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Abstract. Given a set X ⊆ R
2 of n points and a distance d > 0, the multi-

plicity of d is the number of times the distance d appears between points in X. Let
a1(X) ≥ a2(X) ≥ · · · ≥ am(X) denote the multiplicities of the m distances deter-
mined by X and let a(X) = (a1(X), . . . , am(X)). In this paper, we study several
questions from Erdős’s time regarding distance multiplicities. Among other re-
sults, we show that:

(1) If X is convex or “not too convex”, then there exists a distance other
than the diameter that has multiplicity at most n.

(2) There exists a set X ⊆ R
2 of n points, such that many distances occur

with high multiplicity. In particular, at least nΩ(1/ log logn) distances have super-
linear multiplicity in n.

(3) For any (not necessarily fixed) integer 1 ≤ k ≤ log n, there exists X ⊆ R
2

of n points, such that the difference between the kth and (k + 1)th largest mul-

tiplicities is at least Ω(n log n
k

). Moreover, the distances in X with the largest k

multiplicities can be prescribed.
(4) For every n ∈ N, there exists X ⊆ R

2 of n points, not all collinear or cocir-
cular, such that a(X) = (n− 1, n− 2, . . . , 1). There also exists Y ⊆ R

2 of n points
with pairwise distinct distance multiplicities and a(Y ) 6= (n− 1, n− 2, . . . , 1).

1. Introduction

Let dist(x, y) denote the Euclidean distance between points x and y in
the plane. Given a finite planar point set X = {x1, . . . , xn}, let d1, . . . , dm
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2 F. C. CLEMEN, A. DUMITRESCU and D. LIU

denote the distinct distances between points in X , where m = m(X) ≤
(n
2

)

.
The multiplicity of dk in X is defined as

ak(X) =
∣

∣{(i, j) : 1 ≤ i < j ≤ n, dist(xi, xj) = dk}
∣

∣.

We arrange the m multiplicities as a1(X) ≥ a2(X) ≥ · · · ≥ am(X), irrespec-
tive to relative values of the dk, and let a(X) = (a1(X), . . . , am(X)). In this
paper, we revisit several questions from the time of Erdős regarding distance
multiplicities:

(1) Is it possible that all distances except the diameter have multiplicity
larger than n? See [6] and [9, Conjecture 4].

(2) Can it happen that there are many distances of multiplicity at least
cn, where c > 1 is a constant, or even superlinear in n? See [10] and [8,
Problem 11].

(3) Estimate maxX⊆R2, |X|=n(a1(X)− a2(X)), and more generally,

max
X⊆R2, |X|=n

(ak(X)− ak+1(X))

as well as possible. See [5, Section 3].
(4) For sufficiently large n ∈ N, is it true that a(X) = (n− 1, n− 2, . . . , 1)

if and only if X consists of equidistant points on a line or on a circle? See [6,
p. 135].

We answer Questions (2) and (4), and give partial answers to the other
two.

1.1. Another distance with multiplicity at most n besides the
diameter The diameter of X , denoted ∆ = ∆(X), is the maximum dis-
tance between points in X . Further, denote by ∆2 = ∆2(X) and δ = δ(X)
the second largest and the smallest distances in X , respectively, and by
µ(X, d) the multiplicity of the distance d in X .

Hopf and Pannwitz [16] proved that the multiplicity of the diameter
among any n points in the plane is at most n. Erdős [6] further conjectured
that for any n-element point set X ⊆ R

2, there must be a second distance
besides the diameter that has multiplicity at most n.

Conjecture 1.1 (Erdős [6], see also [9, Conjecture 4]). Let n ≥ 5. For
any X ⊆ R

2 with |X| = n, it is not possible that every distance except the
diameter occurs more than n times.

The condition n ≥ 5 is necessary, since for n = 4 we can glue two equilat-
eral triangles of the same side length together as a rhombus and this gives a
counterexample. Erdős and Fishburn [9] proved the Conjecture for n = 5, 6
and the case of n ≥ 7 is still open. Here we confirm Conjecture 1.1 in two
special cases. A point set X ⊆ R

2 is said to be convex, or in convex position
if no point lies inside the convex hull of other points.
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ON MULTIPLICITIES OF INTERPOINT DISTANCE 3

Theorem 1.2. Let n ≥ 5. For any convex point set X ⊆ R
2 with

|X| = n, it cannot happen that all distances except the diameter occur more
than n times.

Given a point set X ⊆ R
2, let L1 = L1(X) be the set of vertices of the

convex hull of X , called the first (outer) convex layer of X . Similarly, the
second convex layer L2 = L2(X) of X is the set of vertices of the convex
hull of X \ L1. Note that X is convex if and only if L2 is empty. It follows
from definition that X is convex if and only if |L1| = |X|. Next we confirm
Conjecture 1.1 for “not too convex” point sets, namely for point sets whose
first and second convex layers are not too large.

Theorem 1.3. Let X ⊆ R
2 be a set of n ≥ 2 points. If

min
{3

2
(|L1|+ |L2|),

4

3
|L1|+ 2|L2|, 2|L1|+ |L2|

}

≤ n,

then the second largest distance in X can occur at most n times.

Theorem 1.3 directly implies that, if the ratio ∆(X)/δ(X) of a set
X ⊆ R

2 is small enough, then the second largest distance in X occurs at
most n times.

Corollary 1.4. If X ⊆ R
2 is a set of n ∈ N points with ∆(X) ≤

n
3π δ(X), then µ(X,∆2) ≤ n.

Proof. Assume without loss of generality that δ(X) = 1, namely, ∆(X)
≤ n

3π . Then, |L1| and |L2| are upper bounded by the perimeter of the convex
polygons formed by L1 and L2, respectively. Since the perimeter of a convex
polygon is at most π times its diameter, see [25, p. 76], we have |L1|+ |L2|
≤ 2n/3 and thus µ(X,∆2) ≤ n by Theorem 1.3. �

Note that the multiplicity of the second largest distance can be larger
than n in some planar point sets, see [23,24]. Thus, to fully resolve Con-
jecture 1.1, one could perhaps consider multiplicities of different distances
simultaneously and show that one of them must be at most n. For instance,
one could consider the smallest and the second largest distance; however, as
we demonstrate below, their multiplicities can both be large.

Proposition 1.5. Let m,n ∈ N with m ≤ ⌊n/2⌋. There exists a planar
point set X with |X| = n, such that µ(X,∆2) ≥ 3m and µ(X,δ) ≥ 3n−5m+
o(m).

By letting m = ⌊3n/8⌋, we obtain that min{µ(X,∆2), µ(X, δ)} ≥ 9n/8+
o(n). This also motivates the following problem.

Problem 1.6. Determine

lim sup
n→∞

sup
X⊆R2, |X|=n

min{µ(X,∆2), µ(X, δ)}
n

.
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4 F. C. CLEMEN, A. DUMITRESCU and D. LIU

1.2. Point sets with many large distance multiplicities. Erdős
and Pach [10], see also [8, Problem 11], asked the following question: Given
a set X ⊆ R

2 of n points, can it happen that there are c1n distances with
multiplicities at least c2n, for some constant c1, c2 > 0? Bhowmick [2] re-
cently answered their question in the positive: There exist arbitrary large
planar point sets X , |X| = n, such that there are ⌊n/4⌋ distances which oc-
cur at least n+ 1 times. Bhowmick [2] also considered higher multiplicities,
distances that occur at least n+m times, m ≥ 1. He showed that there are
sets with at least

⌊

n
2(m+1)

⌋

distances that occur at least n+m times. Ob-

serve that for m linear in n, this lower bound is only Ω(1). Here we give
a substantial improvement by showing that there exist X ⊆ R

2 of n points,
such that at least nc/ log logn distances have superlinear multiplicity in n.
For comparison purposes, note that nc/ log logn = Ω((logn)α), for any fixed
α > 0.

Theorem 1.7. There exists some constant c > 0 such that for suffi-
ciently large n ∈ N, at least nc/ log logn distances occur at least n1+c/ log logn

times in the
√
n×√

n grid.

As mentioned earlier, Bhowmick [2] answered the question of Erdős and
Pach [10] with constants c1 = 1/4 and c2 = 1. One may ask whether the
constant c1 = 1/4 resulting from his construction is the best possible. We
extend the above investigation for the range c2 > 1. More precisely, we
show that there exist n-element planar point sets with m distances so that
c1m distances occur at least c2n times, for suitable constants c1 > 0, c2 > 1.
Proposition 1.8 below gives three sample combinations; these combinations
are not exhaustive.

Proposition 1.8. For every ε > 0, there exists n0(ε) ∈ N such that
if n ≥ n0(ε), then out of the m = Θ(n/

√
logn) distances presented in the√

n×√
n grid :

(i) at least (1− ε)m/9 distances occur at least 16n/9 times;
(ii) at least (1− ε)m/16 distances occur at least 9n/4 times;
(iii) at least (1− ε)m/25 distances occur at least 64n/25 times.

1.3. On the differences ak(X)− ak+1(X). Let f(n) denote the
maximum value of a1(X) over all X ⊆ R

2 with |X| = n. Erdős [5, Sec-
tion 3] asked whether f(n)− a2(X) tends to infinity as n → ∞. However,
this question is somewhat ambiguous since it leaves the ground set X un-
specified. Here we reformulate the question and ask for

max
X⊆R2, |X|=n

(a1(X)− a2(X)).

We show that the maximum difference a1(X)− a2(X) is at least Ω(n logn).
This is implied by the following more general result.
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ON MULTIPLICITIES OF INTERPOINT DISTANCE 5

Theorem 1.9. Let n ∈ N be sufficiently large and 1 ≤ k ≤ logn. There
exists a point set X ⊆ R

2 with |X| = n, such that ak(X)− ak+1(X) =
Ω
(

n
k logn

)

. Moreover, the distances with the largest k multiplicities can
be prescribed.

In particular, ak(X)− ak+1(X) can be superlinear in n for k → ∞.

Corollary 1.10. maxX⊆R2, |X|=n(a1(X)− a2(X)) = Ω(n logn).

Theorem 1.7 suggests that the following stronger lower bound might be
true:

Problem 1.11. Does there exist a constant c > 0 such that for suffi-
ciently large n ∈ N, we have

max
X⊆R2, |X|=n

(a1(X)− a2(X)) ≥ n1+c/ log logn ?

1.4. Related work. Recall that f(n) denotes the largest possible
value of a1(X) among all subsets X ⊆ R

2 of n points. Determining f(n),
also known as the unit distance problem, is notoriously difficult. The cur-
rent best upper bound is O(n4/3) established by Spencer, Szemerédi, and
Trotter [19]. A simple and elegant argument based on crossing numbers is
due to Székely [20]. From the other direction, it is conjectured by Erdős that
a
√
n×√

n section of the integer lattice gives the correct order magnitude,
n1+c/ log logn, and so the current best upper bound seems far off. See also a
recent survey by Szemerédi [21] for more on this topic.

Let A(n) be the maximum value of
∑

ak(X)2 over all X ⊆ R
2 with

|X| = n. Erdős [7] asked whether A(n) = O(n3(logn)α) holds for some pos-
itive constant α > 0. This question received a complete answer via the work
of Guth and Katz [15] on the problem of distinct distances. Specifically, the
authors proved that the inequality holds with α = 1, i.e., A(n) = O(n3 logn),
and is tight in the

√
n×√

n integer grid. Lefmann and Thiele [17] proved
that the sharper inequality A(n) = O(n3) holds for convex point sets; this
bound is tight, e.g., for a regular n-gon.

The rest of the paper is organized as follows. We will prove Theo-
rems 1.2, 1.3 and Proposition 1.5 in Section 2. In Section 3 we will prove
Theorem 1.7 and Proposition 1.8. Section 4 is devoted to proving Theo-
rem 1.9. Finally, in Section 5 we give a simple answer to Question (4).

2. A second multiplicity at most n in planar point sets

Given a finite point set X ⊆ R
2, recall that δ(X) < ∆2(X) < ∆(X) de-

note the smallest, the second largest, and the largest distances in X , respec-
tively (assuming they exist and are different).

Acta Mathematica Hungarica



6 F. C. CLEMEN, A. DUMITRESCU and D. LIU

2.1. The convex case.

Proof of Theorem 1.2. Let X ⊆ R
2 be an arbitrary convex set of n

points. Let Rn denote a regular n-gon and R−
n denote a regular n-gon minus

one vertex. A classical result of Altman [1] states that X determines at
least ⌊n/2⌋ distinct distances; and this bound is attained by Rn. Moreover,
Altman proved that if n is odd and X determines exactly ⌊n/2⌋ distances,
then X = Rn; in particular, a(X) = (n, n, . . . , n). See also [9,13].

The complementary result for even n is due to Fishburn [12]. Suppose
that n ≥ 6 is even and X determines exactly ⌊n/2⌋ distances. Then

(i) for n = 6, there exist exactly two possibilities, a(X) = (6, 6, 3), or
a(X) = (5, 5, 5);

(ii) for n ≥ 8, either X = Rn or X = R−
n+1.

In particular, for the second case we have a(X) = (n, n, . . . , n, n/2) or
a(X) = (n− 1, n− 1, . . . , n− 1).

We can now finalize the proof. If X determines strictly more than ⌊n/2⌋
distinct distances and all distances smaller than ∆ occur more than n times,
then the number of point pairs is at least

⌊n

2

⌋

(n+ 1) + 1 >

(

n

2

)

,

a contradiction. Otherwise, X determines exactly ⌊n/2⌋ distinct distances,
and it is easy to check that all possible cases listed previously satisfy the
requirements. �

2.2. The “not too convex” case.

Proof of Theorem 1.3. Let L1 = L1(X) and L2 = L2(X) be the first
and second convex layers of X . It suffices to show that

µ(X,∆2) ≤ min
{3

2
(|L1|+ |L2|),

4

3
|L1|+ 2|L2|, 2|L1|+ |L2|

}

.

We have the following observations:
(1) [24, Proposition 1] Let p, q ∈ X . If dist(p, q) = ∆ then {p, q} ⊆ L1.

If dist(p, q) = ∆2 then {p, q} ∩ L1 6= ∅.
(2) If dist(p, q) = ∆2 and p ∈ L1, then q ∈ L1 ∪ L2. Indeed, the points

of X in the exterior of the circle of radius ∆2 centered at p, if any, have
distance ∆ from p and by observation (1) are in L1. Hence, q is at least in
the second convex layer of X .

Combining observations (1) and (2) we have that

µ(X,∆2) = µ(L1 ∪ L2,∆2),

Acta Mathematica Hungarica



ON MULTIPLICITIES OF INTERPOINT DISTANCE 7

moreover, ∆2 is still the second largest distance in L1∪L2. Vesztergombi [23]
showed that the multiplicity of the second largest distance among any n
points in the plane is at most 3n/2. Namely, we have

µ(X,∆2) ≤
3

2
(|L1|+ |L2|).

We proceed to prove µ(X,∆2) ≤ min
{

4
3 |L1|+ 2|L2|, 2|L1|+ |L2|

}

. Let
G be a graph on L1∪̇L2, where pq is an edge if and only if dist(p, q) = ∆2.
Then it holds that µ(X,∆2) = e(G). Iteratively remove vertices of degree
less than 2 from G, and let G′ be the remaining graph whose vertex set is
L′
1∪̇L′

2 with L′
1 ⊆ L1 and L′

2 ⊆ L2. Then we have

e(G) ≤ |L1 \ L′
1|+ |L2 \ L′

2|+ e(G′).

To bound e(G′), we record several observations about the graph G′ by
Vesztergombi [24]:

(3) L′
2 is an independent set (follows from (1) and (2)).

(4) [24, Proposition 3] Every q ∈ L′
2 has degree exactly 2.

(5) [24, Proposition 5] Every p ∈ L′
1 has at most 2 neighbors in L′

2.
(6) [24, Proposition 6] If p ∈ L′

1 has 3 neighbors in L′
1, then it has at

most 1 neighbor in L′
2.

(7) [24, Proposition 7] If p ∈ L′
1 has 4 neighbors in L′

1, then it has no
neighbor in L′

2.
(8) [24, Proposition 8] Every p ∈ L′

1 has at most 4 neighbors in L′
1.

Let e(L′
1) denote the number of edges in L′

1, and let e(L′
1, L

′
2) denote the

number of edges between L′
1 and L′

2. Due to observations (3)–(5),

e(G′) = e(L′
1) + e(L′

1, L
′
2) = e(L′

1) + 2|L′
2|.

Vesztergombi [22] showed that the multiplicity of the second largest distance
among any n points in convex position in the plane is at most 4n/3. Since
L′
1 is convex and ∆2 is either the largest or second largest distance in L′

1,

e(L′
1) = µ(L′

1,∆2) ≤
4

3
|L′

1|.

On the other hand, let deg(p), deg1(p), and deg2(p) denote the number of
neighbors of p in G′, L′

1, and L′
2, respectively. For each p ∈ L′

1, by observa-
tions (4)–(8) we have deg(p) = deg1(p) + deg2(p) ≤ 4. Therefore,

e(L′
1) =

1

2

∑

p∈L′

1

deg1(p) ≤
1

2

∑

p∈L′

1

(4− deg2(p))

= 2|L′
1| −

1

2
e(L′

1, L
′
2) = 2|L′

1| − 2|L′
2|.
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8 F. C. CLEMEN, A. DUMITRESCU and D. LIU

We conclude

e(G) ≤ |L1 \ L′
1|+ |L2 \ L′

2|+ e(G′)

= |L1 \ L′
1|+ |L2 \ L′

2|+ e(L′
1) + e(L′

1, L
′
2)

≤ |L1 \ L′
1|+ |L2 \ L′

2|+min
{4

3
|L′

1|, 2|L′
1| − |L′

2|
}

+ 2|L′
2|

= |L1 \ L′
1|+ |L2 \ L′

2|+min
{4

3
|L′

1|+ 2|L′
2|, 2|L′

1|+ |L′
2|
}

≤ min
{4

3
|L1|+ 2|L2|, 2|L1|+ |L2|

}

. �

2.3. The case where the multiplicities of ∆2 and δ are both
large.

Proof of Proposition 1.5. Our construction is inspired by that of
Vesztergombi [23,24], see also [3, Ch. 5.8]. Let m1 = m2 = m and m3 =
n− 2m. The construction comprises three groups, each containing m1,m2

and m3 points, respectively. Note that n = m1 +m2 +m3.
Group I: Place the first m1 points v1, . . . , vm1

as the vertices of a regular
m1-gon inscribed in a circle C of radius n. Let ∆ and ∆2 be the largest
and second largest distances in this m1-gon. Note that ∆ = O(n) and the
number of occurrences of ∆2 in Group I is exactly m1.

Group II: The next m2 points u1, . . . , um2
are positioned inside the circle

C such that dist(vi, ui) = dist(ui, vi+1) = ∆2, where the indices are modulo
m2. Notably, the ui’s lie on a circle. Let δ = Θ(1) be the smallest distance in
the construction so far, representing the distance between consecutive ui’s.
This distance appears m2 times in Group II.

Group III: The final m3 points form an equilateral triangular lattice with
mesh width δ contained in a disk of radius Θ(

√
n). The lattice is centered at

the origin, coinciding with the center of the circle C. Note that the distance δ
appears 3m3 + o(n) times inside Group III.

Let X denote the final construction, see Figure 1 for an illustration.
Since L1(X) and L2(X) correspond to the points in Group I and Group II,
respectively, we have |L1| = |L2| = m. Overall, the distance δ appears
3m3 +m2 + o(n) = 3n− 5m+ o(n) times, and the distance ∆2 appears
m1 + 2m2 = 3m times. We complete the proof by noting that δ(X) = δ
and ∆2(X) = ∆2. �

3. Many large distance multiplicities among planar points

3.1. Proof of Theorem 1.7. For n ∈ N, let [n] denote the set
{1, 2 . . . , n}. We first prove the following lemma by adapting a well-known

Acta Mathematica Hungarica



ON MULTIPLICITIES OF INTERPOINT DISTANCE 9

v1

v2

v3

v4

v5

v6

v7

u4
u5

u6

u7
u1

u2

u3

Figure 1: The construction in Proposition 1.5, when m = 7. Dotted edges represent the
second largest distance ∆2.

argument for counting representations of a natural number as the sum of
two squares; see, e.g., [18, Ch. 3] and [14, Ch. 2].

Lemma 3.1. Let r(n) denote the number of distinct ways in which n ∈ N

can be represented as the sum of two squares. Then there exists a constant
c > 0 such that for infinitely many n ∈ N, at least nc/ log logn distinct elements
n′ ∈ [n] have

r(n′) ≥ nc/ log logn.

Proof. Let n = p1p2 · · · pk, where pj is the jth smallest prime of the
form 4m+ 1. Since pk satisfies

c1k log k ≤ pk ≤ c2k log k,

for suitable constants c1, c2 > 0, this implies k ≥ 2c logn/ log logn for a suit-
able constant c > 0. It is well-known that any such prime can be represented
(uniquely) as the sum of two squares, i.e.,

pj = a2j + b2j = (aj + bji)(aj − bj i),

where i =
√
−1. There are 2k subsets of K = {1, 2, . . . , k}, and out of these,

exactly 2k−1 subsets have cardinality at least k/2.
Fix any subset K ′ ⊆ K of cardinality |K ′| ≥ k/2. Let n′ =

∏

j∈K ′ pj . For

each subset J ⊆ K ′,
∏

j∈J

(aj + bj i)
∏

j∈K ′\J

(aj − bj i) = AJ +BJ i,

∏

j∈J

(aj − bj i)
∏

j∈K ′\J

(aj + bj i) = AJ −BJ i,

Acta Mathematica Hungarica



10 F. C. CLEMEN, A. DUMITRESCU and D. LIU

where AJ and BJ satisfy

A2
J + B2

J = (AJ +BJ i)(AJ − BJ i) =
∏

j∈K ′

pj = n′ ≤ n.

By the unique factorization theorem for complex integers, AJ + BJ i is dif-
ferent for different choices of J , so we obtain

r(n′) ≥ 2k/2 ≥ nc/ log logn.

Since there are 2k−1 ≥ nc/ log logn distinct values n′ ∈ [n] that have been
considered, the lemma is implied. �

Proof of Theorem 1.7. The proof follows a (now standard) argument
of Erdős [4] using the estimate in Lemma 3.1. Let n0 ≤ n be the largest
integer such that n0 = p1p2 . . . pk, where pj is the jth smallest prime of the
form 4m+ 1. Since k = Θ(logn/ log logn), we have

pk+1 = Θ((k + 1) log(k + 1)) = Θ(logn),

namely, n0 = Ω(n/ logn). By Lemma 3.1 there exist n
Ω(1/ log logn0)
0 =

nΩ(1/ log logn) different values of n′ ∈ [n0] that can be represented as the sum
of two squares in nΩ(1/ log logn) ways. For every such value of n′ there are
Ω(n) points in the

√
n×√

n grid, each of which has nΩ(1/ log logn) neighbors

at distance
√
n′. This completes the proof. �

3.2. Proof of Proposition 1.8. We prove the second estimate; the
proofs of the other two estimates are analogous. Let X be a

√
n×√

n section
of the integer grid, where n = 16k2. Then X determines

m = (1± o(1))
cn√
logn

distinct distances, for some c > 0; see [4] or [18, Ch. 12]. X consists of 16
smaller k × k sections Y , each determining

(1± o(1))
cn

16
√

log (n/16)
= (1± o(1))

m

16

distinct distances. See Figure 2.
Take any distance determined by a non-vertical and non-horizontal seg-

ment s = ab in Y , where a and b are its left and right endpoint, respectively.
Observe that s occurs at least

2k · 3k · 4 + 2k · 3k · 2 = 36k2 =
9

4
n
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Figure 2: Multiplicities of distances in the grid.

times in X . Indeed, the left degree of every point in the 6 central left smaller
sections is at least 4 whereas the left degree of every point in the remaining
6 left smaller sections is at least 2. Note that the number of distances deter-
mined by a vertical or horizontal segment in Y is at most k = o(m). This
justifies the second estimate.

The first and the third estimate are obtained analogously by subdivid-
ing X into 9 and 25 smaller sections, respectively. �

4. On the differences ak(X) − ak+1(X)

Using an inductive construction, Erdős and Purdy [11] showed that the
maximum number of times the unit distance occurs among n points in the
plane, no three of which are collinear, is at least Ω(n logn). Our proof of
Theorem 1.9 can be viewed as a refinement of their argument.

Proof of Theorem 1.9. Let d1, . . . , dk > 0 be arbitrary pairwise dis-
tinct distances. Let X0(m) denote a configuration of m points and let
Xi(2m) denote the union of Xi−1(m) and a translate of Xi−1(m) by dis-
tance di in some generic direction, so that none of the segments connecting
the two copies duplicates a distance other than di. This is feasible since it
amounts to excluding a set of directions of measure zero. We start from
a single point and apply translates by d1, . . . , dk in a cyclic fashion. The
resulting set after k steps has 2k ≤ n points.

For any 1 ≤ i ≤ k, the multiplicity Ti(n) of di in a set of n points con-
structed in the above way satisfies the recurrence

Ti(n) = 2kTi(n/2
k) + n/2, Ti(1) = 0.

Its solution satisfies

Ti(n) ≥
n

2
log2k n =

n

2k
logn.
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(a) Equidistant points on a
line.

(b) Equidistant points on a
circular segment.

c

(c) Equidistant points on a
circle together with its

center.

Figure 3: Three configurations X satisfying a(X) = (n− 1, n− 2, . . . , 1) for n = 7.

In the inductive step corresponding to di, we ensure that none of the seg-
ments connecting the two copies duplicate a distance other than di. Con-
sequently, any distance other than d1, . . . , dk occurs at most n times. In
conclusion, we have

a1(X), . . . , ak(X) = Ω
(n

k
logn

)

, and ak+1(X), ak+2(X), . . . ≤ n,

as required. �

5. Point sets with distinct distance multiplicities

Given a setX ⊆ R
2 of n ≥ 2 points, which containsm = m(X) ≤

(n
2

)

dis-
tinct distances, recall that a(X) = (a1(X), . . . , am(X)) consists of the mul-
tiplicities of all distances ordered by a1(X) ≥ a2(X) ≥ . . . ≥ am(X). How
many distinct values can a(X) contain? At most n− 1, this follows easily
from

∑m
k=1 ak(X) =

(

n
2

)

. Moreover, when a(X) contains n− 1 distinct val-
ues, then a(X) = (n− 1, n− 2, . . . , 1). One can observe that if X consists of
equidistant points on a line or on a circle, see Figure 3 (a) and (b) for an il-
lustration, then a(X) = (n− 1, n− 2, . . . , 1). Are there other constructions
of X that achieve a(X) = (n− 1, n− 2, . . . , 1)? Erdős [6, p. 135] conjec-
tured the answer to be negative, when n is large. Here we give a simple
counterexample to this conjecture.

Observation 5.1. Let γ be a circular arc subtending a center angle
< π/3 on the circle C of unit radius centered at c. LetX consist of c together
with a set of n−1 equidistant points on γ. Then a(X) = (n−1, n−2, . . . ,1).
See Figure 3 (c) for an illustration.

Proof. The multiplicities of the n− 1 points on γ are 1, 2, . . . , n−2.
Since the multiplicity of the unit distance is n− 1, we have a(X) = (n− 1,
n− 2, . . . , 1). Finally, X is not contained in any line or circle. �
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Figure 4: Point sets (n = 9 and n = 10) with pairwise distinct distance multiplicities and
a(X) 6= (n− 1, n− 2, . . . , 1).

One may further ask:

Problem 5.2. For sufficiently large n ∈ N, are the examples in Figure 3
the only point sets with a(X) = (n− 1, n− 2, . . . , 1)? Are these the only ones
with pairwise distinct distance multiplicities?

We answer the latter question in the negative. We also show that an
integer grid is not a valid candidate.

Proposition 5.3. For every n ∈ N, there is a set X ⊆ R
2 of n points

with pairwise distinct distance multiplicities and a(X) 6= (n− 1, n− 2, . . . , 1).

Proof. We present the proof for odd n; the case of even n is analo-
gous and left to the reader. Let X be a piece of the hexagonal lattice of
side length 1 with n = 2k+ 1 points placed on two adjacent horizontal lines
ℓ1, ℓ2, so that |X ∩ ℓ1| = k + 1 and |X ∩ ℓ2| = k. See Figure 4 (left) for an
illustration.

There are two types of distances in X , integer and irrational. The integer
distances are {1, . . . , k}, determined by points on the same horizontal line, or
by points with consecutive x-coordinates on different horizontal lines. The
irrational distances occur between nonconsecutive points on different hori-
zontal lines. Let these be d1 < d2 < · · · < dk−1, where dj =

√

j2 + j + 1 for
j = 1, . . . , k − 1. It is not difficult to verify that

(i) µ(X, 1) = 4k − 1.
(ii) µ(X, j) = 2(k − j) + 1, for j = 2, . . . , k.
(iii) µ(X, dj) = 2(k − j), for j = 1, . . . , k − 1.
The multiplicities are clearly distinct and this completes the proof. �

Observation 5.4. Let k ≥ 4. In the k × k grid there are two distances
which appear exactly 8 times each.

Proof. The distance d1 =
√

(k − 1)2 + (k − 2)2 appears among the
pairs:

{(0, 0), (k − 1, k − 2)}, {(0, 0), (k − 2, k − 1)}, {(1, 0), (k − 1, k − 1)},
{(0, 1), (k − 1, k − 1)}, {(k − 1, 0), (0, k − 2)}, {(k − 1, 0), (1, k − 1)},

{(k − 2, 0), (0, k − 1)}, {(k − 1, 1), (0, k − 1)}.

The distance d1 can only appear between point pairs (x1, y1) and (x2, y2)
where (|x1 − x2|, |y1 − y2|) ∈ {(k − 1, k − 2), (k − 2, k − 1)}, and thus can-
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not appear more than eight times, as shown above. The distance d2 =
√

2(k − 2)2 appears among the pairs:

{(0, 0), (k − 2, k − 2)}, {(1, 0), (k − 1, k − 2)}, {(0, 1), (k − 2, k − 1)},
{(1, 1), (k − 2, k − 2)}, {(k − 1, 0), (1, k − 2)}, {(k − 1, 1), (1, k − 1)},

{(k − 2, 0), (0, k − 2)}, {(k − 2, 1), (0, k − 1)}.

Note that this is an exhaustive list of all point pairs (|x1 − x2|, |y1 − y2|) =
(k−2, k−2). It is not possible that |x1−x2| = k−1 (respectively |y1−y2| =
k − 1), since the equation

(k − 1)2 + (x)2 = 2(k − 2)2

does not have a solution. Indeed, if

x2 = 2(k − 2)2 − (k − 1)2 = k2 − 6k + 7,

then

k = 3±
√

32 − (7− x2) = 3±
√

2 + x2,

but x2 + 2 is not square for x ∈ N. �
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A. Baker, B. Bollobás, A. Hajnal, eds., Cambridge University Press (1990).
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Probab. Comput., 6 (1997), 353–358.
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