KIT | KIT-Bibliothek | Impressum | Datenschutz

Integrated array of coupled exciton–polariton condensates

Tassan, Pietro; Kobiyama, Etsuki; Fischbach, Jan David ORCID iD icon 1; Ballarini, Dario; Moretti, Luca; Dominici, Lorenzo; De Giorgi, Milena; Sanvitto, Daniele; Forster, Michael; Scherf, Ullrich; Olziersky, Antonis; Rockstuhl, Carsten ORCID iD icon 1,2; Sturges, Thomas Jebb ORCID iD icon 1; Mahrt, Rainer F.; Urbonas, Darius; Stöferle, Thilo
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)

Abstract:

A central challenge for advancing polaritonbased circuits is the controlled and scalable coupling of individual condensates. Existing approaches based on etched
or epitaxially grown microcavities are fabrication-intensive and restrict in-plane coupling. To overcome these limitations, we introduce a lithographically defined silicon-
based platform of high-contrast grating (HCG) microcavities with a ladder-type π-conjugated polymer. In this system, doublet cavities exhibit mode hybridization into bonding and antibonding states, where coupling is mediated across shared HCG mirrors. Extending the design to arrays, N-coupled condensates exhibit systematic red-shifts of the condensate energy, due to delocalization, and a progressive threshold reduction, consistent with extended binding modes. Our experimental results are quantitatively sup-
ported by transition-matrix multi-scattering simulations, together with tight-binding modelling. First-order coherence measurements using Michelson interferometry con-
firm the existence of spatially extended condensates with exponentially decaying temporal coherence. Altogether, these results establish a scalable route toward integrated polariton devices and quantum photonic networks.


Verlagsausgabe §
DOI: 10.5445/IR/1000188331
Veröffentlicht am 10.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.12.2025
Sprache Englisch
Identifikator ISSN: 2192-8606, 2192-8614
KITopen-ID: 1000188331
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Nanophotonics
Verlag De Gruyter
Band 14
Heft 27
Seiten 4983–4991
Vorab online veröffentlicht am 19.11.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page