KIT | KIT-Bibliothek | Impressum | Datenschutz

Localized feature selection augmented dual-stream fusion network for state of health estimation of lithium-ion batteries

Wei, Zheng; Wu, Mingwei; Wu, Ju; Zhang, Xiaoshan; Fei, Kaichuang; He, Qiu 1; Shen, Zhonghui ; Li, Zhi-Peng ; Zhao, Yan
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Lithium-ion batteries are essential for renewable energy storage, necessitating efficient battery management systems (BMS) for optimal performance and longevity. Accurate estimation of the state of health (SOH) is crucial for BMS safety, yet current machine learning-based SOH estimation relying on global aging features often overlooks localized degradation patterns. In this study, we introduce a novel SOH estimation pipeline that integrates voltage-range-specific segmentation with a multi-stage, cross-validation-driven localized feature-selection framework and a feature-augmented dual-stream fusion network. Our methodology partitions full-range voltage into localized intervals to construct a degradation-sensitive feature library, from which 4 optimal features are identified from a set of 336 candidates. These selected features are combined with raw voltage signals via a dual-stream architecture that employs a dynamic gating mechanism to recalibrate feature contributions during training. Cross-validation-based evaluation on datasets encompassing different chemistries and charge/discharge protocols demonstrate that our approach can achieve lower average root-mean-square-error (Oxford dataset: 0.7201%, Massachusetts Institute of Technology (MIT) dataset: 0.7184%) compared to baseline models. ... mehr


Originalveröffentlichung
DOI: 10.1016/j.jechem.2025.06.030
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2095-4956
KITopen-ID: 1000188366
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Journal of Energy Chemistry
Verlag Elsevier
Band 109
Seiten 879–892
Vorab online veröffentlicht am 21.06.2025
Schlagwörter Machine learning, Lithium-ion battery, State of health, Feature selection
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page