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1. Introduction

Lattice structures are complex 3D formations composed of inter-
connected struts and walls that form repeating unit cells.[1,2]

Triply periodic minimal surfaces (TPMS)
structures are a fascinating member of
the lattice family that can be generated
using mathematical formulas and offer
the advantage of being able to alter their
mechanical performance by adjusting
the design parameters.[3] These forms of
TPMS structures are referred to as func-
tionally graded lattice (FGL) structures that
exhibit gradual changes in volume density,
type, or unit-cell size throughout the mate-
rial’s volume. The variation in FGL struc-
tures throughout their volumes enables
the modification of physical properties such
as mass density, specific heat, thermal con-
ductivity, corrosion and wear resistance, and
hardness, depending on the needs of rele-
vant applications.[4–6]

Understanding the mechanical proper-
ties of lattice structures is crucial for their
effective application in a wide range of
industrial contexts. Performingmechanical
tests allows for the quantification of the
mechanical properties of lattice structures.
Nevertheless, these tests can be quite
expensive and require a significant amount

of time. Thus, numerical analyses can be conducted to precisely
determine the necessary material properties. Lattice structures
consist of periodic unit cells (PUC) that simplify numerical mod-
els and expedite the evaluation process through the utilization of
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Triply periodic minimal surfaces (TPMS) lattices are gaining popularity for
enhancing structural efficiency in many engineering applications. Functionally
graded TPMS structures provide more customized mechanical properties and
improved functionality compared to typical homogenous designs by deliberately
altering material properties throughout the lattice. This study presents a novel
framework by integrating a homogenization-based topology optimization method
with functionally graded lattice creation, utilizing a streamlined and versatile
MATLAB code. The methodology encompasses several essential phases,
including preprocessing, finite element analysis, sensitivity analysis, density
filtering, optimization, element density visualization, and lattice reconstruction.
These steps facilitate the development of highly efficient lattice structures with
varied attributes, rendering them optimal for additive manufacturing and
full-scale analysis. To ensure the accuracy of the established methodology, three
optimization case studies with different boundary conditions are defined, and the
mechanical reactions of the optimized lattice structures in filled with different
TPMS structures are extensively validated by comparing them to both full-scale
finite element models and experiments. The comparative results demonstrate
that the mechanical responses obtained from topological analysis closely cor-
respond to those acquired from full-scale models and experiments.
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a model reduction technique called homogenization.[7–9] By uti-
lizing homogenization theory, this approach determines the
material properties of lattice structures by analyzing the effective
macro-scale behavior of PUC.[10] This PUC demonstrates similar
characteristics (such as stress, strain, displacement, etc.) as the
macrolattice structure. Thus, the quantitative calculation of
the lattice structures’ macroscopic behavior can be achieved by
analyzing the behavior of PUC. The scientific literature explores
various methods for homogenization, including asymptotic
homogenization, machine learning, multiscale homogenization,
solid-state physics, micropolar theory, surface or volume averag-
ing, and beam theory.[11–17]

To enhance component performance within design limita-
tions, topology optimization (TO) methods have been extensively
employed in various industrial applications, including automo-
tive,[18] healthcare,[19] aerospace,[20] and architecture.[21] There
is a wide range of TO approaches that have been extensively stud-
ied and documented in the literature.[22–25] In addition, the afore-
mentioned homogenization methods can be directly integrated
into TO in order to achieve FGL geometries that fulfill specific
requirements for applications.[26,27] According to Plocher and
Panesar, the utilization of lattice structures as infill geometries
and TO serves as the foundation for the development of advanced
lightweight structures.[28] Li et al. utilized the asymptotic homog-
enization method to analyze a unit-cell and determine the equiv-
alent elastic material properties corresponding to various relative
densities. They then incorporated these properties into TO in
order to calculate the most effective distribution of element den-
sity. The study showed that FGL structures demonstrated greater
stiffness and improved heat conductivity in comparison to uni-
form lattice structures.[29] In order to achieve the best element
densities, Cheng et al. utilized a nongradient-based proportional
TO approach. This study focused on characterizing the effective
material properties of the unit cells using the elastic scale law. To
validate the proposed method, full-scale simulations and experi-
ments were conducted. They demonstrated that the optimized
geometry closely matched the experimental results.[30] In a sepa-
rate study, Simsek et al. put forward a revised solid isotropic
material with penalisation (SIMP) method. They made adjust-
ments to the material constant and exponent of the SIMP for-
mula based on curves derived from homogenization analysis
involving various relative densities. The effectiveness of the sug-
gested design was proven through the use of a structure filled
with double gyroid lattice structures.[31] Ozdemir et al. success-
fully created FGL structures of various shapes (Diamond, Gyroid,
I-WP, and Primitive) using genetic algorithms and anisotropic
homogenization-based TO. A genetic algorithm was utilized to
find the most efficient lattice structure, which was then evaluated
using homogenization-based TO. The results indicate that the
proposed method yields FGL structures with higher stiffness
compared to single lattice morphologies.[32] In a recent study,
an open-source GPU solver for large-scale inverse homogeniza-
tion problems was introduced by Zhang et al.[33] This code
enables the application of periodic boundary conditions and
utilizes the parallel computation power of a memory-efficient
GPU solver. The homogenized stiffness terms, such as bulk
modulus, shear modulus, and Poisson’s ratio, can be optimized
under a predefined set of constraints using this code, and opti-
mized microstructures with respect to desired material

properties are reported in a library. This study is confined to
identifying optimum microstructures and does not address
the infilling of an extensive design domain comprising
numerous functionally graded microstructures for fully exploit-
ing the capabilities of lattice structures. One key aspect, the
implicit formulation of optimized microstructures required for
the generation of FGL structures, is reported as part of future
work.

Although previous studies have explored homogenization, TO
with public codes for various TO problems,[34–58] and TPMS
modeling separately, the entire scheme has not been discussed
in a versatile coding framework that includes homogenization of
TPMS structures, integration of homogenization material prop-
erties into TO, generation of FGL structures from TO results, and
exporting data for additive manufacturing (AM) and full-scale
finite element analysis (FEA) for validation. In order to address
this issue, a streamlined MATLAB code has been developed in
this study. For this purpose, the material model, element stiff-
ness matrices, and sensitivity calculations have been modified
in the existing SIMP-based 3D TO scheme[40] to perform aniso-
tropic homogenization-based TO. Another key contribution is to
map element densities attained from TO onto given TPMS unit-
cells to create graded lattice structures. In the author’s previous
studies, relative density mapping (RDM),[32,59] radial basis
function (RBF) mapping,[31] and sensitivity-based mapping
scheme[60] have been implemented and compared for graded lat-
tice generation. Besides, in a more recent study, a gradient
method was introduced by Modrek et al.,[61] in which the relative
densities of a set of elements in the xz-plane at a specific y-value
are averaged to generate graded cellular structures along the y-
axis. In a heat sink thermal conductivity problem, the mapping
effectiveness of the structures obtained by RDM and gradient
methods was compared with the unmapped optimization
results, confirming the superiority of the proposed gradient map-
ping method. In addition to producing graded structures by alter-
ing relative densities with a fixed unit-cell size, a correlation
between the period and cell size can be established by varying
the unit-cell size while maintaining constant relative densities
across the domain. This enables the efficient reduction of mean
curvature deviations and geometric distortions, while permitting
localized control of TPMS.[62] However, based on the author’s
prior expertise and the clarity and intuitiveness of the suggested
code architecture, the reconstruction module has been newly
developed to produce a fixed unit-cell size by varying relative den-
sities using the RDM approach. The reconstruction module gen-
erates stereolithography (STL) models for AM and voxel mesh
models for full-scale FE validation analyses. To validate the
proposed code, three case studies have been established, each
with distinct boundary conditions, and full-scale voxel models
have been constructed utilizing the data obtained from TO to
numerically corroborate TO results. Finally, for experimental
validation, the optimized geometries attained from three case
studies have been printed using the material jetting AM
method and subjected to mechanical testing. The comparative
findings confirm the superior properties of FGL structures
over uniform structures, as well as the accuracy of the generated
code.

The remainder of this study is organized as follows. In
Section 2, we introduce the methodologies used for lattice
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generation and anisotropic homogenization. In Section 3, the
details of coding implementation are discussed. Section 4 is ded-
icated to numerical examples. It provides a concise explanation of
the compliance minimization TO problem formulation with vol-
ume constraints, modifications in the existing TO codes, and
novel FGL generation codes. Section 5 is reserved for AM of
the optimized FGL structures and experimental validations,
and finally, our main conclusions are outlined in Section 6.

2. Materials and Methods

2.1. Surface-Based Lattice Design

This section will explore the formulation and design of surface-
based lattices and their potential for creating various lattice types.
TPMS structures can be modeled by employing an implicit math-
ematical equation U (x, y, z, t)= 0.[63,64] Here, x, y, and z denote
coordinates on the iso-surface, while t, referred to as “level set
parameters,” indicates the necessary offset for generating a vol-
ume from the iso-surface. The value of t is crucial in lattice
design as it directly affects the relative density ρ*. The relative
density represents the density ratio of porous ρlatt. to solid
ρsol. (ρ*= ρlatt./ρsol.). This study analyzes and formulates six
lattice types, namely Diamond (D), Fischer–Koch (FK), F-RD,
Gyroid (G), I-WP, and Primitive (P). which are depicted in
Table 1.

The unique connection between t and ρ* must be
determined separately for each lattice. One method involves sys-
tematically adjusting the t value and measuring the resulting lat-
tice density. Hence, ρ* can be computed using t and its
corresponding ρ* value through mathematical equations.
The relative density ranges from 0 to 1, representing fully
porous (ρ*= 0) and solid (ρ*= 1) states. As t increases, ρ*
approaches unity, indicating less porosity. To account for the lat-
tice’s structure with voids, it is practical to focus on specific
ρ* ranges, constraining the possible t values. The relationship
between t and ρ* for six different lattices is depicted in
Figure 1.

Once the distinct relationship between t and ρ* is
established for each lattice individually, the mechanical
properties of the lattice can be determined based on its
geometric features using various modeling methods. The
upcoming section will discuss the anisotropic homogenization
of the lattices, which connects their elastic stiffness constants
with ρ*.

2.2. Anisotropic Homogenization of Lattice Morphology

Due to the cubic symmetry[65] of the TPMS lattices, the stiffness
matrix’s relationship can be simplified as follows:C11=C22=C33,
C12=C13=C23, and C44=C55=C66, while the remaining
elements are zero. With this simplification, the mechanical

Table 1. Mathematical equation and geometry of the TPMS lattices.[63,64]

Equation Geometry (ρ*= 0.2)

f D ¼ sinðkx xÞ � sinðkyyÞ � sinðkzzÞ þ sinðkx xÞ � cosðkyyÞ � cosðkzzÞ þ cosðkx xÞ � sinðkyyÞ � cosðkzzÞ þ cosðkx xÞ � cosðkyyÞ � sinðkzzÞ
� �

2 � t2

f FK ¼ cosð2kx xÞ � sinðkyyÞ � cosðkzzÞ þ cosð2kyyÞ � sinðkzzÞ � cosðkx xÞ þ cosð2kzzÞ � sinðkx xÞ � cosðkyyÞ
� �

2 � t2

f F�RD ¼ �4� cosðkx xÞ � cosðkyyÞ � cosðkzzÞ � cosð2kx xÞ � cosð2kyyÞ � cosð2kyyÞ � cosð2zzÞ � cosð2kx xÞ � cosð2kzzÞ
� �

2 � t2

f G ¼ cosðkx xÞ � sinðkyyÞ þ cosðkyyÞ � sinðkzzÞ þ sinðkx xÞ � cosðkzzÞ
� �

2 � t2

f I�WP ¼ 2� ðcosðkx xÞ � cosðkyyÞ þ cosðkyyÞ � cosðkzzÞ þ cosðkx xÞ � cosðkzzÞÞ � ðcosð2kx xÞ þ cosð2kyyÞ þ cosð2kzzÞÞ
� �

2 � t2

f P ¼ cosðkx xÞ þ cosðkyyÞ þ cosðkzzÞ
� �

2 � t2

where ki ¼ ð2π=liÞ � i and i= x, y, and z.
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properties of TPMS structures can be described using three
distinct stiffness constants as follows

CTPMS ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

2
666666664

3
777777775

(1)

To determine these three stiffness constants, a single TPMS
unit cell should be subjected to a normal and shear loading,
separately. In each loading, one strain component is set to unity,
while the others are set to zero during the numerical implemen-
tation as given in Equation (2).[66] This approach allows for a
simplified characterization of the mechanical behavior of
TPMS structures.

Input∶

ε11
ε22
ε33
ε23
ε31
ε12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1
0
0
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Output∶

σ11
σ22
σ33
σ23
σ31
σ12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

C11
C21
C31
C41
C51
C61

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(2)

For practical applications, in the normal loading case to
extract C11 and C12, a strain of 1% of the structure’s length
is applied to the top face, while the other faces remain fixed
along their normal. The boundary condition for the normal
loading is expressed mathematically as given in Equation (3)
and schematically illustrated in Figure 2a, where lx, ly, and
lz represent the total length of the structure in the x, y, and
z directions, respectively.

Δlxjx¼lx ¼ 0.01lx
Δlxjx¼0 ¼ Δlyjy¼ly

¼ Δlyjy¼0 ¼ Δlzjz¼lz ¼ Δlzjz¼0 ¼ 0 (3)

For the shear loading case, a shear strain of 0.5% is applied
to two surfaces, as boundary conditions are mathematically
given in Equation (4) and illustrated schematically in
Figure 2b.

Δlxjz¼lx ¼ 0.005lz,Δlzjx¼lz ¼ 0.005lx
Δlzjx¼0 ¼ Δlyjy¼ly

¼ Δlyjy¼0 ¼ Δlzjz¼lz ¼ Δlxjz¼0 ¼ 0 (4)

To determine the values of C11 and C44, reaction forces over
nodes on the loaded surfaces are integrated. In the scenario of
normal strain loading, the reaction force on one of the side
surfaces is calculated to obtain the value of C12, utilizing the
formula provided below.

C11 ¼
R11 � A11

ε11
C12 ¼

R12 � A12

ε12
C44 ¼

R44 � A44

ε44
(5)

where Rij, Aij, and εij are the total reaction force, area of interest,
and total strain applied to the boundaries, respectively.

The analysis procedure is iterated for a specific relative density
range of interest, varying between 0.1 and 0.5 with increments of

Figure 2. Normal and shear boundary conditions.

Figure 1. t to ρ* mapping for different lattices.
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0.1 for this study. Stiffness values for each TPMS lattice are esti-
mated as a function of relative density using a scale-law equation.
The stiffness coefficients are represented using the second-order
polynomial curves, Cij= p1� (ρ*)2þ p2� (ρ*)þ p3, along with
corresponding R2 values, which are detailed in Table 2. These
trends are visually depicted in Figure 3a–c.

3. Implementation Details

Once the mechanical characterization of the TPMS lattices is
studied to define the homogenization curves, the designer
may integrate the defined curves into the developed optimization
code to generate FGL. Figure 4 illustrates the flow diagram of the
proposed code. The process begins with the preprocessing phase,
where essential constants for the polynomial curves obtained
from homogenization analyses, along with design parameters
for creating optimization geometry, are defined. Following the
determination of parameters for a specific optimization case
study, the TO process ensures an optimal material distribution
while meeting specified constraints. Once TO reaches conver-
gence, the material distribution is displayed for post-processing.
Topology-optimized designs, being intricate, can pose challenges
in reproducing them for subsequent FEA and manufacturing
preparations. Hence, the subsequent step in the suggested flow
involves reconstructing the optimized design. Designers have the
flexibility to choose either STL or voxel format for reconstruction
to facilitate further analysis or manufacturing requirements. For
the purposes of this study, a MATLAB script implementing this
methodology has been provided.

The proposed flowchart smoothly integrates existing
MATLAB functions and subfunctions or utilizes open-source
code to achieve the predefined objectives. These are also listed
in Table 3, accompanied by brief descriptions.

3.1. Parameter Definition

The script commences by establishing multiple parameters, such
as material properties, geometric design specifications, applied
loads, TO parameters, and the concluding phase of reconstruc-
tion. At first, the material properties are assigned as scale_law
and base_material to their respective domains, assessing the
material’s response under various conditions. The preceding
chapter elucidates the implementation of homogenization in
relation to the scale law and offers polynomial curve

approximations for different lattice configurations. Designers pos-
sess the autonomy to select the lattice type and determine the size
of its unit cell, thereafter, examining the homogenization curves
that have been defined. The plates are coated with the basematerial,
which contains isotropic properties, elastic modulus, and Poisson’s
ratio. Once the material parameters have been established, the sub-
sequent stage entails specifying the geometric characteristics. The
dimensions of the design domain are determined by the cubic unit-
cell size (cell_size) and the number of unit cells in each direc-
tion (cell_counts). For example, if the cell size is 10mm and
the cell counts are [3 2 1] the resulting design domain would have
dimensions of 30mm in the x-direction, 20mm in the y-direction,
and 10mm in the z-direction. Furthermore, the specification of
plate_thickness is of utmost importance in sandwich
designs, where the plates are oriented in the x–z plane. Load
boundary constraints are defined according to the geometric spec-
ification. The total_load is uniformly distributed based on
the needs of the case study. Afterward, the parameters for
TO are established, which consist of minimum, maximum,
and target volume fractions that act as constraints. It is impor-
tant to note that plates are considered passive elements and are
not subject to examination for convergence in TO. The
additional parameters, namely r_min (minimum radius),
max_loop (maximum iteration number), and tol_x (toler-
ance value for convergence), are specified. In addition, the
displayflag_loop parameter allows for the visualization
of material distribution at each iteration, which leads to
a longer convergence time. Finally, the parameters for
the reconstruction of optimum designs are defined. The
mesh_scaling controls the level of mesh refinement in
reconstructed geometries, thereby affecting the resulting file
size. Designers have the option to choose voxel (.fem) or 2D
surface mesh (.stl) reconstructions. The voxel reconstruction
is used for FEA, while the surface mesh reconstruction is used
for AM. Table 4 presents a concise overview of these factors for
convenient reference. The details and usage of the design var-
iables are thoroughly explained in the following subsections.

3.2. Preprocessor

The scale-law constants and constitutive material properties,
represented by scale_law and base_material, are
defined. These parameters serve as the foundation for subse-
quent calculations within the script. With these values in

Table 2. Constants of second-order polynomials for six different TPMS structures.

TPMS C11 C12 C44

a11 a12 a13 R2 b11 b12 b13 R2 c11 c12 c13 R2

D 1556.3 738.0 37.1 0.999 840.0 302.8 21.6 0.998 604.6 118.8 4.5 1

G 1598.0 657.6 29.6 0.999 661.9 406.0 15.6 0.999 515.8 167.0 4.4 1

P 2758.2 156.4 54.4 0.999 1116 277.4 34.0 0.998 457.7 259.9 6.4 1

FK 1956 584.8 26.04 0.9996 866.8 279.7 19.89 0.9988 582.7 126.8 4.138 0.9999

I-WP 2496 434 4.745 0.9999 1259 11.22 14.67 0.9993 561.2 78.25 9.148 0.9996

F-RD 3194 287.9 46.51 0.9996 2064 �209.2 40.83 0.9986 695.9 101 0.6273 0.9998
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place, the script proceeds to compute essential stiffness
matrix variables, including C11, C12, and C44, vital for further
analysis and characterization of the material’s behavior.

a11 a12 a13
b11 b12 b13
c11 c12 c13

2
4

3
5 (6)

Geometric parameters of the design domain are defined at the
preprocessing stage prior to. The complete MATLAB script is
available in the Supporting Information, and the preprocessing
parameter can be defined or modified on script lines 2–26. After
preprocess parameters, including material properties, geometric
dimensions, and optimization parameters, are defined, the script
becomes ready for conducting homogenization-based TO.

3.3. TO

A major improvement of the proposed approach is the replace-
ment of the conventional SIMP material model with three poly-
nomials calculated from homogenization analyses. Therefore, an
efficient open source TO code using the SIMPmethod is utilized
in this study.[40] The material model, element stiffness matrix[67]

used in the finite element calculations, sensitivity calculations,
and visualization sections are modified to perform homogeniza-
tion-based TO. Therefore, more details about each step can be
found in the referenced study. In the optimization step, the stiff-
ness matrix is computed for each element within a given design
domain using the novel material model, with the element density
value being determined by the optimizer. This process is done
iteratively until convergence, defined as the point where the

Figure 3. Stiffness terms a) C11, b) C12, and c) C44 for different lattice types
using homogenization analyses.

Figure 4. Flowchart of the proposed algorithm.
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objective value changes by an amount that is smaller than the
predefined tolerance value. Furthermore, if the lattice structure
is sandwiched between two plates, with a nonzero value for
the plate_thickness parameter, isotropic material properties
are assigned to elements of the plates. However, these elements
remain passive during the optimization process. The implemen-
tation of stiffness terms for each element utilizing scale-law
constants is detailed in code lines 170–186 of the MATLAB script
(see Supporting Information).

In order to incorporate the new material model, modifica-
tions to the sensitivity matrix calculations are also necessary.
Sensitivity analysis is essentially a method used to determine

how changes in material density affect the objective function.
The design variables are updated iteratively to satisfy optimization
constraints, such as the desired volume fraction andminimum and
maximum relative density thresholds. The script provides detailed
output describing the progress of each iteration, including informa-
tion about the goal function value and volume fraction.
Furthermore, there is an option to include a 3D representation
of the material density distribution. The code for calculating the
sensitivity matrix is included in lines 106–117 of the MATLAB
script (see Supporting Information).

3.4. Visualization

As a means to visualize the results, the script uses minimum and
maximum element density thresholds and other user-defined
parameters to generate a representation of the optimized design
domain. The values of those parameters are defined as minimum
and maximum relative densities by default, yet the designer is
free to set a different range of values. Using MATLAB’s patch
function, the script iterates through each element in the design
domain, utilizing their position and density to render them as 3D
patches, with the color intensity being adjusted based on their
relative density. This process helps the designer understand
the results of their work and allows them to do more research
and make improvements. Figure 5 illustrates the material distri-
bution of a topology-optimized beam with varying minimum and
maximum element density thresholds.

Executing the given script creates a picture of the optimal mate-
rial distribution for the structure, showing how thematerial density
is spread out in space across the design domain. By grading black
and gray colors to different density ranges, the visualization offers
insights into the structural composition and optimization progress.
Here, ideally, white is for lower densities, whereas higher densities
are represented by gray colors (see Figure 5). Such visual represen-
tations not only enhance understanding but also serve as valuable
tools for communicating design concepts and findings. Going
forward, these visualizations can help with iterative optimization
processes and looking into different configurations for more
rebuilding and improvement steps.

3.5. Reconstruction

The mapping of element densities over a given design domain to
construct optimized graded lattice structures has been exten-
sively studied in the literature.[60,61] A widely adopted approach

Table 3. Functions and their description.

Function Line Description

top3d.m 1–137 TO and FEA[40]

display_3D.m 144–169 Display TO density distribution[40]

hex.m 169–240 Compute stiffness matrix for brick element[67]

hex_sens.m 241–309 Compute sensitivity matrix for the brick element

element_setup.m 310–317 Recreating element connectivity array by excluding plates and assigning corresponding element densities for reconstruction

averaging_densities.m 318–334 Averaging element densities for reconstruction

reconstruct.m 335–394 Regeneration of topology optimized design

Table 4. Design variables and their description.

Design variables Description

Material

scale_law Lattice scale law C11, C12, and C44 constants

base_material Base material properties

Preprocess

cell_size Unit-cell size

cell_counts Number of unit-cell in x, y, and z directions

plate_thickness Plate thickness

total_load Applied total load

Solution

minumum_volfrac Minimum volume fraction

maximum_volfrac Maximum volume fraction

target_volfrac Target volume fraction

r_min Minimum radius

max_loop Maximum number of loops

tol_x Tolerance

displayflag_loop Plotting material distribution at each
loop switch 1, on; 0, off

Lattice Morphology

f Lattice iso-surface equation

ftf Lattice t to ρ* mapping

Reconstruction

mesh_scaling Mesh density for reconstructed geometry

fem_reconstruction .fem reconstruction switch 1, on; 0, off

stl_reconstruction .stl reconstruction switch 1, on; 0, off
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for reconstructing topology-optimized structures is the RDM
method. In this reconstruction process, the primary objective
is to populate the topology-optimized design domain with explic-
itly defined lattice structures. The reconstruction framework (see
Figure 6) leverages the optimal element density distribution
obtained from TO to systematically grade the lattice morphology,
thereby ensuring a tailored and optimized lattice structure. To
achieve this, an arithmetic averaging technique is employed to
compute the average density values of all shared elements, as
represented in Equation (7)

ρijk ¼
P

X�
ijk

Nnode
(7)

where ρijk denotes the computed average density of the node
point (i, j, k) located at each element corner and X�

ijk is the density

of the elements that share the node point.Nnode is the number of
elements sharing the node as exemplified in Figure 6b. Thus,

Equation (7) provides the average mapping density at each
element node. Once the density at the element node is known,
a linear interpolation method (see Figure 6c) is used to make the
grid more precise. This makes it possible for the calculated aver-
age densities to be spread out evenly across the elements, which
results in a smoother structure. The density of interpolation
points can be controlled to have a smooth transition. The recon-
structed structure is then exported in .stl format using three-node
triangular meshes, as shown in Figure 6d.

This reconstruction algorithm facilitates the generation of
both .stl and .fem formats for explicit topology-optimized designs
(see Figure 7b,c). Similar to the .stl reconstruction, the .fem
format employs an alternative meshing approach, utilizing an
eight-node hexahedral voxel mesh (see Figure 7b). This format
is particularly useful for FEA, enabling the discretization of the
design domain into small volumetric elements for accuratemechan-
ical simulations and performance evaluations. Conversely, the STL
format transforms the optimized lattice design into a series of

Figure 5. TO of a beam model with density thresholds a) 0.1 < ρ* < 0.5 and b) 0.3 < ρ* < 0.5.

Figure 6. a) Element densities from TO analysis, b) averaging method for a boundary node, c) node enrichment for a smooth reconstruction, and
d) reconstructed graded gyroid structure.
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interconnected 2D surfaces suitable for AM. By integrating
both voxel-based and STL meshing strategies, the reconstruc-
tion methodology bridges the gap between TO and practical
implementation, offering a comprehensive framework for
deploying topology-optimized lattice structures in real-world
applications.

The reconstruction algorithm initially determines material con-
nectivity, excluding plates regarded as nondesign domains. This
omission simplifies computational complexity; nevertheless, design-
ers may reintegrate plate parts after TO using CAD software. The
optimalmaterial distribution is initially determinedwithin a homog-
enized design domain, defined by coarse meshes that ensure
computational efficiency. To accurately represent the specified lattice
design, this coarse mesh is converted into a finer discretized distri-
bution. A linear averaging approach is adopted for RDM, wherein
density values obtained from finite element-based TO are systemat-
ically interpolated. The averaging function, depicted in theMATLAB
script lines 318–334 (see Supporting Information), iterates through
the element connectivity data to compute average densities for each
node, ensuring a seamless transition from coarse to fine mesh
representation while maintaining computational tractability.

The following part of the script is the voxel mesh mapping
section, where the focus shifts to translating the fine discretized
distribution obtained from the linear averaging approach into a
structured voxel mesh format suitable for the full-scale FEA. The
MATLAB script lines 363–394 (Supporting Information) outlines
the iterative process involved in mapping the voxel mesh ele-
ments. First, all voxel elements that fall within the TPMS surface
are extracted from the distance field domain. Then, each iteration
computes the index corresponding to the voxel’s position within
the filtered fine mesh and generates connectivity information for

the voxel element. The resulting voxel mesh elements are then
appended with the necessary identifiers and exported into the
Altair Optistruct file format.fem for further analyses using
commercial tools. This mapping process ensures the conversion
of the optimized lattice design into a format compatible with
FEA software, facilitating accurate mechanical simulations and
performance evaluations.

In the STL generation section, including script lines 355–362
(see Supporting Information), the script utilizes the isosurface
and isocaps functions to extract the surface geometry of the fine
discretized lattice structure. This geometry is then combined and
exported as an STL file using MATLAB stock functions that utilize
the well-known marching cubes method from the literature.[68] In
summary, the marching cubes method iteratively moves through
cubes in the distance field domain and builds the STL from a
lookup table of triangles upon checking the corner nodes. By
employing these functions, the script efficiently converts the opti-
mized lattice design into the STL format, which is the standard
AM application. This facilitates its utilization in AM processes
and allows further geometric analysis to be conducted on commer-
cial tools for assessing readiness for manufacturing.

4. Numerical Examples

In order to verify the accuracy of the proposed methodology and
script, three distinct optimization cases have been thoroughly
examined and experimentally confirmed. The boundary condi-
tions for each case are carefully designed to correspond with
the experimental capabilities, taking into account the need for
testability. The material RGD720, which has an elastic modulus

Figure 7. a) TO result, b) reconstructed model in voxel form, and c) reconstructed model in STL form.
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of 2100MPa and a Poisson’s ratio of 0.42, is consistently used in
all models.[69] Although the specific boundary conditions are
explained in the following section for each case study, there
are certain conditions that are consistent across all examples.
In all instances, the design domains (Ω) are divided into N finite
elements, with each element having a relative density between
0.1 and 0.5, represented as 0.1 ≤ ρ* < 0.5. The targeted volume
fraction V for the overall design domain is established as 0.3.
Furthermore, the analysis’s convergence history is guided by
prescribing an initial uniform relative density of 0.2 for each
element. The global stiffness matrix K is determined by the mate-
rial properties of the elements, which depend on their relative
densities (i.e., K= K(ρ*)). Consequently, the equation for the
steady-state equilibrium is given as follows

Kðρ�Þu ¼ f (8)

where u and f refer to the global displacement vector and loading
vector, respectively. The optimization problem, whichminimizes
the compliance, is expressed as follows

min
uεU, ρr

cðρ�Þ ¼ uTKðρ�Þu ¼
XN
e¼1

uTe keðρ�Þue
s:t:Kðρ�Þu ¼ f ;

0 ≤ ρmin ≤ ρ� ≤ ρmax ≤ 1
XN
e¼1

ρ�νe ¼ V ;

(9)

where c(ρ*) refers to minimum compliance. The optimization
parameters are also summarized in Table 5. The subsequent
phase will entail the application of the proposed code to practical
case studies, where its performance in commonly used case
studies will be assessed. These case studies serve as valuable
opportunities to validate the accuracy and effectiveness of the
developed code. Through the systematic examination of these
case studies, insights into the code’s behavior and its applicability
across different contexts will be gained, thus contributing to a
comprehensive understanding of its capabilities and limitations.

4.1. MBB Beam

TheMesserschmitt–Bölkow–Blohm (MBB) beam case that is quin-
tessential to TO literature has been selected for the initial
trials. Employing a 1mm mesh size, the design domain is half
of the full MBB beam, leveraging symmetry. Utilizing a P-type
lattice (see Table 1) with a 14mm unit-cell size, the symmetry

model incorporates 10� 3� 3 unit cells, translating to
20� 3� 3 unit-cells into the full model. The overall dimensions
of the half-symmetry lattice structure are set at 140� 42� 42mm.
At the top and bottom faces of the beam, 1mm thick plates are
used to enhance the testability of the beam. However, the relative
density of the plate elements is set to 1 because the plates are
defined as non-design domains. A roller-type boundary condition
(Uy= 0) is applied through a line at x= 20mm, while a symmetry
boundary condition (Ux= 0) is imposed on a plane at x= 140mm.
The total load in the symmetry model is set to be 500 N and applied
on a line distribution at the edge of the symmetry plane. The
default boundary conditions of the proposed MATLAB script
are established as the symmetry MBB beam test case illustrated
in script lines 35–44 (Supporting Information). Here, it is impor-
tant to note that the applied load is evenly distributed on the edge of
the symmetry plane. The schematic view of the boundary condi-
tions and load are illustrated in Figure 8.

After establishing the design parameters and boundary condi-
tions for the MBB beam optimization example, the TO process is
executed, and the resulting optimal material distribution is dis-
played in Figure 9. In order to perform a comprehensive assess-
ment, a uniform P-type lattice design is also generated without
optimization and examined under identical conditions. The com-
pliance value for the uniform lattice design is determined to be
680.97mmN�1, whereas the optimized graded lattice design
achieves a compliance value of 468.44mmN�1. The substantial
disparity of 31.2% highlights the exceptional efficiency of the

Table 5. Design variables of TO cases.

Constraints of TO

Element minimum density, ρmin= 0.1

Element maximum density, ρmax= 0.5
Element initial density, ρinitial= (ρminþ ρmax)/2

Total volume, V= 0.3

Objective of TO

Minimize compliance, min(cðρ�Þ)

Figure 8. A schematic view of the half-symmetry MBB beam case.

Figure 9. The element density distribution for the half-symmetry MBB
beam case (plates are excluded for better visualization).
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optimized FGL construction. The observed improvement in
structural performance is notably influenced by the distribution
of material along the loading direction. The effectiveness of the
suggested FGL structure in optimizing the MBB beam configu-
ration is highlighted, demonstrating the power of morphological
grading even in lattice structures that are fundamentally better
than uniform designs.

Following the completion of the TO phase for the MBB beam
case, the subsequent step involves the reconstruction of the topo-
logically optimized design. The reconstructed voxel model is
explicitly illustrated in Figure 10a. The omission of plates in
the reconstructed model enhances the clarity of lattice morphol-
ogy grading. Identical boundary conditions to those applied
during TO are used (see Figure 8) to evaluate the accuracy of
the full-scale reconstructed finite element model. The displace-
ment results and compliance values are then compared with
the final iteration of the TO. The total compliance of the
TO is determined by multiplying the compliance value of the
symmetry model for the TO by two, resulting in a value of
936.88mmN�1. Conversely, the total compliance of the recon-
structed geometry is calculated as 1088.37mmN�1, yielding a
relative difference of 16.2%. The relative error here is relatively
large and may not be deemed reasonable for engineering appli-
cations. To comprehend the source of the error, the models are
evaluated by plate and design domain compliances separately.
The compliances for the design domain and plates of the TO
design are 616.26 and 320.62mmN�1, respectively. In contrast,
for the reconstructed geometry, the compliances are calculated as
608.23 and 480.14mmN�1 for the design domain and plates,

respectively. The compliance ratio of the design domain to plates
is 0.52 and 0.79 for the TO and reconstructed design, respec-
tively. Consequently, the relative errors are 1.3% and 27.3%
for the design domain and plates, respectively. Notably, a signifi-
cant local deformation of the plate at symmetry (see Figure 10b),
where the load is applied, is observed. This is attributed to the
explicit form of the P-type lattices, where no elements exist on the
edges. The second parameter for comparison is the displacement
in the y-direction value at the symmetry plane. The average dis-
placement, which is calculated on the line of force load applied
location, is calculated as �1.8081 and �2.0264mm for TO and
reconstructed geometries, respectively, resulting in a relative
error of 12.1%, largely due to the local deformation of the top
plate at the symmetry plane. The comparison results of MBB
beam cases for the TO, uniform, and reconstructed geometry
obtained from the TO results are tabulated in Table 6 for full
model.

Following the thorough validation of the accuracy of the recon-
structed geometries for the MBB beam case, the structure is now

Figure 10. a) Reconstructed MBB voxel model and b) FEA displacement results.

Table 6. Comparative results for the MBB beam case.

c
[mmN�1]

Relative difference
[%]

Uy_mean

[mm]
Relative difference

[%]

TO 936.88 – �1.81 –

Uniform 1361.94 31.2 �2.60 30.6

Reconstructed 1088.38 16.2 �2.03 12.1

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2025, 27, 2402567 2402567 (11 of 19) © 2025 The Author(s). Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 2025, 15, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adem

.202402567, W
iley O

nline L
ibrary on [10/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.aem-journal.com


ready for the AM phase. The export of structures in STL format,
as illustrated in Figure 11, is a pivotal step in this process. A pre-
cautionary check is conducted, confirming a total relative density
of 0.3 for the design domain. This meticulous verification
ensures that the exported file aligns precisely with specifications,
signifying the structure’s readiness for the upcoming AM
process.

4.2. Cantilever Beam

Another case that is prevalent in the TO literature is the cantile-
ver beam problem. The dimensions of the design domain are
specified as 132� 36� 36mm, and the material properties of
the lattice structure are based on G-type lattice (see Table 2) with
a unit-cell size of 12mm. Therefore, the overall dimensions of
the unit-cell for this scenario are 11 units in the x-direction, three
units in the y-direction, and three units in the z-direction.
The design domain is discretized using eight-node hexahedral
elements, each with a mesh size of 1 mm. Furthermore, the
top and bottom plates are included in the model; however, they
are designated as nondesign domains. In this cantilever beam
configuration, the right top and bottom plates are fixed in
planes at y= 0 and y= 38mm with dimensions x= 0–12 and
z= 0–36mm, effectively constraining a clamped boundary con-
dition on a unit-cell size (12mm) in the x-direction. In order to
apply the load, a total force of 500 N is evenly distributed along a
line on the top plane, with a distance of 120mm from the top
plate and perpendicular to it. Figure 12 displays the schematic
depiction of the cantilever beam case study. The boundary con-
ditions for the study of the cantilever beam are provided in the
script lines 418–429 (Supporting Information), and correspond-
ing script lines of the MBB case can be replaced with these to

simulate the cantilever beam case. The identical loading condi-
tion employed in the MBB beam case is being used.

Following the establishment of design parameters and
boundary conditions for the cantilever beam optimization case,
the TO process is initiated, and the resulting material distribu-
tion is presented in Figure 13. In order to provide a compre-
hensive analysis, a uniform G-type lattice design is examined
under identical conditions. The compliance value for the
uniform lattice design is determined to be 732.23 mmN�1,
while the compliance value for the optimized graded lattice
design converges to 563.47 mmN�1. Evidently, the graded
lattice design outperforms the uniform design by a significant
margin of 23.0%.

After the conclusion of the TO phase for the cantilever
beam, the subsequent step involves the reconstruction of
the topologically optimized design. In line with the specified
material properties for the G-type lattice, the structure is recon-
structed explicitly and illustrated in Figure 14a. To enhance the
clarity of lattice morphology grading, the plates are inten-
tionally omitted in the reconstructed model. Identical bound-
ary conditions to those applied during TO are used to assess
the accuracy of the reconstructed model. The displacement
results (see Figure 14b) and compliance values are then
compared with the final iteration of the TO. The compliance
value at the final iteration of the TO is determined to be
563.47mmN�1. In contrast, it is calculated as 576.04mmN�1

for the reconstructed geometry, resulting in a relative difference
of 2.2%. An average displacement in the loading direction
(Uy_mean) is also considered for comparison. The average displace-
ment on a y–z plane at the loading location (x= 120mm) for TO
is calculated as �2.224mm, whereas for the reconstructed geom-
etry, it is�2.241mm. Consequently, the relative error in this case
is calculated as 0.8%. These comparisons provide insights into
the accuracy and effectiveness of the reconstruction method
and script. The comparison results of cantilever beam cases
are tabulated in the Table 7.

Having validated the accuracy of the reconstructed geometries
for the cantilever beam case, the structure is now poised for AM.
The export of structures in STL format, as shown in Figure 15, is
followed by a precautionary check, confirming a total relative
density of 0.3 for the design domain. This verification ensures
the exported file precisely aligns with specifications, confirming
the structure’s readiness for the AM process.Figure 11. Full model of optimized MBB beam case in STL format.

Figure 12. A schematic view of the cantilever beam case.
Figure 13. The element density distribution for the cantilever beam case
(plates are excluded for better visualization).
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4.3. Flatwise Compression

As a final case, the aim of providing a TO to improve the com-
pression performance of the proposed structure is chosen as it
can provide lucrative engineering opportunities. Accordingly,
this study employs a flatwise compression case study to evaluate
the proposed code. The design domain has dimensions of
60� 60� 60mm, and the anisotropic material properties, repre-
sented by the curves C11, C12, and C44, are specifically designed
for D-type lattices (see Table 2). The unit-cell size for the D lattice
is set to be 12mm, resulting in a total of 5� 5� 5 unit cells

within the design domain. To discretize the design domain, a
mesh size of 1mm is utilized, employing eight-node hexahedral
elements with three degrees of freedom at each node. The design
domain is flanked by top and bottom plates, both designated as
nondesign domains, maintaining a constant relative density of 1.
The bottom plate is rigidly fixed to the ground, while a total
flatwise loads of 2 kN is uniformly applied to the top plate in

Figure 14. a) Reconstructed cantilever voxel model and b) FEA displacement results.

Table 7. Comparative results for the cantilever beam case.

c
[mmN�1]

Relative
difference [%]

Uy_mean

[mm]
Relative

difference [%]

TO 563.47 – �2.22 –

Uniform 732.23 23.0 �2.89 23.0%

Reconstructed 576.04 2.2 �2.24 0.8

Figure 15. Reconstructed cantilever beam case in STL format.
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the y-direction. The boundary conditions for the flatwise com-
pression case are detailed in script lines 430–439 (Supporting
Information), and the corresponding lines for the MBB case
can be replaced with these to model the cantilever beam example.

The schematic representation of the flatwise compression
case study is illustrated in the following Figure 16 for clarity.
Upon establishing the design parameters and boundary condi-
tions for the flatwise compression case, the TO process is initi-
ated, and the resulting material distribution is presented in
Figure 17. To facilitate a comparative analysis with graded struc-
tures, a uniform design is examined under identical conditions.

The compliance value for the uniform design is determined to be
114.89mmN�1, whereas the compliance value for the graded
design converges to 104.16mmN�1. Notably, the graded design
exhibits superior performance, surpassing the uniform design by
9.3%. This observation underscores the effectiveness of the pro-
posed graded structure in enhancing the structural performance
under flatwise compression conditions.

Following the completion of the TO phase, the subsequent
step involves reconstructing the topologically optimized design
for further FEA and fabrication. The reconstructed and sand-
wiched structure with plates is illustrated in Figure 18a. The
omission of the plates in the reconstructed model is intentional,
aimed at enhancing the clarity of the lattice morphology grading.
To assess the accuracy of the reconstructed model, identical
boundary conditions as those in the TO phase are applied. The
compliance values and displacement results (see Figure 18b)
are then compared with the final iteration of the TO.
Specifically, the compliance values are determined as 104.16
and 105.91 mmN�1 for TO and reconstructed geometries,
respectively, resulting in a relative error of 1.7%. This discrep-
ancy is considered accurate enough for the majority of engi-
neering applications. It is pertinent to note that, due to the
local deformation characteristics of the discontinuous lattices,
an average displacement at the top plate is calculated and
compared with the values from the topology-optimized and
reconstructed geometries. The second parameter for comparison
is the average displacement in the loading direction at the top
plates, yielding values of �0.1042 and �0.1040mm for TO
and reconstructed geometries, respectively. A similar 0.2% error
is calculated here, associated with the same considerations as inFigure 16. A schematic view of the flatwise compression case.

Figure 17. The element density distribution for the flatwise compression case a) iso, b) top, and c) bottom views (plates are excluded for better
visualization).
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compliance assessment. The comparative results of the flatwise
compression case are tabulated in Table 8.

After confirming the accuracy of the reconstructed geometries,
the structure is prepared for AM. To facilitate this, the structures
are exported in STL format, as illustrated in the following

Figure 19. As a precautionary step, the total relative density of
the STL-formatted structure is verified, and it is determined to
be 0.3 for the design domain. This verification ensures that
the exported file aligns with the desired specifications, reinforcing
the readiness of the structure for the AM process.

The comprehensive analyses of the flatwise compression,
cantilever beam, and MBB beam configurations have provided
valuable insights into the performance and accuracy of the
proposed optimization code. From the initiation of TO to the
reconstruction of optimized designs and their readiness for
AM, each step has been scrutinized. The observed enhance-
ments in structural performance underscore the efficacy of
the proposed graded lattice structures, highlighting their poten-
tial in diverse engineering applications.

Figure 18. Reconstructed flatwise compression voxel model views a) iso, b) top, c) bottom view, and d) FEA displacement results.

Table 8. Comparative results for the flatwise compression case.

c
[mmN�1]

Relative
difference [%]

Uy_mean

[mm]
Relative

difference [%]

TO 104.16 – �0.1042 –

Uniform 114.89 9.3 �0.1149 9.3

Reconstructed 105.91 1.7 �0.1040 0.2
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5. Fabrication and Experimental Validation

To validate the results of the proposed method with testing
equipment, the graded designs were printed using the material
jetting AM modality. In the material jetting process, photopoly-
mer materials are heated and deposited on a build plate layer by
layer, and then in each layer, ultraviolet light is used to cure the

molten material.[70,71] All three optimization cases were validated
by experiments. Stratasys Objet Connex 1 machine was used to
build the graded geometries (see Figure 20). During the build
process, a 16 μm layer thickness with a high-quality printing
mode was used. Transparent RGD720 material and soluble
solution SUP706B material were used as the main and the sup-
port materials, respectively. Once the production was completed,
the support material inside the printed lattice structures were
removed by using a sodium hydroxide (NaOH) solution.

The printed specimens are then tested under different
loading scenarios. To compare the numerical results with
the experiments, force versus displacement graphs were drawn
from both numerical analyses and experiments. These analyses
were performed with elastic material properties, and no plas-
ticity was considered. Therefore, only the linear region of the
force–displacement graphs was investigated for comparison.
First, a 3-point test was performed for the printed P-type
FGL structure. In all tests, MTS universal testing machine
(MTS 322 test frame) with a 100 kN load cell was utilized.
The 3-point flexural test was conducted according to ASTM
D 760, and all specimens were tested at a constant loading rate
of 1 mmmin�1. The 3-point bending test set-up and force–
displacement results are presented in Figure 21. The bending
stiffness values (slope of the force–displacement curve) are
calculated as 492.6 and 476.0 Nmm�1 for the simulation
and experiment, respectively, in the linear regions using a
MATLAB code. The relative error between the experiment
and the numerical simulation is 3.5%, which confirms a
good agreement between the simulation and experimental
results.

Furthermore, a test on the cantilever-beam specimen was also
conducted using the identical test configuration depicted in
Figure 22a. The boundary conditions employed in the experi-
ment were the same as those utilized in FEA. Figure 22b displays
the force–displacement graph for both the simulation and the
experimental results. The simulation previously provided the
average displacement value obtained from force-applied nodes,
which was documented in Table 7. However, based on the

Figure 19. Reconstructed flatwise compression case in STL format.

Figure 20. Build layout for a) MBB, b) cantilever beams, and
c) compression specimens.

Figure 21. a) Fabricated MBB-beam specimen test set-up and b) force–displacement graph.
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experimental findings, it has been shown that a force of 500 N
exceeds the linear range. Consequently, the average displace-
ment value obtained from FEA was proportionally adjusted to
match the force value of 150 N. The flexural stiffnesses for the
simulation and experiment were determined to be 223.2 and
210.0 Nmm�1, respectively. The relative error, which measures
the discrepancy between the experiment and the numerical sim-
ulation, is 6.3%. This indicates a strong agreement between the
simulation and experimental data.

The final experiment was conducted on a flatwise compres-
sion specimen to verify the proposed code. Figure 23a,b
illustrates the instrumentation and force–displacement graphs
that were obtained from the FEA and the test, respectively.
The slope of the force–displacement curve was determined
to be 19230.8 Nmm�1 for the FEA and 18236.7 Nmm�1 for
the experiment, respectively. The numerical simulation and
the experiment have a discrepancy of 5.3%. This implies

that the simulation and experimental data are in firm agreement,
as evidenced by the same results in the previous cases.

6. Conclusions

The findings of our research demonstrate encouraging results
for the use of the developed code in commonly used case studies.
The effectiveness of graded lattice structures in improving struc-
tural performance has been proven by thorough analysis of MBB
beam, cantilever beam, and flatwise compression configurations.
The proposed MATLAB code, which combines homogenization-
based TO with a reconstruction technique, provides researchers
with a distinct solution to evaluate their concept for creating FGL
structures to take full advantage of AM. The TO approach con-
sistently produced material distributions in each case study that
were much better than uniform designs, demonstrating the

Figure 22. a) Fabricated cantilever-beam specimen test set-up and b) force–displacement graph.

Figure 23. a) Fabricated flatwise compression specimen test set-up and b) force–displacement graph.
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superiority of graded structures. Moreover, the precision and
practicality of our method were validated by reconstructing these
optimized designs and subsequently evaluating them against the
TO results. Although there were some small differences due to
factors like curve fitting and mesh resolution, the reconstructed
geometries had relative errors that were within acceptable ranges
for engineering purposes. The method was further supported by
fabrication and experimental validation, which demonstrated its
potential. Graded geometries for all specimens were successfully
fabricated utilizing AM. The experimental testing produced find-
ings that nearly matched the numerical calculations, confirming
the accuracy of our approach. The observed deviations can be
related to changes in the dimensions of the printed specimens
and discrepancies in material characteristics. In summary, our
study emphasizes the significant impact of homogenization-
based TO and reconstruction algorithms on lattice structure
design and fabrication. These algorithms help bridge the gap
between theoretical concepts and practical applications, hence
enhancing engineering optimization skills.
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