This article was downloaded by: [2a00:6020:5031:5600:5014:a904:1801:313a] On: 10 December 2025, At: 05:00
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

.

l-__-_‘

H
Publication details, including instructions for authors and subscription information:

re o | | http://pubsonline.informs.org
""-..__. - 1
N L = | Spatial Branch-and-Bound for Nonconvex Separable

-
"\" T "f-; Piecewise Linear Optimization

\Y i - Thomas Hiibner, Akshay Gupte, Steffen Rebennack
ﬁ ,-I\ " H
" e

To cite this article:
Thomas Hiibner, Akshay Gupte, Steffen Rebennack (2025) Spatial Branch-and-Bound for Nonconvex Separable
Piecewise Linear Optimization. INFORMS Journal on Computing

Published online in Articles in Advance 27 Jun 2025
. https://doi.org/10.1287/ijoc.2024.0755

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are

free to download this work and share with others for any purpose, even commercially if you distribute your
contributions under the same license as the original, and you must attribute this work as “INFORMS Journal on
Computing. Copyright © 2025 The Author(s). https://doi.org/10.1287/ijoc.2024.0755, used under a Creative Commons
Attribution License: https://creativecommons.org/licenses/by-sa/4.0/.”

Copyright © 2025 The Author(s)

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations
research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning
opportunities for individual professionals, and organizations of all types and sizes, to better understand and use
O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2024.0755
https://doi.org/10.1287/ijoc.2024.0755
https://creativecommons.org/licenses/by-sa/4.0/
http://www.informs.org

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Qﬂf@l’ﬂfg INFORMS JOURNAL ON COMPUTING

Articles in Advance, pp. 1-31
https://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Spatial Branch-and-Bound for Nonconvex Separable
Piecewise Linear Optimization

Thomas Hiibner,? Akshay Gupte,®*° Steffen Rebennack®*

@Power Systems Laboratory, ETH Ziirich, 8092 Zurich, Switzerland; PSchool of Mathematics, University of Edinburgh, Edinburgh EH9 3FD,
United Kingdom; Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH8 9BT, United Kingdom;

dnstitute for Operations Research, Stochastic Optimization, Karlsruhe Institute of Technology, 76185 Karlsruhe, Germany

*Corresponding author

Contact: thuebner@ethz.ch (TH); akshay.gupte@ed.ac.uk, (¥ https: //orcid.org/0000-0002-7839-165X (AG); steffen.rebennack@kit.edu,

(® https: // orcid.org/0000-0002-8501-2785 (SR)

Received: May 1, 2024 Abstract. Nonconvex separable piecewise linear functions (PLFs) frequently appear in
Revised: January 11, 2025; March 31, 2025 applications and to approximate nonlinearitites. The standard practice to formulate non-
Accepted: April 27, 2025 convex PLFs is from the perspective of discrete optimization using special ordered sets and
Published Online in Articles in Advance: mixed-integer linear programs (MILPs). In contrast, we take the viewpoint of global continu-

June 27, 2025 ous optimization and present a spatial branch-and-bound algorithm for optimizing a separa-

ble discontinuous PLF over a closed convex set. It offers slim and sparse linear programming
https://doi.org/10.1287/ijoc.2024.0755 relaxations, sharpness throughout the search tree, and an increased flexibility in branching
decisions. The main feature of our algorithm is the generation of convex underestimators at
the root node of the search tree and their quick and efficient updates at each node after
branching. Convergence to the global optimum is achieved when the PLFs are lower semi-
continuous. A Python implementation of our algorithm is tested on knapsack and network
flow problems for both continuous and discontinuous PLFs. Our algorithm is compared
with four logarithmic MILP formulations solved by Gurobi’s MILP solver as well as Gurobi’s
PLF solver. We also compare our method against mixed-integer nonlinear program formula-
tions solved by Gurobi. The numerical experiments indicate significant performance gains up
to two orders of magnitude for medium- to large-sized PLFs. Finally, we also give an upper
bound on the additive error from PLF approximations of nonconvex separable optimization.

Copyright: © 2025 The Author(s)

History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.
80pen Access Statement: This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. You are free to download this work and share with others for any purpose,
even commercially if you distribute your contributions under the same license as the original, and
you must attribute this work as “INFORMS Journal on Computing. Copyright © 2025 The Author(s).
https://doi.org/10.1287 /ijoc.2024.0755, used under a Creative Commons Attribution License: https://
creativecommons.org/licenses /by-sa/4.0/.”

Funding: The research of S. Rebennack is supported by the Deutsche Forschungsgemeinschaft [Grant
445857709].

Supplemental Material: The software that supports the findings of this study is available within the paper
and its Supplemental Information (https:// pubsonline.informs.org/doi/suppl/10.1287 /joc.2024.0755)
as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC /2024.0755).
The complete IJOC Software and Data Repository is available at https: // informsjoc.github.io/.

Keywords: piecewise linear functions « global optimization « lower semicontinuity « convex underestimators « branching rules
additive error bound

1. Introduction

1.1. Literature Review

A piecewise linear function (PLF) is a multivariate function whose domain can be partitioned into pieces such that
the function is affine in each piece. Such a nonsmooth function arises naturally in some optimization problems or
more commonly, as an approximation of a nonlinear, nonconvex function (Geisler et al. 2012, Dey and Gupte
2015, Nagarajan et al. 2019, Burlacu et al. 2020, Beach et al. 2022, Barmann et al. 2023, Warwicker and Rebennack
2024). When a PLF is convex and is either minimized or appears in a < constraint, it can be modeled as a linear
program (LP). In general, a PLF is NP-hard to optimize (Keha et al. 2006) even for separable PLFs, which can be
written as a sum of univariate PLFs each of which is in a different coordinate. Separable PLFs appear naturally in
a wide variety of problems in various fields dealing with economies of scale, such as logistics, management,
finance, or engineering (Markowitz and Manne 1957, Dantzig 1960, Beale and Forrest 1976). Univariate PLFs also

mailto:thuebner@ethz.ch
mailto:akshay.gupte@ed.ac.uk
https://orcid.org/0000-0002-7839-165X
mailto:steffen.rebennack@kit.edu
https://orcid.org/0000-0002-8501-2785
https://doi.org/10.1287/ijoc.2024.0755
https://doi.org/10.1287/ijoc.2024.0755
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0755
https://github.com/INFORMSJoC/2024.0755
https://informsjoc.github.io/

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
2 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

arise as approximations to one-dimensional nonconvex functions in a global optimization problem (Leyffer et al.
2008, Natali and Pinto 2009, Rebennack and Kallrath 2015, Grimstad and Knudsen 2020, Posypkin et al. 2020, Sun-
dar et al. 2022). In fact, a separable concave function minimization can be approximated to an arbitrary precision
by a single separable PLF problem (Magnanti and Stratila 2004).

The common way to approach problems with nonconvex PLFs is by developing exact formulations based on
either mixed-integer linear programs (MILPs) or special ordered sets of type 2 (SOS2). In both approaches, the problem
is reformulated by using a number of additional variables, some of which are binary, and constraints for each
breakpoint of the PLF. This reformulation is then solved with an MILP solver. Classical MILP and SOS2 model-
ing approaches (see surveys in Vielma et al. 2010 and Rebennack 2016) initially focused on continuous separable
PLFs but were later extended by Vielma et al. (2010) to the nonseparable case. It is known that their LPs provide
the same relaxation strength (Sherali 2001, Croxton et al. 2003, Keha et al. 2004). However, they have the draw-
back of using as many binary variables as the number of segments of a PLF. This was remedied by Vielma and
Nembhauser (2011) and Huchette and Vielma (2023), who produced MILPs that require only a logarithmic num-
ber of binary variables, thereby allowing for greater scalability of such models. Other research has focused on
specialized valid inequalities for the SOS2-based models of separable PLFs (Keha et al. 2006, Vielma et al. 2008,
de Farias et al. 2013, Zhao and de Farias 2013). Extensions of MILP models to lower semicontinuous (l.s.c.) PLFs
have been studied (Vielma et al. 2008, 2010). For general discontinuous PLFs, one cannot expect an MILP formu-
lation with bounded integer variables (Meyer 1976, theorem 2.1), but the SOS2 branching scheme has been
adapted (de Farias et al. 2008). Many of these modeling and algorithmic advances have been implemented in
state-of-the-art MILP solvers and leveraged to build stronger polyhedral relaxations of nonconvex functions
(Rebennack 2016, Kim et al. 2024, Lyu et al. 2025).

Because a PLF is a nonconvex function, the problem of optimizing a PLF can be viewed through the lens of
global optimization. A commonly used algorithmic framework for global optimization is spatial branch-and-
bound (sBB). The use of an sBB for optimizing a separable function (sum of univariate functions, not necessarily
PLF) was first done by Falk and Soland (1969). This was improved upon by Horst (1986) and Tuy and Horst
(1988) to general nonconvex functions; since then, sBB algorithms for global optimization have matured
immensely (cf. Locatelli and Schoen 2013, Tuy 2016), and there are many sophisticated implementations in global
solvers for optimizing smooth functions. However, this global optimization approach has so far not been under-
taken for PLF optimization, and state-of-the-art global solvers are unable to take PLFs directly as input without first
being modeled using integer variables as mentioned above. Another drawback of existing methods is that they do
not always scale well with the number of segments in the PLF. We adopt the global optimization approach, and
our experiments show that the sBB approach has better scalability properties than the MILP or SOS2 models.

1.2. Our Contributions

We study the global optimization of a separable nonconvex PLF over a closed convex set. Contrary to the stan-
dard combinatorial approach of using an MILP or special ordered sets formulation to model the PLF, we take the
nonlinear approach to solving such problems. We do not reformulate the PLF with integer variables, but instead,
we generate convex underestimators for it and refine them to develop an sBB algorithm. A key ingredient of our
algorithm is how the underestimator is generated even when the PLF is discontinuous and how it is efficiently
and quickly updated at a child node using the information from the parent node and without having to generate
it from scratch. Our contribution of adding a new method to the literature complements the MILP and SOS2
approaches by offering the following advantages: (i) slim and sparse LP relaxations, (ii) sharpness throughout
the search tree, and (iii) more freedom in branching decisions. Through extensive computational experiments,
we demonstrate that even a rudimentary Python implementation of the sBB can provide speedups of two orders
of magnitude over modern logarithmic models solved by Gurobi if the number of segments is sufficiently large
and that these speedups tend to grow with every segment added to the PLFs.

The existing approaches for PLF optimization use integer branch-and-bound (B&B), where branching takes
place on integer (mostly binary) variables in a binary search tree and bounding is through LP relaxations
(enhanced with cutting planes). Our sBB also uses LP relaxations (albeit of a different kind) for bounding but
branches on continuous variables only (hence, the term spatial). Hence, finite convergence to the global optimum
is not obvious with our approach and in fact, is not possible for all branching rules. We provide a rule that
branches only at the breakpoints and enables the sBB to converge finitely. The classical largest-error branching
rule is known to converge asymptotically for a continuous separable objective, and we present an independent
and self-contained proof using Lipschitz continuity of PLFs. For general objective functions that are either lower
semicontinuous or such that their values at infeasible points are no lower than the global minimum, the longest-
edge branching rule has been shown to achieve asymptotic convergence, and this also carries over to our PLF

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 3

optimization problem. The lack of finite convergence for any branching rule could be perceived as a drawback of
sBB versus integer B&B, which always terminates finitely for bounded integer variables. However, our experi-
ments show that this convergence issue arises only when the number of segments in a PLF is small, and the sBB
generally terminates quicker for larger instances.

To the best of our knowledge, the various sBB-based state-of-the-art global solvers cannot handle PLFs directly
unless they are explicitly input to the solver formulated as MILPs. Thus, we see our work as a first step in the
direction of creating an sBB solver that can optimize a separable PLF without creating integer variables. We
begin in Section 2 by describing the problem input and basics of sBB from the literature. Section 3 introduces the
basic concepts of our sBB algorithm and relates it to the MILP and SOS2 approaches. Section 4 studies various
convexification properties of a univariate PLF that underpin our algorithm. The sBB algorithm, with all of its ele-
ments, is described and analyzed for convergence in Section 5. Computational testing is done in Section 6, where
comparisons are also drawn with logarithmic-sized MILP models, Gurobi’s PLF solver, and Gurobi’s global
solver. Section 7 derives a bound on the number of segments necessary in a good PLF approximation of separa-
ble Holder-continuous functions. Lastly, conclusions and some future directions are mentioned in Section 8.

1.3. Importance of Scalable Algorithms

Because our experiments show the sBB to have better computational performance than MILP or SOS2 models as
the number of segments in the PLF increases, we briefly discuss here the importance of a method with such good
scalability properties.

PLFs are commonly employed to linearize nonlinear terms and thereby, create a tractable approximation to
a nonconvex optimization problem. PLF approximations can be constructed either as relaxations (outer
approximations) or through discretizations (inner approximations). When the nonconvexities are present in
the constraints, the PLF approximation resulting from discretization may not necessarily produce an inner
approximation of the feasible region but can nonetheless be used to obtain some approximate solution. Small
segments in the PLF give fine approximations of the problem, which may translate into sharp primal or dual
bounds. Thus, a key question when building PLF approximations is to determine how many pieces each PLF
should have if the approximation error, defined as the largest distance between the function value and the
approximate value, is to be no more than some given error bound. We mention some results for a continuous
univariate function over a closed interval because that is the focus of this paper, but we note that some error-
bounding analysis has also been done for higher-dimensional functions (Dey and Gupte 2015, Adams et al.
2019, Duguet and Ngueveu 2022, Barmann et al. 2023).

The errors in the PLF relaxation of a univariate function are an elementary calculation because this relaxation
is constructed by first partitioning the interval into alternate regions of convexity and concavity for the function
and then, drawing tangents at different points in the convex regions and drawing secants in the concave regions.
The analysis is nontrivial for the case of the PLF approximation, which is constructed by choosing some break-
points in the interval (either equidistant or not) and connecting them at their function values. For this discretiza-
tion, Frenzen et al. (2010, theorems 1 and 2) gave an asymptotic answer by showing that for thrice-continuously
differentiable functions, the number of breakpoints to achieve an error of ¢ is roughly c/+/¢ as ¢ — 0, where the
constant ¢ depends on the second-order derivative of the function. Another related question is to consider opti-
mization of a separable function and determine the number of breakpoints necessary to construct a PLF approxi-
mation whose optimal value is no worse than a given tolerance ¢ away from the true optimum. Such bounds on
the number of segments have been derived using first- and second-order derivatives when the function is convex
or concave (Thakur 1978, Kontogiorgis 2000, Magnanti and Stratila 2004). When the objective function is nonse-
parable, it is possible to construct separable PLF underestimators and use their error bounds to obtain a globally
convergent algorithm (Feijoo and Meyer 1988).

There are computationally intensive MILP-based methods for computing best-fit PLFs (Toriello and Vielma
2012, Ngueveu 2019, Kong and Maravelias 2020, Rebennack and Krasko 2020, Warwicker and Rebennack 2022)
as well as efficient algorithms (Warwicker and Rebennack 2024). Even if logarithmically many binary variables
are used, the number of continuous variables generally scales linearly with the number of pieces in each function.
Therefore, in order to obtain tight approximations of nonlinear functions, large-sized MILPs have to be solved,
and branch-cut algorithms do not always converge very quickly on these. Recognizing this obstacle, some recent
studies (Nagarajan et al. 2019, Burlacu et al. 2020, Gupte et al. 2022) have looked at algorithms that adapt the
location of the breakpoints in the PLF approximation so that large-sized mixed-integer formulations do not have
to be created a priori; but, their results are far from conclusive, and there is still scope for devising new methods
with better scalability.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
4 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

2. Preliminaries
2.1. Problem Input
We consider the separable nonconvex piecewise linear optimization problem given by

P: o =inf F(x):=) fi(x), st xeSNH, (1)
i=1

where every f;:[l;,u;] =R is a univariate PLF, possibly nonconvex and discontinuous, over an interval
H; :=[l;,u;]. Some of the f;’s can be constant functions. The feasible set is the intersection of a closed convex set
S cR" and a hyperrectangle H:= {x e R" : [; <x; <u;,i=1,...,n}. When each f; is Ls.c. over [I;, 1;], the problem is
solvable in the sense that the optimal value v* is attained by some feasible solution. For general discontinuous
functions, optimal solutions may not exist, and so, we can only hope to find v*. Note that when H is not given
explicitly in the description of the feasible set, variable bounds can be computed if S is compact. For simplicity
and ease of notation, we assume that the intervals in each coordinate satisfy H; = projection of SN H onto x;. This
can be achieved after some preprocessing and optimality-based bound tightening techniques.

Each PLF f; is input with its K; + 1 breakpoints in [;, 1;] for some integer K; > 1, and these are indexed by the
set K;:={0,1,...,K;}. The breakpoints include the two endpoints /; and u; and the points where f; either changes
its slope or is discontinuous. Denote the x values of the breakpoints by

Bi:={bf:keK;}, with [;=0)<b} <b?<--<b} =u,. (2a)

The function values at the breakpoints are {y} : k € K;}. Because we allow discontinuities at the breakpoints, we
also need to know the left and right limits at each breakpoint to characterize f;. The left limit is denoted by %,

and the right limit is denoted by y**. For the left (respectively, right) endpoint, we set the left (respectively, right)
limit to the function value. Thus, for every k € K;, we have as input the tuple

Wy v).
Using this input, a univariate PLF can be defined over [bf,b51), for any k € K;, as
Vi, x; = b}

filxi) = § frt— _ ot (2b)
%(J@—bf) +y;{’+, bf<x,’<bf+1.

If f; is continuous at a breakpoint b (i.e., y* =y~ = "), we write (b, /"), knowing that the left and right limits
coincide with the function value.

2.2. Background on sBB
The spatial branch-and-bound is similar to the integer branch-and-bound, but it has some major differences. In
sBB, lower bounds are computed by a convex relaxation (convexification), which is obtained after replacing
every nonconvex function by a convex underestimator over its bounded function domain. The strength of relaxa-
tions is important for convergence of the algorithm, and a fast numerical performance depends on the speed and
efficiency with which the relaxations are generated and updated throughout the branching tree. Second, branch-
ing takes place on continuous variables, which leads to a partition of the feasible region in hyperrectangles.
Third, after branching has occurred and any bound tightening has been performed on the variables, the underes-
timator is updated and refined to obtain a stronger relaxation than what is implied by the original relaxation
with new variable bounds on it. Convergence in limit to the global optimum can then be obtained under mild
conditions and assumption of lower semicontinuity of the functions because branching results into smaller
hyperrectangles, which allow for tighter underestimators that force the gap between the function and its under-
estimator to converge to zero. The reader is referred to Locatelli and Schoen (2013, chapter 5.4) for a more
detailed description of the general convergence theory of sBB algorithms. It is known that for optimizing any
nonconvex function over a closed convex set, an sBB algorithm converges in finitely many iterations for any ¢ >
0 optimality tolerance if the following two properties are satisfied:

1. exhaustiveness of branching (which means that any nested infinite subsequence of hyperrectangles used for
branching converges to a point) and

2. exactness in the limit for the underestimators (which means that their gap to the function value at any point
goes to zero as the branching hyperrectangles shrink to a point).

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 5

With € =0, only convergence in the limit is guaranteed if besides the above two properties, the sBB also selects
nodes infinitely often using the best bound rule. Some of the branching rules can also lead to finite convergence
with ¢ =0 if there is some special structure on the optimal solutions, such as an extreme point property (Shect-
man and Sahinidis 1998, Al-Khayyal and Sherali 2000).

3. Overview of Our sBB

3.1. Main Ideas

There are two main components to our sBB—convex relaxations using underestimators to obtain lower bounds
and branching rules to guarantee convergence to global optimum. We do not employ any heuristics, and so,
upper bounds are calculated in the standard way of evaluating the value of F at a solution to a node relaxation in
the sBB search tree. One could possibly obtain stronger upper bounds by employing derivative-free optimization
algorithms to minimize F using the node relaxation solution as a starting point, but exploring this idea is out of
scope for this paper. Our branching rules are adopted from the literature and explained later in Section 5.2. In
the remainder of this section, we outline our convex relaxation.

The convex envelope of a function over a compact convex set is defined as the point-wise supremum of all of
the convex underestimators of that function over the set. Minimizing the function over the set is equivalent to
minimizing its convex envelope. However, this envelope is generally intractable to compute, and the same is also
true for nonconvex PLFs. The difficulty generally arises from the presence of the set S, which could be nontrivial
and complicated, and so, the standard approach in global optimization is to generate convex underestimators of
the objective function over the hyperrectangle H instead of over S N H. Because H is the Cartesian product of one-
dimensional convex compact intervals and F is a separable function, the envelope of F over H is a sum of univari-
ate envelopes. Using cvx to denote the convex envelope operator, we can write cvxy F(x) = Y1, cvxpy, fi(x;). Each
cvxy, f; is a PLF, but because f; is allowed to be discontinuous, this PLF may not be Ls.c. For computational tracta-
bility, we need the underestimators to be Ls.c. so that they have a polyhedral representation; otherwise, the corre-
sponding feasible set of the relaxation will not be a closed set, which creates numerical difficulties in solving this
relaxation. Hence, we carry out one additional step for the underestimators. For each i, we take the envelope of an
Ls.c. function underestimating f;. The resulting function is not only convex and Ls.c. but in fact, convex and contin-
uous because of convex functions being u.s.c. over polytopes. Let us denote this underestimator for each i by
vexy, fi. Summing these yields a convex continuous PLF underestimator on F,

vexyF(x) := iVeXH,.'fj(xl‘), x€eH, (3a)
=1

This yields a convex relaxation for Problem (1) whose value we denote by v(H):

v* = v(H) := inf ZvexH,f,-(x,-) st. xeSNH (3b)
S
= inf Zzi s.t. vexy, fi(x;) <z, x€SNH, (30)

i=1
where the second equality is from using the epigraph modeling step.
Because each vexy, f; is a convex continuous PLF, its epigraph is a polyhedron, and so, vexy, f; is equal to the

point-wise maximum of finitely many affine functions. Thus, there is a finite set £;(H) and coefficients (ax, bi) for
k € £:(H) such that

vexy, fi(x;) = max agx;+by, x; € H;.
ke (H)

Our construction of vexy, f; is such that £;(H) € K; with {0, K;} € £;(H), where we recall from (2a) that K; indexes
the breakpoints of f;. Hence, the coefficients (ay, by) for each k € £;(H) can be obtained in terms of the values of f;
at these breakpoints. Therefore, our convex relaxation of problem P is as follows:

n

v* > v(H) = min Zz,- (4a)
=1

s.t. apxi+bp<z;, ke&(H),i=1,...,n (4b)

xeSNH. (40)

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
6 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

A salient feature of this work is the efficient computation of the underestimator vexy, f;, and this is presented
in Algorithm 4.1. However, this only represents the root-node relaxation. In the search tree of sBB, H is succes-
sively partitioned into a sequence of hyperrectangles H' C H, and so, the relaxation (4) has to be constantly
updated and solved again over S N H'. In order to make our algorithm competitive and efficient, for any H' C H,
we do not compute the lower bound v(H') by computing vex; f; from scratch using the breakpoints of f;,
although this is certainly an option. Instead, we update the underestimator that was computed for the parent
node of the node corresponding to H' by exploiting structural properties of PLFs. Let us elaborate on this point.
If H¢ is the hyperrectangle for the parent node of the node for H' and x;, was the branching variable used to create
H' from H?, then our underestimators at the two nodes differ only in the coordinate x;, so that

vexyF(x) = lz VeXp: ﬂ(xi)] + vex: fi (x3,).

ii;

Thus, if the underestimator over H® is stored in memory, then the underestimator for H' requires update only in

one coordinate ;. This is simply because of separability of the functions. The crucial thing, however, is whether

vexy f;, needs to be computed from scratch using the breakpoints of f;, and employing Algorithm 4.1 for univari-
it

ate PLFs. This is not necessary because of a property of PLFs that only a subset of the breakpoints of vex; f; is
different than those of vexp: f;, as we show in Section 4.2. This allows for (on average) a quick and fast upd;te to
the underestimator of f;, ovetr H; (assuming that it is stored in memory), although in the worst case, it is possible
that all the breakpoints have to be updated. Hence, we calculate v(H') by starting with the relaxation (4) for v(H®)
and modifying some of the linear constraints in (4b) as needed for i = i; and k € &;,(H"). If S is a polyhedron, we

can then employ the dual-simplex method to compute v(H') starting from v(H®), which is generally significantly
faster than using the primal simplex for v(H").

Remark 3.1. The sBB algorithm developed here can be modified to accommodate separable PLFs in constraints
using similar arguments as the classical results by Soland (1971). Yet, for ease of exposition, we restrict our atten-
tion in this paper to PLFs in the objective only. Similarly, it is possible to integrate the methods developed here
in general-purpose (spatial) branch-and-bound-based solvers and solve a broader class of mixed-integer non-
linear problems.

3.2. Relation to MILP and SOS2 Approaches

It is well known that all of the MILP models for PLFs share the sharpness property when the functions are l.s.c;
their LP relaxations (when S is a polyhedron) give the same lower bound as convexifying each function over its
interval domain, which is equivalent to our relaxation (4). However, upon branching, most relaxations lose this
guarantee of providing the same bound as (4). In fact, only the incremental and SOS2 models share this property
called hereditary sharpness (Huchette and Vielma 2023). This property is very desirable because it leads to bal-
anced search trees (Yildiz and Vielma 2013). Indeed, experiments indicate that the incremental and SOS2 models
perform very well on PLFs with a small number of segments and are only outperformed by the logarithmic model
with growing numbers of segments (cf. Rebennack 2016, Huchette and Vielma 2023). These considerations have
been summarized by Huchette and Vielma (2023, p. 1839) with the remark that “the high performance of the
[logarithmic] formulation is due to its strength and small size and in spite of its poor branching behavior.” The
addition of some valid inequalities and cutting planes to the MILP model would strengthen the LP relaxation,
but the fact remains that a desirable method for solving problems with PLFs should combine both hereditary
sharpness and a small-scale formulation.

This gave the motivation to our sBB approach. By updating our convex underestimator over every subset H,
we manually achieve relaxations of the strength (4) at every node of the branch-and-bound tree. Moreover, the LP
relaxations are particularly small. In contrast to SOS2 and MILP formulations, the size of the relaxation (4) does not
grow with the number of segments of f; but with the number of segments of its envelope. To illustrate this, let K; be
the number of segments of f; and E; be the number of segments of vexy, f;. If each f; is continuous, the logarithmic
MILP model adds "}, K; continuous variables, Y, [log,(K; — 1)] binary variables, and }"'"; (2 - [log,(K; — 1)]+3)
constraints (cf. Vielma et al. 2010). In contrast, the sBB relaxation (4) adds n continuous variables, zero integers, and
Z?zl E; constraints. Because K; > 1 typically, we have far fewer variables. For the constraints, E; is no more than K;,
although it can be more than log, K;. Hence, if the PLFs are such that their envelopes have few segments, then our
relaxations will be smaller in size while being of the same strength as the conventional models. An extreme case of

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 7

this is when each f; is concave where our relaxations will add # constraints, which can be much smaller than the
number of constraints in MILP and SOS2 because of K; being arbitrary.

Furthermore, the sBB offers the advantage of a sparser constraint matrix. Rebennack (2016) pointed out that
formulations like the logarithmic model result in a dense constraint matrix. On the other hand, the sBB relaxa-
tion (4) is, in particular, sparse; each added inequality has exactly two nonzeros. Indeed, LPs with convex PLFs
can be solved very efficiently by exploiting its structure (Fourer 1985, Gorissen 2022). Finally, spatial branching
offers a higher degree of flexibility in branching decisions compared with integer or SOS2 branching. Both inte-
ger and spatial branching choose a branching variable x;. However, although spatial branching can branch at
any point in the interval [/;,1;], integer branching in MILP and SOS2 models can be mapped to specific points
in each interval. Therefore, spatial branching can mimic integer and SOS2 branching, but the converse is not
true.

4. Convexifying Univariate PLFs

It was outlined in Section 3.1 that the key ingredient of this work is generation and efficient updates of convex
continuous underestimators of univariate PLFs. Therefore, in this section, we focus on a univariate (possibly dis-
continuous) PLF f : I = [l,u] — R, where we omit the subscript i for ease of notation and better readability. The
results derived here will be utilized in the sBB algorithm in the next section by applying them to the PLFs f; in
Problem (1).

Let f have K + 1 breakpoints in I for some integer K > 1, and these are indexed by the set £ :={0,1,...,K}, with
the x values of the breakpoints being given by the set B; := {bf : k € K}, where [=1° <b' <b? <---<bX =u. The
function values at the breakpoints are y* = f(b) for k € K. The left and right limits at each breakpoint are y*~ and
y&*, respectively. For the left (respectively, right) endpoint, we set the left (respectively, right) limit to the func-
tion value. Thus, f is completely defined by the following finite collection of tuples as input:

{5 5 v) s ke k)
Note the following obvious fact.
Observation 4.1. Any finite set of points in R? corresponds to a continuous univariate PLF obtained by doing lin-

ear interpolation between consecutive (taken w.r.t. x coordinates) points.

4.1. PLF Underestimator
We construct a tight convex and continuous PLF underestimator for f. To describe this, define the following PLF
over I:

fx):=

{ min{y, v*—, y**}, x = b for some k € K (52)

f(JC), xel \ Bf

Lemma 4.1. fis an Ls.c. PLF underestimator of f over I.

Proof. It is clear that f(x) < f(x) for all x € I It is continuous at x ¢ By because f is a PLF. At any breakpoint bk, we
have -

lijr(rl%?f flx) = min{&i{g} f), %ﬂ f(x)} = mm{%} f(x), %{1&1 f(x)}

= min{y* ", "7} > f(x),
and so, fis an Ls.c. function over I. O

But, this l.s.c. underestimator need not be convex. Hence, we convexify it to obtain the function
vexy f(x) := cvxy f(x), x€l, (5b)

where cvx; denotes the convex envelope operator over I. This underestimator has the following properties.

Proposition 4.1. vex; f is a convex and continuous PLF underestimator of f whose breakpoints are given by the set

Byex, r = {l,u} U {tFe By : slope(i, k) < slope(j, k), VO<i<k<j<K},

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
8 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

where slope(i, k) := (f(b*) — f(b"))/(b* — V') for all i + k. Furthermore, we have
vex; f(x) = flx), X €Byexs-
We use the following technical results to establish the above claims on vex; f.

Lemma 4.2 (cf. Tuy 2016, Proposition 2.17). A convex function is u.s.c. over any polyhedron P in its domain. Hence, if the
function is L.s.c. over P, then it is actually continuous over P.

Lemma 4.3. A continuous univariate PLF is convex if and only if the slopes of its linear pieces form an increasing sequence
when arranged from left to right.

In the following condition from planar geometry, we say that three points form a convex (respectively, concave)
triangle when the point in between lies below (respectively, above) the segment joining the other two points.

Lemma 4.4. The continuous PLF formed by joining a finite set of points in R* is a convex function if and only if every trip-
let of points forms a convex triangle. Consequently, if the PLF is nonconvex, then a point is not a breakpoint if and only if it
forms a concave triangle with two other points, one to its left and one to its right.

Proof. Necessity is obvious from the definition of convexity. Sufficiency can be argued by contraposition. Sup-
pose that the PLF is not convex. We will use Lemma 4.3. Therefore, nonconvexity means that there exists some
breakpoint x’ such that the slope to the left of x is greater than the slope to the right (equality of slopes is impos-
sible because of x' being a breakpoint). This implies that there is a nonconvex (concave) triangle with x' as

its apex. In particular, letting x' = Ax'"! + (1 — A)x**! for some A € (0,1), we have yi;yx > ym[yi, which after rear-
ranging, becomes y’ > Ay"~! + (1 — A)y’*!, leading to a nonconvex triangle formed by the points indexed by

(i—-1,ii+1). O

Proof of Proposition 4.1. Because vex; f is the convex envelope of the PLF f, it is obviously a convex PLF over I.

Lemma 4.1 implies that this PLF is an underestimator of f. The convex envelope of an l.s.c. function is l.s.c. con-
vex, is continuous over the interior of its domain, and can only be discontinuous on the boundary. Combining
this fact with Lemma 4.2, where we use I being a polyhedron in R, gives us that vex; f is a convex and continuous
underestimator.

The breakpoints of vex; f must be breakpoints of fand hence, of f. The convex continuous PLF vex; f is formed

by joining its finitely many breakpoints. From Lemma 4.4, the characterization of the breakpoints of the underes-
timator follows immediately. The breakpoints of a PLF form what is more generally called the generating set in
the global optimization literature for general nonconvex functions, and it is known that the envelope of an Ls.c.
function equals the function value at points in its generating set. Hence, the underestimator equals f at its
breakpoints. O a

Another convex underestimator to f is the convex envelope of f denoted by cvx; f. This equals f at its break-
points in (I, u), whereas at the endpoints {/,u}, we may have inequality and so, can only say that cvx; f(b*) > f(b)
for k € {0, K}. It is also not hard to see that vex; f and cvx; f have the same set of breakpoints. Therefore, a

vexp f(x) = cvxy f(x), X € Byex s\ (10,5}, vex f(x)<cvxf(x), xe {0, b5}, (6)

Thus, the only difference between vex; f and cvx; f is in their values at the endpoints, where the latter will be
u.s.c. because of Lemma 4.2 but may not be l.s.c.

We now build upon the characterization of breakpoints in Proposition 4.1 to derive an efficient algorithm for
computing vex; f given f as an input through its breakpoints.

Proposition 4.2. Algorithm 4.1 produces vex; f after O(K) iterations.

Proof. Each application of the while loop is repeatedly checking the necessary and sufficient conditions for the
slopes from Lemma 4.4. Furthermore, because of the updates done to the lists where the last element is removed,
at any stage the last two elements in the lists yield a lower bound on the slope required to make the kth point a
breakpoint. This implies that the while loop executes only a constant number of times for each k, and so, the
entire algorithm runs in O(K) iterations. The points in the lists that it outputs indeed represent the breakpoints of
vex; f because they were obtained by checking the conditions in Lemma 4.4 and so, correspond to the characteri-
zation in Proposition 4.1. O

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 9

Algorithm 4.1 (Generating a Convex Continuous Underestimator to a Discontinuous PLF)
Data: Lists B = {¥°,b,...,b5} and Y = {(v}, ¥, y**) : ke K} of PLFf : [L,u] » R
Result: Lists B and) defining the tuples of vex; f : [l,u] — R.

Compute §* = min{y*, y*~, y¥*} fork=0,1,...,K
Initialize B = {b°} and Y = {y°}
fork=1toKdo

. Y[k]-Y[-1] _ Y[-1]-Y[-2]
while |B| > 2 and BIK=B=1] < B=1-Bl=2] do

Remove the last element of B and).

end

Update B=BU{V} and Y = Y U{¥*}
end
return Band)Y

The worst-case running time of O(K) for our algorithm cannot be improved further because a convex f would
take K iterations because of every breakpoint of f also being a breakpoint of its envelope. However, it may be pos-
sible to improve the average running time by considering one of the many different algorithms in the literature;
cf. Cormen et al. (2009, chapter 33.3) for generating the convex hull of a finite set of points in R? (note that this
convex hull is composed of the convex envelope, the concave envelope, and at most, two vertical segments). For
example, the classical Graham'’s scan algorithm begins with a reference point having the smallest y coordinate,
calculates the polar angles of the other points w.r.t. the reference point (equivalent to slopes of the line segments
joining the two points), and then, applies Lemma 4.4 to discard points that will not be breakpoints of the enve-
lope (Graham 1972). Our algorithm starts with the leftmost breakpoint as the reference point and compares
slopes w.r.t. the previous candidate breakpoint. Although there are conceptual similarities with Graham'’s scan,
it is not clear (and probably not true) that the two algorithms are in a bijection.

4.2. Updating Envelope over Subintervals
The branching procedure of sBB algorithms requires constant updating/recomputing of the underestimator
vex; f over a subinterval

I':=[la]lc[lLu]=1I.

Of course, Algorithm 4.1 can be used to compute vexy f, but this would scan the breakpoints from scratch, which
can be computationally expensive when there are many segments, and we show that this is not necessary. Yet,
using Algorithm 4.1 to calculate vexy f requires rescanning all breakpoints of f in I’. Especially for PLFs with
many segments, this can be an expensive computation. However, this is usually not necessary because we
show that vexy f equals vex; f over some part of I’ in th middle and needs to be updated only over the end
pieces. In particular, the envelope does not change between the leftmost and rightmost breakpoints in I,
which can lead to substantial savings in computation if the subinterval is large w.r.t. I. To describe our result,
let us denote

b := min{b* : tF € Byex £ N [1,i)}, b= max{b*: b* e Byex £ N (1,a]}. (7a)

Note that if b and b do not exist, then the updated envelope is trivial. Henceforth, assume that they exist and
partition I’ into three intervals:

=160, Pa=[bo,b%], P:=[b",a]. (7b)
Proposition 4.3. Assume b* and b*¥ exist. The underestimator over I’ can be described as follows:
vexp f(x), xel'
vexy f(x) = ¢ vex f (x), xe?

vexp f(x), xe€ .

Proof. The function on the right side of the equality is obtained by gluing together three different convex func-
tions. Hence, we need to argue convexity of this glued function. But, this follows rather immediately from the

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
10 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

necessary and sufficient conditions in Lemmas 4.3 and 4.4. Because the breakpoints of fin I' were not break-
points of vex; f, they form a concave triangle with the breakpoints in 2, and so, after convexifying over I, the
slopes of the resulting linear segments can be no more than the slopes of the segments in 2. Similar arguments
hold for °. O

4.3. An lllustrative Example

The PLF in Figure 1 has five segments (so, K = 5) with the breakpoints b° = 1,b' = 3,b> = 7,b% = 8,b* = 11,b° = 13.
Note that f is discontinuous at b but otherwise, continuous. The tuples corresponding to the breakpoints are
(1,3), (3,5), (7,2,1,3), (8,5), (11,7), and (13,7).

Applying Algorithm 4.1 to this function over I = [1,13] receives as input the lists B=[1,3,7,8,11,13] and Y =
[3,5,1,5,7,7] and outputs the lists B=[1,7,13] and) = [3,1,7]. They define the continuous PLF vex; f(x) formed
by the tuples (1,3), (7,1), and (13,7), which equals cvx; f(x) depicted in Figure 1 if Algorithm 4.1 is invoked to
compute vexy f over I’ =[7,13] € [1,13], and the input lists are B=[7,8,11,13] and Y =(2,5,7,7]. Realize that
Y[0] = 2 # 1 because the discontinuity at b° = 7 is at the edge of I’, and hence, 3° = min{2,2,7} because 3~ = y/°.

Let I=[1,13] and I’ =[3,10]. vex; f is given by (1,3), (7,1), and (13,7). Hence, b = b"? = 7. Consequently,
I'=1[3,7],*=7,7],and I’ = [7,10]. ¢ is given by (3,5), (7,1), (8,5), and (10,61). Hence, vexp ¢ is formed by (3,5)
and (7,1), and vexp ¢ is formed by (7,1) and (10, 61). Finally, vexy f is given by (3,5), (7,1), and (10,63).

This example illustrates that Proposition 4.3 does not always lead to a reduction in the number of breakpoints
to be scanned. However, if f is highly nonconvex with many segments, the savings can be enormous. Therefore,
Proposition 4.3 is particularly useful for PLFs that accurately approximate a highly nonlinear function.

5. Spatial Branch-and-Bound Algorithm

Our main ideas for an sBB algorithm to solve the PLF optimization Problem (1) were sketched in Section 3.1. The
algorithm is presented formally in Algorithm 5.1. The bounding operation is specified next, the branching
schemes are in Section 5.2, and convergence is discussed in Section 5.3.

The following notation is used to describe our algorithm. Iteration number is k. For each k, H* is the partition
element; x* and v(H¥) are the optimal solution and the optimal value of relaxation R, respectively; a* and g* are
the global upper and lower bounds, respectively, to v*; and X' is the incumbent solution. £ denotes the list of
unfathomed subproblems at any stage of the algorithm. The user-defined absolute termination gap is ¢.

5.1. Node Relaxations
Each node of the search tree corresponds to a hyperrectangle H* C H and the subproblem
PE . o(H) = inf F(x) s.t. xeSnH" (8a)
X
Our lower bound on this nonconvex problem is denoted by v(H*), which is obtained by solving the following
convex relaxation:

RF . o(H") > v(H") = min vexy: F(x) s.t. xeSnHF, (8b)

Figure 1. (Color online) PLF f(x) with Discontinuity at 7 as the Solid Line and Convex Envelope cvx; f(x) over Domain I = [I,u] =
[1,13] as the Dashed Line

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 11

where the underestimator is defined as
n
vexye F(x) = ZVGXHl; fi(xs). (8¢c)
=1

Because vexy: F is polyhedral as per the results of the previous section, using the epigraph modeling trick as in
(4) leads to a tractable convex formulation for the node relaxation subproblem. It will be useful to separate a sin-
gle coordinate from the above sum so that we can write

vexpyr F(x) = vexy fi(x;) + Zvengfi(xi). (8d)
] i# !
In our context, the coordinate j will correspond to the branching variable that was used to create this node sub-

problem from its parent node in the sBB tree. In particular, if this node H* was created from its parent node H?
by branching on x;,, then using j = i in (8d) gives us
vexgr F(x) = veXy: fi (xi,) + Zvelep filxi). (8e)
iy

Note that when using Proposition 4.3 to update the underestimator over a child node, the breakpoints of
vex;«F must be stored for each partition element H¥. It is common for sBB/B&B methods to store LP relaxation
data in order to solve the child-node relaxation in a few iterations using the dual simplex rather than from
scratch. However, if memory is scarce, Algorithm 4.1 can be called at each child node H' to compute vex; F from
scratch, and no additional data need to be stored.
Algorithm 5.1 (Spatial Branch-and-Bound Algorithm for PLF Optimization)

Root node: Compute vexy F as per (8c) using Algorithm 4.1 for vexy, f; for all i

Solve R to obtain x” and

if R is infeasible then return P is infeasible

else Set £ = {H},k=0,a° =F(x), * =1, and x° = x°

while £ # 0 do
Node selection: Find an H' € arg min{r' : H' € £}. Mark it as parent node, and set H* = H" and g* =

Branching: Partition H* into ‘H = {H"!,H"*?} using a branching rule from Section 5.2. Let x; denote the
branching variable
Bounding: for ! € {1,2} do
Compute vexys F as per (8e) with p =k and k =k, and using Proposition 4.3 to update the envelope in
the coordinate iy
Solve relaxation R' to obtain x' and 7/
if R! is infeasible then remove H*' from H

end
Update: Set k < k + 1. Examine whether the previous global upper bound a*~! can be improved,
af = min{akl, min F(xl)}.
H&leH
Update the incumbent ¥* accordingly.
Add child nodes to list: £ « (£ \ {H*}) UH
Pruning: Fathom subproblems by bound dominance as £ « £\ {H' : ¥ > a% — ¢}.

end

5.2. Branching Rules

Consider partition element H with the optimal solution x* to its relaxation R¥. We give three different rules for
the branching step of Algorithm 5.1 to partition H* into H*! and H"2. The first follows the common concept to
branch on the variable x;, which causes the largest violation (i.e., contributes most to the convexification gap). It
was first proposed by Falk and Soland (1969), and variations of it can be found, for instance, in the solver

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
12 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

BARON (Tawarmalani and Sahinidis 2004). It is similar to the integer branching rule, where the variable with
the largest fractional part is chosen. The second branching rule follows the simple concept of branching at the
midpoint of the longest edge and was used, for instance, in the solver aBB (Adjiman et al. 1998).

5.2.1. Largest-Error Branching Rule. Select the index that contributes most to the convexification gap at x*:

7 € arg max|[fi(x) — VeXH;cfi(xf)], (9a)

i=1,...,n

breaking ties using the smallest index rule. Partition H at the point x*:

H' = {xeH": x, sxﬁ} and H"?>={xeH": x, > x’i}. (9b)

5.2.2. Longest-Edge Branching Rule. Select the index with the longest edge by

7 € arg max uf — I, (10a)

i=1,...,n

breaking ties using the smallest index rule. Partition H* at the midpoint of the longest edge:

kg Ik kg Ik
H& = {erk D xr < %} and H"? = {erk DX = %} (10b)

5.2.3. Breakpoint Branching Rule. Select the index 7 by the largest-error rule (9a) applied only to breakpoints
(i-e., select a breakpoint bt with the largest error). Partition H* at this breakpoint:

H"'={xeH': x,<b} and H'*={xeH*: x,>b'}. (11)

Preliminary computational experiments conducted on our test problems indicated a superiority of the largest-
error branching rule. This computational superiority is also intuitive as this rule provides the maximum tightness
at the former solution x* for both child nodes, allowing for a visible increase in the lower bound and a balanced
search tree. The other two branching rules do not possess these desirable computational properties, but they do
have theoretical superiority because they allow for stronger convergence results as we explore in the next sec-
tions. We also note that integer branching applied to MILP-PLF models leads to unbalanced trees (cf. Yildiz and
Vielma 2013).

5.3. Convergence Guarantees

Falk and Soland (1969, theorem 2) established asymptotic convergence of the largest-error branching rule when
F is any continuous separable function. They also gave an example showing that for this rule, continuity of the
functions is necessary for convergence. Under the weaker assumption of F being l.s.c., Falk and Soland (1969, the-
orem 1) established convergence under a stronger branching rule that creates more than two nodes at each step
and thus, does not lead to binary search trees. Their results directly apply to our PLF optimization problem
because we also consider a separable objective. Furthermore, as mentioned in Section 2.2 and described in Loca-
telli and Schoen (2013, chapter 5), finite convergence can also be obtained for general nonconvex optimization
with € > 0. However, we give some independent and self-contained proofs in this section. First, we show that the
breakpoint rule yields finite convergence even with ¢ = 0.

Proposition 5.1. When each f; is l.s.c., Algorithm 5.1 using the breakpoint branching rule converges finitely for any
e=0.

Proof. The ls.c. condition implies that f;(x) = fi(x) at a breakpoint x € Br, and so, our underestimator vex; f is
exact at each breakpoint as per Proposition 4.1. Hence, a breakpoint is chosen at most once for branching because
once it is branched upon, the underestimator will have zero error at this point throughout the subtree from this
node. Because there are finitely many breakpoints, the claim follows because every feasible leaf node of the sBB
tree will yield an exact representation of some restriction of the original Problem (1), and the union of all of these
leaves will be Problem (1). O

The largest-error rule is finitely convergent when ¢ > 0 and has asymptotic convergence when ¢ = 0. We give
an independent proof of the second result by exploiting Lipschitz continuity of PLFs, which makes our argu-
ments different than those of Falk and Soland (1969) for general separable functions.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 13

Proposition 5.2. When each f; is continuous, Algorithm 5.1 using the largest-error branching rule converges in the limit
for e =0.

Proof. By construction, ff <v* <a* for every k, and the sequence {a*} is decreasing, whereas {$"} is increasing.
Hence, if the sBB algorithm terminates at iteration p, we have a” — pF < ¢, and thus, the infimum v is found with
&-precision.
If the sBB algorithm does not terminate after a finite number of iterations, the sequence {H'}, of partition ele-
ments is infinite. Thus, there must be at least one infinite nested subsequence of {H"},; denoted by
{H},eo with H™'CcH’ and QCN.

We have to show the consistent bounding property (i.e., there exists an infinite nested subsequence {H},, of
{H"};en, for which lim,_,. a7 = lim,_, 7). By boundedness of the sequences, we can extract subsequences such
that {H},co C {H"}yen with

i. the sequence of optimal solutions x7 of relaxation R/ converges to a limit point x* and

ii. only one index 7 € T gets branched on infinitely often.

Because we are only interested in the limit behavior, we can, therefore, focus exclusively on the index 7. First,
note that f; and thus, also vex;p f are Lipschitz continuous with constant L. for all iterations q. Now, let us define

function 97 (xxc) = fr (x) — vexy fr(xc) over H!. Note that 97 is L1psch1tz with constant 2L,. By the largest-error
branching rule, namely (9b), we obtain x] ' ebd(H?) and thus, x7,x7 ' € HY. Consequently,

[WI(xT) = I <2Le - |2 — 2T

Because f; is continuous and xz_l € bd(HY), we obtain that I,DZ(xz_l) =0, and hence,
| fe(x?) — vexys fo(x!)| 2L - |xf —xI71].
Because lim; o Xl = x7, we have that lim, |x! — x'fl | =0, and therefore,
lim | () = vex £:(+1)| =0

Finally, there is a 7 so that for all g > 7, the branching index 7 is selected by (9a). Hence, we get that

VieT\{t}: lim(fi(x) - vexy fiG)) = 0. (12a)

Statement (i) follows then as a consequence of the definition of ak, ﬁk, and H7 by
lim o hm F(xq) = hm vexys F(x7) = hm 1 = lim g7. (12b)

g—o0 q—

For statement (ii), realize that f; has only finitely many breakpoints Hence, after a finite iteration, p € Q holds
that f; is affine over HY, and thus, Yr (%) fT(xT) vexyp fT(xT) 0. By similar arguments, like in (12a) and (12b),
it follows then that ¥ = a”, and hence, {H"};y is finite.

Now that consistent bounding has been established, convergence can be concluded by standard arguments
from the literature (cf. Tuy and Horst 1988, theorem 2.3) (i.e., limy_,c ﬁk =0 =limp_e ok and every accumulation
point of {¥*} solves P). Remember that {H},eq is a subsequence of {H"}cn, and thus, af = a7 and g* = g7 for all
k=g € Q. By the monotony of the sequences {#} and {a*}, convergence follows then directly by limy e a7 =
lim; o, 7. O

Wechsung and Barton (2014) imposed the requirement of strongly consistent on the branching scheme to obtain
asymptotic convergence for general Ls.c. functions with the longest-edge branching rule. Their underestimators
applied to PLFs are possibly no stronger than ours; so, their convergence result might carry over to our sBB for
Ls.c. PLFs, but a rigorous exploration of this is left for future research.

6. Computational Experiments

6.1. Design of Experiments

We compare the computational performance of the sBB algorithm with MILP approaches from the literature as
well as the state-of-the-art solver Gurobi. In Section 6.2, we consider continuous PLFs in network flow problems
with concave PLFs (Section 6.2.1) and knapsack problems with both nonconcave and concave PLFs (Section 6.2.2).
Discontinuous l.s.c. PLFs are tested for a network flow problem with fixed charges in Section 6.3. Further, we test

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
14 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

our sBB algorithm against the global solver Gurobi in Section 6.4. We conclude with a general discussion of our
numerical results in Section 6.5.

Let us begin by outlining the design of our experiments. Algorithm 5.1 was implemented in Python version
3.11.9. The largest-error branching rule is chosen because in our initial testing, it seemed to do better than the
other rules described in Section 5.2. Nodes were selected using the best-bound rule. The LPs on the nodes are
solved with Gurobi. The MILP models are generated in Julia version 1.10 using the package PiecewiseLinearOpt
developed by Huchette and Vielma (2023) and are solved by Gurobi. We use Gurobi version 11.0.3 with standard
settings. All tests were carried out on a workstation with 4.70 GHz and 128 GB RAM running Windows 11 Enter-
prise. For termination, we used a relative optimality gap of 107> and a time limit of 30 minutes. All times given
are wall-clock times. The code of the sBB implementation and the MILP generation as well as the instance gener-
ator are available at GitHub (Hiibner et al. 2025).

We compare our sBB algorithm (sBB) against the PLF solver inside Gurobi (GRB) and four state-of-the-art
logarithmic-sized MILP models available in the package PiecewiseLinearOpt. In particular, these are the logarithmic
(Log) and disaggregated logarithmic (DLog) (Vielma et al. 2010) as well as the recently introduced binary zigzag (ZZB)
and general integer zigzag (ZZI) models (Huchette and Vielma 2023). In contrast to these four logarithmically sized
MILP formulations, to our knowledge, Gurobi’s PLF solver is built on a linear-sized MILP model.

Similar to findings in the literature (cf. Vielma et al. 2010), first experiments indicated that linear-sized MILP mod-
els are not competitive to logarithmic-sized models when nonconvex PLFs with 50 or more segments are involved.
Therefore, we restrict our comparisons to the four logarithmic-sized MILP models above available in the literature.

6.2. Continuous PLFs
6.2.1. Network Flow Problem with Concave Cost. Network flow problems with nonconvex PLFs occur in many
applications ranging from telecommunications to logistics (Croxton et al. 2007). They can be defined as follows:

min ZZ f,](x,])

i=1 j=1

n n

s.t. inj—ijizdi izl,...,I’l
==
li<xj<u; ij=1,...,n.

An instance of the network flow problem is created similar to Keha et al. (2006), Vielma et al. (2010), and Huchette
and Vielma (2023) as follows. First, declare each node i=1,...,n —1 a demand, supply, or transshipment node
with equal probability 1. The transshipment nodes have d; =0, whereas the demand and supply nodes have
d; ~ =Uniform(5, 50). To obtain a balanced problem, the final node n has d,, = —Z;’:_ll d;. The breakpoints (b;‘, f (bé‘)),
k=0,...,K of the concave PLFs f(x;) are determined as follows. Set b? =I; = 0 and bX = u; ~ Uniform(5, 50); gener-
ate K — 1 points bf ~ Uniform(l;, u;), k=1,...,K — 1; and order them. Subsequently, generate K slopes by slopes, ~
Uniform(1,2000)/1000, k=1,...,K, and order them in decreasing order to obtain a concave PLF. Finally, set
£i(89) = 0, and compute the y coordinates of the breakpoints by f;(b¥) = slope, - (0% — b5 1) + f,(bk 1), k=1,...,K.

We perform our computational test on network flow problems with 7 = 10 nodes. For each K, 50 random net-
work flow instances are generated and solved. The statistics of the solve times are given in Table 1. We display the
median, the arithmetic mean, and the standard deviation as well as the number of instances that cannot be solved
by a method within the time limit (fail) and the number of instances in which each method was the fastest (win).

6.2.2. Knapsack Problem with Approximated Nonlinearities. As discussed in Section 1, PLFs are often used to
approximate difficult nonlinear expressions in optimization problems. To test the sBB and MILP methods in this
context, we consider the following nonlinear continuous knapsack problem:

n n
minZﬁ(x,-) s.t. in =d, Li<xi<u;,i=1,...,n.
i=1 =1

Each fi(x;) is a nonconvex continuous PLF randomly generated by approximating a smooth nonconvex function
from Table 2. The functions therein are mostly taken from Casado et al. (2003).

6.2.2.1. Nonconvex, Nonconcave Knapsack Problems. A random instance of the knapsack problem is then
generated as follows. First, n functions h; with bounds /; and u; are arbitrarily drawn from Table 2. Second, K — 1

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 15

Table 1. Solve Times (Seconds) for Network Flow Problems with Continuous Concave PLFs

Method Med. Avg. Std. Win Fail
Panel A: 10 segments
771 0.26 0.28 0.12 20 0
Log 0.26 0.34 0.50 12 0
DLog 0.33 0.32 0.14 9 0
Z7B 0.39 0.41 0.22 4 0
GRB 0.40 0.36 0.14 5 0
sBB 4.55 8.96 14.65 0 0
Panel B: 100 segments
Z71 1.82 2.11 1.06 24 0
Z7B 1.95 2.30 1.15 15 0
Log 2.36 2.68 1.19 5 0
DLog 3.90 4.67 2.20 0 0
sBB 411 6.17 7.08 6 0
GRB 9.38 9.65 3.95 0 0
Panel C: 500 segments
sBB 8.2 11.1 11.2 39 0
Log 15.1 17.2 8.0 6 0
771 15.5 18.0 9.0 4 0
Z7B 15.8 19.4 11.9 1 0
DLog 23.6 27.6 14.6 0 0
GRB 90.0 114.6 94.8 0 0
Panel D: 1,000 segments
sBB 5.8 10.9 14.6 50 0
Log 45.7 49.5 18.2 0 0
DLog 46.5 57.4 324 0 0
771 48.4 48.9 21.1 0 0
77B 61.6 612 23.9 0 0
GRB 270.6 363.4 2419 0 0
Panel E: 5,000 segments
sBB 7.2 11.0 11.0 50 0
Log 330 331 132 0 0
771 333 329 152 0 0
DLog 379 405 200 0 0
Z7B 515 518 198 0 0
GRB 1,800 1,800 0 0 50
Panel F: 10,000 segments
sBB 8 12 15 50 0
Log 729 763 294 0 0
DLog 940 876 374 0 1
771 976 924 299 0 1
Z7B 1,419 1,368 410 0 9
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that
cannot be solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of
instances in which each method was the fastest. The methods are sorted according to the bold numbers.

points bi-‘ ~ Uniform(l;, u;), k # {0, K} are generated and ordered. The first and last breakpoints are set to b? =/;and
bK = u;, respectively. Each I; is then approximated by a PLF f; with K segments given by the breakpoints (b, h;(bY)).
The demand parameter d is then as well randomly determined by d ~ Uniform(/ + }I (u—=1), u— % -(u —1)), in which
I=%"" 1 and u=>"._, u;. We perform our computational test on knapsack problems of dimension n = 100. For

each K, 50 random knapsack instances are generated and solved. The statistics of the solve times are given in
Table 3.

In addition, we are interested in the impact of more segments on the approximation quality. Thereby, a knap-
sack problem is generated like described above, and each function /; is approximated by a PLF f;, which has K+ 1
equidistantly distributed breakpoints. Then, the piecewise linear optimization problem is solved with solution xX.

The real objective value of the nonlinear problem given this point is v =", h;(xX). Table 4 shows the relative

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
16 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

Table 2. Nonconvex Univariate Functions

No. Function Domain

1 12 _x2 400 [-5,5]

2 —0.2-e7 +x2 [-5,5]

3 K3 [-5,5]

5_ 2

4 T2+ [-10,10]

5 log(3x) - log(2x) — 1 [0.1, 10]

6 10 log(x) — 3x + (x — 5) [0.1, 10]

a5 2

7 10 [-10,10]

8 x-e % [-5,5]
x7 XS x3

9 *m'ﬁ‘m*?‘Fx [—4,4]

2 _

10 e R [-10,10]

11 x —12x3 +47x% — 60x [-1,7]

12 x6 — 153 +27x + 250 [—4,4]

13 x* — 1023 +35x% — 50x + 24 [0, 5]

14 0.2x% —1.25x* +2.33x% — 2.5x% + 6x [-1,4]

15 B —Tx+7 [—4,4]
(x* —4x +10)

16 W -1 [*5,5]

17 —x5e [~10,10]

18 X% —3x* + 4% + 202 — 10x — 4 [-15,3]
(x*~5x+6)

19 iy 1 [-5,5]

20 L1i210g(x) -2 [0.1, 10]

improvement in the real objective value if the approximation is refined (i.e., the value —(vX*! —vK)/|vX|, where
K +1 means the next K value in Table 4 (e.g., K = 20 and K + 1 = 50)).

6.2.2.2. Concave Knapsack Problems. To evaluate the impact of nonconcavity on the solution methods, we
also solve instances of knapsack problems where the PLFs are concave. Results are presented in Table 5. The
knapsack problems are generated as before. To obtain a concave PLF, the slopes of the segments are computed
and sorted in decreasing order. Subsequently, the y value of each breakpoint is recomputed by using the new
slopes and x coordinate of the breakpoints. Table 5 shows that problems with concave PLFs are in general harder
to solve for every method than problems with nonconcave PLFs. Indeed, nonconcave PLFs have at least one
more convex segment than concave PLFs, which allows for tighter lower bounds.

6.2.3. Details on Computational Experiments. This section dives deeper into our numerical results. Means and
medians are point estimators that do not necessarily provide a complete picture of the algorithms’ performance
on the randomly generated data set, and means can be distorted by heavy outliers. Therefore, in addition to the
statistics provided in the preceding tables, we further investigate the behavior of the different models and algo-
rithms by plotting the performance profiles of their solution times. We also investigate the amount of time that
the sBB spends on its different operations.

6.2.3.1. Performance Profiles. Each model/algorithm gets one profile curve, which is interpreted as its approxi-
mate cumulative distribution function. This implies that the curves in panel (a) of Figure 2 and panel (a) of Figure 3
have stochastic dominance over other curves and hence, correspond to the best method. The horizontal axes in
Figures 2 and 3 are relative running times obtained by dividing by the shortest running time. The vertical intercepts
in Figures 2 and 3 give the number of instances for which each method solved the fastest (the win column in the
associated tables).

Figures 2 and 3 give these profiles, respectively, for the network flow problems and knapsack problems with
concave PLFs. In the former, the sBB profiles are consistent with Table 1 and give superior performance for

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

17

Table 3. Solve Times (Seconds) for Nonconcave Knapsack Problems

Method Med. Avg. Std. Win Fail
Panel A: 10 segments
GRB 0.03 0.04 0.02 36 0
Log 0.04 0.12 0.50 7 0
771 0.05 0.05 0.02 6 0
DLog 0.05 0.06 0.04 1 0
77B 0.06 0.07 0.03 0 0
sBB 0.15 0.24 0.27 0 0
Panel B: 100 segments
Log 0.50 0.53 0.23 44 0
771 0.72 0.77 0.40 5 0
DLog 0.82 1.08 115 0 0
77B 0.82 0.87 0.47 1 0
sBB 1.05 1.75 2.33 0 0
GRB 1.05 1.19 0.66 0 0
Panel C: 500 segments
Log 2.5 3.0 17 41 0
sBB 4.0 9.8 23.1 4 0
771 4.2 5.3 4.5 3 0
Z7B 5.0 6.3 74 1 0
DLog 5.9 9.2 11.0 1 0
GRB 24.8 486.9 786.5 0 13
Panel D: 1,000 segments
sBB 7.0 18.3 33.8 13 0
Log 7.6 8.5 72 34 0
DLog 15.9 229 23.6 2 0
771 18.1 18.1 12.1 1 0
Z7B 19.7 20.1 14.2 0 0
GRB 1,800 962.6 880.6 0 26
Panel E: 5,000 segments
sBB 58.8 100.0 98.5 25 0
Log 71.8 103.1 86.5 24 0
DLog 149.4 331.3 380.9 0 1
Z71 188.9 213.3 131.9 1 0
77B 197.8 240.7 202.2 0 0
GRB 1,800 1,800 0 0 50
Panel F: 10,000 segments
sBB 111 229 359 31 2
Log 208 470 550 17 5
DLog 327 549 543 2 5
77B 462 649 521 0 6
771 487 611 484 0 4
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which
each method was the fastest. The methods are sorted according to the bold numbers.

Table 4. Relative Improvement in Real Objective Value over Previous Numbers of Segments K

K Min. Med. Avg. Max. Std.

20 —486.67% 25.87% 39.00% 347.59% 100.62%
50 —3.37% 5.32% 7.78% 37.73% 7.81%
100 —0.87% 1.33% 1.84% 9.77% 1.82%
500 0.072%, 5.9749%, 7.646%, 21.176%, 5.246%,
1,000 —0.197%, 0.205%, 0.302%, 2.0609%, 0.415%,
5,000 0.011%, 0.1079%, 0.168%, 0.839%, 0.173%,
10,000 —0.001%, 0.003%, 0.0047;, 0.027%, 0.005%,

Notes. For K =20, the improvement in real objective value is measured relative to the value of K =10. Min., the
minimum; Med., median; Avg., arithmetic mean; Max., the maximum; Std., standard deviation. The methods are
sorted according to the bold numbers.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
18 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

Table 5. Solve Times (Seconds) for Concave Knapsack Problems

Method Med. Avg. Std. Win Fail
Panel A: 10 segments
Log 0.04 0.05 0.02 26 0
GRB 0.04 0.06 0.03 15 0
DLog 0.05 0.06 0.02 1 0
771 0.05 0.06 0.02 8 0
77B 0.05 0.06 0.03 0 0
sBB 0.12 0.19 0.19 0 0
Panel B: 100 segments
Log 0.70 0.73 0.33 27 0
771 1.00 1.06 0.71 3 0
DLog 1.07 1.05 0.48 1 0
sBB 1.12 242 4.56 19 0
Z7B 1.12 1.11 0.58 0 0
GRB 3.19 3.35 1.70 0 0
Panel C: 500 segments
sBB 2.3 33.4 83.3 32 0
Log 5.0 8.4 10.6 16 0
771 8.6 19.9 33.3 0 0
Z7B 8.8 20.1 30.5 0 0
DLog 10.6 25.0 57.6 2 0
GRB 164.4 621.8 743.0 0 13
Panel D: 1,000 segments
sBB 2.6 95.2 309.9 37 1
Log 10.8 28.3 414 12 0
DLog 21.7 74.0 253.2 1 1
771 31.8 102.9 275.5 0 1
Z7B 36.0 109.3 279.4 0 1
GRB 1,800 1,220 7319 0 29
Panel E: 5,000 segments
sBB 224 390.3 658.5 40 8
Log 97.2 584.1 735.2 2 10
DLog 147.1 719.7 782.6 0 16
Z7B 580.5 948.6 741.0 0 19
771 714.2 948.6 681.2 0 17
GRB 1,800 1,800 0.0 0 50
Panel F: 10,000 segments
sBB 9 300 604 45 5
Log 215 666 697 0 12
DLog 401 786 700 0 14
77B 1,518 1,269 574 0 24
771 1,571 1,288 593 0 24
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which
each method was the fastest. The methods are sorted according to the bold numbers.

500 segments and beyond. The profiles for the concave knapsacks reveal that for up to 1,000 segments, the actual
performance of sBB is much better than the high values for average times in Table 5. At 100 segments, sBB is
quickest on the same number of instances as Log and dominates DLog and the two zigzag models, whereas
beyond 500 segments, the dominance of sBB keeps growing steadily. Similar behavior is observed for the non-
concave PLFs, and so, their profiles are omitted. This underscores the point that the average numbers in Table 5
are a bit distorted and do not provide complete information on performance of the algorithms.

6.2.3.2. Timing Statistics for the sBB. Here, we take a look at some details of the operation of the sBB imple-
mentation. Table 6 indicates that solving LPs takes only a small share of the sBBs solution time, although it is
by far the most complicated operation in a branch-and-bound algorithm. Instead, operations like building the
model and repeatedly adding constraints over the Python-Gurobi interface, evaluating PLFs, and generating the

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 19

Figure 2. (Color online) Performance Profiles for Network Flow Problems with Continuous Concave PLFs from Table 1

@) (b)
100 4 o 1 T 100 4
80 A 80 4
g g
5 601 S 601
g 2
Fl 2
@ 2
£ £
2 2
= J =]
g 40 £ 40
—— sBB J—
—— GRB 7| —
20 Log 20 4
—— DLog —_—
— ZIB —_—
— ZZ1 —_—
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Time relative to best (1) Time relative to best (1)
() (d)
100 A
=]
3 g
= =
2 2
@ o
b 3
= =
S S
& &
1 2 3 4 5 6 7 8 9 10 1 10 20 30 40 50 60 70 80 90 100
Time relative to best (t) Time relative to best (t)
(e) ®
100 100
80 80
= 60+ = 60+
=]
E 2
2 E
£ £
2 2
£ 40 g 404
& &
_— — sBB
e —— GRB
204 20 4 Log
—_— —— DLog
—_— — Z7B
—_— — ZZ1
0 0 .
1 10 20 30 40 50 60 70 80 90 100 1 100 200 300 400 500 600 700 800 900 1,000
Time relative to best (1) Time relative to best (1)

Notes. (a) Ten segments. (b) One hundred segments. (c) Five hundred segments. (d) One thousand segments. (e) Five thousand segments.
(f) Ten thousand segments.

envelope take a high share. This is another indicator that an integration into a fully developed solver, such as
Gurobi or BARON, would result in considerable speedups.

In addition, Table 6 indicates that the generation of the convex envelope takes more time if the PLF is concave.
The reason for that is the while loop of Algorithm 4.1, which is always entered because every point results in a
concave turn. However, if it is a priori known that the PLF is concave, then one could modify the algorithm to
make it simply output the first and last breakpoints of the PLF without entering any loop.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
20 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

Figure 3. (Color online) Performance Profiles for Concave Knapsack Problems from Table 5

@

Problems solved (%)
Problems solved (%)

~a-||||||
u:-||||||

1 2 3 4 5 6 7 8 10 1 2 3 4 5 6 7 8

10
Time relative to best (1) Time relative to best (1)
(© (d)
100
80
S S
S 604 s
2 5
2 2
2 2
@ @
3 3
| 404 2
& &
— sBB —_—
—— GRB —
20 A —— Log _
—— DLog —— DLog
— ZZB — ZZB
— Z71 — Z71
0 - 0
1 2 3 4 5 6 7 8 9 10 1 10 20 30 40 50 60 70 80 90 100
Time relative to best (t) Time relative to best (t)
(e) ®
100 100
80 80
g g
s < 601
2 2
2 =
2 2
@ @ —
3 3
2 B 404
& &
_— —— sBB
e —— GRB
— 20 4 — Lo
—_— —— DLog
—_— — ZIB
—_— — ZZ1
0 a
1 10 20 30 40 50 60 70 80 90 100 1 100 200 300 400 500 600 700 800 900 1,000
Time relative to best (t) Time relative to best (1)

Notes. (a) Ten segments. (b) One hundred segments. (c) Five hundred segments. (d) One thousand segments. (e) Five thousand segments.
(f) Ten thousand segments.

6.3. Discontinuous l.s.c. PLF

In many real-world applications in logistics, supply chains, and telecommunications, the network flow problem
involves fixed charges (Rebennack et al. 2009). Those are fixed costs that are incurred as soon as a flow f;; is strictly
positive (f; > 0). They can represent real-world setup costs, like opening shipping lanes or starting equipment.
However, they turn the continuous concave piecewise linear cost function of Section 6.2.1 into a discontinuous but
lower semicontinuous PLF.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 21

Table 6. Average Proportion of Run Time That Is Allotted to the Various Suboperations of the
sBB Algorithm When Solving Knapsack Problems

Nonconcave, % Concave, %
Operation K=10 K =10,000 K=10 K =10,000
Gurobi interface 68 76 33 10
Solving LPs 2 15 2 1
Envelope generation 0 1 0 35
PLF evaluations 28 1 62 49
Other operations 2 8 3 4

To test the sBB algorithm under this discontinuous setting, we generate the network flow problem as described
in Section 6.2.1 but add to every cost function a fixed-charge jump at f; = 0 given by a random uniformly distrib-
uted number between 10 and 50. We compare the sBB with the largest-error branching rule against the built-in
PLF solver of Gurobi, which can also handle discontinuous Ls.c. PLFs. The logarithmic formulations either do
not support discontinuous PLFs or are not implemented in the package PiecewiseLinearOpt (Huchette and
Vielma 2023). The results are displayed for 50 random instances in Table 7.

Note that the sBB with the largest-error branching rule has no asymptotic convergence guarantee in general.
Falk and Soland (1969) present an example that showcases a corner case where the sBB never converges. How-
ever, in our experiments, the sBB with the largest-error branching rule always converged. In Section 5.3, we
pointed out that the breakpoint branching rule could achieve finite convergence even for discontinuous PLFs.
However, we did not fully implement the breakpoint branching rule as early experiments indicated poor perfor-
mance. This poor performance is caused by the failure to provide good improvements in the lower bounds after
branching. The breakpoint branching rule does not necessarily branch in the surrounding of the solution of the
parent node—in contrast to the largest-error rule—and thus, cannot guarantee a tighter convex envelope around
the parent’s solution after branching. Consequently, the parent’s optimal point might also be the optimal point
of the child node, and no improvement in the lower bound is gained. This branching behavior is similar to that
of integer PLF branching rules and leads to imbalanced search trees (Yildiz and Vielma 2013). This sharply con-
trasts the largest-error branching rule, which branches directly at the parent’s solution, thus guaranteeing an
increase in lower bounds and a balanced search tree. The following example illustrates this.

Table 7. Solve Times (Seconds) for Network Flow Problems with Fixed Charges (Discontinuous PLFs)

Method Med. Avg. Std. Win Fail
Panel A: 10 segments
GRB 0.76 0.78 0.41 50 0
sBB 18.52 59.92 98.25 0 0
Panel B: 100 segments
GRB 16.63 17.18 8.86 34 0
sBB 24.29 71.05 111 16 0
Panel C: 500 segments
sBB 17.2 84.5 159.5 46 0
GRB 90.0 147.6 183.4 4 0
Panel D: 1,000 segments
sBB 22.0 61.6 96.3 50 0
GRB 291.2 599.9 629 0 5
Panel E: 5,000 segments
sBB 25.8 110.8 232.8 50 0
GRB 1,800 1,800 0 0 50
Panel F: 10,000 segments
sBB 33 92 134 50 0
GRB 1,800 1,800 0 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be solved by
a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which each method
was the fastest. The methods are sorted according to the bold numbers.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
22 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

Example 6.1. Consider the problem
minfl(xl) +f2(X2) st. x1+x=1, x1,x€ [0, 2]

with continuous PLFs f; and f, given by the three breakpoints (0,0), (1,10), and (2,15) as well as (0,0), (1,2), and
(2,1), respectively.

It is easy to verify that the optimal solution of the above problem is (0,2) with an optimal value of one. Given
the convex envelopes of both PLFs, the root-node solution would be (0,1). The breakpoint branching rule would
then branch at the breakpoint (1,10) of f;. The convex envelopes of f; and f, would thus not be tightened around
(0,1). Point (0,1) would still be a solution for the left child node, leading to no improvement of the lower bound
and an imbalanced search tree. This contrasts the largest-error branching rule, which would branch at (0,1), tight-
ening the convex envelope of f; at (0,1) and ensuring that the solution is found in the next iteration.

By adding breakpoints to function f;, it would not be difficult to extend the above example so that the break-
point branching rule would continue to branch on the unimportant variable x; for any number in N. The break-
point branching rule would not be able to detect that finding the optimal solution would require a single branching
on variable x,.

We believe that when designing convergent and computationally efficient branching rules for discontinuous
PLFs, the idea of branching around the previous solution should be the guiding star as only that guarantees bal-
anced search trees, which are essential for efficient B&B algorithms. However, the design of tailored branching
rules for discontinuous PLFs, which have both theoretical convergence guarantees and are computationally effi-
cient, is out of the scope of this work and is left for future research.

6.4. Comparison with Global MINLP Solvers

As mentioned before, to motivate this work, PLFs can be used to approximate nonlinear functions within mixed-
integer nonlinear program (MINLP) problems to yield MILP problems (Fiillner and Rebennack 2022). Therefore,
we want to compare our proposed sBB with a global solver on some nonconvex nonlinear optimization problems.
However, the results of this comparison need to be interpreted carefully as global solvers guarantee global opti-
mality of the computed solutions—if they converge and the assumptions of the underlying algorithms are met—
whereas our tested sBB method uses a static a priori approximation of the problem with 10,000 segments.
Nevertheless, such a comparison can give insights into the scalability of our sBB versus the global solver tested.

The most well-known global solvers are ANTIGONE, BARON, SCIP, and LindoGLOBAL. These are all based
on an sBB algorithm that computes the lower bound by disaggregating functions into elementary functions, such
as log(x), a polynomial, or a bilinear function x-y. To compute lower bounds, those elementary functions are
replaced by a known convex underestimator. For more details on global solvers, we refer to Burer and Letchford
(2012). Since its recent release of version 11, Gurobi also provides a global solver. This global solver is also based
on an sBB using disaggregation into elementary functions. See the documentation on the website of Gurobi (Gur-
obi Optimization 2024) for more details.

Global solvers disaggregate more complex functions, such as those in Table 2, into a cascade of supported uni-
variate functions (Burer and Letchford 2012). Solvers such as ANTIGONE, BARON, SCIP, and LindoGLOBAL
do this behind the scenes. However, in the current version of Gurobi, the user needs to disaggregate this manu-
ally (Gurobi Optimization 2024). Either way, the disaggregation may result in weaker lower bounds compared
with a direct treatment, like our sBB is capable of. The following example illustrates the disaggregation and the
resulting lower bounds:

Example 6.2. Consider the function f(x) = log(e*) over the interval [1, e]. By definition, this function equals h(x) =
x and is convex. However, by the process of disaggregation, a variable y is introduced, and f is rewritten as

f(y)=1log(y) and y=¢" with xe[l,e].

The concave function log(y) is then underestimated over the interval y € [, e°] by its convex envelope given by
the linear function
e—1
e —e

(y—e)+1.

Finally, the convex underestimator of f(x) = log(e*) over the interval [1,] is given by

e —
ee_

1 X
(" —e)+ 1.
(e o)

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 23

The largest distance to the function h(x) = x—the convex envelope of f(x)—to this underestimator is approxi-
mately at x = 2 and amounts to =0.35. Consequently, in the worst case, the convex underestimator resulting from
disaggregation is around 17% smaller than the convex envelope. O

In the following, we compare Gurobi’s global solver (G-sBB) regarding computation time and root-node lower
bounds with a static piecewise linear approximation using 10,000 equidistant segments. We solve this piecewise
linear approximation with our sBB algorithm. We do not test the other PLF formulations as extensive compari-
sons for 10,000 segments were already provided in Tables 1, 3, and 5. As the other mentioned global solvers are
also based on sBB and disaggregation, we treat Gurobi as a representative for this algorithm class and do not test
the other solvers.

Therefore, consider the knapsack problem from Section 6.2.2 with the approximated functions from Table 2
again. Next to the PLF approximation of these nonlinear functions, we hand them over to a global MINLP solver
that treats them directly within the algorithm. For those experiments, we construct knapsack problems as
described in Section 6.2.2 but only consider functions 2, 9, 11, 12, 13, 14, 15, and 20 of Table 2 as we encountered
numerical issues in Gurobi with the other functions. We believe that this is because of the relative novelty of Gur-
obi’s solver and the difficult concatenation of elementary functions (exp, log, etc.) within the functions in Table 2.
This causes problems with disaggregation.

Table 8 provides results for different numbers of variables, each for 50 random instances. Table 9 presents
descriptive statistics of the lower bound obtained at the root node of our sBB and the lower bound at the root
node of Gurobi’s sBB method and presents the difference between them. Table 9 explains why Gurobi’s sBB
solver is not competitive for this knapsack problem. It can be seen that the root-node bound of Gurobi is always
considerably lower than that of the sBB. Whereas our sBB computes the convex envelope of the PLF (and thus,
approximately a convex envelope of the original non-PLF function), this cannot be said about Gurobi’s sBB
solver, which employs disaggregation. Consequently, the underestimator is less tight and results in weaker

Table 8. Solve Times (Seconds) for Knapsack Problems with Gurobi’s MINLP Global Solver

Method Med. Avg. Std. Win Fail
Panel A: 10 variables

G-sBB 5.15 147.77 397.56 28 2

sBB 9.20 9.47 2.05 22 0
Panel B: 11 variables

sBB 10.54 10.60 2.32 27 0

G-sBB 17.16 312.19 584.67 23 5
Panel C: 12 variables

sBB 12.44 13.05 3.50 34 0

G-sBB 55.65 450.99 698.20 16 8
Panel D: 13 variables

sBB 14.07 13.99 2.50 37 0

G-sBB 243.29 781.63 834.28 13 18
Panel E: 14 variables

sBB 14.64 15.32 3.74 46 0

G-sBB 579.94 914.11 804.96 4 20
Panel F: 15 variables

sBB 16.33 16.76 3.73 45 0

G-sBB 1,800 1,236 794.76 5 32
Panel G: 20 variables

sBB 22.53 23.65 7.82 49 0

G-sBB 1,800 1,665 441.88 1 45
Panel H: 30 variables

sBB 36.15 40.40 16.15 50 0

G-sBB 1,800 1,800 0.59 0 50

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Fail, number of instances that cannot be
solved by a method within the time limit; Med., median; Std., standard deviation; Win, number of instances in which
each method was the fastest. The methods are sorted according to the bold numbers.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
24 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

Table 9. Distribution of Root-Node Lower Bounds of Our sBB and Gurobi’s sBB and the Differences
Between Them

Method Min. Med. Avg. Max. Std.
Panel A: 10 variables

sBB -149 -92 -94 -31 32

G-sBB —13,083 —3,586 —3,813 —147 3,239

Diff 39 3,496 3,718 13,039 3,255
Panel B: 11 variables

sBB —155 —87 -83 5 37

G-sBB -9,803 —3,624 —4,267 -84 2,672

Diff 68 3,557 4,184 9,744 2,679
Panel C: 12 variables

sBB —160 -90 -91 5 40

G-sBB —16,081 —6,535 —5,871 —205 3,563

Diff 61 6,398 5,780 16,039 3,573
Panel D: 13 variables

sBB —166 -84 —87 8 42

G-sBB —13,137 —5,275 —5,409 —198 3,374

Diff 119 5,182 5,322 13,060 3,388
Panel E: 14 variables

sBB -175 —-117 —104 -15 40

G-sBB —13,184 —4,156 —6,260 —557 3,337

Diff 422 4,044 6,157 13,073 3,351
Panel F: 15 variables

sBB —236 —104 —114 -36 47

G-sBB —13,455 —6,962 —7,252 —331 3,571

Diff 250 6,859 7,139 13,370 3,584
Panel G: 20 variables

sBB —257 —167 —165 44 55.37

G-sBB —16,562 —7,450 -8,190 —532 3,981

Diff 347 7,331 8,025 16,516 3,998
Panel H: 30 variables

sBB -379 —263 —252 —51 89

G-sBB —28,956 —13,225 —13,215 —4,169 5,360

Diff 384 12,981 12,963 28,792 5,390

Notes. sBB is the proposed method in this paper. Avg., arithmetic mean; Diff, difference; Med., median; Std., standard
deviation. The methods are sorted according to the bold numbers.

lower bounds. This, in turn, leads to longer run times as it takes longer to close the gap between upper and lower
bounds.

To obtain tight lower bounds of concatenated univariate functions, like in Table 2, global MINLP solvers could
either (i) approximate them by a PLF, thus obtaining an approximation of the convex envelope, or (ii) use a
method like that introduced in Gounaris and Floudas (2008) to directly compute the (possibly piecewise non-
linear) convex envelope of f.

6.5. Discussion

Because of the difference in implementation quality—a rudimentary sBB implementation in Python compared
with a commercial branch-and-cut solver in a low-level language (such as C)—it is difficult to draw firm conclu-
sions from these computational results. Nevertheless, we sketch a summary of our observations.

Tables 1 and 3 indicate a superior scalability of the sBB; each added segment leads to a relative improvement
in the computation time of the sBB compared with logarithmic approaches. This is further illustrated in perfor-
mance profiles given in Figures 2 and 3. This superior scalability can be attributed to the sBB’s slim and sparse LP
relaxations, which may not always grow linearly with the number of segments (see Section 3.2). The value of a
method with good scalability is illustrated in Table 4; significant improvements in solution quality are possible
by refining the PLF, even if it already contains many segments. This is usually even more true for obtaining an
appropriate optimality certificate.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 25

As discussed in Section 3.2, the incremental and SOS2 models, which guarantee sharpness in the entire search
tree, usually outperform logarithmic models for problems with few segments. Because the sBB also guarantees
these sharpness properties, one might expect similar results for problems with smaller segments. One could even
assume that this effect is enhanced because spatial branching can additionally lead to more balanced search trees
by branching at the previous solution instead of at the breakpoints (see Section 5.2). However, the computational
results do not support this claim. We believe that the poor performance of the sBB compared with logarithmic
approaches on problems with few segments is because of the superior implementation of Gurobi’s branch-and-
cut solver. When the sBB is integrated into a full-featured solver, such as Gurobi or BARON, the advantage of a
balanced search tree may lead the sBB to outperform logarithmic models even on problems with few segments
as the SOS2 model and the incremental model do. In fact, a closer look at the performance of the sBB implemen-
tation (cf. Table 6) reveals that up to 50% of the solution time is spent on the Python-Gurobi interface. This is sig-
nificant time that could be saved by integrating our sBB algorithm into a full-featured solver.

The computational results for discontinuous l.s.c PLFs show that the discontinuity results in more difficult to
solve instances (cf. Table 7 versus Tables 3 and 5). None of the 50 instances for 5,000 segments could be solved by
Gurobi within the 1,800 seconds; it is the same for the 50 instances of 10,000 segments. The relative performance
of our sBB to Gurobi’s PLF solver is similar to the continuous PFL instances in that our sBB is superior for 500
and more segments (cf. Tables 1, 3, and 5).

The comparisons with Gurobi as a global solver confirmed the good scalability of our sBB method (Table 8).
Although the running time of our sBB method scales approximately linearly with the number of variables, the
global solver scales approximately exponentially. Already with 11 variables, our sBB is clearly superior. Remark-
able is the extremely low standard deviation of the running times of our sBB, which shows that the computa-
tional performance is very consistent among the 50 instances tested. The superior performance of our sBB can be
explained by the better lower bounding (cf. Table 9).

7. Approximating Separable Functions

We mentioned earlier in Section 1.3 the need for computationally efficient scalable algorithms and the various
error bounds that have been calculated in the literature to determine the number of breakpoints needed from a
good PLF approximation. We present an error bound for the number of breakpoints required in a PLF approxi-
mation to achieve a desired error to the problem of optimizing a separable function. Our bound is different than
existing results because we do not assume differentiability of the function that is being approximated. Instead,
we work with Holder continuous functions, which are defined as follows.

Definition 7.1. A function /: X — R over a closed set X C R" is said to be («,)-Holder continuous for some con-
stants a, > 0 if

[fx)—fD)<Bllx—=x"|I§ xx eX

The function is Lipschitz continuous when a =1, whereas for @ > 1, the function must be constant over its
domain. We assume « € (0, 1].
For some closed convex set S and hyperrectangle H, consider the nonconvex separable minimization problem

¢" := min ¢(x) := z”:(Pi(xi) st. xeSNH,
i=1

where for eachi=1,...,n, the univariate function ¢;, : [/;, ;] — R, whose domain is some closed interval [;, u;] CR,
is (a;, B;)-Holder continuous. This means that

[,() = () < Bile =1, Lt €[li,u].

Let x* denote its optimal solution, which exists because ¢ is continuous and S N H is compact. Suppose that for
each ¢,, we construct a continuous PLF approximation (;5 ;[ui] = R with K; +1 breakpoints that are indexed
by the set {Vf:k=0,1,...,K;}. This PLF is constructed in the natural way by joining consecutive breakpoints
so that the kth segment is obtained by joining the points (0¥, ¢,(b5"1)) and (bf,¢,(b))) for k=1,...,K;. Sum-
ming these over i=1,...,n creates the PLF @(x) =>", (A;b .(x;), whose optimization yields a finite value (5 and
solution Xx:

$=$(§)i=min§n:$i(x,') st. xeSNH.
i=1

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
26 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

There is no immediate relation between ¢* and qAb, but we can deduce two inequalities. First, the optimal solution
X of the PLF problem being feasible to S N H implies that the optimum of the original problem can be upper
bounded.

Observation 7.1. ¢* < ¢(X).

Second, if the approximate solution X belongs to subintervals of concavity,' then we can also lower bound the
global optimum.

Observation 7.2. ¢ < ¢" if foreachi=1,...,n, ¢, is concave over the subinterval [b, b¥*1] containing X;.

Proof. This is because the stated assumption implies qg (") < P(x*), and we know from the optimality of ¥ that
p(x)<P(x). O
In general, qAb = $ (¥) is neither a lower bound nor an upper bound on ¢*. Our main result here is that to control

the additive gap on ¢, there is a formula for the number of breakpoints in the PLFs that depends on the continu-
ity parameters and the width of interval bounds.

Proposition 7.1. Let ¢,0 > 0 be given, and denote

ufl a; ﬁ)
0;:=—_"1 =g H 1 i=1... 1.
5 p; €[1+61 1 i=1,...,n

";p/f” segments such that the breakpoints are spaced

Solving the PLF approximate problem by creating for each i at least O; —

at least 6-apart yields an approximate value qAﬁ that satisfies (E > —e.

We argue this by establishing the approximation error for univariate functions and then, gluing together the
individual pieces.

7.1. PLF Approximations of Univariate Functions
Suppose that we are given a univariate function f:I— R that is («,f)-Holder continuous on the interval
I:=[l,u] c R, meaning that |f(t) — f(+')| <p|t —t'|* for all ¢,#' € I. For any finite integer K > 1 and 6 > 0, let

Bis:={B:={1°,b,... b5} : 10 =1, bK = u, b™*' — b > 6 Vi}

be the collection of all sets of K + 1 breakpoints (sorted in increasing order) in interval I that are at least 6 apart
from each other. For every B € Bk s, we have a continuous PLF gz : I — R that approximates f by interpolation
with K + 1 breakpoints. In particular, the K segments of gp are obtained by joining consecutive points so that for

i=1,...,K, the ith segment joins the points (b1, f(b'"1)) and (¥, f(b')) with a line segment whose slope is
m; == (f(b') — f(b'1))/(b' — b'~1). Each of these slopes can be upper bounded by parameters for f, which leads to a
Lipschitz constant for gp that is independent of K.

Lemma 7.1. For every B € By s, g has a Lipschitz constant equal to /6.

Proof. Let us begin with the following general result, which may be known, but because we could not find a ref-
erence, a self-contained proof is given in the appendix for completeness. O

Claim 7.1 (Lipschitz Continuity of PLF). A continuous univariate PLF on a closed interval has its smallest Lipschitz
constant equal to the maximum absolute value of the slope of its linear segments.

We derive another technicality.
Claim 7.2. |m;| < /6" * foralli=1,...,K.
Proof of Claim 7.2. By construction of ¢, we have gg(b') = f(b') and gp(b™!) = f(b'*'), and so, the definition of
slope gives us |f(b™!) — f(b")| = |m;| (b — b'). The Holder property leads to |m;|(b™! — b') < B(b™! — b')*, which
after noting a € (0, 1], reduces to

) i+l giya—1 _ ﬁ ‘B
|ml| < ﬁ(b b) - (bi+1 - bi)l_a < 61_a/

where the last inequality uses B € Bx 5. O

Our assertion follows after combining the above two claims.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 27

We will need one more technical result.

Lemma 7.2. Let X C R" be a compact set and R be the radius of a ball with its center in X such that the ball encloses X. Let
hy:X —R be L-Lipschitz over X and hy: X — R be (a, p)-Holder continuous over X. Then, hi —hy:x € X+
Iy (x) — ho(x) is (a, LQR)' ™ + B)-Holder continuous over X.

Proof. For any x,x” € X, we have
|(h1 = h2)(x) = (1 = h2)(x")| = [(x) = (') = (ha(x) = o (X)) |
< [h(x) = ()| + [ha(x) — ha(x')|
SLfx=x"|l +Bllx=x"1I%

where the first inequality is the triangle inequality for absolute values and the second inequality is from Lipschitz
and Holder continuity of /11 and hy. The distance between any x,x’ € X can be bounded as ||x — x’|| <2R using
the triangle inequality. Therefore, for any « € (0,1],

eI -]
> =[x —x"|| <@2R) “[|x —x'||".
("% v <ry v

Substituting this into the above inequality gives us
(1 — h2)(x) — (1 — ha)(x")| < LQR)"™ [lx — x'[|* + Bllx — /|| = (LER)'~* + p)[lx — x|,
and hence, our claim is that /1y — h; is Holder continuous with parameters @ and L(ZR)P“ +p. O

Now, let us derive our error bound for a univariate function. The error of a continuous PLF with respect to f is
defined as the largest additive approximation gap over the domain. Thus, we have the error function & : N X
R.o — R given by

£:(K,0) e NXR,g = max max | f(x) —gp(x)].
BEBK/D xel

To state our lower bound for the number of breakpoints required to achieve a given error, let us introduce two
parameters dependent on the minimum spacing parameter 6:

0=06(5):= uT—l/ p=p(d):= {Y/g[l +09].

Proposition 7.2. Given any €,6 > 0, we have £(K, 0) < € if

K>0- i
op
Proof. Because g is a PLF that can be described as gg(x) = m;x + f(b') — m;b' when x € [b""1,] for any i, the error
function can be written as

K 6 = - i bi - ‘bi .
£(K,0)=max max —max |f(x)=lmix+fB)—mbl]
Consider the function h; : x € [b;, bis1] F— f(x) — mx — f(b') + m;b; that appears in the error function. This is the dif-
ference of an (a, §)-Holder continuous function and a linear function, which is Lipschitz continuous with con-
stant |m;|. Applying Lemma 7.2 with R = (1 —[)/2 for the interval I, we obtain #; to be Holder continuous with
parameters o and |m;| (1 — l)lf" + B. Using the definition of Holder continuity for any x € [b;, b;,1] leads to

|hi(x) | = () = Bab) | < (Il (= D)+ B) (x — b)* < (I | (w — '~ +) A(B)",

where for the first equality, we have used /;(b;) = 0 because of exactness of PLF at breakpoints, and in the last
inequality, we denote A(B) := max;-1 . g b’ —b"~! to be the maximum distance between consecutive breakpoints.
We have u—1=YX b —b~'>A(B)+(K—1)5 because of B¢ By ;. This implies that A(B)<u—1I— (K —1)3.
Substituting this upper bound into the above leads to |h;(x)| < (|m;|(u — N 4+ B)(u—1—(K—1)5)". Because
&(K, 0) = maxgmax;max, | 1;(x)|, after using Claim 7.2, which gives an upper bound on |m;| that is independent of
i, it follows that

BO™* +1)(u—1—(K-1)0)* < ¢

is a sufficient condition for £(K, 6) < e. Rearranging terms yields our lower bound on K. O

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
28 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

When uniformly spaced breakpoints are to be considered only, the above proof can be modified at the step
where we upper bound the maximum separation A(B). In particular, we have A(B) = (u — I)/K in the uniform case,

and the remaining proof carries through. Hence, we can bound as follows the error E(K) := maxyer | f(x) —gp(x)|,
where B is the unique set of K breakpoints that are uniformly spaced (note that 6 is not needed as an input parame-
ter in the uniform case).

Corollary 7.1. (u — I)p uniformly spaced segments guarantee an additive error of at most €.

7.2. Proof of Proposition 7.1

We have ¢* < ¢(x) from Observation 7.1. For every i, we can apply Proposition 7.2 to control the approximation
error to £/n by selecting the number of segments K; to be large enough. Our claim follows after recognizing that
the errors are additive and ¢ is a separable function.

8. Conclusion and Future Work

In this paper, a new perspective on piecewise linear optimization is taken. We adopt a global and nonlinear con-
tinuous approach instead of discrete optimization. The developed spatial branch-and-bound algorithm has
small, sparse, and sharp LP relaxations throughout the search tree. Computational experiments have shown that
even a rudimentary sBB implementation in Python can outperform state-of-the-art logarithmic models solved by
Gurobi if the number of segments is sufficiently high. Nonetheless, we advocate a problem-specific approach
when selecting a solution method for separable piecewise linear optimization problems. If the PLFs involved
have many segments, the sBB could be the method of choice because of its slim and sparse LP relaxations. How-
ever, for PLFs with few segments, MILP models, such as the classical incremental model, might be faster because
of their large formulation and thus, the better possibilities for cutting planes.

Discrete approaches in piecewise linear optimization have witnessed over 60 years of fruitful research, which
led to the current state of the art. In contrast, this paper is an initial attempt toward an efficient method that is
based on continuous optimization techniques and is globally convergent. We recognize that our implementation
is rudimentary at this stage and can benefit from several enhancements and sophistications that would accelerate
its performance. Therefore, there are still some open questions. Further research can focus on extensions to non-
separable cases, cutting planes, specialized branching rules, integration in a full branch-and-cut solver, or further
development of sBB algorithms for discontinuous functions. We leave these for future research but outline some
of these ideas in the next paragraphs.

The ideas of pseudocost, strong, and reliability branching from MILP (Achterberg et al. 2005) could be
adopted here. Moreover, there have been many works (Benson 1990, Kesavan et al. 2004, D’Ambrosio et al.
2020) on strengthening the relaxations for separable nonconvex terms in a branch-and-cut algorithm, and it
is conceivable that some of these ideas can be applied to separable PLFs to accelerate our sBB. This would
be a counterpart to the valid inequalities and cutting planes that have been developed for MILP and SOS2
models.

Future work could also extend our work to non-Ls.c. PLFs. Although our sBB can generate polyhedral relaxa-
tions of any separable PLF, we currently do not have a branching rule that gives asymptotic convergence when
the PLF is non-1.s.c. This does not seem to be an easy task because convergence issues for relaxations of discontin-
uous functions are well known and also, easy to see with simple examples (cf. Figure 1). Nonetheless, it may be
worth tackling this problem at least for separable PLFs because the SOS2 branching rule has been generalized
(de Farias et al. 2008), although only as a proof of concept and not something that has been implemented in
MILP solvers. Moreover, one could explore machine learning techniques for branching decisions as was done
recently for nonconvex polynomial optimization problems (Ghaddar et al. 2023).

Lastly, our approach could be extended to handle nonseparable PLFs. Although the Graham'’s scan algorithm
is limited to two dimensions and thus, only applicable to univariate or separable PLFs, other algorithms, such as
Quickhull (Barber et al. 1996), can compute the convex hull in multiple dimensions. This makes them suitable for
identifying the convex envelope of nonseparable PLFs.

Appendix. Proof of Claim 7.1

Claim 7.1 (Lipschitz Continuity of PLF). A continuous univariate PLF on a closed interval has its smallest Lipschitz con-
stant equal to the maximum absolute value of the slope of its linear segments.

Proof. Let h be a continuous PLF on I:=[l,u] formed by breakpoints {6°,b,...,bK}, where bi<b*!, b° =1, and VX =u.

Denote the slope of the ith segment by m; := % Take any distinct x,x" € [with x’" € [b¥"1,b5] and x € [bI!,b/] for

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 29

some 1 <k<j<K. The case k=] is trivial because of linearity in each piece, so assume k<j. We have
h(x) = h(x') = [1(x) = @]+ [) =@ 2)] + - +[7(0) = h(x)]

=mi(x— b) +mp (U =) + - +my (b —x')

< [‘max ‘ml} (=016 = 4B =)

i=k,...,j

= [max ml} (x—x").
i=k,...,j

Switching the roles of x and x” and following similar steps give us

h(x") —h(x) < { max ‘fm,} (x—x").

i=k,...,j

Recall that any four reals (a1,a2,a3,a4) with a1 <a, and a3 <ay also satisfy max{a;,a3} < max{ay,a4}. Using this fact with
the above two inequalities gives us

[h(x) — h(x")| < max{

max m;, max (—m,»)}(x—x')
=k, i =k,]

w7 & -]

= { max |m,-|} (x—x")
i=k,...,j

< ax |m;|| (x —x").
\Ll,.,.,x' ,@()

Because x and x’ are arbitrary in I, the correctness of the Lipschitz constant follows from above. This is also the best-
possible constant because we can take x and x’ to be between the breakpoints where the slope has the highest absolute
value. O

Endnote

" Every continuous univariate function on an interval can be partitioned into subintervals such that over each subinterval, it is either convex
or concave.

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper. Res. Lett. 33(1):42-54.

Adams W, Gupte A, Xu Y (2019) Error bounds for monomial convexification in polynomial optimization. Math. Programming
175(1-2):355-393.

Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, aBB, for general twice-differentiable constrained
NLPs—I. Theoretical advances. Comput. Chemical Engrg. 22(9):1137-1158.

Al-Khayyal FA, Sherali HD (2000) On finitely terminating branch-and-bound algorithms for some global optimization problems. SIAM J.
Optim. 10(4):1049-1057.

Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22(4):469-483.

Barmann A, Burlacu R, Hager L, Kleinert T (2023) On piecewise linear approximations of bilinear terms: Structural comparison of univariate
and bivariate mixed-integer programming formulations. J. Global Optim. 85(4):789-819.

Beach B, Hildebrand R, Huchette] (2022) Compact mixed-integer programming formulations in quadratic optimization. J. Global Optim.
84(4):869-912.

Beale E, Forrest JJ (1976) Global optimization using special ordered sets. Math. Programming 10(1):52-69.

Benson HP (1990) Separable concave minimization via partial outer approximation and branch and bound. Oper. Res. Lett. 9(6):389-394.

Burer S, Letchford AN (2012) Non-convex mixed-integer nonlinear programming: A survey. Surveys Oper. Res. Management Sci. 17(2):97-106.

Burlacu R, Geifller B, Schewe L (2020) Solving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear pro-
grammes. Optim. Methods Software 35(1):37-64.

Casado LG, Martinez JA, Garcia I, Sergeyev YD (2003) New interval analysis support functions using gradient information in a global mini-
mization algorithm. J. Global Optim. 25(4):345-362.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms (MIT Press, Cambridge, MA).

Croxton KL, Gendron B, Magnanti TL (2003) A comparison of mixed-integer programming models for nonconvex piecewise linear cost mini-
mization problems. Management Sci. 49(9):1268-1273.

Croxton KL, Gendron B, Magnanti TL (2007) Variable disaggregation in network flow problems with piecewise linear costs. Oper. Res.
55(1):146-157.

D’Ambrosio C, Lee], Skipper D, Thomopulos D (2020) Handling separable non-convexities using disjunctive cuts. Baiou, M Gendron B, Gun-
luk O, Mahjoub A, eds. Combinatorial Optimization: ISCO 2020, Lecture Notes in Computer Science, vol. 12176 (Springer, Cham, Switzer-
land), 102-114.

Dantzig GB (1960) On the significance of solving linear programming problems with some integer variables. Econometrica 28(1):30—44.

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hubner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
30 INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s)

de Farias IR Jr, Zhao M, Zhao H (2008) A special ordered set approach for optimizing a discontinuous separable piecewise linear function.
Oper. Res. Lett. 36(2):234-238.

de Farias IR, Kozyreff E, Gupta R, Zhao M (2013) Branch-and-cut for separable piecewise linear optimization and intersection with semi-
continuous constraints. Math. Programming Comput. 5(1):75-112.

Dey SS, Gupte A (2015) Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2):412-427.

Duguet A, Ngueveu SU (2022) Piecewise linearization of bivariate nonlinear functions: Minimizing the number of pieces under a bounded
approximation error. Ljubic I, Barahona F, Dey SS, Mahjoub AR, eds. Combinatorial Optimization: ISCO 2022, Lecture Notes in Computer
Science, vol. 13526 (Springer, Cham, Switzerland), 117-129.

Falk JE, Soland RM (1969) An algorithm for separable nonconvex programming problems. Management Sci. 15(9):550-569.

Feijoo B, Meyer R (1988) Piecewise-linear approximation methods for nonseparable convex optimization. Management Sci. 34(3):411-419.

Fourer R (1985) A simplex algorithm for piecewise-linear programming I: Derivation and proof. Math. Programming 33(2):204-233.

Frenzen CL, Sasao T, Butler JT (2010) On the number of segments needed in a piecewise linear approximation. J. Comput. Appl. Math.
234(2):437-446.

Fiillner C, Rebennack S (2022) Non-convex nested Benders decomposition. Math. Programming 196(1):987-1024.

Geisler B, Martin A, Morsi A, Schewe L (2012) Using piecewise linear functions for solving MINLPs. Lee], Leyffer S, eds. Mixed Integer Non-
linear Programming, IMA Volumes in Mathematics and Its Applications, vol. 154 (Springer, Cham, Switzerland), 287-314.

Ghaddar B, Gémez-Casares I, Gonzalez-Diaz], Gonzélez-Rodriguez B, Pateiro-Lopez B, Rodriguez-Ballesteros S (2023) Learning for spatial
branching: An algorithm selection approach. INFORMS |. Comput. 35(5):1024-1043.

Gorissen BL (2022) Interior point methods can exploit structure of convex piecewise linear functions with application in radiation therapy.
SIAM]. Optim. 32(1):256-275.

Gounaris CE, Floudas CA (2008) Tight convex underestimators for C?-continuous functions: I Univariate functions. J. Global Optim.
42(1):51-67.

Graham RL (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inform. Processing Lett. 1(4):132-133.

Grimstad B, Knudsen BR (2020) Mathematical programming formulations for piecewise polynomial functions. J. Global Optim. 77(3):455-486.

Gupte A, Koster AM, Kuhnke S (2022) An adaptive refinement algorithm for discretizations of nonconvex QCQP. Schulz C, Ucar B, eds. 20th
International Symposium on Experimental Algorithms: SEA 2022, Leibniz International Proceedings in Informatics (LIPIcs), vol. 233 (Schloss
Dagstuhl Publishing, Wadern, Germany), 24:1-24:14.

Gurobi Optimization (2024) Documentation—General constraints. https: //www.gurobi.com/documentation/current/refman/general_constraints.
html.

Horst R (1986) A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization. J.
Optim. Theory Appl. 51(2):271-291.

Hiibner T, Gupte A, Rebennack S (2025) Spatial branch and bound for nonconvex separable piecewise linear optimization. https://github.
com/INFORMS]JoC/2024.0755.

Huchette J, Vielma JP (2023) Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools. Oper. Res.
71(5):1835-1856.

Keha AB, de Farias IR, Nemhauser GL (2004) Models for representing piecewise linear cost functions. Oper. Res. Lett. 32(1):44-48.

Keha AB, de Farias IR, Nemhauser GL (2006) A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimiza-
tion. Oper. Res. 54(5):847-858.

Kesavan P, Allgor R], Gatzke EP, Barton PI (2004) Outer approximation algorithms for separable nonconvex mixed-integer nonlinear pro-
grams. Math. Programming 100(3):517-535.

Kim J, Richard J-PP, Tawarmalani M (2024) Piecewise polyhedral relaxations of multilinear optimization. SIAM]. Optim. 34(4):3167-3193.

Kong L, Maravelias CT (2020) On the derivation of continuous piecewise linear approximating functions. INFORMS]. Comput. 32(3):531-546.

Kontogiorgis S (2000) Practical piecewise-linear approximation for monotropic optimization. INFORMS |. Comput. 12(4):324-340.

Leyffer S, Sartenaer A, Wanufelle E (2008) Branch-and-refine for mixed-integer nonconvex global optimization. Working Paper No. ANL/
MCS-P1547-0908, Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL.

Locatelli M, Schoen F (2013) Global Optimization: Theory, Algorithms, and Applications, MOS-SIAM Series on Optimization, vol. MO15 (SIAM,
Philadephia).

Lyu B, Hicks IV, Huchette J (2025) Building formulations for piecewise linear relaxations of nonlinear functions. Oper. Res., ePub ahead of
print April 24, https://doi.org/10.1287/opre.2023.0187.

Magnanti TL, Stratila D (2004) Separable concave optimization approximately equals piecewise linear optimization. Bienstock D, Nemhauser
G, eds. Integer Programming and Combinatorial Optimization: IPCO 2004, Lecture Notes in Computer Science, vol. 3064 (Springer, Berlin),
234-243.

Markowitz HM, Manne AS (1957) On the solution of discrete programming problems. Econometrica 25(1):84-110.

Meyer RR (1976) Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16(2):163-171.

Nagarajan H, Lu M, Wang S, Bent R, Sundar K (2019) An adaptive, multivariate partitioning algorithm for global optimization of nonconvex
programs. J. Global Optim. 74(4):639-675.

Natali JM, Pinto JM (2009) Piecewise polynomial interpolations and approximations of onedimensional functions through mixed integer linear
programming. Optim. Methods Software 24(4-5):783-803.

Ngueveu SU (2019) Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer linear programming-based solu-
tion methods. Eur. |. Oper. Res. 275(3):1058-1071.

Posypkin M, Usov A, Khamisov O (2020) Piecewise linear bounding functions in univariate global optimization. Soft Comput.
24(23):17631-17647.

Rebennack S (2016) Computing tight bounds via piecewise linear functions through the example of circle cutting problems. Math. Methods
Oper. Res. 84(1):3-57.

Rebennack S, Kallrath] (2015) Continuous piecewise linear delta-approximations for univariate functions: Computing minimal breakpoint
systems. . Optim. Theory Appl. 167(2):617-643.

Rebennack S, Krasko V (2020) Piecewise linear function fitting via mixed-integer linear programming. INFORMS]. Comput. 32(2):507-530.

https://www.gurobi.com/documentation/current/refman/general_constraints.html
https://www.gurobi.com/documentation/current/refman/general_constraints.html
https://github.com/INFORMSJoC/2024.0755
https://github.com/INFORMSJoC/2024.0755
https://doi.org/10.1287/opre.2023.0187

Downloaded from informs.org by [2a00:6020:5031:5600:5014:a904:1801:313a] on 10 December 2025, at 05:00 . For personal use only, all rights reserved.

Hiibner, Gupte, and Rebennack: Spatial Branch-and-Bound for Piecewise Linear Functions
INFORMS Journal on Computing, Articles in Advance, pp. 1-31, © 2025 The Author(s) 31

Rebennack S, Nahapetyan A, Pardalos PM (2009) Bilinear modeling solution approach for fixed charge network flow problems. Optim. Lett.
3(3):347-355.

Shectman JP, Sahinidis NV (1998) A finite algorithm for global minimization of separable concave programs. J. Global Optim. 12(1):1-36.

Sherali HD (2001) On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett.
28(4):155-160.

Soland RM (1971) An algorithm for separable nonconvex programming problems II: Nonconvex constraints. Management Sci. 17(11):759-773.

Sundar K, Sanjeevi S, Nagarajan H (2022) Sequence of polyhedral relaxations for nonlinear univariate functions. Optim. Engrg. 23(2):877-894.

Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math.
Programming 99(3):563-591.

Thakur LS (1978) Error analysis for convex separable programs: The piecewise linear approximation and the bounds on the optimal objective
value. SIAM]. Appl. Math. 34(4):704-714.

Toriello A, Vielma JP (2012) Fitting piecewise linear continuous functions. Eur. |. Oper. Res. 219(1):86-95.

Tuy H (2016) Convex Analysis and Global Optimization, 2nd ed., Springer Optimization and Its Applications, vol. 110 (Springer, Cham,
Switzerland).

Tuy H, Horst R (1988) Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization
and D.C. ptimization problems. Math. Programming 41(1):161-183.

Vielma JP, Nemhauser GL (2011) Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Pro-
gramming 128(1-2):49-72.

Vielma JP, Ahmed S, Nemhauser G (2010) Mixed-integer models for nonseparable piecewise-linear optimization: Unifying framework and
extensions. Oper. Res. 58(2):303-315.

Vielma JP, Keha AB, Nemhauser GL (2008) Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5(2):467-488.

Warwicker JA, Rebennack S (2022) A comparison of two mixed-integer linear programs for piecewise linear function fitting. INFORMS J.
Comput. 34(2):1042-1047.

Warwicker JA, Rebennack S (2024) Efficient continuous piecewise linear regression for linearising univariate non-linear functions. IISE Trans.
57(3):231-245.

Wechsung A, Barton PI (2014) Global optimization of bounded factorable functions with discontinuities. J. Global Optim. 58(1):1-30.

Yildiz S, Vielma JP (2013) Incremental and encoding formulations for mixed integer programming. Oper. Res. Lett. 41(6):654-658.

Zhao M, de Farias IR Jr (2013) The piecewise linear optimization polytope: New inequalities and intersection with semi-continuous con-
straints. Math. Programming 141(1-2):217-255.

	Spatial Branch-and-Bound for Nonconvex Separable PiecewiseLinear Optimization
	Introduction
	Preliminaries
	Overview of Our sBB
	Convexifying Univariate PLFs
	Spatial Branch-and-Bound Algorithm
	Computational Experiments
	Approximating Separable Functions
	Conclusion and Future Work

