
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2025-017
2025/11/07

CMS-SUS-23-001

Search for top squarks in final states with many light-flavor
jets and 0, 1, or 2 charged leptons in proton-proton

collisions at
√

s = 13 TeV

The CMS Collaboration*

Abstract

Several new physics models including versions of supersymmetry (SUSY) character-
ized by R-parity violation (RPV) or with additional hidden sectors predict the pro-
duction of events with top quarks, low missing transverse momentum, and many
additional quarks or gluons. The results of a search for top squarks decaying to two
top quarks and six additional light-flavor quarks or gluons are reported. The search
employs a novel machine learning method for background estimation from control
samples in data using decorrelated discriminators. The search is performed using
events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No
requirement is placed on the magnitude of the missing transverse momentum. The
result is based on a sample of proton-proton collisions at

√
s = 13 TeV corresponding

to 138 fb−1 of integrated luminosity collected with the CMS detector at the LHC in
2016–2018. With no statistically significant excess of events observed beyond the ex-
pected contributions from the standard model, the data are used to determine upper
limits on the top squark pair production cross section in the frameworks of RPV and
stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at
95% confidence level for RPV (stealth) SUSY scenarios.
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1 Introduction
The standard model (SM) of particle physics describes observed phenomena of elementary
particles with incredible precision. Despite this success, there remain many questions unan-
swered by the SM that inspire a continuing search for new particles and phenomena predicted
by theories beyond the SM (BSM). Supersymmetry (SUSY) is a long-sought-after BSM frame-
work that addresses several shortcomings of the SM including the gauge hierarchy problem,
in which radiative corrections to the Higgs boson mass parameter, especially those associated
with the top quark, are quadratically divergent. In SUSY, this hierarchy problem can be miti-
gated by the presence of a light bosonic top squark t̃ , which, as the supersymmetric partner of
the top quark, brings an additional set of radiative corrections that largely cancel the divergent
SM corrections [1, 2]. Historically, searches for strong production of t̃ squarks have focused on
final states with large missing transverse momentum pmiss

T related to the undetected lightest
SUSY particle (LSP) produced in t̃ squark decays; strong limits have been placed on t̃ squark
production in this context [3–10]. However, well-motivated variants of SUSY can produce final
states without large pmiss

T including SUSY with R-parity violation (RPV) [11, 12] and “stealth”
SUSY [13–15].

In this analysis, we search for t̃ squark pair production with decays in both the RPV and stealth
SUSY frameworks. In RPV SUSY, additional superpotential terms allow the LSP to decay into
SM particles, thereby producing a signature with balanced transverse momentum pT. The RPV
coupling governing hadronic decays of SUSY particles is denoted by λ′′

abc where a, b, c indicate
the generation of the one up-type and two down-type quarks involved in the decay vertex [11].
In the benchmark RPV model considered here, each t̃ squark decays to a top quark t and a
neutralino χ̃0

1, followed by the RPV decay of the χ̃0
1 to three light-flavor quarks, χ̃0

1 → qqq.
Since the analysis is insensitive to differences between jets originating from quarks of the first
and second generations, the results are applicable to RPV models with coupling λ′′

abc where
a, b, c ∈ {1, 2}. The stealth SUSY SYY model [14] assumes a new hidden sector containing a
scalar particle S with even R-parity and its superpartner S̃, both of which are singlets under all
SM interactions [13]. The key feature of stealth SUSY is that supersymmetry is approximately
conserved in the hidden sector, resulting in nearly mass-degenerate S̃ and S without artificial
tuning of particle masses. In the benchmark SYY model, each t̃ squark decays to a top quark,
gluon g, and a singlino S̃, with the S̃ decay contributing a gravitino G̃ and two additional
gluons to the final state, as shown in Fig. 1. Because of the small S–S̃ mass difference and small
G̃ mass, the undetected G̃ results in negligible observed pmiss

T .

The CMS Collaboration at the CERN LHC published a search for these signals in 2021 [16]
based on the full Run 2 data set that considered final states with exactly one lepton and at least
seven jets. The results showed a maximum local signal significance of 2.8 standard deviations
for a t̃ squark mass mt̃ of 400 GeV in the RPV model, arising primarily from terms in the fit
likelihood for constrained nuisance parameters associated with the systematic uncertainty in
the shape of the jet multiplicity (Njets) distribution for the dominant tt + jets background.

The search presented in this paper extends and improves on the previous analysis in two ways.

First, to better evaluate whether any observed discrepancy arises in events with two top quarks
in the final state, we now consider all three tt decay channels: all-hadronic (0ℓ), single-lepton
(1ℓ), and fully leptonic (2ℓ). This results in a ≈30% improvement in the expected upper limit
on the t̃ squark pair production cross section for the RPV signal model with mt̃ = 850 GeV
(near the previous exclusion limit on mt̃ ).

Second, the method for estimating the primary tt + jets background from data has been up-
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Figure 1: Diagrams of top squark pair production with each squark decaying to a top quark and
additional light-flavor quarks for the RPV SUSY model (left) and with each squark decaying to
a top quark, gluons, and a gravitino for the stealth SYY model (right).

dated to reduce the dependence of the analysis on systematic uncertainties related to the Njets
modeling in tt + jets events [16]. In the previous analysis, the maximum likelihood fit, which
provides a simultaneous estimate of the tt + jets background and signal, relied on modeling
of the shape of the Njets distribution for the background. In the current analysis, however, the
fit employs independent background yield parameters for each Njets category. These yield pa-
rameters are constrained using an effective sideband extrapolation in two independent neural
network (NN) variables that discriminate signal from the background (called SNN,1 and SNN,2),
which are generated according to the ABCDisCo Training Enhanced with Closure (ABCDis-
CoTEC) method [17]. This method augments the ABCDisCo technique [18], which minimizes
the distance correlation between SNN,1 and SNN,2, by also directly minimizing the nonclosure
of the sideband extrapolation in the NN training. This technique yields an overall reduction in
systematic uncertainty arising from possible discrepancies in the shape of the Njets spectrum.
The expected upper limit on the t̃ squark pair production cross section has improved by a
factor of ≈2 at low mt̃ (between 300 and 450 GeV) for both signal models as a result of this
improvement.

The detector and general experimental techniques are described in Section 2, followed by a
discussion of the simulated samples in Section 3. The event selection is detailed in Section 4.
Section 5 outlines the ABCDisCoTEC method and its application in this analysis. The back-
ground estimation and treatment of systematic uncertainties are detailed in Section 6 and 7,
respectively. Finally, the results and their interpretation are described in Section 8, followed
by a summary in Section 9. Tabulated results are provided in the HEPData record for this
analysis [19].

2 Experimental techniques
This search examines proton-proton (pp) collision data at

√
s = 13 TeV collected during 2016–

2018 with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb−1

[20–22]. The CMS apparatus [23, 24] is a multipurpose, nearly hermetic detector, designed to
trigger on [25–27] and identify electrons, muons, photons, and (charged and neutral) hadrons
[28–30]. Its central feature is a superconducting solenoid of 6 m internal diameter, providing
a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a
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lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are
reconstructed in gas-ionization detectors embedded in the steel flux-return yoke outside the
solenoid. More detailed descriptions of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Refs. [23, 24].

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering in
the event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [31].
A particle-flow algorithm [32] aims to reconstruct and identify each individual particle in an
event, with an optimized combination of information from the various elements of the CMS
detector. The energy of photons is obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron momentum at the PV as deter-
mined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of
all bremsstrahlung photons spatially compatible with originating from the electron track. The
energy of muons is obtained from the curvature of the corresponding track. The energy of
charged hadrons is determined from a combination of their momentum measured in the tracker
and the matching ECAL and HCAL energy deposits, corrected for the response function of the
calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from these reconstructed particles using the anti-
kT algorithm [33, 34] with a distance parameter of 0.4. Jet momentum is determined as the
vectorial sum of all particle momenta in the jet, and is found from simulation to be, on average,
within 5 to 10% of the true momentum over the whole pT spectrum and detector acceptance.
Additional pp interactions within the same or nearby bunch crossings (pileup) can contribute
additional tracks and calorimetric energy depositions to the jet momentum. To mitigate this
effect, charged particles identified to be originating from pileup vertices are discarded and an
offset correction is applied to correct for remaining contributions [35]. Jet energy corrections are
derived from simulation studies so that the average measured energy of jets becomes identical
to that of particle level jets. In situ measurements of the momentum balance in dijet, photon +
jet, Z + jet, and multijet events are used to determine any residual differences between the jet
energy scale in data and in simulation, and appropriate corrections are made [36]. Additional
selection criteria are applied to each jet to remove jets potentially dominated by instrumental
effects or reconstruction failures [35].

For this analysis, reconstructed jets are required to have pT > 30 GeV and |η| < 2.4. Jets
that overlap with a lepton meeting the analysis requirements within a cone of radius ∆R =√
(∆ϕ)2 + (∆η)2 = 0.4 are removed. These jets are evaluated using the “medium” working

point of the DeepJet tagging algorithm designed to identify jets as arising from bottom quark
fragmentation (b-tagged jet). For jets with pT ≈ 30 GeV, the efficiency of the algorithm is ≈75%
with a misidentification rate for light-flavor jets and gluon jets of 1% [37–39].

Electrons are required to pass a “tight” level of identification that is around 70% efficient in
electron identification [28, 40]. All electrons in this analysis are required to meet the require-
ments of pT > 30 GeV and |η| < 2.4. For data in 2017–2018, the pT threshold is raised to 37 GeV
to accommodate higher trigger thresholds. The transverse and longitudinal impact parameters
of the electron track from the PV are required to be less than 0.05 (0.10) cm in the barrel (endcap)
and less than 0.10 (0.20) cm in the barrel (endcap), respectively.

Muons are required to pass a “medium” level of identification that is around 98% efficient for
genuine muon identification [29]. Muons are additionally required to have pT > 30 GeV and
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|η| < 2.4. The transverse (longitudinal) impact parameters of the muon track from the PV are
required to be less than 0.2 (0.5) cm, respectively.

Additionally, electrons and muons are required to be isolated from nearby detector activity, as
defined by the requirement that the ratio of the pT sum of other objects in a cone surrounding
the lepton to the pT of the lepton itself be less than 0.1 (0.2) for electrons (muons), where the
radius of the cone scales as 1/pT [41] and ranges from a minimum of 0.05 for leptons with
pT > 200 GeV to a maximum of 0.2 for pT < 50 GeV.

In addition to the muons defined above, a second collection of muons is used to define a con-
trol region (CR) for multijet production from quantum chromodynamics (QCD multijet). These
muons, called nonisolated muons, have the same “medium” identification, η, and impact pa-
rameter requirements as standard muons, but they are required to have pT > 55 GeV and the
isolation requirement is reversed.

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz within a fixed latency of 4 µs [25]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [26].

For the 0ℓ channel, a collection of triggers that target large amounts of hadronic activity and b-
tagged jets are employed. The most efficient of these triggers requires six jets with pT > 40 GeV,
a b-tagged jet, and the scalar pT sum of all jets, HT, to be above 450 (430) GeV, for data collected
in 2016 (2017–2018). Additional hadronic triggers are also included that require events to have
at least one jet with pT > 450 (500)GeV or HT > 900 (1050)GeV, with no other restrictions,
for data collected in 2016 (2017–2018). In 2016, this combination of triggers achieves an overall
efficiency of 85–90% near the thresholds of HT > 450 GeV or pT > 40 GeV for the sixth highest
ranked pT jet. In 2017–2018, among events with only one b-tagged jet (at least 2 b-tagged
jets), the overall efficiency is about 55 (80)% near the thresholds of HT > 500 GeV or sixth jet
pT > 40 GeV.

In both the 1ℓ and 2ℓ channels, events are selected with triggers requiring at least one electron
or one muon. The lowest pT thresholds for these triggers in 2016 (2017–2018) are 27 (35) GeV
for electrons and 24 (24) GeV for muons. Additionally, the leptons are required to be isolated
from tracks and from calorimeter activity. Lepton triggers without isolation requirements are
also used with higher thresholds of 115 GeV for electrons and 50 GeV for muons. All leptonic
triggers are combined for an overall efficiency ranging from about 70% for leptons with pT near
the trigger threshold to above 85% for pT > 120 GeV. The single-muon trigger with the 50 GeV
pT threshold is additionally used to populate the QCD multijet CR. The efficiency of this trigger
alone is about 90% for muons with pT > 100 GeV.

During the 2016 and 2017 data taking, a gradual shift in the timing of the inputs of the ECAL
L1 trigger in the region at |η| > 2.0 caused a specific trigger inefficiency. For events containing
an electron (a jet) with pT larger than ≈50 GeV (≈100 GeV), in the region 2.5 < |η| < 3.0, the
efficiency loss is ≈10–20%, depending on pT, η, and time.

3 Simulated samples
Simulated samples are used to estimate contributions from minor backgrounds to the search
region (SR) yields, to model the signal contribution in the SR, to estimate systematic uncertain-
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ties, and to serve as inputs (signal and tt) to the training of NNs.

Top quark pair production, t-channel single top quark production, and single top quarks pro-
duced in association with a W boson are generated with the next-to-leading order (NLO)
POWHEG v2.0 generator [42–47]. The MADGRAPH5 aMC@NLO v2.6.5 generator [48] is used
in NLO mode for tt + W/Z/H, tttt , tZq, and s-channel single top quark production events,
while leading order (LO) mode is used for QCD multijet, tt + diboson/tW/t + jet, Drell–Yan,
and W + jets production. Diboson production is generated at LO with PYTHIA v8.240 [49]. Sam-
ples are normalized to production cross sections calculated to the highest available accuracy,
generally NLO or next-to-NLO (NNLO) [48, 50–56].

For the signal, top squarks are produced with MADGRAPH5 aMC@NLO in LO mode with up to
two additional partons at the matrix element level and their decays are simulated with PYTHIA.
Signal production cross sections (σ̃t t̃ ) are approximated to NNLO plus next-to-next-to-leading
logarithmic (NNLL) accuracy [57–61]. A range of mt̃ is considered from 300 to 1050 GeV, and
all decays are assumed to be prompt with branching fractions of unity. In the benchmark RPV
model, we take the χ̃0

1 mass to be 100 GeV, which ensures an on-shell top quark in the t̃ squark
decay for all mt̃ . For the benchmark stealth SYY model, the characteristic small S–S̃ mass

difference is held constant at 10 GeV, and we assume an S̃ mass of 100 GeV and a G̃ mass of
1 GeV.

Hadronization and parton showering is done by PYTHIA using underlying event (UE) tune
CP5 [62, 63]. Parton distribution functions (PDFs) from the NNPDF3.1 NNLO set [64] are used
for all processes. The CMS detector response is modeled in simulation using GEANT4 [65]. This
response is then passed through the same event reconstruction as collision data.

In order to match the instantaneous luminosity profile measured at the CMS detector, simu-
lated events are reweighted based on the distributions of the observed and simulated number
of pp interactions per bunch crossing. Corrections related to the efficiencies of the trigger sys-
tem (including for the ECAL timing shift), lepton identification and isolation (for the 1ℓ and
2ℓ channels), b tagging, and top quark tagging (for the 0ℓ channel) are applied to simulated
events in order to mitigate small differences observed with respect to data. These corrections
are calculated by comparing the efficiency of object identification in simulation to that in data.

4 Event selection
The dominant background for the search arises from top quark pair production with addi-
tional jets from initial- and final-state radiation (ISR and FSR). The primary physical observ-
able that allows discrimination of signal from tt + jets background is Njets, which is enhanced
in the signal. QCD multijet production is the subdominant background with additional minor
backgrounds from production of tt in association with SM weak gauge bosons or additional
top quarks (tt+X), production of weak gauge bosons, and single top quark production—all
with additional jets from ISR or FSR. The QCD multijet and other non-tt backgrounds are sup-
pressed via selection criteria related to the presence of a top quark. We require either one or
two charged leptons (e or µ) or, for events with zero charged leptons, the identification of a top
quark via a top quark tagging algorithm. Further suppression is obtained with requirements
based on the presence of b-tagged jets.

The selection criteria for the three search channels are summarized in Table 1. The three search
region selections are defined orthogonally using exact selections on the number of isolated
leptons Niso

leptons. Each selection is defined such that it is more restrictive than the trigger re-
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Table 1: Search region selections for the 0ℓ, 1ℓ, and 2ℓ channels. The term Nnoniso
muon denotes the

number of nonisolated muons.

Selection criteria 0ℓ 1ℓ 2ℓ
Niso

leptons 0 1 2, oppositely charged

Nnoniso
muon 0 0 0

HT (GeV) >500 >500 >500
Njets (pT > 30 GeV) ≥8 ≥7 ≥6
Njets (pT > 45 GeV) ≥6 — —
Nb (pT > 30 GeV) ≥2 ≥1 ≥1
Nb (pT > 45 GeV) ≥1 — —
Nt ≥2 — —
Mbℓ (GeV) — >50, <250 —
Mℓℓ (GeV) — — <81 or >101
∆Rbjets >1 — —

quirements for jets, leptons, and HT for the respective channels. The particular Njets selection
for each channel follows from the leptonic versus hadronic decay of each W boson, while also
considering effects from detector acceptance and contributions from other backgrounds. Ad-
ditional restrictions are placed on the jets for the 0ℓ channel to match the jet pT requirements
in the trigger. Jets passing these additional restrictions are a subset of the jets that pass the less
strict pT requirement.

Each of the three search channels is also defined with dedicated selections to enhance back-
ground rejection based on the unique final-state topology of each channel. The 0ℓ channel
selection requires at least two b-tagged jets (Nb), which are angularly separated by ∆Rbjets > 1
to minimize the QCD multijet event yield. This background is further reduced by requiring
at least two tagged top quark objects (Nt) identified by an NN-based hadronic top quark tag-
ging algorithm [6, 66]. The t tagging algorithm employs two different NNs, with one network
trained to identify low-pT top quarks (≲400 GeV) that decay to three individually resolved
jets, and the other to identify high-pT top quarks from single jets clustered with the anti-kT
algorithm with a distance parameter of 0.8. The working point for the t tagging algorithm is
optimized in order to maximize statistical significance in the 0ℓ search channel. The average
efficiency for the two taggers is ≈40%.

The 1ℓ channel event selection imposes that the invariant mass of the required b-tagged jet
and lepton (Mbℓ) be between 50 and 250 GeV to loosely tag the leptonically decaying top quark
in the event. Finally, the 2ℓ selection requires that the invariant mass of the two oppositely
charged leptons (Mℓℓ) be distant from the Z boson mass resonance peak in order to reduce the
Drell–Yan background.

For each of the three analysis channels, a unique QCD multijet CR is used to estimate the QCD
multijet event yield in the SR. These events are identified by the presence of a nonisolated muon
along with the same requirements for Njets and HT used for the corresponding SR definitions.
The requirement of exactly one nonisolated muon ensures that the CR is sufficiently pure in
multijet events and matches the trigger requirements. No additional requirements are placed
on Nb or Nt .

Simulated background events passing the SR selection requirements for a given analysis chan-
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nel predominantly originate from tt + jets production, with contributions of less than 7% from
QCD multijet processes, and a few percent from the remaining minor backgrounds.

5 The ABCDisCoTEC method
The ABCD method [67, 68] is a common background estimation technique that uses data CRs to
extrapolate the background into the signal region. The method’s success depends on choosing
two quantities that are independent from each other and can distinguish between signal and
background. Having chosen two independent quantities, four regions are constructed in a
two-dimensional (2D) plane with each quantity defining an axis of the plane. These regions are
created by imposing selection criteria on both quantities. The CRs are subsequently referred to
as B, C, D and cover the domain of the plane that is mostly populated by background events.
B and C contain events which pass only one of the selection criteria while D contains events
passing neither. The region subsequently referred to as A is the remaining portion of the plane
where signal events are predominantly expected to reside. All events contained in A pass the
selection criteria imposed on both quantities. Assuming independence of the two quantities
defining this 2D ABCD plane, the number of background events in the SR A can be predicted
by using the B, C, D CRs via the relationship

NA, pred. = (NBNC)/ND, (1)

where Ni (with i = B, C, D) is the number of events in CR i, and NA, pred. is the number of
predicted background events in the SR A.

In practice, it is not always straightforward to identify two statistically independent quanti-
ties that also provide sufficient signal sensitivity. If the final states of signal and background
events are naturally similar to one another (as is the case for the signal models considered in
this analysis), then simple object- or event-level quantities may not be sufficient to perform the
ABCD method and be sensitive to signal. Rather than relying on physical quantities for defin-
ing the ABCD plane, one can generate two synthetic quantities satisfying the ABCD criterion
above using the so-called Double Disco NN [18], which includes a statistical measure of non-
linear dependence known as distance correlation (DisCo) [69] in the loss function to impose
independence of its two simultaneously trained binary classifiers. The ABCDisCoTEC method
used in this paper augments the Double DisCo NN with additional features including a novel
loss term that directly minimizes the nonclosure of the ABCD method using a metric propor-
tional to (NAND − NBNC)

2, where NA is the number of events in the SR A. A more detailed
description of the ABCDisCoTEC NN model can be found in Ref. [17].

6 Background estimation
6.1 Implementing the ABCDisCoTEC method for the tt background

For this search, the ABCDisCoTEC NN model is specifically trained to discriminate between
the main tt + jets background and RPV or stealth SYY signal models. A separate training of
the model is performed for each of the three lepton channels and each of the signal models,
resulting in a total of six independent NN trainings. For each training, a mixture of simulated
signal events with mt̃ ranging from 300 to 1400 GeV in 50 GeV increments is used. To make
the trained NNs more robust to potential differences between simulation and data, the training
samples include not only events from the nominal simulation, but also events simulated with
systematic variations in the physics modeling and event reconstruction. Simulated tt + jets
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events include variations in the matching scale between the matrix element and parton shower
(ME-PS) [70], the UE tune [62], and the modeling of color reconnection in the parton shower
in PYTHIA [63], all of which have an impact on Njets. Variations in jet energy resolution (JER)
and scale (JES) are included for both simulated tt + jets and signal events. Both up- and down-
type variations (i.e. ±1 standard deviation for each systematic uncertainty) are included in
the training set. Finally, to test the NN model’s performance and generalization, 80% of the
available simulated events are used for training, while the remaining 20% are reserved for
validation.

All NN input variables are computed in an approximate center-of-mass frame defined by all
jets in the event with pT > 30 GeV and |η| < 5. Properties for the first six (2ℓ channel), seven (1ℓ
channel), or eight (0ℓ channel) jets, including their four-vectors and flavor tagging information,
are used. Likewise, for the 1ℓ and 2ℓ channels, the four-vector(s) of the lepton(s) are used as
inputs. In addition to these low-level quantities, higher-level quantities are input to the NN,
including Fox–Wolfram moments [71], the eigenvalues of the jet energy-momentum tensor [72],
and the two four-vectors of reconstructed event “hemispheres,” which are constructed through
the object clustering method described in Refs. [73, 74]. For background (signal), each clustered
hemisphere typically contains the decay products of one of the two top quarks (squarks) in the
event.

As mentioned previously, Njets is the main feature distinguishing signal from background, and
sensitivity to signal is maximized at high Njets. To ensure that the training of the NN model is
not dominated by the large number of low-Njets events in the simulation, all Njets categories are
equally sampled during the NN training.

Figure 2 shows the distributions of SNN,1 and SNN,2, integrated over all Njets categories, for the
training for the 1ℓ channel and the RPV signal model for both data and simulation. Note that
as the tt + jets estimate ultimately used in the analysis comes from the fit to data, the level of
agreement between data and pre-fit simulation in the upper figures does not impact the back-
ground prediction. The 2D probability density functions for tt + jets and signal simulations are
smoothed with Gaussian kernel density estimation.

6.2 The ABCD region definition and correction factor derivation

The optimal values of SNN,1 and SNN,2 for dividing the SNN,1-SNN,2 plane into A, B, C, D regions
(ABCD bin boundaries) are determined with a grid search over SNN,1 and SNN,2 considering
four figures of merit (FOMs): the expected signal significance and the upper limit on the signal
cross section for signal models with mt̃ of 400 and 800 GeV. For each point in the scans, the
complete simultaneous fit with full treatment of systematic uncertainties is performed in simu-
lation. For each lepton channel and signal model, we use two bin boundary choices optimized
separately for low and high mt̃ in order to improve the performance across the full considered
mt̃ range; the low-mass boundary is used for RPV (stealth SYY) signals with masses less than
625 (675) GeV. The FOM used for determining the optimal low- (high-)mass boundaries is the
signal significance (cross section limit) for the model with mt̃ of 400 (800) GeV. The significance
is chosen as the FOM for low mt̃ to target the region in which the previous analysis observed
an excess for the RPV model with mt̃ = 400 GeV described in Section 1. Finally, for each lepton
channel and signal model, the same bin boundary is used for all Njets categories. A summary
of the optimal bin boundaries is shown in Table 2.

To account for residual correlation between SNN,1 and SNN,2, a correction factor κ is obtained
from tt + jets simulation and is applied to the tt + jets prediction in the maximum likelihood
fits. A separate κ factor is calculated from the ratio of observed and predicted A region events
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Figure 2: For the RPV signal model and all Njets categories of the 1ℓ channel, distributions of
SNN,1 (upper left) and SNN,2 (upper right) for data (black solid line), pre-fit simulated SM back-
grounds (stacked filled histograms), and two RPV signal models with mt̃ = 400 and 800 GeV
(dashed lines) are shown. The lower panel shows the two-dimensional probability density
function distribution of SNN,1 and SNN,2 for simulated tt + jets events (solid gray) and the RPV
signal model with mt̃ = 800 GeV (dashed red). The ABCD bin boundaries for this signal model
in the 1ℓ channel are shown with dashed vertical and horizontal lines.
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Table 2: Values of (SNN,1, SNN,2) defining the ABCD bin boundaries for the low- and high-mass
optimizations for each lepton channel and signal model.

Signal model Lepton channel Low-mass boundaries High-mass boundaries
RPV 0ℓ (0.52, 0.54) (0.74, 0.80)
RPV 1ℓ (0.84, 0.42) (0.80, 0.72)
RPV 2ℓ (0.52, 0.58) (0.50, 0.50)
SYY 0ℓ (0.76, 0.70) (0.54, 0.56)
SYY 1ℓ (0.44, 0.42) (0.68, 0.82)
SYY 2ℓ (0.40, 0.42) (0.48, 0.48)

for each Njets category, signal model, lepton channel, and low- or high-mass range:

κ =
NA, MC

NA, pred.
=

NA, MC ND, MC

NB, MC NC, MC
, (2)

where NA, pred. is obtained from Eq. (1). For a perfect ABCDisCoTEC training, each κ would be
equal to one. Values for all sixty κ factors range from 0.875 to 1.887 with statistical uncertainties
ranging from 0.008 to 0.12.

6.3 Maximum likelihood fit

A set of simultaneous binned maximum-likelihood fits (over the range of mt̃ ) is performed for
each signal model and lepton channel for a total of six sets of fits. In addition, a combined fit
over all three lepton channels is performed for each signal model. Each fit estimates the signal
and background yields in twenty analysis regions comprising the four A, B, C, D regions in
each of five Njets categories. The number of jets in the Njets categories for each lepton channel
range from 8 to ≥12 jets for the 0ℓ channel, 7 to ≥11 jets for the 1ℓ channel, and 6 to ≥10 jets
for the 2ℓ channel. In each fit, the tt + jets background yields for the twenty analysis regions
are included as floating parameters bj

i with j denoting Njets category and i denoting ABCD

region. The four bj
i yields in each Njets category are subject to the ABCD constraint from Eq. (1)

including the correction factor κ j from Eq. (2) as

bj
A = κ j(bj

Bbj
C)/bj

D. (3)

Each fit includes a single free parameter determining the overall signal normalization (referred
to as the signal strength) with the distribution of signal events across the twenty analysis re-
gions fixed according to simulation. In addition to the bj

i parameters and the signal strength,
each fit includes constrained nuisance parameters which are allowed to vary, accounting for a
range of systematic uncertainties.

For each fit, the QCD multijet background in each of the twenty analysis regions is fixed accord-
ing to an estimate from the corresponding signal-depleted QCD multijet data CR and using the
corresponding ABCD bin boundaries for each channel, signal, and mass optimization. A trans-
fer factor relating the number of simulated QCD multijet events in the SRs and CRs is used to
scale the QCD multijet component of data in the CR for use as the analysis region prediction.
This transfer factor ranges from 0.0002 to 0.4 over all analysis regions and fits. The remaining
minor backgrounds are fixed according to the simulation.
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7 Systematic uncertainties
The key assumption governing the tt + jets background estimation is that the ABCD relation-
ship holds. By definition, the correction factor κ defined in Eq. (2) ensures that this is the case
in simulation. We evaluate the residual nonclosure of the ABCD relationship in data (after ap-
plication of the κ correction) and determine a related systematic uncertainty with a two-fold
process performed separately for each lepton channel (0ℓ, 1ℓ, 2ℓ), signal model (RPV or stealth
SYY), and ABCD boundary choice (low- or high-mass).

First, we use three signal-depleted data validation regions (VRs) in which the ABCD relation-
ship should hold to evaluate a residual nonclosure metric C/, defined as

C/ = 1 −
κNA, pred.

NA
= 1 − κNBNC

NAND
. (4)

As illustrated in Fig. 3, the region VR I (VR II) is defined as approximately the combination of
the nominal BD (CD) region, and thus spans the full SNN,2 (SNN,1) range. The ABCD subregions
of VR I (VR II) are defined by bisecting VR I (VR II) on the SNN,1 (SNN,2) axis while keeping the
nominal boundary on SNN,2 (SNN,1) constant. The region VR III comprises the D region and
is bisected on both SNN axes to create the ABCD subregions. In order to address potential
dependence of C/ on the location of the ABCD bin boundaries, the boundaries of each VR (and
its ABCD subregions) are moved in steps towards the nominal ABCD bin boundaries and C/
is calculated at each step as described in Ref. [17]. The Ni counts used in each calculation
are taken from the data after subtraction of non-tt background according to simulation. Only
those ABCD subregions with an expected signal fraction less than 5% are considered in the
nonclosure study. The systematic uncertainty associated with the residual nonclosure in data
(data-based nonclosure systematic uncertainty) for a given search channel, signal model, and
ABCD bin boundary is taken as the largest deviation of C/ from unity from all three VR scans for
the lowest Njets category. Categories at higher Njets do not have a sufficient number of steps in
the procedure passing the 5% signal fraction requirement to provide an uncertainty estimate.
Therefore, the same uncertainty is used for all Njets categories. Values of this uncertainty range
from 3 to 15%.

Second, to account for potential additional effects on the residual nonclosure in data at high
Njets, we use simulated tt + jets samples in which various aspects of tt + jets modeling are
varied including ISR and FSR, ME-PS matching, UE tune, color reconnection, JES, and JER. The
same process for calculating κ is applied to these varied tt + jets samples and any difference
in κ between the nominal and varied samples is taken as a systematic uncertainty for cases
in which the change in κ exceeds the statistical uncertainty summed in quadrature with the
residual nonclosure systematic uncertainty described above; the only modeling variation for
which κ meets this requirement is that related to FSR. This uncertainty has a typical size of 10–
20% on the tt + jets normalization, but can be as large as 96% for the highest Njets category in
the 0ℓ region. The statistical uncertainty in the nominal κ factor is also included as a systematic
uncertainty in the tt + jets prediction.

Figure 4 shows the maximum C/ in data for each Njets category across the VRs and ABCD bin
boundaries with expected signal fraction less than 5% for the RPV low-mass optimization. For
Njets categories in which no VR and ABCD bin boundaries satisfy this requirement, the statisti-
cal uncertainty in C/ for the boundaries listed in Table 2 is shown. Also shown are the deviations
from one of the simulation-based closure correction κ, the FSR systematic uncertainty, and the
total statistical and systematic uncertainty for the tt + jets prediction. In all cases, C/ is compara-
ble to the total systematic uncertainty. In addition, we observe that C/ is small even if κ is larger
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Figure 3: Illustrations of the three validation regions that are created by partitioning the SNN,1-
SNN,2 plane. VR I (VR II), shown in the upper (middle) row, is a division of the B and D (C
and D) regions. VR III (lower row) is a division of the D region. Each VR is divided into four
subregions (dA, dB, dC, dD) that are used to perform the validation of the nonclosure of the
SNN,1-SNN,2 plane. The subregion boundaries shown in the figure are the starting points of the
stepping procedure explained in the text.
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Figure 4: One minus the simulation-based closure correction κ (blue circle), the residual nonclo-
sure C/ in data (solid purple triangle), and the FSR systematic uncertainty (red circle) are shown
for each Njets category for the 0ℓ (upper), 1ℓ (middle), and 2ℓ (lower panel) channels. All values
correspond to the low-mass optimization for the RPV signal model. The value of C/ shown is
the maximum value of the stepping procedure described in the text. Note the data-based non-
closure systematic uncertainty is defined to be the nonclosure in the lowest Njets bin for each of
the channels. Open purple triangles show the statistical uncertainty in C/ in data for categories
in which all VR and ABCD boundaries have a signal fraction exceeding 5%. All data-based
nonclosure values are calculated after applying the simulation-based closure correction, such
that an observed nonclosure of zero signifies identical modeling of the SNN,1-SNN,2 correlation
in simulation and data.

than the typical size of the uncertainties, as seen in the figure for the 2ℓ channel, indicating
that the simulation models the data well for any residual SNN,1-SNN,2 correlations. Across all
channels and optimizations, the largest κ factor has a value of 1.887 and is found for the RPV 0ℓ
channel high-mass optimization, resulting in a value of only 8% for the data-based nonclosure
systematic uncertainty.

For minor background processes and signal, systematic uncertainties are estimated to account
for both physical mismodeling of events and detector effects. These include uncertainties in
JES and JER [75], PDFs, b and t tagging efficiencies and misidentification rates, lepton identi-
fication, trigger efficiencies, pileup, renormalization and factorization scales (µR, µF), the inte-
grated luminosity [20–22], and in the correction factor for the ECAL timing shift [25], referred
to as trigger prefiring. These uncertainties are applied to each of the analysis regions to al-
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low for adjustments in the normalization and shape of each of these processes. All systematic
uncertainties originating from the same source are correlated across all Njets and ABCD bins,
search channels, and processes. Minor background processes normalizations are assigned an
additional 20% uncertainty to account for discrepancies between LO and NLO cross section
calculations [76].

Table 3 shows the relative size of each systematic uncertainty in the expected event yield for the
background and signal processes across the three search channels for the RPV SUSY model and
the ABCD boundaries optimized for low mt̃ . The ranges shown for each systematic uncertainty
account for the difference in their value across Njets categories and ABCD regions.

Table 3: Magnitude of systematic uncertainties for the 0ℓ, 1ℓ, and 2ℓ channels based on the RPV-
trained NN and ABCD bin boundaries optimized for low mt̃ . Reported values are in units of %
and ranges correspond to the 16th and 84th percentile for the value of a systematic uncertainty
across all applicable analysis regions (ABCD regions and Njets categories). The maximum value
for a given systematic uncertainty across these regions is shown in parentheses. Other back-
grounds include the QCD multijet and minor background processes. The RPV signal model
used assumes mt̃ = 550 GeV. The systematic uncertainties based on the RPV-trained model are
representative of the values obtained for the stealth SYY-trained model.

Source of 0ℓ 1ℓ 2ℓ
uncertainty (%) tt Other RPV signal tt Other RPV signal tt Other RPV signal
PDF — <1 (1) <1 — <1 (1) <1 — <1 (2) <1
(µR, µF) scales — 1–8 (16) 0–1 (2) — 0–5 (13) 0–1 (2) — 0–7 (19) 0–1 (2)
FSR 1–3 (3) 1–14 (56) 1–12 (18) 0–1 (3) 1–12 (26) 1–7 (15) 0–6 (9) 2–21 (100) 1–9 (16)
ISR — 0–10 (17) 1–4 (5) — 0–8 (15) 1–4 (5) — 3–11 (17) 0–4 (5)
Pileup — 0–2 (12) 0–1 (3) — 0–1 (22) <1 (3) — 0–9 (26) 0–1 (9)
ABCD nonclosure 3 — — 5 — — 7 — —
κ stat. unc. 1–4 (7) — — 1–7 (8) — — 5–15 (19) — —
QCD transfer factor — 1–4 (16) — — <1 (1) — — <1 —
JES — 4–18 (100) 0–10 (27) — 1–18 (100) 1–14 (19) — 4–100 (100) 1–15 (25)
JER — 0–8 (23) 0–2 (4) — 0–5 (35) 0–1 (4) — 0–20 (45) 0–3 (9)
b tagging — 0–1 (7) 1–2 (3) — 0–1 (3) <1 — 0–1 (7) <1 (2)
t tagging — 26–33 (42) 26–31 (34) — — — — — —
Jet trigger — 0–1 (1) <1 (1) — — — — — —
Lepton ID — — — — 3–3 (4) 3–3 (3) — 5–6 (6) 5–5 (6)
Trigger prefiring — 0–2 (7) 0–2 (3) — 0–3 (6) 0–3 (4) — 0–3 (11) 0–2 (4)
Integrated lumi. — 1.6 1.6 — 1.6 1.6 — 1.6 1.6
Theor. cross section — 20 — — 20 — — 20 —

8 Results and interpretation
The fit results for the full Run 2 data with the signal strength fixed to zero (background-only fit)
are shown in Fig. 5 for the RPV signal model with ABCD boundaries optimized for low mt̃ . The
results for the stealth SYY model and the high-mass optimization are shown in Appendix A.
Ratios of numbers of observed data and predicted events as a function of Njets are shown in
the lower panel with error bars representing the systematic and statistical uncertainties. Over-
all, good agreement is observed between the data and the prediction; no excess of events is
observed.

The data are used to place 95% confidence level (CL) upper limits on the signal cross section
σ̃t t̃ for both the RPV and stealth SYY SUSY models according to the CLs criterion [77, 78] with
an LHC-style likelihood ratio [79] as the test statistic using the asymptotic approximation [80].
These results are determined using the CMS statistical analysis tool COMBINE [81] and assume
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Figure 5: The Njets distributions from the background-only fits to data. Fits are run with the
signal strength fixed to zero and all background process event yields are obtained from their fit
predictions. The signal distribution overlaid corresponds to the RPV model with mt̃ = 400 GeV.
The graphs in the upper, middle, and lower rows correspond to the 0ℓ, 1ℓ, and 2ℓ channels,
respectively. The four panels in each row show the Njets distributions for the A, B, C, and
D regions (left to right). The gray error band shows the combined statistical and systematic
uncertainty from the background-only fit distributions.
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100% branching fraction to the considered t̃ squark decay. The low-mass ABCD boundaries
are used for the RPV (stealth SYY) signal models with mt̃ < 625 (675)GeV, with the high-mass
boundaries used for higher mt̃ . Figures 6 and 7 show the expected and observed upper limit on
σ̃t t̃ for the RPV and stealth SYY models with mt̃ ranging from 300 to 1250 GeV for each lepton
channel separately and for all three channels combined, respectively. The theoretical cross
section is also shown along with its uncertainty. Based on the results from the combination of
all channels, t̃ squark masses up to 700 GeV are excluded for the RPV model and up to 930 GeV
for the stealth SYY model.

9 Summary
A search for the pair production of top squarks with decays to top quarks and six additional
gluons or light-flavor quarks via R-parity violating (RPV) or stealth SYY supersymmetric de-
cays is presented. The search is performed using proton-proton collision events at

√
s = 13 TeV,

corresponding to an integrated luminosity of 138 fb−1, collected by the CMS detector in 2016–
2018. Events are selected in three search channels, defined as having at least six jets and zero,
one, or two electrons or muons. No requirement is placed on the presence of missing transverse
momentum.

This analysis is an extension of a previous search for these signatures [16], which observed a
deviation with a local significance of 2.8 standard deviations for a top squark mass of 400 GeV
for the RPV model. The main improvements of this search are the addition of the zero- and
two-lepton channels as well as the inclusion of a novel, neural-network-based background es-
timation method referred to as ABCDisCoTEC [17]. The key feature of this new method is the
creation of two uncorrelated neural network variables that can be used with an ABCD-style
background estimation method. The backgrounds are estimated from a simultaneous binned
likelihood fit to all search channels in several categories of jet multiplicity, with the contribu-
tion from the main tt + jets background constrained via the ABCD relationship that encodes
the independence between the two neural network variables. This new background estimation
method, compared to that of Ref. [16], reduces the dependence of the analysis on uncertainties
related to the modeling of the jet multiplicity spectrum. With this alternate background estima-
tion technique, we achieve an improvement in signal sensitivity at low top squark mass. For
example, the expected upper limit on the production cross section improves by a factor of 1.53
for a top squark mass of 400 GeV for the RPV model. Overall, good agreement between the
data and the background prediction is observed, and the deviation observed previously is not
confirmed.

The results are interpreted using two top squark decay topologies that generate signatures with
low missing transverse momentum: the RPV and stealth SYY models. For the RPV model with
top squark decays to a top quark and neutralino, with the subsequent decay of the neutralino
to three light-flavored quarks, top squark masses up to 700 GeV are excluded at 95% confidence
level. Similarly, top squark masses of up to 930 GeV are excluded in the context of the stealth
SYY model where top squarks decay to a top quark, gluons, and a soft gravitino via a hidden
sector.
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Figure 6: The 95% CL upper limit on σ̃t t̃ for the RPV (left) and stealth SYY (right) SUSY signal
models as a function of mt̃ for the 0ℓ channel (upper), 1ℓ channel (middle), and 2ℓ channel
(lower), assuming 100% branching fraction to the considered t̃ squark decay. The median ex-
pected limit is shown in the dashed blue line, with the 68 and 95% intervals shown in light-blue
and yellow, respectively. The observed limit is shown in black. The vertical dashed line de-
notes the transition from the low- to high-mass optimization ABCD boundaries. Additionally,
the theoretical cross section is shown in red with its uncertainty in light brown.
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[49] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015)
159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[50] M. Czakon and A. Mitov, “Top++: A program for the calculation of the top-pair
cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930,
doi:10.1016/j.cpc.2014.06.021, arXiv:1112.5675.

[51] P. Kant et al., “HATHOR for single top-quark production: Updated predictions and
uncertainty estimates for single top-quark production in hadronic collisions”, Comput.
Phys. Commun. 191 (2015) 74, doi:10.1016/j.cpc.2015.02.001,
arXiv:1406.4403.

[52] M. Aliev et al., “HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR”,
Comput. Phys. Commun. 182 (2011) 1034, doi:10.1016/j.cpc.2010.12.040,
arXiv:1007.1327.

[53] T. Gehrmann et al., “W+W− production at hadron colliders in next to next to leading
order QCD”, Phys. Rev. Lett. 113 (2014) 212001,
doi:10.1103/PhysRevLett.113.212001, arXiv:1408.5243.

[54] J. M. Campbell and R. K. Ellis, “An update on vector boson pair production at hadron
colliders”, Phys. Rev. D 60 (1999) 113006, doi:10.1103/PhysRevD.60.113006,
arXiv:hep-ph/9905386.

[55] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”,
JHEP 07 (2011) 018, doi:10.1007/JHEP07(2011)018, arXiv:1105.0020.

[56] Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton
production in FEWZ”, Phys. Rev. D 86 (2012) 094034,
doi:10.1103/PhysRevD.86.094034, arXiv:1208.5967.

[57] C. Borschensky et al., “Squark and gluino production cross sections in pp collisions at√
s = 13, 14, 33 and 100 TeV”, Eur. Phys. J. C 74 (2014) 3174,

doi:10.1140/epjc/s10052-014-3174-y, arXiv:1407.5066.

[58] W. Beenakker et al., “NNLL-fast: predictions for coloured supersymmetric particle
production at the LHC with threshold and Coulomb resummation”, JHEP 12 (2016) 133,
doi:10.1007/JHEP12(2016)133, arXiv:1607.07741.

http://dx.doi.org/10.1088/1126-6708/2007/09/126
http://www.arXiv.org/abs/0707.3088
http://dx.doi.org/10.1140/epjc/s10052-011-1547-z
http://www.arXiv.org/abs/1009.2450
http://dx.doi.org/10.1088/1126-6708/2009/09/111
http://www.arXiv.org/abs/0907.4076
http://dx.doi.org/10.1007/JHEP02(2010)011
http://dx.doi.org/10.1007/JHEP07(2014)079
http://www.arXiv.org/abs/1405.0301
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://www.arXiv.org/abs/1410.3012
http://dx.doi.org/10.1016/j.cpc.2014.06.021
http://www.arXiv.org/abs/1112.5675
http://dx.doi.org/10.1016/j.cpc.2015.02.001
http://www.arXiv.org/abs/1406.4403
http://dx.doi.org/10.1016/j.cpc.2010.12.040
http://www.arXiv.org/abs/1007.1327
http://dx.doi.org/10.1103/PhysRevLett.113.212001
http://www.arXiv.org/abs/1408.5243
http://dx.doi.org/10.1103/PhysRevD.60.113006
http://www.arXiv.org/abs/hep-ph/9905386
http://dx.doi.org/10.1007/JHEP07(2011)018
http://www.arXiv.org/abs/1105.0020
http://dx.doi.org/10.1103/PhysRevD.86.094034
http://www.arXiv.org/abs/1208.5967
http://dx.doi.org/10.1140/epjc/s10052-014-3174-y
http://www.arXiv.org/abs/1407.5066
http://dx.doi.org/10.1007/JHEP12(2016)133
http://www.arXiv.org/abs/1607.07741


24

[59] W. Beenakker et al., “NNLL resummation for stop pair-production at the LHC”, JHEP
05 (2016) 153, doi:10.1007/JHEP05(2016)153, arXiv:1601.02954.

[60] W. Beenakker et al., “Supersymmetric top and bottom squark production at hadron
colliders”, JHEP 08 (2010) 098, doi:10.1007/JHEP08(2010)098,
arXiv:1006.4771.

[61] W. Beenakker et al., “Stop production at hadron colliders”, Nucl. Phys. B 515 (1998) 3,
doi:10.1016/S0550-3213(98)00014-5, arXiv:hep-ph/9710451.

[62] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from
underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4,
doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.

[63] CMS Collaboration, “CMS PYTHIA 8 colour reconnection tunes based on
underlying-event data”, Eur. Phys. J. C 83 (2023) 587,
doi:10.1140/epjc/s10052-023-11630-8, arXiv:2205.02905.

[64] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur.
Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5,
arXiv:1706.00428.

[65] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506
(2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[66] CMS Collaboration, “Identification of heavy, energetic, hadronically decaying particles
using machine-learning techniques”, JINST 15 (2020) P06005,
doi:10.1088/1748-0221/15/06/P06005, arXiv:2004.08262.

[67] D0 Collaboration, “Search for high mass top quark production in pp̄ collisions at√
s = 1.8 TeV”, Phys. Rev. Lett. 74 (1995) 2422,

doi:10.1103/PhysRevLett.74.2422, arXiv:hep-ex/9411001.
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A Additional Figures
The background-only fit distributions shown in the main body of this work show the results
of the analysis for the RPV signal model using the low-mass optimization. Figures A.1, A.2,
and A.3 present the background-only fit results for the stealth SYY analysis using the low-mass
optimization as well as the background-only fits for both signal topologies using the high-mass
optimization.
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Figure A.1: The Njets distributions from the background-only fits to data. Fits are run with the
signal strength fixed to zero and all background process event yields are obtained from their
fit predictions. The signal distribution overlaid corresponds to the stealth SYY model with
mt̃ = 400 GeV. The graphs in the upper, middle, and lower rows correspond to the 0ℓ, 1ℓ,
and 2ℓ channels, respectively. The four panels in each row show the Njets distributions for the
A, B, C, and D regions (left to right). The gray error band shows the combined statistical and
systematic uncertainty from the background-only fit distributions.
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Figure A.2: The Njets distributions from the background-only fits to data. Fits are run with the
signal strength fixed to zero and all background process event yields are obtained from their fit
predictions. The signal distribution overlaid corresponds to the RPV model with mt̃ = 800 GeV.
The graphs in the upper, middle, and lower rows correspond to the 0ℓ, 1ℓ, and 2ℓ channels,
respectively. The four panels in each row show the Njets distributions for the A, B, C, and
D regions (left to right). The gray error band shows the combined statistical and systematic
uncertainty from the background-only fit distributions.
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Figure A.3: The Njets distributions from the background-only fits to data. Fits are run with the
signal strength fixed to zero and all background process event yields are obtained from their
fit predictions. The signal distribution overlaid corresponds to the stealth SYY model with
mt̃ = 800 GeV. The graphs in the upper, middle, and lower rows correspond to the 0ℓ, 1ℓ,
and 2ℓ channels, respectively. The four panels in each row show the Njets distributions for the
A, B, C, and D regions (left to right). The gray error band shows the combined statistical and
systematic uncertainty from the background-only fit distributions.
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S. Keshri , D. Laroze , S. Thakur

Beihang University, Beijing, China
T. Cheng , T. Javaid , L. Yuan

Department of Physics, Tsinghua University, Beijing, China
Z. Hu , Z. Liang, J. Liu

Institute of High Energy Physics, Beijing, China
G.M. Chen9 , H.S. Chen9 , M. Chen9 , F. Iemmi , C.H. Jiang, A. Kapoor10 , H. Liao ,
Z.-A. Liu11 , R. Sharma12 , J.N. Song11, J. Tao , C. Wang9, J. Wang , Z. Wang9,
H. Zhang , J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos , Y. Ban , A. Carvalho Antunes De Oliveira , S. Deng , B. Guo, C. Jiang ,
A. Levin , C. Li , Q. Li , Y. Mao, S. Qian, S.J. Qian , X. Qin, X. Sun , D. Wang , H. Yang,
Y. Zhao, C. Zhou

Guangdong Provincial Key Laboratory of Nuclear Science and Guangdong-Hong Kong
Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, China
S. Yang

Sun Yat-Sen University, Guangzhou, China
Z. You

University of Science and Technology of China, Hefei, China
K. Jaffel , N. Lu

Nanjing Normal University, Nanjing, China
G. Bauer13, B. Li14, H. Wang , K. Yi15 , J. Zhang

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam
Application (MOE) - Fudan University, Shanghai, China
Y. Li

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin , C. Lu , M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila , D.A. Barbosa Trujillo , A. Cabrera , C. Florez , J. Fraga , J.A. Reyes Vega

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo , C. Rendón , M. Rodriguez , A.A. Ruales Barbosa , J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture, Split, Croatia
D. Giljanovic , N. Godinovic , D. Lelas , A. Sculac

University of Split, Faculty of Science, Split, Croatia
M. Kovac , A. Petkovic , T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
P. Bargassa , V. Brigljevic , B.K. Chitroda , D. Ferencek , K. Jakovcic, A. Starodumov16 ,
T. Susa

https://orcid.org/0000-0003-2899-701X
https://orcid.org/0000-0002-8511-6883
https://orcid.org/0000-0003-3635-0646
https://orcid.org/0000-0002-0420-9480
https://orcid.org/0009-0003-8899-1514
https://orcid.org/0000-0002-0104-2574
https://orcid.org/0000-0003-3280-2350
https://orcid.org/0000-0002-6487-8096
https://orcid.org/0000-0002-1647-0360
https://orcid.org/0000-0003-2954-9315
https://orcid.org/0009-0007-2757-4054
https://orcid.org/0000-0002-6719-5397
https://orcid.org/0000-0001-8209-4343
https://orcid.org/0000-0002-2629-5420
https://orcid.org/0000-0001-8672-8227
https://orcid.org/0000-0003-0489-9669
https://orcid.org/0000-0001-5911-4051
https://orcid.org/0000-0002-1844-1504
https://orcid.org/0000-0002-0124-6999
https://orcid.org/0000-0002-2896-1386
https://orcid.org/0000-0003-1181-1426
https://orcid.org/0000-0003-2006-3490
https://orcid.org/0000-0002-3103-1083
https://orcid.org/0000-0001-8843-5209
https://orcid.org/0000-0001-8365-7726
https://orcid.org/0000-0002-8953-1232
https://orcid.org/0000-0002-1912-0374
https://orcid.org/0000-0003-2340-836X
https://orcid.org/0000-0002-2999-1843
https://orcid.org/0009-0008-6986-388X
https://orcid.org/0000-0001-9565-4186
https://orcid.org/0000-0002-6339-8154
https://orcid.org/0000-0002-8290-0517
https://orcid.org/0000-0002-0630-481X
https://orcid.org/0000-0003-4409-4574
https://orcid.org/0000-0002-9013-1199
https://orcid.org/0000-0001-5904-7258
https://orcid.org/0000-0002-2075-8631
https://orcid.org/0000-0001-8324-3291
https://orcid.org/0000-0001-7419-4248
https://orcid.org/0000-0002-2631-6770
https://orcid.org/0000-0002-3027-0752
https://orcid.org/0000-0002-2459-1824
https://orcid.org/0000-0003-3314-2534
https://orcid.org/0000-0003-1812-3474
https://orcid.org/0000-0002-7421-0313
https://orcid.org/0000-0001-9628-9336
https://orcid.org/0000-0002-5610-2693
https://orcid.org/0000-0001-6607-4238
https://orcid.org/0000-0002-0486-6296
https://orcid.org/0000-0002-3222-0249
https://orcid.org/0000-0002-5137-8543
https://orcid.org/0000-0003-3885-6608
https://orcid.org/0009-0006-3371-9160
https://orcid.org/0000-0002-9480-213X
https://orcid.org/0000-0003-0826-0803
https://orcid.org/0000-0002-3306-0363
https://orcid.org/0009-0005-6792-6881
https://orcid.org/0000-0002-4674-9450
https://orcid.org/0000-0002-8269-5760
https://orcid.org/0000-0001-7938-7559
https://orcid.org/0000-0002-2391-4599
https://orcid.org/0009-0005-9565-6399
https://orcid.org/0000-0002-9578-4105
https://orcid.org/0000-0001-8612-3332
https://orcid.org/0000-0001-5847-0062
https://orcid.org/0000-0002-0220-8441
https://orcid.org/0000-0001-9116-1202
https://orcid.org/0000-0001-9570-9255
https://orcid.org/0000-0001-7430-2552


33

University of Cyprus, Nicosia, Cyprus
A. Attikis , K. Christoforou , A. Hadjiagapiou, C. Leonidou , J. Mousa , C. Nicolaou,
L. Paizanos, F. Ptochos , P.A. Razis , H. Rykaczewski, H. Saka , A. Stepennov

Charles University, Prague, Czech Republic
M. Finger , M. Finger Jr. , A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim17,18 , S. Elgammal19, A. Ellithi Kamel20

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M. Abdullah Al-Mashad , M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
K. Ehataht , M. Kadastik, T. Lange , C. Nielsen , J. Pata , M. Raidal , L. Tani ,
C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
K. Osterberg , M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
N. Bin Norjoharuddeen , E. Brücken , F. Garcia , P. Inkaew , K.T.S. Kallonen ,
T. Lampén , K. Lassila-Perini , S. Lehti , T. Lindén , M. Myllymäki , M.m. Rantanen ,
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Ü. Sözbilira , A. Stamerraa,b , D. Troianoa,b , R. Vendittia,b , P. Verwilligena ,
A. Zazaa,b

INFN Sezione di Bolognaa, Università di Bolognab, Bologna, Italy
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P. Assiourasa , G. Barbaglia , G. Bardellia,b , B. Camaiania,b , A. Cassesea ,
R. Ceccarellia , V. Ciullia,b , C. Civininia , R. D’Alessandroa,b , E. Focardia,b ,
T. Kelloa , G. Latinoa,b , P. Lenzia,b , M. Lizzoa , M. Meschinia , S. Paolettia ,
A. Papanastassioua,b, G. Sguazzonia , L. Viliania

https://orcid.org/0000-0002-5892-3743
https://orcid.org/0000-0001-7515-3907
https://orcid.org/0000-0002-9344-6655
https://orcid.org/0000-0002-6636-5331
https://orcid.org/0000-0002-2121-3932
https://orcid.org/0000-0001-9367-8061
https://orcid.org/0000-0002-0994-7212
https://orcid.org/0000-0002-7954-7898
https://orcid.org/0000-0002-0688-923X
https://orcid.org/0000-0002-5437-5217
https://orcid.org/0000-0002-8419-0758
https://orcid.org/0009-0001-5662-132X
https://orcid.org/0000-0003-1163-6955
https://orcid.org/0009-0004-5749-677X
https://orcid.org/0000-0001-6850-7666
https://orcid.org/0000-0003-2565-1718
https://orcid.org/0000-0002-7953-4683
https://orcid.org/0000-0003-1260-973X
https://orcid.org/0009-0004-0928-7922
https://orcid.org/0000-0003-1770-5309
https://orcid.org/0000-0002-4723-0968
https://orcid.org/0000-0002-2405-915X
https://orcid.org/0000-0002-3815-5222
https://orcid.org/0000-0003-3136-1653
https://orcid.org/0000-0002-9566-2490
https://orcid.org/0000-0001-6545-0350
https://orcid.org/0000-0002-3744-5332
https://orcid.org/0000-0002-6407-6974
https://orcid.org/0000-0002-1989-6703
https://orcid.org/0000-0002-0870-8420
https://orcid.org/0000-0003-0638-4378
https://orcid.org/0000-0002-7716-4981
https://orcid.org/0000-0002-8749-4933
https://orcid.org/0000-0001-6871-3937
https://orcid.org/0009-0000-1318-8266
https://orcid.org/0009-0007-8224-4664
https://orcid.org/0009-0001-2997-7523
https://orcid.org/0000-0003-3294-2345
https://orcid.org/0000-0002-5145-3777
https://orcid.org/0000-0002-4446-0258
https://orcid.org/0009-0006-1708-8119
https://orcid.org/0000-0002-6604-1011
https://orcid.org/0000-0001-9440-7028
https://orcid.org/0000-0002-8073-5140
https://orcid.org/0000-0001-6886-0726
https://orcid.org/0009-0002-6214-5160
https://orcid.org/0000-0001-5741-3357
https://orcid.org/0000-0001-7327-1870
https://orcid.org/0000-0001-8367-6257
https://orcid.org/0000-0002-1425-076X
https://orcid.org/0000-0001-6501-4137
https://orcid.org/0000-0001-8179-8963
https://orcid.org/0000-0002-2212-5715
https://orcid.org/0000-0001-9810-7743
https://orcid.org/0000-0001-6131-5987
https://orcid.org/0000-0002-9034-598X
https://orcid.org/0000-0002-2051-9331
https://orcid.org/0000-0002-5754-0388
https://orcid.org/0000-0001-8727-7544
https://orcid.org/0000-0002-0711-6319
https://orcid.org/0000-0001-6153-3044
https://orcid.org/0000-0002-9361-3142
https://orcid.org/0000-0002-0625-6811
https://orcid.org/0000-0001-8240-1913
https://orcid.org/0000-0001-7069-0252
https://orcid.org/0009-0002-1824-4145
https://orcid.org/0000-0002-9470-1320
https://orcid.org/0000-0003-2546-5341
https://orcid.org/0000-0002-2357-7043
https://orcid.org/0000-0001-5391-7689
https://orcid.org/0000-0002-8431-3922
https://orcid.org/0000-0002-3198-3025
https://orcid.org/0000-0002-9082-5924
https://orcid.org/0000-0002-9938-2680
https://orcid.org/0000-0003-1089-6317
https://orcid.org/0000-0003-3279-6114
https://orcid.org/0000-0003-1291-4005
https://orcid.org/0000-0001-5460-2638
https://orcid.org/0000-0002-1094-5038
https://orcid.org/0000-0002-7165-1017
https://orcid.org/0000-0001-7912-4062
https://orcid.org/0000-0002-8985-4891
https://orcid.org/0000-0002-1924-983X
https://orcid.org/0000-0001-6833-3758
https://orcid.org/0000-0003-1434-1968
https://orcid.org/0000-0001-7236-2025
https://orcid.org/0000-0001-6925-8649
https://orcid.org/0000-0002-9285-8631
https://orcid.org/0000-0002-0969-7284
https://orcid.org/0000-0003-4499-7562
https://orcid.org/0000-0002-3753-3068
https://orcid.org/0000-0002-0835-9574
https://orcid.org/0000-0003-4485-1897
https://orcid.org/0000-0003-2527-0456
https://orcid.org/0000-0002-0326-7515
https://orcid.org/0000-0003-2510-5039
https://orcid.org/0000-0002-8614-0420
https://orcid.org/0000-0003-0780-8785
https://orcid.org/0000-0002-8446-9660
https://orcid.org/0000-0003-2256-4117
https://orcid.org/0000-0002-2926-2691
https://orcid.org/0000-0002-6368-7220
https://orcid.org/0000-0003-3539-4313
https://orcid.org/0000-0001-5998-3070
https://orcid.org/0000-0002-6013-8293
https://orcid.org/0000-0003-3249-9208
https://orcid.org/0000-0003-4033-4956
https://orcid.org/0000-0002-8932-0283
https://orcid.org/0000-0002-1233-8100
https://orcid.org/0000-0002-6377-800X
https://orcid.org/0000-0001-7961-4889
https://orcid.org/0009-0005-7331-1488
https://orcid.org/0000-0002-7996-7139
https://orcid.org/0000-0001-6253-8656
https://orcid.org/0000-0002-5973-1305
https://orcid.org/0000-0001-6776-285X
https://orcid.org/0000-0002-9746-4842
https://orcid.org/0000-0002-3528-4125
https://orcid.org/0000-0001-9919-0569
https://orcid.org/0000-0002-9964-015X
https://orcid.org/0000-0001-6246-6787
https://orcid.org/0000-0002-5071-5501
https://orcid.org/0000-0002-5152-9006
https://orcid.org/0000-0002-1738-8676
https://orcid.org/0000-0002-4662-3305
https://orcid.org/0000-0002-6396-622X
https://orcid.org/0000-0003-3010-4516
https://orcid.org/0000-0003-3232-9380
https://orcid.org/0000-0003-1947-3396
https://orcid.org/0000-0002-4952-3799
https://orcid.org/0000-0001-7997-0306
https://orcid.org/0000-0002-3763-5267
https://orcid.org/0009-0004-5528-3914
https://orcid.org/0000-0002-4098-3502
https://orcid.org/0000-0002-6927-8807
https://orcid.org/0000-0001-7297-2624
https://orcid.org/0000-0002-9161-3990
https://orcid.org/0000-0003-3592-9509
https://orcid.org/0000-0002-0791-3350
https://orcid.org/0000-0002-1909-6343


37

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi , S. Bianco , S. Meola51 , D. Piccolo

INFN Sezione di Genovaa, Università di Genovab, Genova, Italy
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J. Puerta Pelayo , I. Redondo , J. Sastre , J. Vazquez Escobar

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologı́as Espaciales de
Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez , J. Cuevas , J. Fernandez Menendez , S. Folgueras , I. Gonza-
lez Caballero , P. Leguina , E. Palencia Cortezon , J. Prado Pico , V. Rodrı́guez Bouza ,
A. Soto Rodrı́guez , A. Trapote , C. Vico Villalba , P. Vischia

Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
S. Blanco Fernández , I.J. Cabrillo , A. Calderon , J. Duarte Campderros , M. Fer-
nandez , G. Gomez , C. Lasaosa Garcı́a , R. Lopez Ruiz , C. Martinez Rivero ,
P. Martinez Ruiz del Arbol , F. Matorras , P. Matorras Cuevas , E. Navarrete Ramos ,
J. Piedra Gomez , L. Scodellaro , I. Vila , J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
B. Kailasapathy59 , D.D.C. Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna60 , K. Liyanage , N. Perera

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo , C. Amendola , E. Auffray , G. Auzinger , J. Baechler, D. Barney ,
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D. Zhang

California Institute of Technology, Pasadena, California, USA
S. Bhattacharya , A. Bornheim , O. Cerri, J. Mao , H.B. Newman , G. Reales Gutiérrez,
M. Spiropulu , J.R. Vlimant , C. Wang , S. Xie , R.Y. Zhu

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
J. Alison , S. An , P. Bryant , M. Cremonesi, V. Dutta , T. Ferguson , T.A. Gómez Es-
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53Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA
54Also at Lulea University of Technology, Lulea, Sweden
55Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
56Also at Institut de Physique des 2 Infinis de Lyon (IP2I ), Villeurbanne, France
57Also at Department of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, Bangi, Malaysia
58Also at Consejo Nacional de Ciencia y Tecnologı́a, Mexico City, Mexico
59Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
60Also at Saegis Campus, Nugegoda, Sri Lanka
61Also at National and Kapodistrian University of Athens, Athens, Greece
62Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
63Also at Universität Zürich, Zurich, Switzerland
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