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Abstract
Dislocations in oxides with ionic/covalent bonding hold potential for harness-
ing versatile functionalities. Here, high-density dislocations in a large plastic
zone in potassium niobate (KNbO3) crystals are mechanically introduced by
room-temperature cyclic scratching to enhance piezocatalytic hydrogen pro-
duction. Unlike conventional energy-intensive, time-consuming deformation at
high temperature, this approach merits efficient dislocation engineering. These
dislocations induce local strain and modify the electronic environment, thereby
improving surface reactivity and charge separation, which are critical for piezo-
catalysis. This proof-of-concept offers a practical and sustainable alternative for
functionalizing piezoelectric ceramics. Our findings demonstrate that surface-
engineered dislocations can effectively improve the piezocatalysis, paving the
way for efficient and scalable piezocatalytic applications.
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1 INTRODUCTION

Dislocations in ceramics have been recently discovered as
a renewed tool for tuning the mechanical properties, such
as plasticity,1 strength,2 and fracture resistance.3 However,
their role in functional properties, especially in cataly-
sis, has fallen short in exploration. Dislocations, atomic
line distortion in crystalline solids, can introduce a local
high-strain field4 and induce polar nanoregions, leading
to a diverse ferroelectric domain structure.5,6 These fea-
tures have the potential to influence catalytic performance
by improving surface reactivity and facilitating charge
separation.7,8 These effects are especially valuable in cat-
alytic reactions, where surface-active sites are crucial for
the adsorption and transformation of reactants.
Piezocatalysis,9 which utilizes the piezoelectric effect to

drive catalytic reactions under mechanical stress, offers
several advantages over traditional methods such as phys-
ical hydrogen evolution, photocatalysis, thermo-catalysis,
and electrocatalysis. Compared with physical hydrogen
evolution,10 the piezocatalytic process generates additional
hydrogen, which is not a simple desorption-adsorption
process but rather involves complex chemical transfor-
mations. Contrasting photocatalysis,11,12 which is limited
by light availability and wavelength constraints, piezo-
catalysis can operate efficiently in the absence of light
and is not restricted to a specific wavelength. Thermo-
catalysis13 requires high temperatures and substantial
energy input. Piezocatalysis works at room temperature,
significantly reducing energy consumption. Furthermore,
it does not rely on external electrical sources as elec-
trocatalysis does, simplifying the system and reducing
overall energy demand.14 These factors make piezocatal-
ysis an attractive and energy-efficient alternative, partic-
ularly in applications like water splitting and hydrogen
production.15 Our previous research16 on barium titanate
(BaTiO3) single crystals has shown that introducing dislo-
cations can enhance piezocatalytic hydrogen production.
However, this typical method for introducing disloca-
tions into BaTiO3 involves high-temperature mechanical
imprinting,5 which is energy-intensive and results in
dislocations being introduced deep within the crystal
structure. Most of these internal dislocations are unlikely
to effectively participate in surface catalytic reactions,
which are essential for piezocatalysis. Unlike BaTiO3,
which requires high-temperature processing for disloca-
tion introduction, KNbO3 is capable of room-temperature
bulk deformation,17 allowing for the controlled intro-
duction of dislocations at the material surface without
the risk of fracture.2 Furthermore, the high-temperature
imprinting process requires expensive bulk crystals, which
may also form cracks during compression and cooling,
reducing the structural integrity and stability of cata-

lysts. Although strategies such as doping18 and oxygen-
vacancy modification19 have been successfully employed
to enhance the piezocatalytic water splitting performance
of KNbO3, the piezocatalytic behavior of KNbO3 single
crystals containing dislocations has not yet been systemat-
ically explored, and their significant potential for hydrogen
evolution remains to be further unveiled.
In this study, we explore an approach for enhanc-

ing the piezocatalytic performance of potassium niobate
(KNbO3) single crystals by introducing dislocations via
mechanical scratching at room temperature. This method
offers an energy-efficient alternative to traditional tech-
niques and enhances the material’s surface reactivity,
leading to improved piezocatalytic hydrogen production.
The findings demonstrate that surface-localized disloca-
tions in KNbO3 effectively improve its catalytic activity,
offering a promising approach for piezocatalysis without
the need for the costly high-temperature treatment. This
work aims to provide amore sustainable and efficient strat-
egy for functionalizing piezoelectric ceramics in catalytic
applications.

2 MATERIALS AND EXPERIMENTS

Undoped KNbO3 (KNO) single crystals (FEE GmbH),
grown by the top-seeded solution method, were used for
this study. At room temperature, KNO has an orthorhom-
bic crystal structure. As the temperature increases, it
undergoes two phase transitions from orthorhombic to
tetragonal at 225◦C, then to cubic at 435◦C.20 The crys-
tallographic directions used later are the pseudo-cubic
directions20,21 for consistency of room-temperature slip
system definition as in other perovskite oxides such as
SrTiO3 and KTaO3, both of which have a cubic structure at
room temperature. The samples were cut into the dimen-
sions of about 5 mm × 5 mm × 1 mmwith the large surface
being (001). The (001) surfaces were sequentially ground
with wet grinding papers (P800, P1200, P2500, and P4000,
QATM). Then the samples were further polished (Phoenix
4000, Buehler) with diamond polishing paste (particle
sizes being 6, 3, 1, and 1/4 µm) for 30 min each. A final
step of vibrational polishing was adopted using OPS pol-
ishing solution containing∼ 50 nmcolloidal silica particles
for 20 h. This detailed procedure has proven to be effec-
tive in removing grinding/polishing-induced unintended
near-surface damage.
To intentionally engineer high-density dislocations, the

cyclic Brinell indenter scratching method22 was adopted
at room temperature using a universal hardness testing
machine (Finotest, Karl-Frank GmbH), which is mounted
with a spherical indenter made of hardened steel, with
a diameter of 2.5 mm. The Brinell indenter was brought
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into contact with the sample (100) surface with a load
of 0.8 kg to slide along the <110> direction at a velocity
of 0.5 mm s−1, controlled by a single-axis piezo stage (PI
Instruments). To increase the dislocation density inside the
scratch tracks, 10 passes (10×) were used for each scratch
track.23 Silicone oil was used as a lubricant during the
scratch tests. The region affected by the plastic deforma-
tion (single scratch track) has a width of ∼150 µm and a
depth of tens of micrometers. To enlarge the plastic zone,
multiple parallel scratch tracks were overlapped on the
(001) surface to create a region of about 3 mm × 3 mm
dislocation zone (see Figure S1).
To characterize the generated dislocations via Brinell

indenter scratching, we used electron channeling con-
trast imaging (ECCI) within an SEM (scanning electron
microscopy, Tescan MIRA3-XM) equipped with a four-
quadrant solid-state BSE detector (DEBEN). The acceler-
ation voltage was 15 kV with a working distance of 8 mm.
A carbon layer of approximately 10 nm thickness was sput-
tered on top of the sample to reduce the surface charging
effect. As ECCI is a surface imaging technique, for in-
depth and cross-sectional visualization of the dislocations,
TEM (transmission electron microscope) specimens were
prepared inside the plastic zone, along the <100> orien-
tation, using a dual-beam focused ion beam (FIB, Helios
Nanolab 600i, FEI). Annular dark field scanning TEM
(ADF-STEM) imaging was performed on a TEM instru-
ment (FEI Talos F200X G2, Thermo Fisher Scientific) at
an operating voltage of 200 kV. A probe semiconvergence
angle of 10.5 mrad and inner and outer semicollection
angles of 23–55 mrad were used in the ADF-STEM imag-
ing.Atomic-scale TEManalysiswas performed on a double
aberration-corrected TEM (TitanThemis G2, FEI) operat-
ing at 300 kV. A probe semiconvergence angle of 17 mrad
and an inner and outer semicollection angle of 38–200
mrad were used for high-angle annular dark field STEM
(HAADF-STEM) imaging.
Piezoelectric hydrogen production was conducted in a

closed glass vessel with a volume of 713 mL. A KNbO3
single crystal was placed into a glass vessel containing
35 mL of pure water, without any sacrificial agents. After
absorption in water for 30 min, nitrogen (N2) was passed
through the solutionwith a gas flow rate of 8 L/h for 15min
to obtain an inert atmosphere. Subsequently, the piezo-
catalysis was conducted in an ultrasonic bath for 30 min
with an ultrasonic frequency of 45 kHz and a power of
600 W. Then the instantaneous yield of H2 (YH) at inter-
vals of 30 min was measured by the gas chromatograph
(UATEC-6600, Fanwei (Shanghai) Analytical Instruments
Co., LTD) equipped with thermal conductivity detector
(EHP15887, Valco Instruments Co. Inc.). The detection
limit of the thermal conductivity detector is 10−3 ppm, and
the piezocatalytic H2 production rate was calculated by

Equation (1)24:

𝑣 = 𝑌𝐻𝑉∕𝑉𝑚𝑡 , (1)

where V is the total gas volume of the closed glass ves-
sel, and Vm is the ideal molar volume of gas, which is 22.4
L/mol, and t is the reaction time.

3 RESULTS AND ANALYSES

ADF-STEM analysis reveals the dislocation distribution
and dislocation structure of the (001) KNbO3 single crystal
with 10× scratching. As displayed in Figure 1A, the dislo-
cation density reaches ∼1014 m−2 after 10× scratching, and
the dislocations aremainly composed of long 45◦ segments
(marked by the blue arrows in Figure 1B) and irregu-
lar segments (marked by the green arrows in Figure 1B).
In several oxide ceramics with room-temperature bulk
plasticity, mechanical scratching drives dislocations to
depths beyond 100 µm,25,26 ensuring their persistence
against ultrasonic dissolution and sustaining catalytic per-
formance. Two-beam analysis along different diffraction
conditions was then employed to confirm the Burgers vec-
tor of the dislocation lines generated by cyclic scratching.
As demonstrated in Figure 1D, the 45◦ segments were
invisible along the diffraction vector g = 11̄0, while visible
along the other diffraction conditions in Figure 1. Hence,
the dislocation Burgers vector b yields [110]. The disloca-
tion line vector twas determined to [110] by the dislocation
analysis along the <001> zone axis. Since the dislocation
Burgers vector is parallel to the line vector, these 45◦ dislo-
cation segments are confirmed as screw-type dislocations,
and belong to the <110> {110} slip system.27 The irregular
dislocation segments were invisible along the diffraction
vector g = 100, which yields an uncertain Burgers vector
of [001], [101], or [101̄].
We then used theHAADF-STEM imaging, coupled with

fast Fourier transform (FFT) and inverse FFT (IFFT),
to investigate the core structures of the head or tail of
the 45◦ dislocation segments, as illustrated in Figure 2.
Here again, we use a pseudo-cubic (pc) cell to index
diffraction patterns in the orthorhombic (ortho) cell for
clarity, namely, [110]ortho = [100]pc, [110]ortho = [010]pc,
and [001]ortho = [001]pc. At the head of the 45◦ dislocation
dipole marked by the blue box in Figure 2A, we identified
two edge-type dislocations with opposite Burgers vectors
of 1/2a[110]pc and 1/2a[1̄1̄0]pc, respectively (Figure 2B).
The IFFT pattern in Figure 2C reveals that the dislocation
dipole was separated by a distance of multiple unit cells
(∼7 nm). At the tail of the single 45◦ dislocation segment
marked by the green box in Figure 2A, we identified two
glide dissociated edge dislocations with the same Burgers
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F IGURE 1 ADF-STEM images of dislocations in (001) KNbO3 with 10× scratching under different diffraction conditions. (A)
Dislocation distribution of the 10× scratched (001) KNbO3 with a density of ∼1014 m−2; change of the dislocation contrast along (B) <001>
zone axis, (C) g = 01̄0, (D) g = 11̄0, (E) g = 100, (F) g = 110.

vector of 1/2a[1̄1̄0]pc. The corresponding IFFT pattern in
Figure 2E reveals that the distance between the partial dis-
locations is ∼5 nm. The geometric phase analysis (GPA)
map in Figure 2F generated by the FFT pattern insert,
demonstrates the strain field distribution around the two
edge dislocations. Two selected g vectors, g = 100 and
g= 02̄0, marked with blue circles in the FFT pattern, were
used to compute the strain field in the x direction (εxx).
The resulting strain map in Figure 2F revealed the areas
of tensile strain (red) and compressive strain (blue) around
the two edge dislocations, which exhibit an extremely high
gradient.
Figure 3A displays the H2 yield using reference and

dislocation-rich KNO crystals as the piezocatalysts. For a
blank control group, the average H2 yield is 0.84 ppm,
demonstrating the negligible H2 production performance
of the reactor. The average H2 yield of the dislocation-
rich sample is 77.04 ppm, which is 2.46 times higher than
that of the reference sample. As shown in Figure 3B, after
deductingH2 mass produced by the reactor, the averageH2

production rate of the reference and deformed sample is
1.84 and 4.61 µmol/h, respectively. Figure 3C presents the
comparison of the H2 production rate between KNO sin-
gle crystals with/without dislocations and other reported
piezocatalysts. Due to a well-aligned domain structure,28
deformed KNO exhibits a higher H2 production rate than
other polycrystalline bulk ceramics. Compared with the
BaTiO3 single crystal, a superior H2 production perfor-
mance of the deformed sample can be attributed to its
stability in polarization at high temperature. Since the
Curie temperature Tc of BaTiO3 (∼ 130◦C)16 is lower than
that of KNO (>400◦C),29 higher temperatures caused by
collapsed cavitation bubbles during the ultrasonic process
may lead to a depolarization in BaTiO3 and slower H2 evo-
lution. Furthermore, dislocation engineering is expected to
further elevate theH2 production rate, rendering it compa-
rable to certain powder-based catalysts, such as nanowires
with a high length-diameter ratio and strong piezoelectric
potential,30 and in this work, it already achieves about 17%
of that obtained with potassium niobate powders.18
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F IGURE 2 Dislocations in the 10× scratched (001) KNbO3: (A) Low magnification of the 45◦-inclined dislocation lines. (B) Dislocation
core structure of the head of the 45◦ dislocation dipole marked in the blue box in (A), which includes two edge dislocations with opposite
Burgers vectors. (C) An IFFT pattern in (B) shows the atom planes. (D) Dislocation core structure of the tail of the 45◦ dislocation line,
containing two glide dissociated edge dislocations with the same Burgers vector. (E) An IFFT pattern in (D) shows the atom planes. (F) A
GPA result reveals the strain distribution around the dislocation cores in (D).

4 DISCUSSION

We discuss in Figure 4A, the possible mechanism based
on screening the charge effect in piezocatalysis.37 Initially,
KNO remains electrically neutral as the bound charges
induced by spontaneous polarization P1 are compensated
by oppositely charged external screening charges located
at the two polar surfaces. When subjected to compres-
sive stress, such as that induced by cavitation bubbles
during ultrasonic treatment, the original charge equilib-
rium is disturbed. This leads to a lower polarization P2
and the subsequent release of excess surface charges.
These released charges will participate in redox reactions
with surrounding species, including water molecules, dis-
solved oxygen, hydroxide ions (OH−), and protons (H+),
until a new electrostatic equilibrium is established.24,37
Upon removal of the external stress, the polarization is
restored from P2 to P1, increasing polarization-associated
bound charges, followed by absorbing free charges from
the ambient environment and triggering new redox reac-
tions. Subsequently, the KNO crystal returns to the initial

state. It should be noted that the primary difference
between the deformed and reference samples lies in polar-
ization and the piezoelectric coefficient d33*. Although
mechanical scratching slightly modifies the surface mor-
phology, our previous work25,26 demonstrated that the
resulting change in surface area is minimal and can
be neglected. Previous study38 has also confirmed local
polarization and d33* enhancement near a single dislo-
cation. Furthermore, the higher spontaneous polarization
Ps has been obtained in (K, Na)NbO3 single crystals
with internal stress, consequently contributing to a larger
local piezoelectric coefficient d33* (Figure S3).5,39 Thus,
compared with the reference sample (Figure 4B), the
deformed sample (Figure 4C) exhibits a higher local
strain ε (see GPA results in Figure 2F). The high strain
and stress fields in the vicinity of dislocations,40 as
illustrated by the red region in Figure 4C, require addi-
tional bound polarization charges to compensate for the
enhanced built-in electric field induced by the disloca-
tions. This effect is particularly pronounced in the dis-
location core region. Furthermore, previous work16 has
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F IGURE 3 Performance of piezocatalytic hydrogen production. (A) Yield of hydrogen, (B) hydrogen production rate in KNbO3 single
crystal, (C) a comprehensive comparison of piezocatalysts in hydrogen production rate.16,18,19,24,31–36

F IGURE 4 Mechanism of piezocatalytic hydrogen production. (A) Schematic of the screening charge effect. Schematic illustrations of
KNbO3 single crystals (B, D) without and (C, E) with dislocations, showing differences in surface charge distribution and water splitting
process.
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shown that dislocations can enhance electrical conduc-
tivity, resulting in faster release and accumulation of
surface charges. As shown in the schematic diagram of
Figure 4B,C, KNO with dislocations can produce more
hydrogen and oxygen, which benefits from its higher local
polarization.

5 CONCLUSION

In summary, dislocations were successfully introduced
into the near-surface region of bulk potassium niobate
(KNbO3) single crystals through room-temperature cyclic
scratching, enabling a notable enhancement by more than
two times in piezocatalytic hydrogen production rate.
Compared with conventional high-temperature imprint-
ing, this method is more energy-efficient and avoids the
risk of crack formation or structural degradation. The
improved catalytic performance is proposed to be primar-
ily attributed to the elevated polarization level induced by
strain fields surrounding the dislocations, which promotes
more efficient charge separation and accelerates surface
redox reactions. These findings demonstrate that mechan-
ical deformation-based dislocation engineering at room
temperature provides a feasible and potentially scalable
approach to enhance the catalytic functionality of piezo-
electric materials without additional chemical dopants or
compromising structural integrity.
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