear Model,
Decision Trees,
Local
Perturbations,
Leveraging
Framework, Meta
Explanation,
Architecture
Modification,
Partial
Dependence Plots
(PDP), Shapley
Values, Local
Interpretable
Model-Agnostic
Explanations

Rule Extraction,
explicit If-Then
Rules,
Transparency,
and
Interpretability,
Fidelity to the
Original Model,
Manual or
Automatic Rule
Generation,
Interpretable
Variables,
Consistency, and
Fairness, Hybrid
Models

Explainable AI methods

Methods

SHapely
Additive
explanation
(SHAP)

Model
prediction types
and concepts
Summary Plot,
Individual
Instance Plot,
Force Plot,
Waterfall Plot,
Dependency Plot,
Interaction Value
Plot, Feature
Attribution
Heatmap, Time
Series Shapley
Explanations,
Text Shapley
Explanations,
Kernel Shap, and
Deep Shap

In XAl, the use of
function-based
models aims to shed
light on the process
and reasons behind
which a
complicated model
makes specific
predictions. This
can make the
model’s behaviour
and judgments
easier for users, key
players, and
policymakers to
gain insight and
trust. Choosing
which function-
based model to
apply will rely on
the particular issue
at hand as well as
the intricacy of the
black-box model
that needs to be
described.
Rule-based models
are particularly
useful when it
comes to providing
clear and human-
readable
explanations for Al
choices.
Nonetheless, they
may not capture all
of the intricacies
and intricacy of
specific activities,
and alternative XAI
techniques may be
better applicable in
some
circumstances. The
XAI approach of
choice is
determined by the
individual
application and its
proportions of
transparency,
interpretability,
and prediction
performance.

Remarks

The precise
application case
and the
requirement for
global or local
interpretability
determine the SHAP
explanation type to
be used. To fully
comprehend their
models,
practitioners
frequently combine
these several
explanation kinds.
To increase

Karamichailidou
et al., 2022; Han
et al., 2019;
Castillo et al.,
2016; Xu et al.,
2023a, 2023b,
Confalonieri et al.,
2021; Angelov

et al., 2021; Love
et al., 2023

Irani and Kamal,
2014;

Li and Gong,
2019;

Dupuitet al., 2007;
Balla et al., 2022;
Love et al., 2023

References

Parsa et al., 2020;
Wang et al.,
2022a, 2022b,
2022c¢; Love et al.,
2023
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XAl approaches

Model patterns

Remarks

References

Fuzzy Classifier

Gradient-
weighted
Class
Activation
Mapping
(Grad-CAM)

Layer-wise
Relevance
Propagation
(LRP)

Adaptive
Learning
Capabilities,
Handling
Uncertainty,
Interpretability,
Fuzzy
Partitioning,
Fuzzy
Aggregation,
Linguistic
Variables, Fuzzy
Inference System,
Fuzzy Rules,
Membership
Functions, and
Defuzzifier.

Vanilla Grad-
CAM, Grad-
CAM++, smooth
Grad-CAM, Grad-
CAM with Box,
Layer-wise Grad-
CAM, Multi-Class
Grad-CAM

Epsilon-LRP,
Alpha-Beta LRP,
Deeplift, Layer-
wise Scaling LRP,
PatternNet and
Pattern
Attribution,
Sequential LRP,
Layer-wise
Relevance
Visualization

openness, equity,
and trust in Al
systems, SHAP is a
flexible framework
that can be used
with a variety of ML
models and data
formats.
Applications in
wastewater such as
expert systems, and
control systems, all
frequently make use
of fuzzy classifiers
since they require
human judgment or
domain knowledge
to make decisions.
As a result of the
presence of hazy or
ambiguous
information, they
perform best in
situations when
clear, rule-based, or
probabilistic
classifiers may not
be effective but
helpful tools for
developing
interpretable Al
systems. Fuzzy
classifiers are an
important tool for
creating
interpretable Al
systems because
they provide
transparency and
comprehensibility
in the realm of XAIL
This is because their
rules and linguistic
variables may be
utilized to describe
how a decision was
made.

Each form of Grad-
CAM has unique
benefits and
applications, so
choosing one to
employ depends on
the particular issue
at hand as well as
one’s tolerance for
visual detail and
noise. DL can be
better understood
and trusted by using
these techniques,
which act as useful
explanation and
interpretation tools.
The DL architecture
and level of
interpretability
required will
determine which
LRP variation is
best. In applications
of WWTP such as
process, energy,
and autonomous
systems, where
model openness and

D’Alterio et al.,
2020;

Duarte et al.,
2023;

Love et al., 2023

Gireesh et al.,
2023; Akkajit

et al., 2023; Love
et al., 2023

Montavon et al.,
2019;
Love et al., 2023

(continued on next page)
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Table 2 (continued)

XAl approaches

Model patterns

Remarks

References

Local
Interpretable
Model-
agnostic
Explanations
(LIME)

Tabular Data
LIME, Time Series
LIME, Regression
LIME,
Multimodal
LIME, Time Series
Forecasting LIME,
Structured Data
LIME

accountability are
essential, LRP
approaches are very
helpful for
explaining deep
learning models.
Users can learn
more about a
model’s
information
processing methods
and the features
that have the most
effects on how it
makes decisions by
examining these
LRP versions.

The type of LIME to
employ will depend
on the specific
scenario, the kind of
data, and the ML
model being
utilized. LIME is a
flexible XAI tool. It
offers a method for
producing locally
precise and
comprehensible
explanations for
model predictions,
making it simpler
for users to
comprehend,
believe in, and
perhaps even
troubleshoot
complex models.

Davagdorj et al.,
2021; Love et al.,
2023; Zahra et al.,
2023a, 2023b

distributed XAI models that could streamline the fast processing of large
data sets while maintaining high accuracy and reliability in the inter-
pretation of results, enabling operators to quickly react to changes in

system behaviour.

RQ: What are the methods for real-time deploying of XAl in WWTPs?

Response: Methods such as edge computing, hybrid systems, and
real-time visualizations can be used effectively for the real-time
deployment of XAI in WWTPs. In edge computing, it can be assured to
deploy XAI directly on the local hardware where the data is generated.
Through edge computing the data generated from the sensors and other
monitoring devices of WWTP is processed locally. This allows XAI
models to generate immediate predictions and explanations about how
the input variables are related to desired process outcomes. It is also well
known that some of the XAI models are quite complex and often take
more time to process real-time data. This marks the need for developing
an approach that can quickly analyze and respond to real-time data. For
the smooth deployment of this technology, it is better to choose very
simplified or streamlined XAI models that are particularly designed for
quick decision-making without compromising too much on accuracy or
interpretability. These models focus on providing explanations that are
concise and relevant to the operator’s needs. For example, if we consider
the parameter pH, the streamlined XAI models give a simple explanation
to increase the chemical dosage considering the pH level has dropped
below the required range for optimal performance. This way, by
focusing on the key variables like pH level and flow rates, the system
gives a clear explanation about how these variables influenced the de-
cision. This will help the operator take quick action without needing to
know every tiny detail about how the model arrived at such a decision.
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Table 3
Comparison of modeling strategies in WWTP.

Modeling Advantages Limitations

Mechanistic eEstablished field eNeeds an in-depth Meirlaen et al.,
with computer understanding of 2001; Sheik et al.,
assistance and the underlying 2023b; Monje
established models mechanism. et al., 2022;
elmproved eMathematically Ramin et al.,
forecasting in demanding and 2022
novel situations can involve
eAdaptable to a complex
scaled perspective equations.
in both space and eNumerous
time factors, and

solvers.

Empirical eExtremely low- eIt is necessary to Raduly et al.,
cost develop 2004; Poorasgari
computationally appropriate data and Ormeci,
eDoesn’t call for features for 2022; Langeveld
specialized efficient learning. et al., 2017
knowledge eCan only
eNot limited to symbolize a small
substantial subset of I/0
datasets connections.

oOffers no
understanding of
how things work.
Machine eCost reductions elncomplete, Guo et al., 2015;
learning and better skewed, or noisy Singh et al., 2022;
efficiency may data might Sheik et al.,

Deep learning

Reinforcement
learning

Explainable AI

result from this.
oThis facilitates
data-driven
decision-making,
which can result in
choices that are
more precise and
knowledgeable.

oIt is useful for jobs
like predictive
maintenance,
picture and speech
recognition, and
fraud detection.
eNot reliant on
choosing particular
characteristics and
outputs (may make
use of process data
that is readily
available).

oI/0 may be
continuous or
categorical.

oIt can be used in
domains like
resource
allocation,
recommendation
systems, and stock
trading.

oRL is used to solve
optimum control-
related problems.
eFor multi-
objective
optimization
issues, it is helpful.
eBy revealing how
Al systems make
decisions, XAI
helps to build trust
in those systems.
eDevelopers and
data scientists may
find and fix

produce poor
conclusions and
erroneous
forecasts.
eOverfitting is
reduced through
the use of
regularization
procedures.
eEffective
generalization
might vary based
on the data and
algorithm used.
oOffers no
understanding of
how things work.
eThere are many
parameters and
hyper-parameters
to tune, which
calls for expertise.
eLearning
necessitates big
datasets.

eIn real-world
scenarios, this can
be too expensive or
impracticable.
ePolicies that are
not ideal can result
from inadequate
exploration.
eSelecting the
right
reinforcement
learning algorithm
for a given task
might be difficult.
eThe
interpretability
and efficacy of Al
models are
frequently trade-
offs.

eFor certain usage
circumstances,

2024a;
Torregrossa et al.,
2018; Ly et al.,
2022

Zhang et al.,
2023a, 2023b,
2023c; Alvi et al.,
2023; Li et al.,
2022

Aponte-Rengifo
et al.,, 2023; Yang
et al., 2021; Zhou
et al.,, 2022

Ba-Alawi et al.,
2023a; Xu et al.,
2023a, 2023b;
Duarte et al.,
2023; Bourahla
and Bourahla,
2022

(continued on next page)
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Table 3 (continued)

Modeling

Advantages

Limitations

mistakes in Al

incomplete

models and explanations may
datasets with the be deceptive or
aid of XAL insufficient.

oXAlI can direct
maintenance or
repair procedures
and assist in
determining the
root causes of

oThis may result in
a lack of clarity
and consistency
while adopting
and assessing XAI
solutions.

problems.
eResulting in more
thoughtful choices
and behaviours.

oAl methods might
have trouble
providing coherent
explanations for
deep neural
networks.

Further, if XAI models are able to provide real-time explanations, the
operators who are working in a highly dynamic and complex environ-
ment must be in a state to comprehend the explanations. Real-time
visualization tools help operators to interpret and comprehend the
model outputs by converting explanations into easily understandable
intuitive insights. For example, in a typical WWTP control room, a
visualization dashboard shows either the increase or decrease in DO
level alongside a real-time explanation of why the AI model recom-
mends increasing or decreasing aeration levels in a treatment tank. In
this way, it is helpful for the operator to see both the decision and the
explanation in an easily understandable format, thereby aiding opera-
tors confidently implement the informed decisions obtained from XAI
models. All the above methods contribute to real-time smooth deploy-
ment of XAl in WWTPs in an efficient and effective manner.

RQ: How can XAI models handle noisy and incomplete data in
WWTPs?

Response: There are also situations where the interpretations of the
system are inaccurate. This can happen due to various reasons, such as
noise, incompleteness, or bias in the training data, which might result in
inaccurate interpretations and subpar model performance. To avoid data
discrepancies due to noise and incompleteness associated with the data,
it is recommended to create more robust XAI models (Random Forest
and Gradient Boosting (RFGB), Robust Regression Models, Shapley
Additive Explanations (SHAP) with Noise-Resilient Models, etc.) that
can handle data uncertainty and unreliability situations without losing
accuracy. Models of this type could help us provide explanations about
which part of the data is impacted by noise, thus allowing operators to
rely on the model’s recommendations. On the other hand, it is recom-
mended to develop appropriate data preprocessing techniques that help
in cleaning the data or input missing data using soft sensing techniques
based on the previous trends (historical data) available. This would lead
to reliable predictions and explanations that can be trusted by decision-
makers in WWTPs. The level of uncertainty in the predictions due to data
discrepancies occurring owing to noise and incompleteness can be
explained using uncertainty-aware XAI models (Bayesian Neural Net-
works (BNNs) and Gaussian Processes (GP)). These models help not only
in providing insights about the level of uncertainty associated with their
predictions but also offer explanations degree of confidence that should
be placed in the prediction made. This could help operators understand
how much trust they can place in the prediction before making an
informed decision, especially when dealing with noisy or incomplete
data.

Inadequate data preprocessing procedures, such as missing values or
inaccurate feature scaling, can also lead to inaccuracies in the func-
tioning of the model’s logic. This could therefore complicate the accu-
racy of reasoning of conclusions (Ba-Alawi et al., 2023b). In cases when

19

Engineering Applications of Artificial Intelligence 144 (2025) 110132

certain categories or results are not adequately represented in the data,
the explanations may excessively emphasize more common outcomes,
therefore reducing the interpretability or generalisability of the model
(Belle, and Papantonis, 2021a, 2021b). Models of great complexity such
as deep neural networks or ensemble techniques (e.g., RF, gradient
boosting) are generally challenging to interpret. Comprehending the
internal mechanisms of these models necessitates the use of specialized
methodologies such as LIME and SHAP to elucidate specific choices
(Gilpin et al., 2018). More straightforward models such as linear
regression and decision trees are easily understandable, but they may
not possess the same level of predictive capability in comparison to other
complex models. Presenting local explanations, which explain a single
prediction, as opposed to global explanations, which explain the overall
behaviour of the model, can be challenging. Local interpretations may
logically conflict with global explanations, hence introducing com-
plexities in the understanding of the model behaviour (Love et al.,
2023). This demands the need for mastery of the subject matter to be
critical when integrating Al systems into wastewater treatment plants
(WWTPs) to ensure that operators can accurately interpret Al-driven
insights and make informed decisions. Without a strong grasp of the
subject matter, it may be difficult to fully leverage the capabilities of Al
systems in WWTP operations. Besides this, there can also be challenges
related to how XAI can be scaled for real-time monitoring in large-scale
plants, or how data fusion techniques can handle the growing influx of
IoT data while maintaining interpretability.

Real-time WWTPs need to adjust the dynamic circumstances that
occur in the plant such as production changes and machine malfunc-
tions, and accordingly, the explainable artificial intelligence models
must update their explanations. While scaling the technology of XAI in
real-time monitoring large-scale WWTPs, there can arise several tech-
nical challenges pertaining to developing efficient algorithms for real-
time use, establishing distributed computation, data prioritization
before it is being processed to working algorithms, and deploying scal-
able XAI models. Ideally, large-scale WWTPs generate enormous
amounts of timely data, and it is crucial that Al algorithms efficiently
process and analyze this data to provide meaningful explanations. The
complexities associated with the existing XAI algorithms may not be
able to keep pace with the rapid data influx, resulting in slow or inad-
equate responses. This necessitates either the development of efficient
algorithms or the improvising the existing algorithms that can swiftly
analyze incoming data and provide immediate explanations for DM. On
the other hand, to enhance the speed and efficiency of XAI algorithms in
processing the vast volumes of data that are continuously generated by
numerous sensors and equipment, it is necessary to implement distrib-
uted computing systems in large-scale WWTPs. This can offer solutions
by spreading the computational workload across multiple machines or
processing units. It is inevitably evident that data prioritization and
unified model infrastructure are important for the efficient scalability of
XAI in large plants. The advice is kept over emphasizing prioritizing
critical data points for explanations and interpretability that reflects the
anomalies or system failures rather than analysing all data in detail. At
the same time, an underlying unified model infrastructure must be
designed to scale as the WWTPs expand with new equipment, additional
processing stages, increased processing capacity, or when processes
become more complex promptly. The approach can aid XAI models to
scale with these changes, ensuring that new data sources are incorpo-
rated seamlessly, making it easier to monitor new systems without
overloading the existing infrastructure. This combination of data pri-
oritization and scalable infrastructure allows XAI to deliver timely
relevant insights, even in growing large-scale WWTP operations.

The knowing of how data fusion techniques can handle the growing
influx of IoT data while maintaining interpretability is also important in
the context of establishing XAI in WWTPs. IoT devices produce a wide
variety of data types, including structured, unstructured, time series,
spatial, and categorical data. Fusing such disparate types of data while
maintaining coherence and interpretability is complex. Advanced data



A.G. Sheik et al.

fusion techniques, such as DL, are often complex and behave as black-
box models, which complicates interpretability. This underlies
choosing data fusion techniques such as hierarchical fusion, sensor-level
fusion, context-aware fusion, and feature-level fusion that contribute to
both scalability and interpretability. These fusion techniques offer a
more transparent way to combine different types of data and extract
meaningful insights. Hierarchical fusion involves combining data at
different levels of abstraction, allowing for a more holistic view of the
information. Sensor-level fusion integrates data from multiple sensors
and tries to reduce redundancy and noise before presenting the data to
Al models. Context-aware fusion takes into account the surrounding
environment to enhance the overall understanding of the data. Feature
level fusion combines specific features from different datasets to create a
more comprehensive representation of the information. By utilizing
these techniques, it can be ensured that despite the growing influx of IoT
data, the insights remain interpretable and relevant.

Large WWTPs typically consist of complex processes in which it
necessitates controlling the critical process variables to ensure smooth
and efficient operation without any process disruptions. Integrating
reinforcement learning can help mitigate the risks associated with un-
expected process disturbances by allowing the system to adapt and learn
from past experiences. This adaptive learning approach enables large
plants to make real-time adjustments based on changing conditions,
ultimately improving overall performance and reducing downtime. For
efficient performance through reinforcement learning, it also demands
minimizing the severity of the biases in the data. The data imperfections
can allow ML models to develop biases, making the models overestimate
the water quality parameters and potentially leading to inappropriate
control or actions. The biased ML models might incorrectly favour
certain processes specific to WWTP or fail to detect less frequent but
important anomalies, ultimately leading to uncontrolled inefficiencies
in the WWTP. Therefore, it is crucial to thoroughly analyze and clean the
data before implementing it into the machine learning algorithms.
Regularly auditing the data, ensuring diversity in data collection, and
applying unbiased techniques can reduce these biases. By ensuring that
the data is accurate and free from biases, the system can effectively learn
and adapt to inevitable disturbances that occur in the process, leading to
more reliable and efficient operations. In summary, integrating RL into
process control and addressing potential biases in ML models are
essential for building robust, reliable, and fair AI systems in WWTP
applications. In conclusion, by overcoming the aforementioned chal-
lenges with the suggested scope of improvements, and by exploring
future research directions, XAI holds great potential for implementation
in WWTPs.

5. Conclusion

The advanced ML models are excelling in energy, water, and power
system applications. However, consumers and water specialists could
have difficulty understanding such algorithms if they don’t completely
comprehend the working procedure and the rationale behind the pre-
diction of outputs. Consequently, the objective of XAl is to make ML/DL
models more credible and understandable. In order to achieve this, XAI
focuses on developing techniques and tools that can provide explana-
tions for the decisions made by ML and DL models. Over the past few
years, XAl has gained considerable attention, facilitating researchers to
increasingly incorporate its application into projects within the WWTP
and WS. This research review highlights intriguing patterns in the field’s
recent work and could provide insight into the WWTP scenarios in
which XAI approaches are applied. Even though XAI can look easier to
apply in reality, there are still issues to consider when using it to its
fullest potential to improve user’s confidence. Besides having challenges
in implementing XAl the authors think that XAl approaches have a great
deal of promise to explain the choices made by ML models when they are
employed in the field of WWTP. Moreover, XAI has the capacity to meet
the requirements of environmental quality researchers seeking
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comprehensive process assessment. In addition to various techniques
available for explainability within XAI, the literature highlights SHAP
and LIME as the predominant methods utilized. These methods are
preferred for their efficacy in clarifying the processes and mechanisms
by which models function in predicting process results. The difficulties
and restrictions associated with embracing and applying XAI techniques
in the realm of WWTP are significant additional topics addressed in this
work. Furthermore, future research objectives and possible applications
pertaining to WWTP and XAI were presented. Among these are WWTP
monitoring, process efficiency, and effective process management and
control. The advantages XAI possesses, like providing transparency in
explanations for improving informed DM process, might speed up its
integration in a variety of industrial applications. Furthermore, IoT
integration with XAI presents promising avenues for addressing issues
associated with predictive maintenance and anomaly detection, partic-
ularly in scenarios involving sensor failures. By combining IoT sensor
data with XAI capabilities, it becomes feasible to predict and mitigate
potential equipment malfunctions or irregularities more effectively,
thereby enhancing system reliability and operational efficiency. In
summary, this work offers numerous instances and prospects of how XAI
might be helpful in the field of WWTP.
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