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Abstract. Given a set X C R? of n points and a distance d > 0, the multi-
plicity of d is the number of times the distance d appears between points in X. Let
a1(X) > a2(X) > -+ > am(X) denote the multiplicities of the m distances deter-
mined by X and let a(X) = (a1(X),...,am(X)). In this paper, we study several
questions from Erdds’s time regarding distance multiplicities. Among other re-
sults, we show that:

(1) If X is convex or “not too convex”, then there exists a distance other
than the diameter that has multiplicity at most n.

(2) There exists a set X C R? of n points, such that many distances occur
with high multiplicity. In particular, at least nf(1/1°81°%6™) distances have super-
linear multiplicity in n.

(3) For any (not necessarily fixed) integer 1 < k < logn, there exists X C R?
of n points, such that the difference between the k™ and (k+ 1)th largest mul-
tiplicities is at least Q(”lig"). Moreover, the distances in X with the largest k
multiplicities can be prescribed.

(4) For every n € N, there exists X C R? of n points, not all collinear or cocir-
cular, such that a(X) = (n—1,n—2,...,1). There also exists Y C R? of n points
with pairwise distinct distance multiplicities and a(Y) # (n — 1,n —2,...,1).

1. Introduction

Let dist(x,y) denote the Euclidean distance between points z and y in
the plane. Given a finite planar point set X = {xy,...,z,}, let dy, ..., dm,
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denote the distinct distances between points in X, where m = m(X) < (g)
The multiplicity of di in X is defined as

ap(X) = ‘{(i,j): 1<i<j<n, dist(z,z;) = dk}‘

We arrange the m multiplicities as a1 (X) > as(X) > -+ > a;,(X), irrespec-
tive to relative values of the dj, and let a(X) = (a1(X),...,an(X)). In this
paper, we revisit several questions from the time of Erdés regarding distance
multiplicities:

(1) Is it possible that all distances except the diameter have multiplicity
larger than n? See [6] and [9, Conjecture 4].

(2) Can it happen that there are many distances of multiplicity at least
cn, where ¢ > 1 is a constant, or even superlinear in n? See [10] and [8,
Problem 11].

(3) Estimate max xcpe,|x|=n(a1(X) — a2(X)), and more generally,

X) - ap1 (X
xemax | (@(X) = (X))

as well as possible. See [5, Section 3].

(4) For sufficiently large n € N, is it true that a(X) =(n—1,n—2,...,1)
if and only if X consists of equidistant points on a line or on a circle? See [6,
p. 135].

We answer Questions (2) and (4), and give partial answers to the other
two.

1.1. Another distance with multiplicity at most n besides the
diameter The diameter of X, denoted A = A(X), is the maximum dis-
tance between points in X. Further, denote by As = Ay(X) and § = §(X)
the second largest and the smallest distances in X, respectively, and by
(X, d) the multiplicity of the distance d in X.

Hopf and Pannwitz [16] proved that the multiplicity of the diameter
among any n points in the plane is at most n. Erdés [6] further conjectured
that for any n-element point set X C R2, there must be a second distance
besides the diameter that has multiplicity at most n.

CONJECTURE 1.1 (Erdés [6], see also [9, Conjecture 4]). Let n > 5. For
any X CR? with |X| =n, it is not possible that every distance except the
diameter occurs more than n times.

The condition n > 5 is necessary, since for n = 4 we can glue two equilat-
eral triangles of the same side length together as a rhombus and this gives a
counterexample. Erdés and Fishburn [9] proved the Conjecture for n = 5,6
and the case of n > 7 is still open. Here we confirm Conjecture 1.1 in two
special cases. A point set X C R? is said to be convez, or in convex position
if no point lies inside the convex hull of other points.
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THEOREM 1.2. Let n>5. For any convex point set X C R2 with
| X | = n, it cannot happen that all distances except the diameter occur more
than n times.

Given a point set X C R? let L1 = Li(X) be the set of vertices of the
convex hull of X, called the first (outer) convex layer of X. Similarly, the
second convex layer Ly = Lo(X) of X is the set of vertices of the convex
hull of X \ L;. Note that X is convex if and only if Lo is empty. It follows
from definition that X is convex if and only if |L;| = |X|. Next we confirm
Conjecture 1.1 for “not too convex” point sets, namely for point sets whose
first and second convex layers are not too large.

THEOREM 1.3. Let X C R? be a set of n > 2 points. If
. (3 4
min{ *(1L1] + [Laf), g|L1] +2|Lal, 21L4] + L2l } <,

then the second largest distance in X can occur at most n times.

Theorem 1.3 directly implies that, if the ratio A(X)/d(X) of a set
X C R? is small enough, then the second largest distance in X occurs at
most n times.

COROLLARY 1.4. If X CR? is a set of n € N points with A(X) <
4 0(X), then (X, Ag) < n.

PROOF. Assume without loss of generality that §(X) = 1, namely, A(X)
< gt. Then, |L1| and |Ly| are upper bounded by the perimeter of the convex
polygons formed by L; and L, respectively. Since the perimeter of a convex
polygon is at most 7 times its diameter, see [25, p. 76], we have |L1| + |La|
< 2n/3 and thus p(X, Az) <n by Theorem 1.3. O

Note that the multiplicity of the second largest distance can be larger
than n in some planar point sets, see [23,24]. Thus, to fully resolve Con-
jecture 1.1, one could perhaps consider multiplicities of different distances
simultaneously and show that one of them must be at most n. For instance,
one could consider the smallest and the second largest distance; however, as
we demonstrate below, their multiplicities can both be large.

PROPOSITION 1.5. Let m,n € N with m < |n/2]|. There exists a planar
point set X with | X | = n, such that u(X,Ag) > 3m and pu(X,0) > 3n—5m+
o(m).

By letting m = |3n/8], we obtain that min{u(X, Ag), u(X,d)} > 9In/8+
o(n). This also motivates the following problem.

PROBLEM 1.6. Determine

lim sup sup mln{,u(X, AQ)» :U(Xv 5)} ]

n—oo  XCR?,|X|=n n
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1.2. Point sets with many large distance multiplicities. FErdos
and Pach [10], see also [8, Problem 11], asked the following question: Given
a set X C R? of n points, can it happen that there are ¢;n distances with
multiplicities at least con, for some constant ci,co > 07 Bhowmick [2] re-
cently answered their question in the positive: There exist arbitrary large
planar point sets X, |X| = n, such that there are |n/4] distances which oc-
cur at least n + 1 times. Bhowmick [2] also considered higher multiplicities,
distances that occur at least n + m times, m > 1. He showed that there are
sets with at least L2(J+1)J distances that occur at least n + m times. Ob-

serve that for m linear in n, this lower bound is only (1). Here we give
a substantial improvement by showing that there exist X C R? of n points,
such that at least n¢/1°8198" distances have superlinear multiplicity in n.
For comparison purposes, note that n®°glgn — Q((logn)®), for any fixed
a>0.

THEOREM 1.7. There exists some constant ¢ > 0 such that for suffi-
ciently large n € N, at least n®/1°81°8" distances occur at least nlTe¢/loglogn
times in the \/n X \/n grid.

As mentioned earlier, Bhowmick [2] answered the question of Erdés and
Pach [10] with constants ¢; = 1/4 and ca = 1. One may ask whether the
constant ¢; = 1/4 resulting from his construction is the best possible. We
extend the above investigation for the range co > 1. More precisely, we
show that there exist n-element planar point sets with m distances so that
c1m distances occur at least con times, for suitable constants ¢; > 0, ¢g > 1.
Proposition 1.8 below gives three sample combinations; these combinations
are not exhaustive.

PROPOSITION 1.8. For every € > 0, there exists no(e) € N such that
if n > ng(e), then out of the m = ©(n/\/logn) distances presented in the
Vn X /n grid:

(i) at least (1 —e)m/9 distances occur at least 16n/9 times;

(ii) at least (1 —e)m/16 distances occur at least In/4 times;

(iii) at least (1 — €)m/25 distances occur at least 64n/25 times.

1.3. On the differences ar(X) — art+1(X). Let f(n) denote the
maximum value of a;(X) over all X C R? with |X|=mn. Erdds [5, Sec-
tion 3] asked whether f(n) — as(X) tends to infinity as n — co. However,
this question is somewhat ambiguous since it leaves the ground set X un-
specified. Here we reformulate the question and ask for

XQHIQI;,ET?(Fn(al (X) — a2 (X))

We show that the maximum difference a1(X) — a2(X) is at least Q(nlogn).
This is implied by the following more general result.
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THEOREM 1.9. Let n € N be sufficiently large and 1 < k <logn. There
exists a point set X CR? with |X|=mn, such that ap(X) — ap 1(X) =
Q(’];‘logn). Moreover, the distances with the largest k multiplicities can
be prescribed.

In particular, ag(X) — ax+1(X) can be superlinear in n for k — oc.
COROLLARY 1.10. maxxcpe, |x|=n(a1(X) — a2(X)) = Q(nlogn).

Theorem 1.7 suggests that the following stronger lower bound might be
true:

PROBLEM 1.11. Does there exist a constant ¢ > 0 such that for suffi-
ciently large n € N, we have

max  (ay(X) — ag(X)) > n'te/loglosn
XCR?, | X|=n

1.4. Related work. Recall that f(n) denotes the largest possible
value of a;(X) among all subsets X C R? of n points. Determining f(n),
also known as the unit distance problem, is notoriously difficult. The cur-
rent best upper bound is O(n4/ 3) established by Spencer, Szemerédi, and
Trotter [19]. A simple and elegant argument based on crossing numbers is
due to Székely [20]. From the other direction, it is conjectured by Erdds that
a y/n x y/n section of the integer lattice gives the correct order magnitude,
plte/loglogn and go the current best upper bound seems far off. See also a
recent survey by Szemerédi [21] for more on this topic.

Let A(n) be the maximum value of 3 ax(X)? over all X C R? with
|X| = n. Erdés [7] asked whether A(n) = O(n?(logn)®) holds for some pos-
itive constant a > 0. This question received a complete answer via the work
of Guth and Katz [15] on the problem of distinct distances. Specifically, the
authors proved that the inequality holds with a = 1, i.e., A(n) = O(n®logn),
and is tight in the /n x y/n integer grid. Lefmann and Thiele [17] proved
that the sharper inequality A(n) = O(n3) holds for convex point sets; this
bound is tight, e.g., for a regular n-gon.

The rest of the paper is organized as follows. We will prove Theo-
rems 1.2, 1.3 and Proposition 1.5 in Section 2. In Section 3 we will prove
Theorem 1.7 and Proposition 1.8. Section 4 is devoted to proving Theo-
rem 1.9. Finally, in Section 5 we give a simple answer to Question (4).

2. A second multiplicity at most n in planar point sets

Given a finite point set X C R?, recall that §(X) < Ag(X) < A(X) de-
note the smallest, the second largest, and the largest distances in X, respec-
tively (assuming they exist and are different).
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2.1. The convex case.

PRrROOF OF THEOREM 1.2. Let X C R? be an arbitrary convex set of n
points. Let R,, denote a regular n-gon and R, denote a regular n-gon minus
one vertex. A classical result of Altman [1] states that X determines at
least |n/2] distinct distances; and this bound is attained by R,,. Moreover,
Altman proved that if n is odd and X determines exactly |n/2] distances,
then X = R,,; in particular, a(X) = (n,n,...,n). See also [9,13].

The complementary result for even n is due to Fishburn [12]. Suppose
that n > 6 is even and X determines exactly |n/2] distances. Then

(i) for n = 6, there exist exactly two possibilities, a(X) = (6,6,3), or
a(X) = (57 5, 5);

(ii) for n > 8, either X = R, or X = R, ;.

In particular, for the second case we have a(X) = (n,n,...,n,n/2) or
a(X)=n—-1,n—1,...,n—1).

We can now finalize the proof. If X determines strictly more than [n/2|
distinct distances and all distances smaller than A occur more than n times,
then the number of point pairs is at least

Glosn+i=(3),

a contradiction. Otherwise, X determines exactly |n/2| distinct distances,
and it is easy to check that all possible cases listed previously satisfy the
requirements. [

2.2. The “not too convex” case.

PROOF OF THEOREM 1.3. Let Ly = L1(X) and Ly = Ly(X) be the first
and second convex layers of X. It suffices to show that

. (3 4
u(X, Ag) < min{ (1L + [Lal), g|La] +2|Lal, 2/L] + | Lol .

We have the following observations:

(1) [24, Proposition 1] Let p,q € X. If dist(p,q) = A then {p,q} C L;.
If dist(p,q) = Ag then {p,q} N Ly # 0.

(2) If dist(p,q) = A9 and p € Ly, then ¢ € Ly U Ly. Indeed, the points
of X in the exterior of the circle of radius Ay centered at p, if any, have
distance A from p and by observation (1) are in L;. Hence, ¢ is at least in
the second convex layer of X.

Combining observations (1) and (2) we have that

(X, Ag) = p(Ly U La, Ag),
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moreover, A, is still the second largest distance in L1 U Ly. Vesztergombi [23]
showed that the multiplicity of the second largest distance among any n
points in the plane is at most 3n/2. Namely, we have

3
(X, Ag) < 2(|L1| + |L2]).

We proceed to prove pu(X,As) < min{j|L1| + 2|La|, 2|L1| + |[Lo|}. Let
G be a graph on L1ULs, where pq is an edge if and only if dist(p,q) = As.
Then it holds that p(X,As) = e(G). Iteratively remove vertices of degree

less than 2 from G, and let G’ be the remaining graph whose vertex set is
LYUL, with L) C Ly and L, C Ly. Then we have

e(G) < |Li\ Ly| + [L2 \ Ly| + e(G).

To bound e(G’), we record several observations about the graph G’ by
Vesztergombi [24]:

(3) L, is an independent set (follows from (1) and (2)).

(4) [24, Proposition 3] Every ¢ € L, has degree exactly 2.

(5) [24, Proposition 5] Every p € L) has at most 2 neighbors in L}.

(6) [24, Proposition 6] If p € L} has 3 neighbors in L), then it has at
most 1 neighbor in L.

(7) [24, Proposition 7] If p € L} has 4 neighbors in L}, then it has no
neighbor in L.

(8) [24, Proposition 8] Every p € L) has at most 4 neighbors in L].

Let e(L}) denote the number of edges in L, and let e(L}, L}) denote the
number of edges between L} and L}. Due to observations (3)—(5),

e(G') = e(L}) +e(Ly, Ly) = e(Ly) + 2|Lj|.

Vesztergombi [22] showed that the multiplicity of the second largest distance
among any n points in convex position in the plane is at most 4n/3. Since
L is convex and Ay is either the largest or second largest distance in L],

4
e(I4) = (L4, o) < 4|4

On the other hand, let deg(p), deg;(p), and degy(p) denote the number of
neighbors of p in G’, L), and L, respectively. For each p € L}, by observa-
tions (4)—(8) we have deg(p) = deg;(p) + degy(p) < 4. Therefore,

(L) =, 3 demy(p) < ) 3 (4~ degy(p))

peL] peL

1
=214 e(I4, 1) = 2L — 2L},
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We conclude
e(G) < |Ly \ Li| + Lo \ La| + e(G")
= |L1 \ LY| + [L2 \ Ly| + e(LY) + e(Ly, L)

4
< |La\ L+ Lo \ L] + min (L], 2124 = |31 } + 2125
4
= |Ly \ L] + Lo \ L] + min{ | L5 + 2(L5), 2124 | + L1}
4
< min{ ;|1L1] +2|Lal, 2|La| + Lol }. O

2.3. The case where the multiplicities of Ay and § are both
large.

PROOF OF PROPOSITION 1.5. Our construction is inspired by that of
Vesztergombi [23,24], see also [3, Ch. 5.8]. Let m; = mg =m and mg =
n — 2m. The construction comprises three groups, each containing mj,ms
and mg points, respectively. Note that n = my + mo + ms.

Group I: Place the first m; points vy, ..., v, as the vertices of a regular
my-gon inscribed in a circle C' of radius n. Let A and Ay be the largest
and second largest distances in this m-gon. Note that A = O(n) and the
number of occurrences of Ay in Group I is exactly m;.

Group II: The next mgo points uy, ..., u,,, are positioned inside the circle
C such that dist(v;, u;) = dist(u;, vi41) = Ag, where the indices are modulo
ma. Notably, the u;’s lie on a circle. Let § = ©(1) be the smallest distance in
the construction so far, representing the distance between consecutive u;’s.
This distance appears ms times in Group II.

Group III: The final mg points form an equilateral triangular lattice with
mesh width § contained in a disk of radius ©(y/n). The lattice is centered at
the origin, coinciding with the center of the circle C. Note that the distance §
appears 3mg + o(n) times inside Group III.

Let X denote the final construction, see Figure 1 for an illustration.
Since L1 (X) and Lo(X) correspond to the points in Group I and Group II,
respectively, we have |Li| = |Ly] =m. Overall, the distance  appears
3ms +mg + o(n) = 3n — 5m + o(n) times, and the distance As appears
mq + 2mg = 3m times. We complete the proof by noting that 6(X) =146
and AQ(X) = Ag. O

3. Many large distance multiplicities among planar points

3.1. Proof of Theorem 1.7. For n €N, let [n] denote the set
{1,2...,n}. We first prove the following lemma by adapting a well-known
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Figure 1: The construction in Proposition 1.5, when m = 7. Dotted edges represent the
second largest distance As.

argument for counting representations of a natural number as the sum of
two squares; see, e.g., [18, Ch. 3] and [14, Ch. 2].

LEMMA 3.1. Let r(n) denote the number of distinct ways in which n € N
can be represented as the sum of two squares. Then there exists a constant
¢ > 0 such that for infinitely many n € N, at least n® °818" distinct elements
n’ € [n] have

T(TL/) > nc/loglogn.
PROOF. Let n = pips---pi, where p; is the 4 smallest prime of the
form 4m + 1. Since p;, satisfies

c1klogk < pp < coklogk,

for suitable constants ¢1,co > 0, this implies k£ > 2clogn/loglogn for a suit-
able constant ¢ > 0. It is well-known that any such prime can be represented
(uniquely) as the sum of two squares, i.e.,

pj = af + b5 = (aj + bji)(a; — bj),

where i = /—1. There are 2* subsets of K = {1,2,...,k}, and out of these,
exactly 2¥~1 subsets have cardinality at least k/2.

Fix any subset K’ C K of cardinality |K'| > k/2. Let n’ = [ [, p;. For
each subset J C K,

[I(a;+0b1) ] (a; =) = A+ Byi,

jeJ JERNJ
[T =00 T (a;+0si) = A; - By,
jeJ JEKN\JS
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where Ay and By satisfy
A%—FB?Z (AJ—FBJi)(AJ—BJi) = H Dj :n/gn.
JEK
By the unique factorization theorem for complex integers, Ay + Bji is dif-
ferent for different choices of .J, so we obtain

T(TL/) > 2k/2 > nc/loglogn'

Since there are 2F—1 > p¢/loglogn

considered, the lemma is implied. [

distinct values n’ € [n] that have been

PROOF OF THEOREM 1.7. The proof follows a (now standard) argument
of Erd6s [4] using the estimate in Lemma 3.1. Let ng < n be the largest
integer such that ng = p1p2 ... pr, where p; is the 4" smallest prime of the
form 4m + 1. Since k = ©(logn/loglogn), we have

prr1 = O((k+1)log(k+ 1)) = O(logn),

namely, ng = Q(n/logn). By Lemma 3.1 there exist ng(l/loglogno) =

nSi(1/1oglogn) Jifferent values of n’ € [ng] that can be represented as the sum
of two squares in n(1/108108n) wavs  For every such value of n’ there are
Q(n) points in the \/n x /n grid, each of which has n®*(1/1081087) neighbors
at distance v/n/. This completes the proof. [

3.2. Proof of Proposition 1.8. We prove the second estimate; the
proofs of the other two estimates are analogous. Let X be a y/n x y/n section
of the integer grid, where n = 16k2. Then X determines

cn
Viogn

distinct distances, for some ¢ > 0; see [4] or [18, Ch. 12]. X consists of 16
smaller £ x k sections Y, each determining

(1+0(1)

m = (1+o(1))

) 164/log (n/16)

distinct distances. See Figure 2.

Take any distance determined by a non-vertical and non-horizontal seg-
ment s = ab in Y, where ¢ and b are its left and right endpoint, respectively.
Observe that s occurs at least

= (1=0(1);

2k-3k-4+2k.3k.2:36k2zin
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Figure 2: Multiplicities of distances in the grid.

times in X . Indeed, the left degree of every point in the 6 central left smaller
sections is at least 4 whereas the left degree of every point in the remaining
6 left smaller sections is at least 2. Note that the number of distances deter-
mined by a vertical or horizontal segment in Y is at most k = o(m). This
justifies the second estimate.

The first and the third estimate are obtained analogously by subdivid-
ing X into 9 and 25 smaller sections, respectively. [

4. On the differences ar(X) — ar+1(X)

Using an inductive construction, Erdds and Purdy [11] showed that the
maximum number of times the unit distance occurs among n points in the
plane, no three of which are collinear, is at least Q(nlogn). Our proof of
Theorem 1.9 can be viewed as a refinement of their argument.

PROOF OF THEOREM 1.9. Let dy,...,d; > 0 be arbitrary pairwise dis-
tinct distances. Let Xy(m) denote a configuration of m points and let
X;(2m) denote the union of X;_1(m) and a translate of X;_1(m) by dis-
tance d; in some generic direction, so that none of the segments connecting
the two copies duplicates a distance other than d;. This is feasible since it
amounts to excluding a set of directions of measure zero. We start from
a single point and apply translates by dq, ..., di in a cyclic fashion. The
resulting set after k steps has 2¥ < n points.

For any 1 <i < k, the multiplicity T;(n) of d; in a set of n points con-
structed in the above way satisfies the recurrence

Ty(n) = 2"Ty(n/2") + n/2, T;(1) =0.

Its solution satisfies

n

o log n.

Ti(n) > Zlong n=
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(¢) Equidistant points on a
(a) Equidistant points on a (b) Equidistant points on a circle together with its
line. circular segment. center.

Figure 8: Three configurations X satisfying a(X) =(n—-1,n—2,...,1) forn=171.

In the inductive step corresponding to d;, we ensure that none of the seg-
ments connecting the two copies duplicate a distance other than d;. Con-
sequently, any distance other than di,...,d; occurs at most n times. In
conclusion, we have

n
a1(X),...,ax(X) = Q(k logn), and  ap1(X), aps2(X),... <n,

as required. [

5. Point sets with distinct distance multiplicities

Given a set X C R? of n > 2 points, which contains m = m(X) < (g) dis-
tinct distances, recall that a(X) = (a1(X),...,a,(X)) consists of the mul-
tiplicities of all distances ordered by a1(X) > as(X) > ... > a;n(X). How
many distinct values can a(X) contain? At most n — 1, this follows easily
from Y3 ax(X) = (3). Moreover, when a(X) contains n — 1 distinct val-
ues, then a(X) = (n—1,n—2,...,1). One can observe that if X consists of
equidistant points on a line or on a circle, see Figure 3 (a) and (b) for an il-
lustration, then a(X) = (n —1,n —2,...,1). Are there other constructions
of X that achieve a(X)=(n—1,n—2,...,1)? Erdés [6, p. 135] conjec-
tured the answer to be negative, when n is large. Here we give a simple
counterexample to this conjecture.

OBSERVATION 5.1. Let v be a circular arc subtending a center angle
< 7/3 on the circle C of unit radius centered at c. Let X consist of ¢ together
with a set of n — 1 equidistant points on y. Then a(X) = (n—1,n—2,...,1).
See Figure 3 (c) for an illustration.

ProOF. The multiplicities of the n — 1 points on ~ are 1,2,...,n
Since the multiplicity of the unit distance is n — 1, we have a(X) = (n —

n—2,...,1). Finally, X is not contained in any line or circle. O
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Figure 4: Point sets (n =9 and n = 10) with pairwise distinct distance multiplicities and
a(X)#(n—-1,n—-2,...,1).

One may further ask:

PROBLEM 5.2. For sufficiently large n € N, are the examples in Figure 3
the only point sets with a(X) = (n—1,n—2,...,1)? Are these the only ones
with patrwise distinct distance multiplicities?

We answer the latter question in the negative. We also show that an
integer grid is not a valid candidate.

PROPOSITION 5.3. For every n € N, there is a set X CR? of n points
with pairwise distinct distance multiplicities and a(X) # (n—1,n—2,...,1).

PROOF. We present the proof for odd n; the case of even n is analo-
gous and left to the reader. Let X be a piece of the hexagonal lattice of
side length 1 with n = 2k 4 1 points placed on two adjacent horizontal lines
01, 03, so that [ X N¢1| =k + 1 and | X N¥y| = k. See Figure 4 (left) for an
illustration.

There are two types of distances in X, integer and irrational. The integer
distances are {1,...,k}, determined by points on the same horizontal line, or
by points with consecutive z-coordinates on different horizontal lines. The
irrational distances occur between nonconsecutive points on different hori-
zontal lines. Let these be di < dz < --- < dj_1, where d; = \/j2 + 7+ 1 for
j=1,...,k—1. It is not difficult to verify that

(i) p(X,1) =4k — 1.

(i) u(X,j)=2(k—j)+1, forj=2,... k.

(ili) w(X,dj) =2(k—j), for j=1,... k- 1.
The multiplicities are clearly distinct and this completes the proof. [

OBSERVATION 5.4. Let k > 4. In the k X k grid there are two distances
which appear exactly 8 times each.

PRrROOF. The distance di = \/(k —1)2 + (k —2)? appears among the
pairs:
{(070)7 (k - 17k - 2)}7 {(070)7 (k - 27k - 1)}7 {(170)7 (k - 17k - 1)}7
{(07 1)7 (k - 17k - 1)}7 {(k - 170)7 (07k - 2)}7 {(k - 170)7 (17k - 1)}7
{(k—2,0),(0,k— 1)}, {(k—1,1),(0,k—1)}.

The distance d; can only appear between point pairs (z1,y1) and (z2,y2)
where (Jx1 — a2, jy1 —y2|) € {(k— 1,k —2),(k— 2,k — 1)}, and thus can-
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not appear more than eight times, as shown above. The distance dy =
\/Z(k — 2)2 appears among the pairs:

{(070)7(k_2>k_2)}> {(1>O)>(k_1vk_2)}v {(071)7(k_27k_1)}>
{(171)7(k_27k_2)}7 {(k—l,O),(l,k—Q)}, {(k_171)7(17k_1)}7
{(k—2,0),(0,k—2)}, {(k—2,1),(0,k—1)}.

Note that this is an exhaustive list of all point pairs (Jz1 — x2|, |y1 — y2|)
(k—2,k—2). It is not possible that |x1 — z2| = k— 1 (respectively |y; —yo| =
k — 1), since the equation

(k—1)*+ (z)* = 2(k — 2)?
does not have a solution. Indeed, if
2 =2k-22%- (k-1 =k -6k +7,
then
k=3+32—(7T—2%) =3+ V2422,
but 22 + 2 is not square for x € N. [
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