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Abstract. Nonconvex separable piecewise linear functions (PLFs) frequently appear in 
applications and to approximate nonlinearitites. The standard practice to formulate non
convex PLFs is from the perspective of discrete optimization using special ordered sets and 
mixed-integer linear programs (MILPs). In contrast, we take the viewpoint of global continu
ous optimization and present a spatial branch-and-bound algorithm for optimizing a separa
ble discontinuous PLF over a closed convex set. It offers slim and sparse linear programming 
relaxations, sharpness throughout the search tree, and an increased flexibility in branching 
decisions. The main feature of our algorithm is the generation of convex underestimators at 
the root node of the search tree and their quick and efficient updates at each node after 
branching. Convergence to the global optimum is achieved when the PLFs are lower semi
continuous. A Python implementation of our algorithm is tested on knapsack and network 
flow problems for both continuous and discontinuous PLFs. Our algorithm is compared 
with four logarithmic MILP formulations solved by Gurobi’s MILP solver as well as Gurobi’s 
PLF solver. We also compare our method against mixed-integer nonlinear program formula
tions solved by Gurobi. The numerical experiments indicate significant performance gains up 
to two orders of magnitude for medium- to large-sized PLFs. Finally, we also give an upper 
bound on the additive error from PLF approximations of nonconvex separable optimization.
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1. Introduction
1.1. Literature Review
A piecewise linear function (PLF) is a multivariate function whose domain can be partitioned into pieces such that 
the function is affine in each piece. Such a nonsmooth function arises naturally in some optimization problems or 
more commonly, as an approximation of a nonlinear, nonconvex function (Geisler et al. 2012, Dey and Gupte 
2015, Nagarajan et al. 2019, Burlacu et al. 2020, Beach et al. 2022, Bärmann et al. 2023, Warwicker and Rebennack 
2024). When a PLF is convex and is either minimized or appears in a ⩽ constraint, it can be modeled as a linear 
program (LP). In general, a PLF is NP-hard to optimize (Keha et al. 2006) even for separable PLFs, which can be 
written as a sum of univariate PLFs each of which is in a different coordinate. Separable PLFs appear naturally in 
a wide variety of problems in various fields dealing with economies of scale, such as logistics, management, 
finance, or engineering (Markowitz and Manne 1957, Dantzig 1960, Beale and Forrest 1976). Univariate PLFs also 
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arise as approximations to one-dimensional nonconvex functions in a global optimization problem (Leyffer et al. 
2008, Natali and Pinto 2009, Rebennack and Kallrath 2015, Grimstad and Knudsen 2020, Posypkin et al. 2020, Sun
dar et al. 2022). In fact, a separable concave function minimization can be approximated to an arbitrary precision 
by a single separable PLF problem (Magnanti and Stratila 2004).

The common way to approach problems with nonconvex PLFs is by developing exact formulations based on 
either mixed-integer linear programs (MILPs) or special ordered sets of type 2 (SOS2). In both approaches, the problem 
is reformulated by using a number of additional variables, some of which are binary, and constraints for each 
breakpoint of the PLF. This reformulation is then solved with an MILP solver. Classical MILP and SOS2 model
ing approaches (see surveys in Vielma et al. 2010 and Rebennack 2016) initially focused on continuous separable 
PLFs but were later extended by Vielma et al. (2010) to the nonseparable case. It is known that their LPs provide 
the same relaxation strength (Sherali 2001, Croxton et al. 2003, Keha et al. 2004). However, they have the draw
back of using as many binary variables as the number of segments of a PLF. This was remedied by Vielma and 
Nemhauser (2011) and Huchette and Vielma (2023), who produced MILPs that require only a logarithmic num
ber of binary variables, thereby allowing for greater scalability of such models. Other research has focused on 
specialized valid inequalities for the SOS2-based models of separable PLFs (Keha et al. 2006, Vielma et al. 2008, 
de Farias et al. 2013, Zhao and de Farias 2013). Extensions of MILP models to lower semicontinuous (l.s.c.) PLFs 
have been studied (Vielma et al. 2008, 2010). For general discontinuous PLFs, one cannot expect an MILP formu
lation with bounded integer variables (Meyer 1976, theorem 2.1), but the SOS2 branching scheme has been 
adapted (de Farias et al. 2008). Many of these modeling and algorithmic advances have been implemented in 
state-of-the-art MILP solvers and leveraged to build stronger polyhedral relaxations of nonconvex functions 
(Rebennack 2016, Kim et al. 2024, Lyu et al. 2025).

Because a PLF is a nonconvex function, the problem of optimizing a PLF can be viewed through the lens of 
global optimization. A commonly used algorithmic framework for global optimization is spatial branch-and- 
bound (sBB). The use of an sBB for optimizing a separable function (sum of univariate functions, not necessarily 
PLF) was first done by Falk and Soland (1969). This was improved upon by Horst (1986) and Tuy and Horst 
(1988) to general nonconvex functions; since then, sBB algorithms for global optimization have matured 
immensely (cf. Locatelli and Schoen 2013, Tuy 2016), and there are many sophisticated implementations in global 
solvers for optimizing smooth functions. However, this global optimization approach has so far not been under
taken for PLF optimization, and state-of-the-art global solvers are unable to take PLFs directly as input without first 
being modeled using integer variables as mentioned above. Another drawback of existing methods is that they do 
not always scale well with the number of segments in the PLF. We adopt the global optimization approach, and 
our experiments show that the sBB approach has better scalability properties than the MILP or SOS2 models.

1.2. Our Contributions
We study the global optimization of a separable nonconvex PLF over a closed convex set. Contrary to the stan
dard combinatorial approach of using an MILP or special ordered sets formulation to model the PLF, we take the 
nonlinear approach to solving such problems. We do not reformulate the PLF with integer variables, but instead, 
we generate convex underestimators for it and refine them to develop an sBB algorithm. A key ingredient of our 
algorithm is how the underestimator is generated even when the PLF is discontinuous and how it is efficiently 
and quickly updated at a child node using the information from the parent node and without having to generate 
it from scratch. Our contribution of adding a new method to the literature complements the MILP and SOS2 
approaches by offering the following advantages: (i) slim and sparse LP relaxations, (ii) sharpness throughout 
the search tree, and (iii) more freedom in branching decisions. Through extensive computational experiments, 
we demonstrate that even a rudimentary Python implementation of the sBB can provide speedups of two orders 
of magnitude over modern logarithmic models solved by Gurobi if the number of segments is sufficiently large 
and that these speedups tend to grow with every segment added to the PLFs.

The existing approaches for PLF optimization use integer branch-and-bound (B&B), where branching takes 
place on integer (mostly binary) variables in a binary search tree and bounding is through LP relaxations 
(enhanced with cutting planes). Our sBB also uses LP relaxations (albeit of a different kind) for bounding but 
branches on continuous variables only (hence, the term spatial). Hence, finite convergence to the global optimum 
is not obvious with our approach and in fact, is not possible for all branching rules. We provide a rule that 
branches only at the breakpoints and enables the sBB to converge finitely. The classical largest-error branching 
rule is known to converge asymptotically for a continuous separable objective, and we present an independent 
and self-contained proof using Lipschitz continuity of PLFs. For general objective functions that are either lower 
semicontinuous or such that their values at infeasible points are no lower than the global minimum, the longest- 
edge branching rule has been shown to achieve asymptotic convergence, and this also carries over to our PLF 
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optimization problem. The lack of finite convergence for any branching rule could be perceived as a drawback of 
sBB versus integer B&B, which always terminates finitely for bounded integer variables. However, our experi
ments show that this convergence issue arises only when the number of segments in a PLF is small, and the sBB 
generally terminates quicker for larger instances.

To the best of our knowledge, the various sBB-based state-of-the-art global solvers cannot handle PLFs directly 
unless they are explicitly input to the solver formulated as MILPs. Thus, we see our work as a first step in the 
direction of creating an sBB solver that can optimize a separable PLF without creating integer variables. We 
begin in Section 2 by describing the problem input and basics of sBB from the literature. Section 3 introduces the 
basic concepts of our sBB algorithm and relates it to the MILP and SOS2 approaches. Section 4 studies various 
convexification properties of a univariate PLF that underpin our algorithm. The sBB algorithm, with all of its ele
ments, is described and analyzed for convergence in Section 5. Computational testing is done in Section 6, where 
comparisons are also drawn with logarithmic-sized MILP models, Gurobi’s PLF solver, and Gurobi’s global 
solver. Section 7 derives a bound on the number of segments necessary in a good PLF approximation of separa
ble Hölder-continuous functions. Lastly, conclusions and some future directions are mentioned in Section 8.

1.3. Importance of Scalable Algorithms
Because our experiments show the sBB to have better computational performance than MILP or SOS2 models as 
the number of segments in the PLF increases, we briefly discuss here the importance of a method with such good 
scalability properties.

PLFs are commonly employed to linearize nonlinear terms and thereby, create a tractable approximation to 
a nonconvex optimization problem. PLF approximations can be constructed either as relaxations (outer 
approximations) or through discretizations (inner approximations). When the nonconvexities are present in 
the constraints, the PLF approximation resulting from discretization may not necessarily produce an inner 
approximation of the feasible region but can nonetheless be used to obtain some approximate solution. Small 
segments in the PLF give fine approximations of the problem, which may translate into sharp primal or dual 
bounds. Thus, a key question when building PLF approximations is to determine how many pieces each PLF 
should have if the approximation error, defined as the largest distance between the function value and the 
approximate value, is to be no more than some given error bound. We mention some results for a continuous 
univariate function over a closed interval because that is the focus of this paper, but we note that some error- 
bounding analysis has also been done for higher-dimensional functions (Dey and Gupte 2015, Adams et al. 
2019, Duguet and Ngueveu 2022, Bärmann et al. 2023).

The errors in the PLF relaxation of a univariate function are an elementary calculation because this relaxation 
is constructed by first partitioning the interval into alternate regions of convexity and concavity for the function 
and then, drawing tangents at different points in the convex regions and drawing secants in the concave regions. 
The analysis is nontrivial for the case of the PLF approximation, which is constructed by choosing some break
points in the interval (either equidistant or not) and connecting them at their function values. For this discretiza
tion, Frenzen et al. (2010, theorems 1 and 2) gave an asymptotic answer by showing that for thrice-continuously 
differentiable functions, the number of breakpoints to achieve an error of ε is roughly c=

ffiffiffi
ε
√

as ε→ 0, where the 
constant c depends on the second-order derivative of the function. Another related question is to consider opti
mization of a separable function and determine the number of breakpoints necessary to construct a PLF approxi
mation whose optimal value is no worse than a given tolerance ε away from the true optimum. Such bounds on 
the number of segments have been derived using first- and second-order derivatives when the function is convex 
or concave (Thakur 1978, Kontogiorgis 2000, Magnanti and Stratila 2004). When the objective function is nonse
parable, it is possible to construct separable PLF underestimators and use their error bounds to obtain a globally 
convergent algorithm (Feijoo and Meyer 1988).

There are computationally intensive MILP-based methods for computing best-fit PLFs (Toriello and Vielma 
2012, Ngueveu 2019, Kong and Maravelias 2020, Rebennack and Krasko 2020, Warwicker and Rebennack 2022) 
as well as efficient algorithms (Warwicker and Rebennack 2024). Even if logarithmically many binary variables 
are used, the number of continuous variables generally scales linearly with the number of pieces in each function. 
Therefore, in order to obtain tight approximations of nonlinear functions, large-sized MILPs have to be solved, 
and branch-cut algorithms do not always converge very quickly on these. Recognizing this obstacle, some recent 
studies (Nagarajan et al. 2019, Burlacu et al. 2020, Gupte et al. 2022) have looked at algorithms that adapt the 
location of the breakpoints in the PLF approximation so that large-sized mixed-integer formulations do not have 
to be created a priori; but, their results are far from conclusive, and there is still scope for devising new methods 
with better scalability.
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2. Preliminaries
2.1. Problem Input
We consider the separable nonconvex piecewise linear optimization problem given by

P : v∗ � inf F(x) :�
Xn

i�1
fi(xi), s:t: x ∈ S ∩ H, (1) 

where every fi : [li, ui] → R is a univariate PLF, possibly nonconvex and discontinuous, over an interval 
Hi :� [li, ui]. Some of the fi’s can be constant functions. The feasible set is the intersection of a closed convex set 
S ⊂ Rn and a hyperrectangle H :� {x ∈ Rn : li ⩽ xi ⩽ ui, i � 1, : : : , n}. When each fi is l.s.c. over [li, ui], the problem is 
solvable in the sense that the optimal value v∗ is attained by some feasible solution. For general discontinuous 
functions, optimal solutions may not exist, and so, we can only hope to find v∗. Note that when H is not given 
explicitly in the description of the feasible set, variable bounds can be computed if S is compact. For simplicity 
and ease of notation, we assume that the intervals in each coordinate satisfy Hi � projection of S ∩H onto xi. This 
can be achieved after some preprocessing and optimality-based bound tightening techniques.

Each PLF fi is input with its Ki + 1 breakpoints in [li, ui] for some integer Ki P1, and these are indexed by the 
set Ki :� {0, 1, : : : , Ki}. The breakpoints include the two endpoints li and ui and the points where fi either changes 
its slope or is discontinuous. Denote the x values of the breakpoints by

Bi :� {bk
i : k ∈Ki}, with li � b0

i < b1
i < b2

i <⋯< bKi
i � ui: (2a) 

The function values at the breakpoints are {yk
i : k ∈Ki}. Because we allow discontinuities at the breakpoints, we 

also need to know the left and right limits at each breakpoint to characterize fi. The left limit is denoted by yk,�
i , 

and the right limit is denoted by yk,+
i . For the left (respectively, right) endpoint, we set the left (respectively, right) 

limit to the function value. Thus, for every k ∈Ki, we have as input the tuple

(bk
i , yk

i , yk,�
i , yk,+

i ):

Using this input, a univariate PLF can be defined over [bk
i , bk+1

i ), for any k ∈Ki, as

fi(xi) �

yk
i , xi � bk

i

yk+1,�
i � yk,+

i
bk+1

i � bk
i
(xi� bk

i ) + yk,+
i , bk

i < xi < bk+1
i :

8
>><

>>:

(2b) 

If fi is continuous at a breakpoint bk
i (i.e., yk

i � yk,�
i � yk,+

i ), we write (bk
i , yk

i ), knowing that the left and right limits 
coincide with the function value.

2.2. Background on sBB
The spatial branch-and-bound is similar to the integer branch-and-bound, but it has some major differences. In 
sBB, lower bounds are computed by a convex relaxation (convexification), which is obtained after replacing 
every nonconvex function by a convex underestimator over its bounded function domain. The strength of relaxa
tions is important for convergence of the algorithm, and a fast numerical performance depends on the speed and 
efficiency with which the relaxations are generated and updated throughout the branching tree. Second, branch
ing takes place on continuous variables, which leads to a partition of the feasible region in hyperrectangles. 
Third, after branching has occurred and any bound tightening has been performed on the variables, the underes
timator is updated and refined to obtain a stronger relaxation than what is implied by the original relaxation 
with new variable bounds on it. Convergence in limit to the global optimum can then be obtained under mild 
conditions and assumption of lower semicontinuity of the functions because branching results into smaller 
hyperrectangles, which allow for tighter underestimators that force the gap between the function and its under
estimator to converge to zero. The reader is referred to Locatelli and Schoen (2013, chapter 5.4) for a more 
detailed description of the general convergence theory of sBB algorithms. It is known that for optimizing any 
nonconvex function over a closed convex set, an sBB algorithm converges in finitely many iterations for any ε >
0 optimality tolerance if the following two properties are satisfied: 

1. exhaustiveness of branching (which means that any nested infinite subsequence of hyperrectangles used for 
branching converges to a point) and

2. exactness in the limit for the underestimators (which means that their gap to the function value at any point 
goes to zero as the branching hyperrectangles shrink to a point).
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With ε � 0, only convergence in the limit is guaranteed if besides the above two properties, the sBB also selects 
nodes infinitely often using the best bound rule. Some of the branching rules can also lead to finite convergence 
with ε � 0 if there is some special structure on the optimal solutions, such as an extreme point property (Shect
man and Sahinidis 1998, Al-Khayyal and Sherali 2000).

3. Overview of Our sBB
3.1. Main Ideas
There are two main components to our sBB—convex relaxations using underestimators to obtain lower bounds 
and branching rules to guarantee convergence to global optimum. We do not employ any heuristics, and so, 
upper bounds are calculated in the standard way of evaluating the value of F at a solution to a node relaxation in 
the sBB search tree. One could possibly obtain stronger upper bounds by employing derivative-free optimization 
algorithms to minimize F using the node relaxation solution as a starting point, but exploring this idea is out of 
scope for this paper. Our branching rules are adopted from the literature and explained later in Section 5.2. In 
the remainder of this section, we outline our convex relaxation.

The convex envelope of a function over a compact convex set is defined as the point-wise supremum of all of 
the convex underestimators of that function over the set. Minimizing the function over the set is equivalent to 
minimizing its convex envelope. However, this envelope is generally intractable to compute, and the same is also 
true for nonconvex PLFs. The difficulty generally arises from the presence of the set S, which could be nontrivial 
and complicated, and so, the standard approach in global optimization is to generate convex underestimators of 
the objective function over the hyperrectangle H instead of over S ∩H. Because H is the Cartesian product of one- 
dimensional convex compact intervals and F is a separable function, the envelope of F over H is a sum of univari
ate envelopes. Using cvx to denote the convex envelope operator, we can write cvxH F(x) �

Pn
i�1 cvxHi fi(xi). Each 

cvxHi fi is a PLF, but because fi is allowed to be discontinuous, this PLF may not be l.s.c. For computational tracta
bility, we need the underestimators to be l.s.c. so that they have a polyhedral representation; otherwise, the corre
sponding feasible set of the relaxation will not be a closed set, which creates numerical difficulties in solving this 
relaxation. Hence, we carry out one additional step for the underestimators. For each i, we take the envelope of an 
l.s.c. function underestimating fi. The resulting function is not only convex and l.s.c. but in fact, convex and contin
uous because of convex functions being u.s.c. over polytopes. Let us denote this underestimator for each i by 
vexHi fi. Summing these yields a convex continuous PLF underestimator on F,

vexHF(x) :�
Xn

i�1
vexHi fi(xi), x ∈H : (3a) 

This yields a convex relaxation for Problem (1) whose value we denote by v(H):

v∗P v(H) :� inf
x

Xn

i�1
vexHi fi(xi) s:t: x ∈ S ∩H (3b) 

� inf
x,z

Xn

i�1
zi s:t: vexHi fi(xi)⩽ zi, x ∈ S ∩H, (3c) 

where the second equality is from using the epigraph modeling step.
Because each vexHi fi is a convex continuous PLF, its epigraph is a polyhedron, and so, vexHi fi is equal to the 

point-wise maximum of finitely many affine functions. Thus, there is a finite set Ei(H) and coefficients (aik, bik) for 
k ∈ Ei(H) such that

vexHi fi(xi) � max
k∈Ei(H)

aikxi + bik, xi ∈Hi:

Our construction of vexHi fi is such that Ei(H) ⊆Ki with {0, Ki} ⊆ Ei(H), where we recall from (2a) that Ki indexes 
the breakpoints of fi. Hence, the coefficients (aik, bik) for each k ∈ Ei(H) can be obtained in terms of the values of fi 
at these breakpoints. Therefore, our convex relaxation of problem P is as follows:

v∗ P v(H) �min
Xn

i�1
zi (4a) 

s:t: aikxi + bik ⩽ zi, k ∈ Ei(H), i � 1, : : : , n (4b) 

x ∈ S ∩H: (4c) 
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A salient feature of this work is the efficient computation of the underestimator vexHi fi, and this is presented 
in Algorithm 4.1. However, this only represents the root-node relaxation. In the search tree of sBB, H is succes
sively partitioned into a sequence of hyperrectangles Ht ⊂H, and so, the relaxation (4) has to be constantly 
updated and solved again over S ∩Ht. In order to make our algorithm competitive and efficient, for any Ht ⊂H, 
we do not compute the lower bound v(Ht) by computing vexHt

i
fi from scratch using the breakpoints of fi, 

although this is certainly an option. Instead, we update the underestimator that was computed for the parent 
node of the node corresponding to Ht by exploiting structural properties of PLFs. Let us elaborate on this point. 
If Hs is the hyperrectangle for the parent node of the node for Ht and xit was the branching variable used to create 
Ht from Hs, then our underestimators at the two nodes differ only in the coordinate xit so that

vexHt F(x) �
X

i≠it
vexHs

i
fi(xi)

" #

+ vexHt
it

fit(xit):

Thus, if the underestimator over Hs is stored in memory, then the underestimator for Ht requires update only in 
one coordinate it. This is simply because of separability of the functions. The crucial thing, however, is whether 
vexHt

it
fit needs to be computed from scratch using the breakpoints of fit and employing Algorithm 4.1 for univari

ate PLFs. This is not necessary because of a property of PLFs that only a subset of the breakpoints of vexHt
it

fit is 
different than those of vexHs

it
fit as we show in Section 4.2. This allows for (on average) a quick and fast update to 

the underestimator of fit over Hs
it (assuming that it is stored in memory), although in the worst case, it is possible 

that all the breakpoints have to be updated. Hence, we calculate v(Ht) by starting with the relaxation (4) for v(Hs)

and modifying some of the linear constraints in (4b) as needed for i � it and k ∈ Eit(Ht). If S is a polyhedron, we 
can then employ the dual-simplex method to compute v(Ht) starting from v(Hs), which is generally significantly 
faster than using the primal simplex for v(Ht).

Remark 3.1. The sBB algorithm developed here can be modified to accommodate separable PLFs in constraints 
using similar arguments as the classical results by Soland (1971). Yet, for ease of exposition, we restrict our atten
tion in this paper to PLFs in the objective only. Similarly, it is possible to integrate the methods developed here 
in general-purpose (spatial) branch-and-bound-based solvers and solve a broader class of mixed-integer non
linear problems.

3.2. Relation to MILP and SOS2 Approaches
It is well known that all of the MILP models for PLFs share the sharpness property when the functions are l.s.c.; 
their LP relaxations (when S is a polyhedron) give the same lower bound as convexifying each function over its 
interval domain, which is equivalent to our relaxation (4). However, upon branching, most relaxations lose this 
guarantee of providing the same bound as (4). In fact, only the incremental and SOS2 models share this property 
called hereditary sharpness (Huchette and Vielma 2023). This property is very desirable because it leads to bal
anced search trees (Yıldız and Vielma 2013). Indeed, experiments indicate that the incremental and SOS2 models 
perform very well on PLFs with a small number of segments and are only outperformed by the logarithmic model 
with growing numbers of segments (cf. Rebennack 2016, Huchette and Vielma 2023). These considerations have 
been summarized by Huchette and Vielma (2023, p. 1839) with the remark that “the high performance of the 
[logarithmic] formulation is due to its strength and small size and in spite of its poor branching behavior.” The 
addition of some valid inequalities and cutting planes to the MILP model would strengthen the LP relaxation, 
but the fact remains that a desirable method for solving problems with PLFs should combine both hereditary 
sharpness and a small-scale formulation.

This gave the motivation to our sBB approach. By updating our convex underestimator over every subset Hk, 
we manually achieve relaxations of the strength (4) at every node of the branch-and-bound tree. Moreover, the LP 
relaxations are particularly small. In contrast to SOS2 and MILP formulations, the size of the relaxation (4) does not 
grow with the number of segments of fi but with the number of segments of its envelope. To illustrate this, let Ki be 
the number of segments of fi and Ei be the number of segments of vexHi fi. If each fi is continuous, the logarithmic 
MILP model adds 

Pn
i�1 Ki continuous variables, 

Pn
i�1⌈log2(Ki� 1)⌉ binary variables, and 

Pn
i�1(2 · ⌈log2(Ki� 1)⌉ + 3)

constraints (cf. Vielma et al. 2010). In contrast, the sBB relaxation (4) adds n continuous variables, zero integers, and 
Pn

i�1 Ei constraints. Because Ki≫ 1 typically, we have far fewer variables. For the constraints, Ei is no more than Ki, 
although it can be more than log2 Ki. Hence, if the PLFs are such that their envelopes have few segments, then our 
relaxations will be smaller in size while being of the same strength as the conventional models. An extreme case of 
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this is when each fi is concave where our relaxations will add n constraints, which can be much smaller than the 
number of constraints in MILP and SOS2 because of Ki being arbitrary.

Furthermore, the sBB offers the advantage of a sparser constraint matrix. Rebennack (2016) pointed out that 
formulations like the logarithmic model result in a dense constraint matrix. On the other hand, the sBB relaxa
tion (4) is, in particular, sparse; each added inequality has exactly two nonzeros. Indeed, LPs with convex PLFs 
can be solved very efficiently by exploiting its structure (Fourer 1985, Gorissen 2022). Finally, spatial branching 
offers a higher degree of flexibility in branching decisions compared with integer or SOS2 branching. Both inte
ger and spatial branching choose a branching variable xi. However, although spatial branching can branch at 
any point in the interval [li, ui], integer branching in MILP and SOS2 models can be mapped to specific points 
in each interval. Therefore, spatial branching can mimic integer and SOS2 branching, but the converse is not 
true.

4. Convexifying Univariate PLFs
It was outlined in Section 3.1 that the key ingredient of this work is generation and efficient updates of convex 
continuous underestimators of univariate PLFs. Therefore, in this section, we focus on a univariate (possibly dis
continuous) PLF f : I � [l, u] → R, where we omit the subscript i for ease of notation and better readability. The 
results derived here will be utilized in the sBB algorithm in the next section by applying them to the PLFs fi in 
Problem (1).

Let f have K+ 1 breakpoints in I for some integer KP1, and these are indexed by the set K :� {0, 1, : : : , K}, with 
the x values of the breakpoints being given by the set Bf :� {bk : k ∈K}, where l � b0 < b1 < b2 <⋯< bK � u. The 
function values at the breakpoints are yk � f (bk) for k ∈K. The left and right limits at each breakpoint are yk,� and 
yk,+, respectively. For the left (respectively, right) endpoint, we set the left (respectively, right) limit to the func
tion value. Thus, f is completely defined by the following finite collection of tuples as input:

{(bk, yk, yk,�, yk,+) : k ∈K}:

Note the following obvious fact.

Observation 4.1. Any finite set of points in R2 corresponds to a continuous univariate PLF obtained by doing lin
ear interpolation between consecutive (taken w.r.t. x coordinates) points.

4.1. PLF Underestimator
We construct a tight convex and continuous PLF underestimator for f. To describe this, define the following PLF 
over I:

f (x) :�
min{yk, yk,�, yk,+}, x � bk for some k ∈ K

f (x), x ∈ I \ Bf :

(

(5a) 

Lemma 4.1. f is an l.s.c. PLF underestimator of f over I.

Proof. It is clear that f(x)⩽ f (x) for all x ∈ I. It is continuous at x ∉ Bf because f is a PLF. At any breakpoint bk, we 
have

lim inf
x→bk

f(x) �min lim
x↑bk

f(x), lim
x↓bk

f(x)
� �

�min lim
x↑bk

f (x), lim
x↓bk

f (x)
� �

�min{yk,�, yk,+}P f(x), 
and so, f is an l.s.c. function over I. w

But, this l.s.c. underestimator need not be convex. Hence, we convexify it to obtain the function

vexI f (x) :� cvxI f(x), x ∈ I, (5b) 

where cvxI denotes the convex envelope operator over I. This underestimator has the following properties.

Proposition 4.1. vexI f is a convex and continuous PLF underestimator of f whose breakpoints are given by the set

BvexI f � {l, u}
[
{bk ∈ Bf : slope(i, k) < slope( j, k), ∀0 ⩽ i < k < j ⩽ K}, 
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where slope(i,k) :� ( f(bk)� f(bi))=(bk� bi) for all i ≠ k. Furthermore, we have

vexI f (x) � f(x), x ∈ BvexI f :

We use the following technical results to establish the above claims on vexI f .

Lemma 4.2 (cf. Tuy 2016, Proposition 2.17). A convex function is u.s.c. over any polyhedron P in its domain. Hence, if the 
function is l.s.c. over P, then it is actually continuous over P.

Lemma 4.3. A continuous univariate PLF is convex if and only if the slopes of its linear pieces form an increasing sequence 
when arranged from left to right.

In the following condition from planar geometry, we say that three points form a convex (respectively, concave) 
triangle when the point in between lies below (respectively, above) the segment joining the other two points.

Lemma 4.4. The continuous PLF formed by joining a finite set of points in R2 is a convex function if and only if every trip
let of points forms a convex triangle. Consequently, if the PLF is nonconvex, then a point is not a breakpoint if and only if it 
forms a concave triangle with two other points, one to its left and one to its right.

Proof. Necessity is obvious from the definition of convexity. Sufficiency can be argued by contraposition. Sup
pose that the PLF is not convex. We will use Lemma 4.3. Therefore, nonconvexity means that there exists some 
breakpoint xi such that the slope to the left of xi is greater than the slope to the right (equality of slopes is impos
sible because of xi being a breakpoint). This implies that there is a nonconvex (concave) triangle with xi as 
its apex. In particular, letting xi � λxi�1 + (1�λ)xi+1 for some λ ∈ (0, 1), we have yi�yi�1

1�λ >
yi+1�yi

λ , which after rear
ranging, becomes yi > λyi�1 + (1�λ)yi+1, leading to a nonconvex triangle formed by the points indexed by 
(i� 1, i, i+ 1). w

Proof of Proposition 4.1. Because vexI f is the convex envelope of the PLF f, it is obviously a convex PLF over I. 
Lemma 4.1 implies that this PLF is an underestimator of f. The convex envelope of an l.s.c. function is l.s.c. con
vex, is continuous over the interior of its domain, and can only be discontinuous on the boundary. Combining 
this fact with Lemma 4.2, where we use I being a polyhedron in R, gives us that vexI f is a convex and continuous 
underestimator.

The breakpoints of vexI f must be breakpoints of f and hence, of f. The convex continuous PLF vexI f is formed 
by joining its finitely many breakpoints. From Lemma 4.4, the characterization of the breakpoints of the underes
timator follows immediately. The breakpoints of a PLF form what is more generally called the generating set in 
the global optimization literature for general nonconvex functions, and it is known that the envelope of an l.s.c. 
function equals the function value at points in its generating set. Hence, the underestimator equals f at its 
breakpoints. w

Another convex underestimator to f is the convex envelope of f denoted by cvxI f . This equals f at its break
points in (l, u), whereas at the endpoints {l, u}, we may have inequality and so, can only say that cvxI f (bk)P f(bk)

for k ∈ {0, K}. It is also not hard to see that vexI f and cvxI f have the same set of breakpoints. Therefore,

vexI f (x) � cvxI f (x), x ∈ BvexI f \ {b0, bK}, vexI f (x)⩽ cvxI f (x), x ∈ {b0, bK}: (6) 

Thus, the only difference between vexI f and cvxI f is in their values at the endpoints, where the latter will be 
u.s.c. because of Lemma 4.2 but may not be l.s.c.

We now build upon the characterization of breakpoints in Proposition 4.1 to derive an efficient algorithm for 
computing vexI f given f as an input through its breakpoints.

Proposition 4.2. Algorithm 4.1 produces vexI f after O(K) iterations.

Proof. Each application of the while loop is repeatedly checking the necessary and sufficient conditions for the 
slopes from Lemma 4.4. Furthermore, because of the updates done to the lists where the last element is removed, 
at any stage the last two elements in the lists yield a lower bound on the slope required to make the kth point a 
breakpoint. This implies that the while loop executes only a constant number of times for each k, and so, the 
entire algorithm runs in O(K) iterations. The points in the lists that it outputs indeed represent the breakpoints of 
vexI f because they were obtained by checking the conditions in Lemma 4.4 and so, correspond to the characteri
zation in Proposition 4.1. w
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Algorithm 4.1 (Generating a Convex Continuous Underestimator to a Discontinuous PLF)
Data: Lists B � {b0, b1, : : : , bK} and Y � {(yk, yk,�, yk,+) : k ∈K} of PLF f : [l, u] → R
Result: Lists B and Y defining the tuples of vexI f : [l, u] → R.
Compute yk �min{yk, yk,�, yk,+} for k � 0, 1, : : : , K
Initialize B � {b0} and Y � {y0}

for k � 1 to K do
while |B |P2 and Y[k]�Y[�1]

B[k]�B[�1] <
Y[�1]�Y[�2]
B[�1]�B[�2] do

Remove the last element of B and Y.
end
Update B � B ∪{bk} and Y � Y ∪{yk}

end
return B and Y

The worst-case running time of O(K) for our algorithm cannot be improved further because a convex f would 
take K iterations because of every breakpoint of f also being a breakpoint of its envelope. However, it may be pos
sible to improve the average running time by considering one of the many different algorithms in the literature; 
cf. Cormen et al. (2009, chapter 33.3) for generating the convex hull of a finite set of points in R2 (note that this 
convex hull is composed of the convex envelope, the concave envelope, and at most, two vertical segments). For 
example, the classical Graham’s scan algorithm begins with a reference point having the smallest y coordinate, 
calculates the polar angles of the other points w.r.t. the reference point (equivalent to slopes of the line segments 
joining the two points), and then, applies Lemma 4.4 to discard points that will not be breakpoints of the enve
lope (Graham 1972). Our algorithm starts with the leftmost breakpoint as the reference point and compares 
slopes w.r.t. the previous candidate breakpoint. Although there are conceptual similarities with Graham’s scan, 
it is not clear (and probably not true) that the two algorithms are in a bijection.

4.2. Updating Envelope over Subintervals
The branching procedure of sBB algorithms requires constant updating/recomputing of the underestimator 
vexI f over a subinterval

I′ :� [l̃, ũ] ⊂ [l, u] � I:

Of course, Algorithm 4.1 can be used to compute vexI′ f , but this would scan the breakpoints from scratch, which 
can be computationally expensive when there are many segments, and we show that this is not necessary. Yet, 
using Algorithm 4.1 to calculate vexI′ f requires rescanning all breakpoints of f in I′. Especially for PLFs with 
many segments, this can be an expensive computation. However, this is usually not necessary because we 
show that vexI′ f equals vexI f over some part of I′ in th middle and needs to be updated only over the end 
pieces. In particular, the envelope does not change between the leftmost and rightmost breakpoints in I′, 
which can lead to substantial savings in computation if the subinterval is large w.r.t. I. To describe our result, 
let us denote

blo :�min{bk : bk ∈ BvexI f ∩ [l̃, ũ)}, bup :�max{bk : bk ∈ BvexI f ∩ (l̃, ũ]}: (7a) 

Note that if blo and bup do not exist, then the updated envelope is trivial. Henceforth, assume that they exist and 
partition I′ into three intervals:

I1 :� [l̃, blo], I2 :� [blo, bup], I3 :� [bup, ũ]: (7b) 

Proposition 4.3. Assume blo and bup exist. The underestimator over I′ can be described as follows:

vexI′ f (x) �

vexI1 f(x), x ∈ I1

vexI f(x), x ∈ I2

vexI3 f(x), x ∈ I3:

8
>>><

>>>:

Proof. The function on the right side of the equality is obtained by gluing together three different convex func
tions. Hence, we need to argue convexity of this glued function. But, this follows rather immediately from the 
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necessary and sufficient conditions in Lemmas 4.3 and 4.4. Because the breakpoints of f in I1 were not break
points of vexI f , they form a concave triangle with the breakpoints in I2, and so, after convexifying over I1, the 
slopes of the resulting linear segments can be no more than the slopes of the segments in I2. Similar arguments 
hold for I3. w

4.3. An Illustrative Example
The PLF in Figure 1 has five segments (so, K � 5) with the breakpoints b0 � 1, b1 � 3, b2 � 7, b3 � 8, b4 � 11, b5 � 13. 
Note that f is discontinuous at b2 but otherwise, continuous. The tuples corresponding to the breakpoints are 
(1, 3), (3, 5), (7, 2, 1, 3), (8, 5), (11, 7), and (13, 7).

Applying Algorithm 4.1 to this function over I � [1, 13] receives as input the lists B � [1, 3, 7, 8, 11, 13] and Y �
[3, 5, 1, 5, 7, 7] and outputs the lists B � [1, 7, 13] and Y � [3, 1, 7]. They define the continuous PLF vexI f (x) formed 
by the tuples (1, 3), (7, 1), and (13, 7), which equals cvxI f (x) depicted in Figure 1 if Algorithm 4.1 is invoked to 
compute vexI′ f over I′ � [7, 13] ⊂ [1, 13], and the input lists are B � [7, 8, 11, 13] and Y � [2, 5, 7, 7]. Realize that 
Y[0] � 2 ≠ 1 because the discontinuity at b0 � 7 is at the edge of I′, and hence, y0 �min{2,2, 7} because y0,� � y0.

Let I � [1, 13] and I′ � [3, 10]. vexI f is given by (1, 3), (7, 1), and (13, 7). Hence, blo � bup � 7. Consequently, 
I1 � [3, 7], I2 � [7, 7], and I3 � [7, 10]. φ is given by (3, 5), (7, 1), (8, 5), and (10, 6 1

3). Hence, vexI1φ is formed by (3, 5)
and (7, 1), and vexI3 φ is formed by (7, 1) and (10, 6 1

3). Finally, vexI′ f is given by (3, 5), (7, 1), and (10, 6 1
3).

This example illustrates that Proposition 4.3 does not always lead to a reduction in the number of breakpoints 
to be scanned. However, if f is highly nonconvex with many segments, the savings can be enormous. Therefore, 
Proposition 4.3 is particularly useful for PLFs that accurately approximate a highly nonlinear function.

5. Spatial Branch-and-Bound Algorithm
Our main ideas for an sBB algorithm to solve the PLF optimization Problem (1) were sketched in Section 3.1. The 
algorithm is presented formally in Algorithm 5.1. The bounding operation is specified next, the branching 
schemes are in Section 5.2, and convergence is discussed in Section 5.3.

The following notation is used to describe our algorithm. Iteration number is k. For each k, Hk is the partition 
element; xk and v(Hk) are the optimal solution and the optimal value of relaxation Rk, respectively; αk and βk are 
the global upper and lower bounds, respectively, to v∗; and xk is the incumbent solution. L denotes the list of 
unfathomed subproblems at any stage of the algorithm. The user-defined absolute termination gap is ε.

5.1. Node Relaxations
Each node of the search tree corresponds to a hyperrectangle Hk ⊆H and the subproblem

Pk : v(Hk) � inf
x

F(x) s:t: x ∈ S ∩Hk: (8a) 

Our lower bound on this nonconvex problem is denoted by v(Hk), which is obtained by solving the following 
convex relaxation:

Rk : v(Hk)P v(Hk) �min
x

vexHk F(x) s:t: x ∈ S ∩Hk, (8b) 

Figure 1. (Color online) PLF f (x)with Discontinuity at 7 as the Solid Line and Convex Envelope cvxI f (x) over Domain I � [l, u] �
[1, 13] as the Dashed Line 
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where the underestimator is defined as

vexHk F(x) �
Xn

i�1
vexHk

i
fi(xi): (8c) 

Because vexHk F is polyhedral as per the results of the previous section, using the epigraph modeling trick as in 
(4) leads to a tractable convex formulation for the node relaxation subproblem. It will be useful to separate a sin
gle coordinate from the above sum so that we can write

vexHk F(x) � vexHk
j

fj(xj) +
X

i≠j
vexHk

i
fi(xi): (8d) 

In our context, the coordinate j will correspond to the branching variable that was used to create this node sub
problem from its parent node in the sBB tree. In particular, if this node Hk was created from its parent node Hp 

by branching on xik , then using j � ik in (8d) gives us

vexHk F(x) � vexHk
ik

fik(xik) +
X

i≠ik

vexHp
i

fi(xi): (8e) 

Note that when using Proposition 4.3 to update the underestimator over a child node, the breakpoints of 
vexHk F must be stored for each partition element Hk. It is common for sBB/B&B methods to store LP relaxation 
data in order to solve the child-node relaxation in a few iterations using the dual simplex rather than from 
scratch. However, if memory is scarce, Algorithm 4.1 can be called at each child node Hl to compute vexHl F from 
scratch, and no additional data need to be stored.

Algorithm 5.1 (Spatial Branch-and-Bound Algorithm for PLF Optimization)
Root node: Compute vexH F as per (8c) using Algorithm 4.1 for vexHi fi for all i
Solve R0 to obtain x0 and r0

if R0 is infeasible then return P is infeasible

else Set L � {H}, k � 0, α0 � F(x0), β0 � r0, and x0 � x0

while L ≠ ∅ do
Node selection: Find an Hl∗ ∈ arg min{rl : Hl ∈ L}. Mark it as parent node, and set Hk �Hl∗ and βk � rl∗

Branching: Partition Hk into H � {Hk, 1, Hk, 2} using a branching rule from Section 5.2. Let xik denote the 
branching variable

Bounding: for l ∈ {1, 2} do
Compute vexHk, l F as per (8e) with p � k and k � k, l and using Proposition 4.3 to update the envelope in 

the coordinate ik
Solve relaxation Rl to obtain xl and rl

if Rl is infeasible then remove Hk, l from H

end
Update: Set k← k+ 1. Examine whether the previous global upper bound αk�1 can be improved,

αk � min αk�1, min
Hk, l∈H

F(xl)

� �

:

Update the incumbent xk accordingly.
Add child nodes to list: L← (L \ {Hk}) ∪H

Pruning: Fathom subproblems by bound dominance as L← L \ {Hl : rl Pαk � ε}.
end

5.2. Branching Rules
Consider partition element Hk with the optimal solution xk to its relaxation Rk. We give three different rules for 
the branching step of Algorithm 5.1 to partition Hk into Hk, 1 and Hk, 2. The first follows the common concept to 
branch on the variable xi, which causes the largest violation (i.e., contributes most to the convexification gap). It 
was first proposed by Falk and Soland (1969), and variations of it can be found, for instance, in the solver 
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BARON (Tawarmalani and Sahinidis 2004). It is similar to the integer branching rule, where the variable with 
the largest fractional part is chosen. The second branching rule follows the simple concept of branching at the 
midpoint of the longest edge and was used, for instance, in the solver αBB (Adjiman et al. 1998).

5.2.1. Largest-Error Branching Rule. Select the index that contributes most to the convexification gap at xk:

τ ∈ arg max
i�1, : : : ,n

[ fi(xk
i )� vexHk

i
fi(xk

i )], (9a) 

breaking ties using the smallest index rule. Partition Hk at the point xk
τ:

Hk, 1 � {x ∈Hk : xτ ⩽ xk
τ} and Hk, 2 � {x ∈Hk : xτPxk

τ}: (9b) 

5.2.2. Longest-Edge Branching Rule. Select the index with the longest edge by

τ ∈ arg max
i�1, : : : , n

uk
i � lki , (10a) 

breaking ties using the smallest index rule. Partition Hk at the midpoint of the longest edge:

Hk, 1 � x ∈Hk : xτ ⩽
uk
τ + lkτ

2

� �

and Hk, 2 � x ∈Hk : xτP
uk
τ + lkτ

2

� �

: (10b) 

5.2.3. Breakpoint Branching Rule. Select the index τ by the largest-error rule (9a) applied only to breakpoints 
(i.e., select a breakpoint b∗τ with the largest error). Partition Hk at this breakpoint:

Hk, 1 � {x ∈Hk : xτ ⩽ b∗τ} and Hk, 2 � {x ∈Hk : xτPb∗τ}: (11) 

Preliminary computational experiments conducted on our test problems indicated a superiority of the largest- 
error branching rule. This computational superiority is also intuitive as this rule provides the maximum tightness 
at the former solution xk for both child nodes, allowing for a visible increase in the lower bound and a balanced 
search tree. The other two branching rules do not possess these desirable computational properties, but they do 
have theoretical superiority because they allow for stronger convergence results as we explore in the next sec
tions. We also note that integer branching applied to MILP-PLF models leads to unbalanced trees (cf. Yıldız and 
Vielma 2013).

5.3. Convergence Guarantees
Falk and Soland (1969, theorem 2) established asymptotic convergence of the largest-error branching rule when 
F is any continuous separable function. They also gave an example showing that for this rule, continuity of the 
functions is necessary for convergence. Under the weaker assumption of F being l.s.c., Falk and Soland (1969, the
orem 1) established convergence under a stronger branching rule that creates more than two nodes at each step 
and thus, does not lead to binary search trees. Their results directly apply to our PLF optimization problem 
because we also consider a separable objective. Furthermore, as mentioned in Section 2.2 and described in Loca
telli and Schoen (2013, chapter 5), finite convergence can also be obtained for general nonconvex optimization 
with ε > 0. However, we give some independent and self-contained proofs in this section. First, we show that the 
breakpoint rule yields finite convergence even with ε � 0.

Proposition 5.1. When each fi is l.s.c., Algorithm 5.1 using the breakpoint branching rule converges finitely for any 
εP0.

Proof. The l.s.c. condition implies that fi(x) � fi(x) at a breakpoint x ∈ Bfi , and so, our underestimator vexI f is 
exact at each breakpoint as per Proposition 4.1. Hence, a breakpoint is chosen at most once for branching because 
once it is branched upon, the underestimator will have zero error at this point throughout the subtree from this 
node. Because there are finitely many breakpoints, the claim follows because every feasible leaf node of the sBB 
tree will yield an exact representation of some restriction of the original Problem (1), and the union of all of these 
leaves will be Problem (1). w

The largest-error rule is finitely convergent when ε > 0 and has asymptotic convergence when ε � 0. We give 
an independent proof of the second result by exploiting Lipschitz continuity of PLFs, which makes our argu
ments different than those of Falk and Soland (1969) for general separable functions.
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Proposition 5.2. When each fi is continuous, Algorithm 5.1 using the largest-error branching rule converges in the limit 
for ε � 0.

Proof. By construction, βk ⩽ v∗ ⩽ αk for every k, and the sequence {αk} is decreasing, whereas {βk} is increasing. 
Hence, if the sBB algorithm terminates at iteration p, we have αp� βp ⩽ ε, and thus, the infimum v∗ is found with 
ε-precision.

If the sBB algorithm does not terminate after a finite number of iterations, the sequence {Hk}k of partition ele
ments is infinite. Thus, there must be at least one infinite nested subsequence of {Hk}k∈N denoted by

{Hq}q∈Q with Hq+1 ⊂Hq and Q ⊆ N:

We have to show the consistent bounding property (i.e., there exists an infinite nested subsequence {Hq}q∈Q of 
{Hk}k∈N, for which limq→∞ αq � limq→∞ β

q). By boundedness of the sequences, we can extract subsequences such 
that {Hq}q∈Q ⊂ {Hk}k∈N with 

i. the sequence of optimal solutions xq of relaxation Rq converges to a limit point x+ and
ii. only one index τ ∈ I gets branched on infinitely often.
Because we are only interested in the limit behavior, we can, therefore, focus exclusively on the index τ. First, 

note that fτ and thus, also vexHq
τ

fτ are Lipschitz continuous with constant Lτ for all iterations q. Now, let us define 
function ψq

τ(xτ) � fτ(xτ)� vexHq
τ

fτ(xτ) over Hq
τ. Note that ψq

τ is Lipschitz with constant 2Lτ. By the largest-error 
branching rule, namely (9b), we obtain xq�1

τ ∈ bd(Hq
τ) and thus, xq

τ, xq�1
τ ∈Hq

τ. Consequently,

|ψq
τ(x

q
τ)�ψ

q
τ(x

q�1
τ ) | ⩽ 2Lτ · |xq

τ� xq�1
τ | :

Because fτ is continuous and xq�1
τ ∈ bd(Hq

τ), we obtain that ψq
τ(x

q�1
τ ) � 0, and hence,

| fτ(xq
τ)� vexHq

τ
fτ(xq

τ) | ⩽ 2Lτ · |xq
τ� xq�1

τ | :

Because limq→∞ xq
τ � x+τ , we have that limq→∞ |x

q
τ� xq�1

τ | � 0, and therefore,

lim
q→∞
| fτ(xq

τ)� vexHq
τ

fτ(xq
τ) | � 0 :

Finally, there is a q so that for all q > q, the branching index τ is selected by (9a). Hence, we get that

∀i ∈ I \ {τ} : lim
q→∞
( fi(x

q
i )� vexHq

i
fi(x

q
i )) � 0 : (12a) 

Statement (i) follows then as a consequence of the definition of αk, βk, and Hq by

lim
q→∞
αq ⩽ lim

q→∞
F(xq) � lim

q→∞
vexHq F(xq) � lim

q→∞
rq � lim

q→∞
βq: (12b) 

For statement (ii), realize that fτ has only finitely many breakpoints. Hence, after a finite iteration, p ∈Q holds 
that fτ is affine over Hp

τ, and thus, ψp
τ(x

p
τ) � fτ(x

p
τ)� vexHp

τ
fτ(x

p
τ) � 0. By similar arguments, like in (12a) and (12b), 

it follows then that βp � αp, and hence, {Hk}k∈N is finite.
Now that consistent bounding has been established, convergence can be concluded by standard arguments 

from the literature (cf. Tuy and Horst 1988, theorem 2.3) (i.e., limk→∞ β
k � v∗ � limk→∞ αk and every accumulation 

point of {xk} solves P). Remember that {Hq}q∈Q is a subsequence of {Hk}k∈N, and thus, αk � αq and βk � βq for all 
k � q ∈Q. By the monotony of the sequences {βk} and {αk}, convergence follows then directly by limq→∞ αq �

limq→∞ β
q. w

Wechsung and Barton (2014) imposed the requirement of strongly consistent on the branching scheme to obtain 
asymptotic convergence for general l.s.c. functions with the longest-edge branching rule. Their underestimators 
applied to PLFs are possibly no stronger than ours; so, their convergence result might carry over to our sBB for 
l.s.c. PLFs, but a rigorous exploration of this is left for future research.

6. Computational Experiments
6.1. Design of Experiments
We compare the computational performance of the sBB algorithm with MILP approaches from the literature as 
well as the state-of-the-art solver Gurobi. In Section 6.2, we consider continuous PLFs in network flow problems 
with concave PLFs (Section 6.2.1) and knapsack problems with both nonconcave and concave PLFs (Section 6.2.2). 
Discontinuous l.s.c. PLFs are tested for a network flow problem with fixed charges in Section 6.3. Further, we test 
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our sBB algorithm against the global solver Gurobi in Section 6.4. We conclude with a general discussion of our 
numerical results in Section 6.5.

Let us begin by outlining the design of our experiments. Algorithm 5.1 was implemented in Python version 
3.11.9. The largest-error branching rule is chosen because in our initial testing, it seemed to do better than the 
other rules described in Section 5.2. Nodes were selected using the best-bound rule. The LPs on the nodes are 
solved with Gurobi. The MILP models are generated in Julia version 1.10 using the package PiecewiseLinearOpt 
developed by Huchette and Vielma (2023) and are solved by Gurobi. We use Gurobi version 11.0.3 with standard 
settings. All tests were carried out on a workstation with 4.70 GHz and 128 GB RAM running Windows 11 Enter
prise. For termination, we used a relative optimality gap of 10�5 and a time limit of 30 minutes. All times given 
are wall-clock times. The code of the sBB implementation and the MILP generation as well as the instance gener
ator are available at GitHub (Hübner et al. 2025).

We compare our sBB algorithm (sBB) against the PLF solver inside Gurobi (GRB) and four state-of-the-art 
logarithmic-sized MILP models available in the package PiecewiseLinearOpt. In particular, these are the logarithmic 
(Log) and disaggregated logarithmic (DLog) (Vielma et al. 2010) as well as the recently introduced binary zigzag (ZZB) 
and general integer zigzag (ZZI) models (Huchette and Vielma 2023). In contrast to these four logarithmically sized 
MILP formulations, to our knowledge, Gurobi’s PLF solver is built on a linear-sized MILP model.

Similar to findings in the literature (cf. Vielma et al. 2010), first experiments indicated that linear-sized MILP mod
els are not competitive to logarithmic-sized models when nonconvex PLFs with 50 or more segments are involved. 
Therefore, we restrict our comparisons to the four logarithmic-sized MILP models above available in the literature.

6.2. Continuous PLFs
6.2.1. Network Flow Problem with Concave Cost. Network flow problems with nonconvex PLFs occur in many 
applications ranging from telecommunications to logistics (Croxton et al. 2007). They can be defined as follows:

min
Xn

i�1

Xn

j�1
fij(xij)

s:t:
Xn

j�1
xij �

Xn

j�1
xji � di i � 1, : : : , n

lij ⩽ xij ⩽ uij i, j � 1, : : : , n :

An instance of the network flow problem is created similar to Keha et al. (2006), Vielma et al. (2010), and Huchette 
and Vielma (2023) as follows. First, declare each node i � 1, : : : , n� 1 a demand, supply, or transshipment node 
with equal probability 1

3. The transshipment nodes have di � 0, whereas the demand and supply nodes have 
di ~ 6Uniform(5, 50). To obtain a balanced problem, the final node n has dn ��

Pn�1
i�1 di. The breakpoints (bk

i , f (bk
i )), 

k � 0, : : : , K of the concave PLFs fi(xi) are determined as follows. Set b0
i � li � 0 and bK

i � ui ~ Uniform(5, 50); gener
ate K� 1 points bk

i ~ Uniform(li, ui), k � 1, : : : , K� 1; and order them. Subsequently, generate K slopes by slopesk ~ 
Uniform(1,2000)=1000, k � 1, : : : , K, and order them in decreasing order to obtain a concave PLF. Finally, set 
fi(b0

i ) � 0, and compute the y coordinates of the breakpoints by fi(bk
i ) � slopek · (bk

i � bk�1
i ) + fi(bk�1

i ), k � 1, : : : , K.
We perform our computational test on network flow problems with n � 10 nodes. For each K, 50 random net

work flow instances are generated and solved. The statistics of the solve times are given in Table 1. We display the 
median, the arithmetic mean, and the standard deviation as well as the number of instances that cannot be solved 
by a method within the time limit (fail) and the number of instances in which each method was the fastest (win).

6.2.2. Knapsack Problem with Approximated Nonlinearities. As discussed in Section 1, PLFs are often used to 
approximate difficult nonlinear expressions in optimization problems. To test the sBB and MILP methods in this 
context, we consider the following nonlinear continuous knapsack problem:

min
Xn

i�1
fi(xi) s:t:

Xn

i�1
xi � d, li ⩽ xi ⩽ ui, i � 1, : : : , n:

Each fi(xi) is a nonconvex continuous PLF randomly generated by approximating a smooth nonconvex function 
from Table 2. The functions therein are mostly taken from Casado et al. (2003).

6.2.2.1. Nonconvex, Nonconcave Knapsack Problems. A random instance of the knapsack problem is then 
generated as follows. First, n functions hi with bounds li and ui are arbitrarily drawn from Table 2. Second, K� 1 
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points bk
i ~ Uniform(li, ui), k ≠ {0, K} are generated and ordered. The first and last breakpoints are set to b0

i � li and 
bK

i � ui, respectively. Each hi is then approximated by a PLF fi with K segments given by the breakpoints (bk
i , hi(bk

i )). 
The demand parameter d is then as well randomly determined by d ~ Uniform(l+ 1

4 · (u� l), u� 1
4 · (u� l)), in which 

l �
Pn

i�1 li and u �
Pn

i�1 ui. We perform our computational test on knapsack problems of dimension n � 100. For 
each K, 50 random knapsack instances are generated and solved. The statistics of the solve times are given in 
Table 3.

In addition, we are interested in the impact of more segments on the approximation quality. Thereby, a knap
sack problem is generated like described above, and each function hi is approximated by a PLF fi, which has K+ 1 
equidistantly distributed breakpoints. Then, the piecewise linear optimization problem is solved with solution xK. 
The real objective value of the nonlinear problem given this point is vK �

P
i hi(xK

i ). Table 4 shows the relative 

Table 1. Solve Times (Seconds) for Network Flow Problems with Continuous Concave PLFs

Method Med. Avg. Std. Win Fail

Panel A: 10 segments
ZZI 0.26 0.28 0.12 20 0
Log 0.26 0.34 0.50 12 0
DLog 0.33 0.32 0.14 9 0
ZZB 0.39 0.41 0.22 4 0
GRB 0.40 0.36 0.14 5 0
sBB 4.55 8.96 14.65 0 0

Panel B: 100 segments
ZZI 1.82 2.11 1.06 24 0
ZZB 1.95 2.30 1.15 15 0
Log 2.36 2.68 1.19 5 0
DLog 3.90 4.67 2.20 0 0
sBB 4.11 6.17 7.08 6 0
GRB 9.38 9.65 3.95 0 0

Panel C: 500 segments
sBB 8.2 11.1 11.2 39 0
Log 15.1 17.2 8.0 6 0
ZZI 15.5 18.0 9.0 4 0
ZZB 15.8 19.4 11.9 1 0
DLog 23.6 27.6 14.6 0 0
GRB 90.0 114.6 94.8 0 0

Panel D: 1,000 segments
sBB 5.8 10.9 14.6 50 0
Log 45.7 49.5 18.2 0 0
DLog 46.5 57.4 32.4 0 0
ZZI 48.4 48.9 21.1 0 0
ZZB 61.6 61.2 23.9 0 0
GRB 270.6 363.4 241.9 0 0

Panel E: 5,000 segments
sBB 7.2 11.0 11.0 50 0
Log 330 331 132 0 0
ZZI 333 329 152 0 0
DLog 379 405 200 0 0
ZZB 515 518 198 0 0
GRB 1,800 1,800 0 0 50

Panel F: 10,000 segments
sBB 8 12 15 50 0
Log 729 763 294 0 0
DLog 940 876 374 0 1
ZZI 976 924 299 0 1
ZZB 1,419 1,368 410 0 9
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that 
cannot be solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of 
instances in which each method was the fastest. The methods are sorted according to the bold numbers.
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improvement in the real objective value if the approximation is refined (i.e., the value �(vK+1 � vK)= |vK | , where 
K+ 1 means the next K value in Table 4 (e.g., K � 20 and K+ 1 � 50)).

6.2.2.2. Concave Knapsack Problems. To evaluate the impact of nonconcavity on the solution methods, we 
also solve instances of knapsack problems where the PLFs are concave. Results are presented in Table 5. The 
knapsack problems are generated as before. To obtain a concave PLF, the slopes of the segments are computed 
and sorted in decreasing order. Subsequently, the y value of each breakpoint is recomputed by using the new 
slopes and x coordinate of the breakpoints. Table 5 shows that problems with concave PLFs are in general harder 
to solve for every method than problems with nonconcave PLFs. Indeed, nonconcave PLFs have at least one 
more convex segment than concave PLFs, which allows for tighter lower bounds.

6.2.3. Details on Computational Experiments. This section dives deeper into our numerical results. Means and 
medians are point estimators that do not necessarily provide a complete picture of the algorithms’ performance 
on the randomly generated data set, and means can be distorted by heavy outliers. Therefore, in addition to the 
statistics provided in the preceding tables, we further investigate the behavior of the different models and algo
rithms by plotting the performance profiles of their solution times. We also investigate the amount of time that 
the sBB spends on its different operations.

6.2.3.1. Performance Profiles. Each model/algorithm gets one profile curve, which is interpreted as its approxi
mate cumulative distribution function. This implies that the curves in panel (a) of Figure 2 and panel (a) of Figure 3
have stochastic dominance over other curves and hence, correspond to the best method. The horizontal axes in 
Figures 2 and 3 are relative running times obtained by dividing by the shortest running time. The vertical intercepts 
in Figures 2 and 3 give the number of instances for which each method solved the fastest (the win column in the 
associated tables).

Figures 2 and 3 give these profiles, respectively, for the network flow problems and knapsack problems with 
concave PLFs. In the former, the sBB profiles are consistent with Table 1 and give superior performance for 

Table 2. Nonconvex Univariate Functions

No. Function Domain

1 e�3x�12 � x2 + 20 [�5, 5]

2 �0:2 · e�x + x2 [�5, 5]

3 x3 · e�x2
[�5, 5]

4 x5�20x2+5
x4 +1 [�10, 10]

5 log(3x) · log(2x)� 1 [0.1, 10]

6 10 log(x)� 3x+ (x� 5)2 [0.1, 10]

7 �x5 �10x2

x6 +5 [�10, 10]

8 x · e�x2
[�5, 5]

9 � x7

5040+
x5

120�
x3

3 + x [�4, 4]

10 x2�5x+6
x2 +1 � 1 [�10, 10]

11 x4 � 12x3 + 47x2 � 60x [�1, 7]

12 x6 � 15x4 + 27x2 + 250 [�4, 4]

13 x4 � 10x3 + 35x2 � 50x+ 24 [0, 5]

14 0:2x5 � 1:25x4 + 2:33x3 � 2:5x2 + 6x [�1, 4]

15 x3 � 7x+ 7 [�4, 4]

16 (x4�4x+10)
(x2 +1) � 1 [�5, 5]

17 �x5 · e�x2
[�10, 10]

18 x5 � 3x4 + 4x3 + 2x2 � 10x� 4 [�1:5, 3]

19 (x3�5x+6)
(x2 +1) � 1 [�5, 5]

20 1
x+ 2 log(x)� 2 [0.1, 10]
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Table 3. Solve Times (Seconds) for Nonconcave Knapsack Problems

Method Med. Avg. Std. Win Fail

Panel A: 10 segments
GRB 0.03 0.04 0.02 36 0
Log 0.04 0.12 0.50 7 0
ZZI 0.05 0.05 0.02 6 0
DLog 0.05 0.06 0.04 1 0
ZZB 0.06 0.07 0.03 0 0
sBB 0.15 0.24 0.27 0 0

Panel B: 100 segments
Log 0.50 0.53 0.23 44 0
ZZI 0.72 0.77 0.40 5 0
DLog 0.82 1.08 1.15 0 0
ZZB 0.82 0.87 0.47 1 0
sBB 1.05 1.75 2.33 0 0
GRB 1.05 1.19 0.66 0 0

Panel C: 500 segments
Log 2.5 3.0 1.7 41 0
sBB 4.0 9.8 23.1 4 0
ZZI 4.2 5.3 4.5 3 0
ZZB 5.0 6.3 7.4 1 0
DLog 5.9 9.2 11.0 1 0
GRB 24.8 486.9 786.5 0 13

Panel D: 1,000 segments
sBB 7.0 18.3 33.8 13 0
Log 7.6 8.5 7.2 34 0
DLog 15.9 22.9 23.6 2 0
ZZI 18.1 18.1 12.1 1 0
ZZB 19.7 20.1 14.2 0 0
GRB 1,800 962.6 880.6 0 26

Panel E: 5,000 segments
sBB 58.8 100.0 98.5 25 0
Log 71.8 103.1 86.5 24 0
DLog 149.4 331.3 380.9 0 1
ZZI 188.9 213.3 131.9 1 0
ZZB 197.8 240.7 202.2 0 0
GRB 1,800 1,800 0 0 50

Panel F: 10,000 segments
sBB 111 229 359 31 2
Log 208 470 550 17 5
DLog 327 549 543 2 5
ZZB 462 649 521 0 6
ZZI 487 611 484 0 4
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be 
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which 
each method was the fastest. The methods are sorted according to the bold numbers.

Table 4. Relative Improvement in Real Objective Value over Previous Numbers of Segments K

K Min. Med. Avg. Max. Std.

20 �486.67% 25.87% 39.00% 347.59% 100.62%
50 �3.37% 5.32% 7.78% 37.73% 7.81%
100 �0.87% 1.33% 1.84% 9.77% 1.82%
500 0.072& 5.974& 7.646& 21.176& 5.246&

1,000 �0.197& 0.205& 0.302& 2.060& 0.415&

5,000 0.011& 0.107& 0.168& 0.839& 0.173&

10,000 �0.001& 0.003& 0.004& 0.027& 0.005&

Notes. For K � 20, the improvement in real objective value is measured relative to the value of K � 10. Min., the 
minimum; Med., median; Avg., arithmetic mean; Max., the maximum; Std., standard deviation. The methods are 
sorted according to the bold numbers.
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500 segments and beyond. The profiles for the concave knapsacks reveal that for up to 1,000 segments, the actual 
performance of sBB is much better than the high values for average times in Table 5. At 100 segments, sBB is 
quickest on the same number of instances as Log and dominates DLog and the two zigzag models, whereas 
beyond 500 segments, the dominance of sBB keeps growing steadily. Similar behavior is observed for the non
concave PLFs, and so, their profiles are omitted. This underscores the point that the average numbers in Table 5
are a bit distorted and do not provide complete information on performance of the algorithms.

6.2.3.2. Timing Statistics for the sBB. Here, we take a look at some details of the operation of the sBB imple
mentation. Table 6 indicates that solving LPs takes only a small share of the sBBs solution time, although it is 
by far the most complicated operation in a branch-and-bound algorithm. Instead, operations like building the 
model and repeatedly adding constraints over the Python-Gurobi interface, evaluating PLFs, and generating the 

Table 5. Solve Times (Seconds) for Concave Knapsack Problems

Method Med. Avg. Std. Win Fail

Panel A: 10 segments
Log 0.04 0.05 0.02 26 0
GRB 0.04 0.06 0.03 15 0
DLog 0.05 0.06 0.02 1 0
ZZI 0.05 0.06 0.02 8 0
ZZB 0.05 0.06 0.03 0 0
sBB 0.12 0.19 0.19 0 0

Panel B: 100 segments
Log 0.70 0.73 0.33 27 0
ZZI 1.00 1.06 0.71 3 0
DLog 1.07 1.05 0.48 1 0
sBB 1.12 2.42 4.56 19 0
ZZB 1.12 1.11 0.58 0 0
GRB 3.19 3.35 1.70 0 0

Panel C: 500 segments
sBB 2.3 33.4 83.3 32 0
Log 5.0 8.4 10.6 16 0
ZZI 8.6 19.9 33.3 0 0
ZZB 8.8 20.1 30.5 0 0
DLog 10.6 25.0 57.6 2 0
GRB 164.4 621.8 743.0 0 13

Panel D: 1,000 segments
sBB 2.6 95.2 309.9 37 1
Log 10.8 28.3 41.4 12 0
DLog 21.7 74.0 253.2 1 1
ZZI 31.8 102.9 275.5 0 1
ZZB 36.0 109.3 279.4 0 1
GRB 1,800 1,220 731.9 0 29

Panel E: 5,000 segments
sBB 22.4 390.3 658.5 40 8
Log 97.2 584.1 735.2 2 10
DLog 147.1 719.7 782.6 0 16
ZZB 580.5 948.6 741.0 0 19
ZZI 714.2 948.6 681.2 0 17
GRB 1,800 1,800 0.0 0 50

Panel F: 10,000 segments
sBB 9 300 604 45 5
Log 215 666 697 0 12
DLog 401 786 700 0 14
ZZB 1,518 1,269 574 0 24
ZZI 1,571 1,288 593 0 24
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be 
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which 
each method was the fastest. The methods are sorted according to the bold numbers.

Hübner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions 
18 INFORMS Journal on Computing, Articles in Advance, pp. 1–31, © 2025 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:6
02

0:
50

31
:5

60
0:

50
14

:a
90

4:
18

01
:3

13
a]

 o
n 

10
 D

ec
em

be
r 

20
25

, a
t 0

5:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



envelope take a high share. This is another indicator that an integration into a fully developed solver, such as 
Gurobi or BARON, would result in considerable speedups.

In addition, Table 6 indicates that the generation of the convex envelope takes more time if the PLF is concave. 
The reason for that is the while loop of Algorithm 4.1, which is always entered because every point results in a 
concave turn. However, if it is a priori known that the PLF is concave, then one could modify the algorithm to 
make it simply output the first and last breakpoints of the PLF without entering any loop.

Figure 2. (Color online) Performance Profiles for Network Flow Problems with Continuous Concave PLFs from Table 1

(a) (b)

(c) (d)

(e) (f)

Notes. (a) Ten segments. (b) One hundred segments. (c) Five hundred segments. (d) One thousand segments. (e) Five thousand segments. 
(f) Ten thousand segments.
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6.3. Discontinuous l.s.c. PLF
In many real-world applications in logistics, supply chains, and telecommunications, the network flow problem 
involves fixed charges (Rebennack et al. 2009). Those are fixed costs that are incurred as soon as a flow fij is strictly 
positive ( fij > 0). They can represent real-world setup costs, like opening shipping lanes or starting equipment. 
However, they turn the continuous concave piecewise linear cost function of Section 6.2.1 into a discontinuous but 
lower semicontinuous PLF.

Figure 3. (Color online) Performance Profiles for Concave Knapsack Problems from Table 5

(a) (b)

(c) (d)

(e) (f)

Notes. (a) Ten segments. (b) One hundred segments. (c) Five hundred segments. (d) One thousand segments. (e) Five thousand segments. 
(f) Ten thousand segments.
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To test the sBB algorithm under this discontinuous setting, we generate the network flow problem as described 
in Section 6.2.1 but add to every cost function a fixed-charge jump at fij � 0 given by a random uniformly distrib
uted number between 10 and 50. We compare the sBB with the largest-error branching rule against the built-in 
PLF solver of Gurobi, which can also handle discontinuous l.s.c. PLFs. The logarithmic formulations either do 
not support discontinuous PLFs or are not implemented in the package PiecewiseLinearOpt (Huchette and 
Vielma 2023). The results are displayed for 50 random instances in Table 7.

Note that the sBB with the largest-error branching rule has no asymptotic convergence guarantee in general. 
Falk and Soland (1969) present an example that showcases a corner case where the sBB never converges. How
ever, in our experiments, the sBB with the largest-error branching rule always converged. In Section 5.3, we 
pointed out that the breakpoint branching rule could achieve finite convergence even for discontinuous PLFs. 
However, we did not fully implement the breakpoint branching rule as early experiments indicated poor perfor
mance. This poor performance is caused by the failure to provide good improvements in the lower bounds after 
branching. The breakpoint branching rule does not necessarily branch in the surrounding of the solution of the 
parent node—in contrast to the largest-error rule—and thus, cannot guarantee a tighter convex envelope around 
the parent’s solution after branching. Consequently, the parent’s optimal point might also be the optimal point 
of the child node, and no improvement in the lower bound is gained. This branching behavior is similar to that 
of integer PLF branching rules and leads to imbalanced search trees (Yıldız and Vielma 2013). This sharply con
trasts the largest-error branching rule, which branches directly at the parent’s solution, thus guaranteeing an 
increase in lower bounds and a balanced search tree. The following example illustrates this.

Table 6. Average Proportion of Run Time That Is Allotted to the Various Suboperations of the 
sBB Algorithm When Solving Knapsack Problems

Operation

Nonconcave, % Concave, %

K � 10 K � 10, 000 K � 10 K � 10, 000

Gurobi interface 68 76 33 10
Solving LPs 2 15 2 1
Envelope generation 0 1 0 35
PLF evaluations 28 1 62 49
Other operations 2 8 3 4

Table 7. Solve Times (Seconds) for Network Flow Problems with Fixed Charges (Discontinuous PLFs)

Method Med. Avg. Std. Win Fail

Panel A: 10 segments
GRB 0.76 0.78 0.41 50 0
sBB 18.52 59.92 98.25 0 0

Panel B: 100 segments
GRB 16.63 17.18 8.86 34 0
sBB 24.29 71.05 111 16 0

Panel C: 500 segments
sBB 17.2 84.5 159.5 46 0
GRB 90.0 147.6 183.4 4 0

Panel D: 1,000 segments
sBB 22.0 61.6 96.3 50 0
GRB 291.2 599.9 629 0 5

Panel E: 5,000 segments
sBB 25.8 110.8 232.8 50 0
GRB 1,800 1,800 0 0 50

Panel F: 10,000 segments
sBB 33 92 134 50 0
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be solved by 
a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which each method 
was the fastest. The methods are sorted according to the bold numbers.
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Example 6.1. Consider the problem
min f1(x1) + f2(x2) s:t: x1 + x2 P1, x1, x2 ∈ [0, 2]

with continuous PLFs f1 and f2 given by the three breakpoints (0,0), (1,10), and (2,15) as well as (0,0), (1,2), and 
(2,1), respectively.

It is easy to verify that the optimal solution of the above problem is (0,2) with an optimal value of one. Given 
the convex envelopes of both PLFs, the root-node solution would be (0,1). The breakpoint branching rule would 
then branch at the breakpoint (1,10) of f1. The convex envelopes of f1 and f2 would thus not be tightened around 
(0,1). Point (0,1) would still be a solution for the left child node, leading to no improvement of the lower bound 
and an imbalanced search tree. This contrasts the largest-error branching rule, which would branch at (0,1), tight
ening the convex envelope of f2 at (0,1) and ensuring that the solution is found in the next iteration.

By adding breakpoints to function f1, it would not be difficult to extend the above example so that the break- 
point branching rule would continue to branch on the unimportant variable x1 for any number in N. The break- 
point branching rule would not be able to detect that finding the optimal solution would require a single branching 
on variable x2.

We believe that when designing convergent and computationally efficient branching rules for discontinuous 
PLFs, the idea of branching around the previous solution should be the guiding star as only that guarantees bal
anced search trees, which are essential for efficient B&B algorithms. However, the design of tailored branching 
rules for discontinuous PLFs, which have both theoretical convergence guarantees and are computationally effi
cient, is out of the scope of this work and is left for future research.

6.4. Comparison with Global MINLP Solvers
As mentioned before, to motivate this work, PLFs can be used to approximate nonlinear functions within mixed- 
integer nonlinear program (MINLP) problems to yield MILP problems (Füllner and Rebennack 2022). Therefore, 
we want to compare our proposed sBB with a global solver on some nonconvex nonlinear optimization problems. 
However, the results of this comparison need to be interpreted carefully as global solvers guarantee global opti
mality of the computed solutions—if they converge and the assumptions of the underlying algorithms are met— 
whereas our tested sBB method uses a static a priori approximation of the problem with 10,000 segments. 
Nevertheless, such a comparison can give insights into the scalability of our sBB versus the global solver tested.

The most well-known global solvers are ANTIGONE, BARON, SCIP, and LindoGLOBAL. These are all based 
on an sBB algorithm that computes the lower bound by disaggregating functions into elementary functions, such 
as log(x), a polynomial, or a bilinear function x · y. To compute lower bounds, those elementary functions are 
replaced by a known convex underestimator. For more details on global solvers, we refer to Burer and Letchford 
(2012). Since its recent release of version 11, Gurobi also provides a global solver. This global solver is also based 
on an sBB using disaggregation into elementary functions. See the documentation on the website of Gurobi (Gur
obi Optimization 2024) for more details.

Global solvers disaggregate more complex functions, such as those in Table 2, into a cascade of supported uni
variate functions (Burer and Letchford 2012). Solvers such as ANTIGONE, BARON, SCIP, and LindoGLOBAL 
do this behind the scenes. However, in the current version of Gurobi, the user needs to disaggregate this manu
ally (Gurobi Optimization 2024). Either way, the disaggregation may result in weaker lower bounds compared 
with a direct treatment, like our sBB is capable of. The following example illustrates the disaggregation and the 
resulting lower bounds:

Example 6.2. Consider the function f (x) � log(ex) over the interval [1, e]. By definition, this function equals h(x) �
x and is convex. However, by the process of disaggregation, a variable y is introduced, and f is rewritten as

f ∗(y) � log(y) and y � ex with x ∈ [1, e]:

The concave function log(y) is then underestimated over the interval y ∈ [e, ee] by its convex envelope given by 
the linear function

e� 1
ee� e · (y� e) + 1:

Finally, the convex underestimator of f (x) � log(ex) over the interval [1, e] is given by

e� 1
ee� e

· (ex� e) + 1:
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The largest distance to the function h(x) � x—the convex envelope of f (x)—to this underestimator is approxi
mately at x ≈ 2 and amounts to ≈0.35. Consequently, in the worst case, the convex underestimator resulting from 
disaggregation is around 17% smaller than the convex envelope. w

In the following, we compare Gurobi’s global solver (G-sBB) regarding computation time and root-node lower 
bounds with a static piecewise linear approximation using 10,000 equidistant segments. We solve this piecewise 
linear approximation with our sBB algorithm. We do not test the other PLF formulations as extensive compari
sons for 10,000 segments were already provided in Tables 1, 3, and 5. As the other mentioned global solvers are 
also based on sBB and disaggregation, we treat Gurobi as a representative for this algorithm class and do not test 
the other solvers.

Therefore, consider the knapsack problem from Section 6.2.2 with the approximated functions from Table 2
again. Next to the PLF approximation of these nonlinear functions, we hand them over to a global MINLP solver 
that treats them directly within the algorithm. For those experiments, we construct knapsack problems as 
described in Section 6.2.2 but only consider functions 2, 9, 11, 12, 13, 14, 15, and 20 of Table 2 as we encountered 
numerical issues in Gurobi with the other functions. We believe that this is because of the relative novelty of Gur
obi’s solver and the difficult concatenation of elementary functions (exp, log, etc.) within the functions in Table 2. 
This causes problems with disaggregation.

Table 8 provides results for different numbers of variables, each for 50 random instances. Table 9 presents 
descriptive statistics of the lower bound obtained at the root node of our sBB and the lower bound at the root 
node of Gurobi’s sBB method and presents the difference between them. Table 9 explains why Gurobi’s sBB 
solver is not competitive for this knapsack problem. It can be seen that the root-node bound of Gurobi is always 
considerably lower than that of the sBB. Whereas our sBB computes the convex envelope of the PLF (and thus, 
approximately a convex envelope of the original non-PLF function), this cannot be said about Gurobi’s sBB 
solver, which employs disaggregation. Consequently, the underestimator is less tight and results in weaker 

Table 8. Solve Times (Seconds) for Knapsack Problems with Gurobi’s MINLP Global Solver

Method Med. Avg. Std. Win Fail

Panel A: 10 variables
G-sBB 5.15 147.77 397.56 28 2
sBB 9.20 9.47 2.05 22 0

Panel B: 11 variables
sBB 10.54 10.60 2.32 27 0
G-sBB 17.16 312.19 584.67 23 5

Panel C: 12 variables
sBB 12.44 13.05 3.50 34 0
G-sBB 55.65 450.99 698.20 16 8

Panel D: 13 variables
sBB 14.07 13.99 2.50 37 0
G-sBB 243.29 781.63 834.28 13 18

Panel E: 14 variables
sBB 14.64 15.32 3.74 46 0
G-sBB 579.94 914.11 804.96 4 20

Panel F: 15 variables
sBB 16.33 16.76 3.73 45 0
G-sBB 1,800 1,236 794.76 5 32

Panel G: 20 variables
sBB 22.53 23.65 7.82 49 0
G-sBB 1,800 1,665 441.88 1 45

Panel H: 30 variables
sBB 36.15 40.40 16.15 50 0
G-sBB 1,800 1,800 0.59 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be 
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which 
each method was the fastest. The methods are sorted according to the bold numbers.
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lower bounds. This, in turn, leads to longer run times as it takes longer to close the gap between upper and lower 
bounds.

To obtain tight lower bounds of concatenated univariate functions, like in Table 2, global MINLP solvers could 
either (i) approximate them by a PLF, thus obtaining an approximation of the convex envelope, or (ii) use a 
method like that introduced in Gounaris and Floudas (2008) to directly compute the (possibly piecewise non
linear) convex envelope of f.

6.5. Discussion
Because of the difference in implementation quality—a rudimentary sBB implementation in Python compared 
with a commercial branch-and-cut solver in a low-level language (such as C)—it is difficult to draw firm conclu
sions from these computational results. Nevertheless, we sketch a summary of our observations.

Tables 1 and 3 indicate a superior scalability of the sBB; each added segment leads to a relative improvement 
in the computation time of the sBB compared with logarithmic approaches. This is further illustrated in perfor
mance profiles given in Figures 2 and 3. This superior scalability can be attributed to the sBB’s slim and sparse LP 
relaxations, which may not always grow linearly with the number of segments (see Section 3.2). The value of a 
method with good scalability is illustrated in Table 4; significant improvements in solution quality are possible 
by refining the PLF, even if it already contains many segments. This is usually even more true for obtaining an 
appropriate optimality certificate.

Table 9. Distribution of Root-Node Lower Bounds of Our sBB and Gurobi’s sBB and the Differences 
Between Them

Method Min. Med. Avg. Max. Std.

Panel A: 10 variables
sBB �149 292 �94 �31 32
G-sBB �13,083 23,586 �3,813 �147 3,239
Diff 39 3,496 3,718 13,039 3,255

Panel B: 11 variables
sBB �155 287 �83 5 37
G-sBB �9,803 23,624 �4,267 �84 2,672
Diff 68 3,557 4,184 9,744 2,679

Panel C: 12 variables
sBB �160 290 �91 5 40
G-sBB �16,081 26,535 �5,871 �205 3,563
Diff 61 6,398 5,780 16,039 3,573

Panel D: 13 variables
sBB �166 284 �87 8 42
G-sBB �13,137 25,275 �5,409 �198 3,374
Diff 119 5,182 5,322 13,060 3,388

Panel E: 14 variables
sBB �175 2117 �104 �15 40
G-sBB �13,184 24,156 �6,260 �557 3,337
Diff 422 4,044 6,157 13,073 3,351

Panel F: 15 variables
sBB �236 2104 �114 �36 47
G-sBB �13,455 26,962 �7,252 �331 3,571
Diff 250 6,859 7,139 13,370 3,584

Panel G: 20 variables
sBB �257 2167 �165 44 55.37
G-sBB �16,562 27,450 �8,190 �532 3,981
Diff 347 7,331 8,025 16,516 3,998

Panel H: 30 variables
sBB �379 2263 �252 �51 89
G-sBB �28,956 213,225 �13,215 �4,169 5,360
Diff 384 12,981 12,963 28,792 5,390

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Diff, difference; Med., median; Std., standard 
deviation. The methods are sorted according to the bold numbers.
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As discussed in Section 3.2, the incremental and SOS2 models, which guarantee sharpness in the entire search 
tree, usually outperform logarithmic models for problems with few segments. Because the sBB also guarantees 
these sharpness properties, one might expect similar results for problems with smaller segments. One could even 
assume that this effect is enhanced because spatial branching can additionally lead to more balanced search trees 
by branching at the previous solution instead of at the breakpoints (see Section 5.2). However, the computational 
results do not support this claim. We believe that the poor performance of the sBB compared with logarithmic 
approaches on problems with few segments is because of the superior implementation of Gurobi’s branch-and- 
cut solver. When the sBB is integrated into a full-featured solver, such as Gurobi or BARON, the advantage of a 
balanced search tree may lead the sBB to outperform logarithmic models even on problems with few segments 
as the SOS2 model and the incremental model do. In fact, a closer look at the performance of the sBB implemen
tation (cf. Table 6) reveals that up to 50% of the solution time is spent on the Python-Gurobi interface. This is sig
nificant time that could be saved by integrating our sBB algorithm into a full-featured solver.

The computational results for discontinuous l.s.c PLFs show that the discontinuity results in more difficult to 
solve instances (cf. Table 7 versus Tables 3 and 5). None of the 50 instances for 5,000 segments could be solved by 
Gurobi within the 1,800 seconds; it is the same for the 50 instances of 10,000 segments. The relative performance 
of our sBB to Gurobi’s PLF solver is similar to the continuous PFL instances in that our sBB is superior for 500 
and more segments (cf. Tables 1, 3, and 5).

The comparisons with Gurobi as a global solver confirmed the good scalability of our sBB method (Table 8). 
Although the running time of our sBB method scales approximately linearly with the number of variables, the 
global solver scales approximately exponentially. Already with 11 variables, our sBB is clearly superior. Remark
able is the extremely low standard deviation of the running times of our sBB, which shows that the computa
tional performance is very consistent among the 50 instances tested. The superior performance of our sBB can be 
explained by the better lower bounding (cf. Table 9).

7. Approximating Separable Functions
We mentioned earlier in Section 1.3 the need for computationally efficient scalable algorithms and the various 
error bounds that have been calculated in the literature to determine the number of breakpoints needed from a 
good PLF approximation. We present an error bound for the number of breakpoints required in a PLF approxi
mation to achieve a desired error to the problem of optimizing a separable function. Our bound is different than 
existing results because we do not assume differentiability of the function that is being approximated. Instead, 
we work with Hölder continuous functions, which are defined as follows.

Definition 7.1. A function h : X→ R over a closed set X ⊆ Rn is said to be (α, β)-Hölder continuous for some con
stants α,β > 0 if

| f (x)� f (x′) | ⩽ β‖x� x′ ‖α2 x, x′ ∈ X:

The function is Lipschitz continuous when α � 1, whereas for α > 1, the function must be constant over its 
domain. We assume α ∈ (0, 1].

For some closed convex set S and hyperrectangle H, consider the nonconvex separable minimization problem

φ∗ :�min φ(x) :�
Xn

i�1
φi(xi) s:t: x ∈ S ∩H, 

where for each i � 1, : : : , n, the univariate function φi : [li, ui] → R, whose domain is some closed interval [li, ui] ⊂ R, 
is (αi,βi)-Hölder continuous. This means that

|φi(t)�φi(t
′) | ⩽ βi |t� t′ |αi , t, t′ ∈ [li, ui]:

Let x∗ denote its optimal solution, which exists because φ is continuous and S ∩H is compact. Suppose that for 
each φi, we construct a continuous PLF approximation bφi : [li, ui] → R with Ki + 1 breakpoints that are indexed 
by the set {bk

i : k � 0, 1, : : : , Ki}. This PLF is constructed in the natural way by joining consecutive breakpoints 
so that the kth segment is obtained by joining the points (bk�1

i ,φi(b
k�1
i )) and (bk

i ,φi(b
k
i )) for k � 1, : : : , Ki. Sum

ming these over i � 1, : : : , n creates the PLF bφ(x) �
Pn

i�1
bφi(xi), whose optimization yields a finite value bφ and 

solution bx:
bφ � bφ(bx) :�min

Xn

i�1

bφi(xi) s:t: x ∈ S ∩H:

Hübner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions 
INFORMS Journal on Computing, Articles in Advance, pp. 1–31, © 2025 The Author(s) 25 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
00

:6
02

0:
50

31
:5

60
0:

50
14

:a
90

4:
18

01
:3

13
a]

 o
n 

10
 D

ec
em

be
r 

20
25

, a
t 0

5:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



There is no immediate relation between φ∗ and bφ, but we can deduce two inequalities. First, the optimal solution 
bx of the PLF problem being feasible to S ∩H implies that the optimum of the original problem can be upper 
bounded.

Observation 7.1. φ∗ ⩽φ(bx).

Second, if the approximate solution bx belongs to subintervals of concavity,1 then we can also lower bound the 
global optimum.

Observation 7.2. bφ ⩽ φ∗ if for each i � 1, : : : , n, φi is concave over the subinterval [bk
i , bk+1

i ] containing bxi.

Proof. This is because the stated assumption implies bφ(x∗)⩽φ(x∗), and we know from the optimality of bx that 
bφ(bx)⩽ bφ(x∗). w

In general, bφ :� bφ(bx) is neither a lower bound nor an upper bound on φ∗. Our main result here is that to control 
the additive gap on bφ, there is a formula for the number of breakpoints in the PLFs that depends on the continu
ity parameters and the width of interval bounds.

Proposition 7.1. Let ε,δ > 0 be given, and denote

θi :�
ui� li
δ

, ρi :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi βi
ε
[1+θ1�αi

i ]

r

i � 1, : : : , n:

Solving the PLF approximate problem by creating for each i at least θi �
n�1=αi
δρi 

segments such that the breakpoints are spaced 
at least δ-apart yields an approximate value bφ that satisfies bφPφ∗� ε.

We argue this by establishing the approximation error for univariate functions and then, gluing together the 
individual pieces.

7.1. PLF Approximations of Univariate Functions
Suppose that we are given a univariate function f : I→ R that is (α,β)-Hölder continuous on the interval 
I :� [l, u] ⊂ R, meaning that | f (t)� f (t′) | ⩽ β |t� t′ |α for all t, t′ ∈ I. For any finite integer KP1 and δ > 0, let

BK,δ :� {B :� {b0, b1, : : : , bK} : b0 � l, bK � u, bi+1� bi Pδ ∀i}

be the collection of all sets of K+ 1 breakpoints (sorted in increasing order) in interval I that are at least δ apart 
from each other. For every B ∈ BK,δ, we have a continuous PLF gB : I→ R that approximates f by interpolation 
with K+ 1 breakpoints. In particular, the K segments of gB are obtained by joining consecutive points so that for 
i � 1, : : : , K, the ith segment joins the points (bi�1, f (bi�1)) and (bi, f (bi)) with a line segment whose slope is 
mi :� ( f (bi)� f (bi�1))=(bi� bi�1). Each of these slopes can be upper bounded by parameters for f, which leads to a 
Lipschitz constant for gB that is independent of K.

Lemma 7.1. For every B ∈ BK,δ, gB has a Lipschitz constant equal to β=δ1�α.

Proof. Let us begin with the following general result, which may be known, but because we could not find a ref
erence, a self-contained proof is given in the appendix for completeness. w

Claim 7.1 (Lipschitz Continuity of PLF). A continuous univariate PLF on a closed interval has its smallest Lipschitz 
constant equal to the maximum absolute value of the slope of its linear segments.

We derive another technicality.

Claim 7.2. |mi |⩽ β=δ1�α for all i � 1, : : : , K.

Proof of Claim 7.2. By construction of gB, we have gB(bi) � f (bi) and gB(bi+1) � f (bi+1), and so, the definition of 
slope gives us | f (bi+1)� f (bi) | � |mi | (bi+1� bi). The Hölder property leads to |mi | (bi+1� bi)⩽ β (bi+1� bi)α, which 
after noting α ∈ (0, 1], reduces to

|mi |⩽ β (bi+1� bi)α�1
�

β

(bi+1� bi)
1�α ⩽

β

δ1�α , 

where the last inequality uses B ∈ BK,δ. w

Our assertion follows after combining the above two claims.
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We will need one more technical result.

Lemma 7.2. Let X ⊂ Rn be a compact set and R be the radius of a ball with its center in X such that the ball encloses X. Let 
h1 : X→ R be L-Lipschitz over X and h2 : X→ R be (α, β)-Hölder continuous over X. Then, h1� h2 : x ∈ X ⊢→
h1(x)� h2(x) is (α, L(2R)1�α + β)-Hölder continuous over X.

Proof. For any x, x′ ∈ X, we have

| (h1� h2)(x)� (h1� h2)(x′) | � |h1(x)� h1(x′)� (h2(x)� h2(x′)) |

⩽ |h1(x)� h1(x′) | + |h2(x)� h2(x′) |

⩽ L‖x� x′ ‖ + β‖x� x′ ‖α, 

where the first inequality is the triangle inequality for absolute values and the second inequality is from Lipschitz 
and Hölder continuity of h1 and h2. The distance between any x, x′ ∈ X can be bounded as ‖x� x′ ‖ ⩽ 2R using 
the triangle inequality. Therefore, for any α ∈ (0, 1],

‖x� x′ ‖
2R

� �α

P
‖x� x′ ‖

2R
⇒‖x� x′ ‖ ⩽ (2R)1�α ‖x� x′ ‖α:

Substituting this into the above inequality gives us

| (h1 � h2)(x)� (h1 � h2)(x′) | ⩽ L(2R)1�α ‖x� x′ ‖α + β‖x� x′ ‖α � (L(2R)1�α + β)‖x� x′ ‖α, 

and hence, our claim is that h1� h2 is Hölder continuous with parameters α and L(2R)1�α + β. w

Now, let us derive our error bound for a univariate function. The error of a continuous PLF with respect to f is 
defined as the largest additive approximation gap over the domain. Thus, we have the error function ξ : N ×
R>0→ RP 0 given by

ξ : (K,δ) ∈ N × R>0 ⊢→ max
B∈BK,δ

max
x∈I
| f (x)� gB(x) | :

To state our lower bound for the number of breakpoints required to achieve a given error, let us introduce two 
parameters dependent on the minimum spacing parameter δ:

θ � θ(δ) :�
u� l
δ

, ρ � ρ(δ) :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

ε
[1+θ1�α]

α

r

:

Proposition 7.2. Given any ε,δ > 0, we have ξ(K,δ)⩽ ε if

K > θ� 1
δρ

:

Proof. Because gB is a PLF that can be described as gB(x) �mix+ f (bi)�mibi when x ∈ [bi�1, bi] for any i, the error 
function can be written as

ξ(K,δ) � max
B∈BK,δ

max
i�1, : : : ,K

max
x∈[bi�1,bi]

| f (x)� [mix+ f (bi)�mibi] | :

Consider the function hi : x ∈ [bi, bi+1] ⊢→ f (x)�mix� f (bi) +mibi that appears in the error function. This is the dif
ference of an (α, β)-Hölder continuous function and a linear function, which is Lipschitz continuous with con
stant |mi | . Applying Lemma 7.2 with R � (u� l)=2 for the interval I, we obtain hi to be Hölder continuous with 
parameters α and |mi | (u� l)1�α + β. Using the definition of Hölder continuity for any x ∈ [bi, bi+1] leads to

|hi(x) | � |hi(x)� hi(bi) | ⩽ ( |mi | (u� l)1�α + β) (x� bi)
α ⩽ ( |mi | (u� l)1�α + β)∆(B)α, 

where for the first equality, we have used hi(bi) � 0 because of exactness of PLF at breakpoints, and in the last 
inequality, we denote ∆(B) :�maxi�1, : : : , K bi� bi�1 to be the maximum distance between consecutive breakpoints. 
We have u� l �

PK
i�1 bi� bi�1 P∆(B) + (K� 1)δ because of B ∈ BK,δ. This implies that ∆(B) ⩽ u� l� (K� 1)δ. 

Substituting this upper bound into the above leads to |hi(x) | ⩽ ( |mi | (u� l)1�α + β) (u� l� (K� 1)δ)α. Because 
ξ(K,δ) �maxBmaximaxx |hi(x) | , after using Claim 7.2, which gives an upper bound on |mi | that is independent of 
i, it follows that

β(θ1�α + 1) (u� l� (K� 1)δ)α ⩽ ε 
is a sufficient condition for ξ(K,δ)⩽ ε. Rearranging terms yields our lower bound on K. w
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When uniformly spaced breakpoints are to be considered only, the above proof can be modified at the step 
where we upper bound the maximum separation ∆(B). In particular, we have ∆(B) � (u� l)=K in the uniform case, 
and the remaining proof carries through. Hence, we can bound as follows the error ξ̃(K) :�maxx∈I | f (x)� gB(x) | , 
where B is the unique set of K breakpoints that are uniformly spaced (note that δ is not needed as an input parame
ter in the uniform case).

Corollary 7.1. (u� l)ρ uniformly spaced segments guarantee an additive error of at most ε.

7.2. Proof of Proposition 7.1
We have φ∗ ⩽φ(bx) from Observation 7.1. For every i, we can apply Proposition 7.2 to control the approximation 
error to ε=n by selecting the number of segments Ki to be large enough. Our claim follows after recognizing that 
the errors are additive and φ is a separable function.

8. Conclusion and Future Work
In this paper, a new perspective on piecewise linear optimization is taken. We adopt a global and nonlinear con
tinuous approach instead of discrete optimization. The developed spatial branch-and-bound algorithm has 
small, sparse, and sharp LP relaxations throughout the search tree. Computational experiments have shown that 
even a rudimentary sBB implementation in Python can outperform state-of-the-art logarithmic models solved by 
Gurobi if the number of segments is sufficiently high. Nonetheless, we advocate a problem-specific approach 
when selecting a solution method for separable piecewise linear optimization problems. If the PLFs involved 
have many segments, the sBB could be the method of choice because of its slim and sparse LP relaxations. How
ever, for PLFs with few segments, MILP models, such as the classical incremental model, might be faster because 
of their large formulation and thus, the better possibilities for cutting planes.

Discrete approaches in piecewise linear optimization have witnessed over 60 years of fruitful research, which 
led to the current state of the art. In contrast, this paper is an initial attempt toward an efficient method that is 
based on continuous optimization techniques and is globally convergent. We recognize that our implementation 
is rudimentary at this stage and can benefit from several enhancements and sophistications that would accelerate 
its performance. Therefore, there are still some open questions. Further research can focus on extensions to non
separable cases, cutting planes, specialized branching rules, integration in a full branch-and-cut solver, or further 
development of sBB algorithms for discontinuous functions. We leave these for future research but outline some 
of these ideas in the next paragraphs.

The ideas of pseudocost, strong, and reliability branching from MILP (Achterberg et al. 2005) could be 
adopted here. Moreover, there have been many works (Benson 1990, Kesavan et al. 2004, D’Ambrosio et al. 
2020) on strengthening the relaxations for separable nonconvex terms in a branch-and-cut algorithm, and it 
is conceivable that some of these ideas can be applied to separable PLFs to accelerate our sBB. This would 
be a counterpart to the valid inequalities and cutting planes that have been developed for MILP and SOS2 
models.

Future work could also extend our work to non-l.s.c. PLFs. Although our sBB can generate polyhedral relaxa
tions of any separable PLF, we currently do not have a branching rule that gives asymptotic convergence when 
the PLF is non-l.s.c. This does not seem to be an easy task because convergence issues for relaxations of discontin
uous functions are well known and also, easy to see with simple examples (cf. Figure 1). Nonetheless, it may be 
worth tackling this problem at least for separable PLFs because the SOS2 branching rule has been generalized 
(de Farias et al. 2008), although only as a proof of concept and not something that has been implemented in 
MILP solvers. Moreover, one could explore machine learning techniques for branching decisions as was done 
recently for nonconvex polynomial optimization problems (Ghaddar et al. 2023).

Lastly, our approach could be extended to handle nonseparable PLFs. Although the Graham’s scan algorithm 
is limited to two dimensions and thus, only applicable to univariate or separable PLFs, other algorithms, such as 
Quickhull (Barber et al. 1996), can compute the convex hull in multiple dimensions. This makes them suitable for 
identifying the convex envelope of nonseparable PLFs.

Appendix. Proof of Claim 7.1
Claim 7.1 (Lipschitz Continuity of PLF). A continuous univariate PLF on a closed interval has its smallest Lipschitz con
stant equal to the maximum absolute value of the slope of its linear segments.

Proof. Let h be a continuous PLF on I :� [l, u] formed by breakpoints {b0, b1, : : : , bK}, where bi<bi+1, b0 � l, and bK � u. 
Denote the slope of the ith segment by mi :�

h(bi)�h(bi�1)
bi�bi�1 . Take any distinct x, x′ ∈ I with x′ ∈ [bk�1, bk] and x ∈ [bj�1, bj] for 
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some 1 ⩽ k ⩽ j ⩽ K. The case k � j is trivial because of linearity in each piece, so assume k< j. We have

h(x)� h(x′) � [h(x)� h(bj�1)] + [h(bj�1)� h(bj�2)]+⋯ +[h(bk)� h(x′)]

�mj(x� bj�1) +mj�1(bj�1 � bj�2)+⋯ +mk(bk � x′)

⩽ max
i�k, : : : , j

mi

� �

(x� bj�1 + bj�1 � bj�2+⋯ +bk � x′)

� max
i�k, : : : , j

mi

� �

(x� x′):

Switching the roles of x and x′ and following similar steps give us

h(x′)� h(x)⩽ max
i�k, : : : , j

�mi

� �

(x� x′):

Recall that any four reals (a1, a2, a3, a4) with a1 ⩽ a2 and a3 ⩽ a4 also satisfy max{a1, a3}⩽ max{a2, a4}. Using this fact with 
the above two inequalities gives us

|h(x)� h(x′) | ⩽ max max
i�k, : : : , j

mi, max
i�k, : : : , j

(�mi)

� �

(x� x′)

� max
i�k, : : : , j

|mi |

� �

(x� x′)

⩽ max
i�1, : : : ,K

|mi |

� �

(x� x′):

Because x and x′ are arbitrary in I, the correctness of the Lipschitz constant follows from above. This is also the best- 
possible constant because we can take x and x′ to be between the breakpoints where the slope has the highest absolute 
value. w

Endnote
1 Every continuous univariate function on an interval can be partitioned into subintervals such that over each subinterval, it is either convex 
or concave.
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