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1 Introduction

The discovery of the Higgs boson [1] provided evidence that fermions and bosons acquire
their masses through the Brout-Englert-Higgs mechanism of electroweak (EW) spontaneous
symmetry breaking [2-4]. In this framework, vector boson scattering (VBS) processes play a
special role. This occurs because in the standard model (SM) the unitarity of the scattering
amplitude depends on a cancellation of diagrams involving the mediation of the Higgs
boson between longitudinally polarized vector bosons. As a result, the contribution of the
longitudinal polarization component to vector boson scattering is very small. Therefore, for
even small deviations from the SM couplings of the Higgs boson to the vector bosons, the
VBS cross section would diverge from the SM expectations with increasing center-of-mass
energy. The measurement of VBS processes thus provides an indirect probe of physics beyond
the SM (BSM), even for scenarios in which new resonances are not energetically accessible at
the LHC [5]. The theoretical calculation of the effects of different sources of deviations from
the SM is sensitive to the method chosen to “unitarize” the process at higher energies [6, 7].

At tree level, the topology commonly identified as VBS appears through purely EW
diagrams of order O‘IGEWa where apw = g%v /4w is the electroweak SU(2) coupling. However,
additional non-VBS electroweak diagrams in the same order also contribute, and the ensemble
of all indistinguishable contributions constitutes the electroweak WW production process.
For simplicity, we refer to this entire production mechanism at order a%w as “EW VBS” in
the rest of this article. Because it arises from higher-order electroweak interactions, EW VBS
generally leads to a small cross section. Along with these purely EW terms, experimental



Figure 1. Representative tree-level Feynman diagrams contributing to the process qq’ — 7, 0*v57,
¢ = e, j, leading to cross sections of order alyy (left) and adafy (right).

VBS signatures also include irreducible contributions that enter at order a%a%w, where agis
the strong coupling. These contributions are referred to as quantum chromodynamics (QCD)
irreducible contributions. Typical Feynman diagrams for these processes are shown in figure 1.

The ATLAS collaboration provided the first evidence of same-sign W pair (SSWW)
production via VBS in 2014 by studying final states with electrons and muons [8]. The
first observation, in the same final states, was presented by CMS in 2017 [9]. Among the
EW-mediated processes, SSWW EW VBS has the largest cross section ratio between the
EW and QCD production modes [10].

The study presented here of pp — WTWT + jets is based on data from proton-proton
collisions at /s = 13 TeV collected by the CMS experiment at the CERN LHC from 2016 to
2018 and corresponding to an integrated luminosity of 138 fb~!. We investigate a heretofore
unexplored final state characterized by the decay of one of the scattered W bosons into
a 7 lepton that subsequently decays into hadrons (hadronic 7 candidate, 7y,). The final
state thus consists of a charged light lepton £ = e, u, the corresponding neutrino vy, one 7y
candidate, the corresponding v, and two jets produced by the quarks recoiling from the
production of the W boson pair. Contributions to this final state could arise from BSM
scenarios that favor the 7 over light leptons. Examples of these scenarios are provided by the
SU(2); x SU(2);, x U(1) family models, denoted in the following as G(221) models, where
the first two families of quarks and leptons transform according to the SU(2); group and the
third family according to the SU(2); group [11-13]. In these frameworks, a moderate mixing
between the W and W’ gauge fields suppresses the W/-quark coupling while retaining a sizable
HWW’ coupling. In the context of the latest direct searches for T resonances performed by
CMS [14] and ATLAS [15], this setup is not excluded for mw = 3.0 TeV and can still yield
an enhancement of the pp — fvy7v,; + jets cross section.

The sensitivity to indirect BSM effects can be probed within the standard model effective
field theory framework [16, 17]. This theory is referred to in the literature as “SMEFT”,
and we adopt the formulation of ref. [17]. Assuming that new physics with energy scale
Apsm > Agm (where Agy is a characteristic energy value, such as the Higgs field vacuum
expectation value) induces only perturbative effects in EW VBS processes, the theory is
implemented by introducing the following effective Lagrangian:
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where the operators Og (Da)

are constructed with SM fields at some dimension D,,, and cs *’ are
the Wilson coefficients. In this way, the contribution Aggy to the total scattering amplitude

due to the EFT operators is given by:
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where the first summation runs over the interference terms between SM and one O,
operator, the second one over the quadratic contributions of the operators, and the last one

over interference between two different operators. The (’)&D), as well as the corresponding
C&Da), are classified according to their dimension D, to provide a first categorization of their

physics effects, as explained below.

A deviation from SM expectations in the observed data yields would result in non-zero
Wilson coefficient values for operators sensitive to such deviations. This effect would thus
provide guidance for characterizing BSM effects. Effective field theory interpretations of search
outcomes have previously been presented by the ATLAS and CMS Collaborations [18-28],
along with phenomenological reinterpretations of the electroweak VBS differential cross
section measurements [29]. Assuming that the new operators still respect lepton-number
conservation, those with odd dimensions are ruled out. As a consequence, in this study,
we investigate operators of dimension-6 (dim-6) and dimension-8 (dim-8), which induce
anomalous triple and quartic gauge couplings, modify boson-fermion couplings, and introduce
fermion contact interactions [30-32]. We refer to any contribution of dimension greater
than four as an EFT contribution. Specifically, the dim-6 operators are implemented in
the standard SMEFT framework via the Warsaw basis [17], while the dim-8 operators are
introduced using the Eboli basis [33].

In this paper, we introduce a machine-learning approach to identifying the single-7y, final
state in the SSWW VBS process and measuring the signal strength, defined as the ratio of the
observed signal yield to that predicted by the model, for both the EW contribution (with the
QCD contribution fixed) and for the combined EW+QCD combination of these processes (with
the ratio between the EW and QCD contributions fixed). The same approach is implemented
to develop models capable of discriminating possible EFT contributions from SM processes.

In the remainder of this paper, section 2 describes the CMS detector, section 3 presents
the methods for simulating events, and section 4 describes the particle reconstruction. The
selection of signal and control samples is described in section 5, along with the background
estimation, and in section 6 we discuss systematic uncertainties. The results of the mea-
surement are given in section 7, and of the EFT interpretation in section 8. We conclude
with a summary in section 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within this magnetic field volume are a silicon



pixel and silicon strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL),
and a brass-and-scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the coverage in pseudorapidity n provided by
the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded
in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in ref. [34].

The silicon tracker used in 2016 measured charged particles within the range |n| < 2.5.
For nonisolated particles of transverse momentum pp in the range 1 < pp < 10 GeV and
|n| < 1.4, the track resolutions were typically 1.5% in pr and 25-90 (45-150) um in the
transverse (longitudinal) impact parameter. For isolated particles with pp = 100 GeV emitted
at |n| < 1.4, the resolutions are approximately 2.8% in pr, and in impact parameter 10 ym
(transverse) and 30 ym (longitudinal) [35]. At the start of 2017, a new pixel detector was
installed [36]; the upgraded tracker measured particles up to |n| < 3.0 with typical resolutions
of 1.5% in pr and 20-75 um in the transverse impact parameter for nonisolated particles
of 1 < pr < 10GeV [37].

Events of interest are selected using a two-tiered trigger system [38]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz. The second level, known as the high-
level trigger, consists of a farm of processors running a version of the full event reconstruction
software, optimized for fast processing that reduces the event rate to around 1 kHz before
data storage.

3 Simulated samples

Monte Carlo (MC) simulation is used in the analysis for the design of the event selection,
evaluation of signal efficiencies, and estimation of some backgrounds. The EW VBS signal
samples are simulated at leading order (LO) with six EW and zero QCD vertices with the
MADGRAPH5__aMC@QNLO v2.6.5 generator [39], requiring a final state with fvy, v, pairs from
the decays of the two W bosons (figure 1, left). The MADGRAPH5__aMC@NLO generator is
also used to simulate the QCD-mediated SSWW process, which is generated at LO with up
to three additional partons in the matrix element calculations that have two QCD vertices at
the tree level (figure 1, right). The interference between the SSWW EW and QCD diagrams,
including the terms of order asa%w, contributes less than 4% to the inclusive cross section for
the EW signal over the phase space region of interest of the analysis and is therefore neglected.

A complete set of next-to-LO (NLO) QCD and EW corrections for the SSWW VBS
processes, described above in the leptonic decay channel for each W boson, have been
computed as a function of the invariant mass of the VBS jet system [40-42]. They reduce
the LO cross section of the EW SSWW process by 10-15%, with the correction increasing
in magnitude with increasing dilepton and dijet invariant masses. This type of correction
is applied only to the EW VBS process, and is not applied to the EFT modifications of
the EW VBS processes.

The effects of the EFT dim-6 and dim-8 operators are simulated with MADGRAPH5
aMC@NLO at LO for the EW VBS processes. We do not include them in the background



processes, as they would represent irrelevant contributions. For the dim-6 class, we introduce
five bosonic operators acting on the scattering of the W bosons (Qw, Qrw, Quwn, Quo,
Qnp, where the second subscript in Qg refers to the d’Alembertian that appears in the
operator), two fermionic operators acting on contact interactions between fermions (Ql(ll),
leq)), and four mixed operators acting on interactions between massive bosons and fermions
(Qg?, Qg;, Q%), defined in the Warsaw basis [17] via the SMEFTSIm [43, 44] package.
Some of the background processes of our study could be sensitive to the EFT dim-6 operators
under investigation. However, these EF'T background effects are better constrained in phase
spaces orthogonal to the one covered by this analysis, and do not represent significant non-SM
contributions. For the dim-8 category, we introduce nine operators modifying the interaction
between two scattering W bosons (Oso, Os1, Onmo, Onrts Omz, Oro, Or1, Ope defined in
the Eboli basis [30, 33]. In both cases, the effects of the new EFT operators are evaluated and
stored using the MADGRAPH5__aMC@NLO reweighting technique [45], and no LO-to-NLO
correction is imposed on their contribution.

The POWHEG v2 generator [46—48] is used to simulate, at NLO accuracy in QCD, the
following processes: production of tt pairs in which each t quark decays to a b quark and
a lepton pair (dileptonic tt); tW; Higgs boson production mediated by gluon-gluon and
vector-boson fusion; and diboson production.

Production of ttW, ttZ, ttv, triple vector boson, vector boson associated with a Higgs
boson, and Drell-Yan background events are simulated at NLO accuracy in QCD using the
MADGRAPH5__aMC@NLO generator. The tZq process is simulated at NLO in the four-flavor
scheme using MADGRAPH5__aMC@QNLO. We generally refer to ZZ, Z~, W, WZ, tribosons,
associated production of a quark-antiquark top pair with a ~, Z, or W boson, and tZq
processes as “others”. Higgs boson production via gluon-gluon fusion and vector-boson fusion,
as well as the production of a vector boson in association with a Higgs boson, are collectively
referred to as “opposite sign” (OS) since they, alongside DY, contribute to the final event
selection when one of the leptons has a misreconstructed charge. OS and DY contributions
are treated coherently in the statistical fits described in sections 7 and 8.

The NNPDF3.1 next-to-NLO [49] parton distribution functions (PDFs) are used in
the simulation of the background and signal samples. The generators used for signal and
background processes are interfaced with the PYTHIA 8.306 [50] program, with the CP5
tune [51], to model parton showering and hadronization.

Additional collisions in the same or adjacent bunch crossings (pileup) are included by
superimposing simulated minimum bias interactions onto the hard-scattering process, with a
multiplicity distribution matching the one that is observed in the data. Simulated events are
propagated through the full GEANT4-based simulation [52] of the CMS detector.

4 Event reconstruction

Events are selected for the signal measurement and the estimation of most of the backgrounds
that have passed a trigger requiring the presence of either: one muon with pt > 24 GeV
in 2016 and 2018 or pp > 27GeV in 2017; one electron with pp > 27GeV in 2016 or
pr > 32GeV in 2017 and 2018. Data are selected for the additional control samples used
for background estimation that were recorded with triggers requiring the presence of either



a jet with pp > 40 GeV or Hp > 350 GeV, where Hr is the scalar sum of the jet transverse
momenta in an event.

Particle candidates are processed with an optimized combination of all subdetector
information using the CMS particle-flow (PF) algorithm [53] that reconstructs and identifies
each individual particle in the event. The missing transverse momentum vector ﬁTmiss is defined
as the projection onto the plane perpendicular to the beam axis of the negative vector sum of
the momenta of all reconstructed PF objects in an event. Its magnitude is referred to as p%ﬁss.

Jets are reconstructed by clustering PF candidates using the anti-kt jet finding algo-
rithm [54, 55] with a distance parameter of 0.4. Jets are calibrated in the simulation, and
separately in data, accounting for energy deposits of neutral particles from pileup and any
nonlinear detector response. The effect of pileup is mitigated through a charged-hadron
subtraction technique [56] that removes the energy of charged hadrons not originating from
the primary vertex (PV) of the event. Corrections to jet energies to account for the detector
response are propagated to p%iss. Jets are required to have pp > 30GeV, |n| < 5, and to
meet jet quality criteria with measured efficiencies that are almost 100%, for both data
and simulated samples [57, 58].

The PV is taken to be the reconstructed vertex with the largest value of summed
physics-object p%, as described in section 9.4.1 of ref. [59].

A deep neural network-based tagger, DEEPJET [60-62], is used to identify jets stemming
from the hadronization of b quarks, utilizing information from the tracks, neutral particles,
and the secondary vertices within the jet. The efficiency and purity of the resulting “b jets”
are classified in terms of various working points. The analysis uses a medium working point
that correctly identifies b jets with an efficiency of about 70%, and a loose working point
with an efficiency of about 85%. The misidentification rates for gluon or light-flavor quark
jets for these two working points are 1.0% and 10%, respectivsely.

Electrons (muons) are reconstructed by associating a track reconstructed in the tracking
detectors with a cluster of energy in the ECAL (track in the muon system). The candidates
are required to originate from the PV, pass quality selection criteria, and be isolated from
other activity in the event. For this purpose we define a lepton relative isolation variable
I, based on the energy deposited on a cone AR = V(An)? 4+ (A¢)? = 0.3 (0.4) around
the electron (muon). Specifically, Irel = (Ech + Enn + Epn — 0.5 thU) /pr, where Eg, is the
transverse energy deposited by charged hadrons from the PV, E;, and Ey, are the transverse
energies of the neutral hadrons and photons, respectively, and pr is the electron or muon
transverse momentum. The term 0.5 ESHU accounts for the contribution of neutral particles
from pileup vertices, taken as half the energy of the charged particles from pileup vertices.

The quality criteria for the light lepton selection are based on the isolation from other
particles in the event, the impact parameter of the candidate with respect to the PV, and
the electromagnetic shower shape in the electron case. These are implemented by their
inclusion in multivariate discriminators. In this analysis we make use of both “loose” and
“tight” working points of these discriminators. The efficiency for loose (tight) electrons is
90 (80)% [63]. The corresponding efficiencies for muons are 99 (95)% [64].

For a loose electron (muon) we require pp > 15 GeV and || < 2.5 (2.4) and Ielfetron < 0.20
(Irmen < 0.40). For a tight electron (muon), the criteria are py > 30 GeV (35 GeV for electrons

rel

in 2017 and 2018), and [€lctron < (.08 ([muen < 0.15).
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Hadronically decaying 7 leptons 7y, are reconstructed from jets using the hadrons-plus-
strips algorithm [65], which combines 1 or 3 tracks with energy deposits in the calorimeters to
identify the 7 decay modes. Neutral pions are reconstructed as strips with dynamic size in the
(n, @) plane from reconstructed electrons and photons, where the strip size varies as a function
of the pr of the electron or photon candidate. To further distinguish genuine 71, decays from
jets originating from the hadronization of quarks or gluons, and from electrons or muons,
we make use of the DEEPTAU algorithm [66]. Information from all individual reconstructed
particles near the 7y, axis is combined with properties of the 71, candidate and the event to
provide separate discriminators against hadronic jets (D;), electrons (D), and muons (D).
Similarly to the selection of electrons and muons, we employ a loose set of criteria to select Ty,
with pr > 30 GeV, || < 2.3, and satisfying D;, D, D,, working points for which the genuine
71, identification efficiencies are 70, 98, and 99.5%, respectively. We also make use of a working
point with a tighter D; threshold, for which the identification efficiency for genuine 7y, is 50%.

5 Analysis strategy and background estimation

The analysis targets the EW VBS production of same-sign WW, with one of the W bosons
decaying to a 7 lepton and the other into a p or an e, in association with two jets originating
from the scattered incoming partons. Events are first selected by requiring one electron or
muon, one 7y candidate, in each case satisfying the tight identification criteria, no additional
loose leptons (e, u, or 7y, candidates), and at least two jets with a pseudorapidity separation
|An| > 2.5. Among all the possible jet pairs that satisfy the latter requirement, the pair
with the highest invariant mass my; is chosen. We further define the signal region (SR) and
several disjoint control regions (CRs) to estimate and validate the background predictions,
as specified in the following paragraphs.

The SR is designed to enhance the yield of the EW VBS signal while minimizing that
of the background. Events with a same-sign ¢7, pair, p%iss > 50 GeV, and m;; > 500 GeV
are selected. In this region, almost 95% of the background events are contain nonprompt
lepton candidates, which arise from jets misreconstructed as e, u, or 7y, including genuine
leptons from the decays of hadrons within jets. About 2% of background events arise from
Z/v*+ jets and 1% from dileptonic tt production. Including both the er, and um, channels,
the SR comprises a total of 1047 observed events, with an expected 30 EW SSWW VBS
events, 3 QCD-mediated SSWW VBS events, and 998 background events.

Nonprompt leptons are produced mainly by QCD-mediated multijet, associated W + jets,
and hadronic and semileptonic tt production. They are estimated from data CRs by the
“pass-fail” method described in detail in ref. [67]. This method estimates the probability that
a nonprompt lepton passes the tight selection criteria by using a region depleted of prompt
leptons to determine transfer factors, functions of their pp and 7. These are then used to
calculate the nonprompt contributions in the main SRs and CRs, applying them to auxiliary
regions defined as the SRs and main CRs, but requiring that at least one of the light lepton
and 7y pass the loose selection, while failing the tight one.

For this background source, we define a “QCD-enriched” CR and a “nonprompt” validation
region (VR). To define both the CR and the VR, the transverse mass mr (£, %) of the
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Figure 2. Distributions in the invariant mass of the dijet system for the data and the pre-fit
background prediction for the (left) er, and (right) pm, nonprompt VRs. The stacked filled histograms
show the background components, with the overflow count included in the last bin. The expectation for
the EW SSWW signal is shown by the dashed red line. The hatched error band shows the bin-by-bin
statistical uncertainty. The lower panels show the ratio of data to the total background prediction,
with statistical uncertainties indicated by error bars and shading, respectively. In all the panels, the
vertical bars represent the statistical uncertainty assigned to the observed number of events.
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system comprising the light lepton and p7*** is introduced as follows:

\/ 2 pf mlss

where A¢ is the azimuthal separation between the lepton momentum vector and p

mlSS

— cos Ag), (5.1)
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The
QCD-enriched CR is used to perform the first step of the nonprompt-lepton background
estimations; it contains events with only one loosely identified lepton (e, y, 71,), PR < 50 GeV,
and my (¢, pmlbs) < 50GeV selected from data collected with a jet-based trigger. The
nonprompt VR serves to validate the yield estimate from the pass-fail method; it contains
events with an SS ¢}, pair and p2® < 50GeV passing the same lepton-based triggers
mentioned in section 4. Lepton candidates in this VR arise mainly from W + jets and QCD
multijet production. The orthogonality of the QCD-enriched CR and nonprompt VR is
ensured by the fact that the triggers used to define them do not overlap. The data and
estimated background my; distributions are compared in the nonprompt VRs for the electron
and muon final states in figure 2. The background yields are evaluated before (“pre-fit”) the
maximum likelihood (ML) fit introduced at the end of this section. The plots show that
the data generally agree with the prediction within uncertainties.

Finally, we define tt and OS/DY CRs to constrain the MC simulations of these background
sources. Events with an OS ¢7}, pair and no loose b-tagged jets are selected for the OS/DY
CR; events with an OS /7}, pair, at least one “medium” b-tagged jet, and p2'* > 50 GeV
are selected for the tt CR. Both the tt and OS/DY CR are included in the simultaneous
ML fit along with the SR. The normalization of the dileptonic tt is allowed to freely float.
For the OS+DY background, we apply a normalization uncertainty correlated between the
0OS/DY CR and the SR, as described in section 6. For the tt normalization, the post-fit



1T¢ 1Ty, >=2 jets

Region noL £/r,  with |Ag| > 2.5 SS 4,1, PSS >50GeV  Additional requirements
SR v v v v mj;j >500 GeV
nonprompt VR v v v X

tt CR v v X v b-tagged jet (“medium”)
0S/DY CR v v X v b-tagged jet veto (“loose”)

Table 1. Definitions of the SR, CRs, and VR defined for this analysis. The v' symbol indicates that
the requirement described in the column heading is applied in that region, whereas the x symbol
means that the opposite selection is applied. The symbols T and L refer to the tight and loose selection
rules, respectively. The SR and three CRs (nonprompt, tt, OS) are selected from an inclusive lepton
trigger.

results agree with the pre-fit ones, as the observed value for the tt normalization parameter
is 1.01 £ 0.04. A summary of the analysis phase space with the definitions of the SR and
CRs is given in table 1, with the exclusion of the QCD-enriched CR.

Because of the large background and complex signal topology, sets of significant features
to separate signals and backgrounds are combined in three machine-learning discriminators,
each targeting a different signal. The discriminators are the outputs of feed-forward deep
neural networks (DNNs). The three DNN models are devised to separate the SM EW VBS
(SM DNN), EFT dim-6 (dim-6 DNN), and EFT dim-8 (dim-8 DNN) from the SM background
processes. In particular, in order to optimize the range of sensitivity of each of the EFT
DNN models, we use a balanced mixture (i.e., an equal combination) of contributions from
different EFT operators, which include both linear and quadratic terms, as the signal sample.
This allows us to avoid the complexities associated with the use of several single-operator
models, while preserving discrimination power across the various operators to which this
analysis is mostly sensitive. For the first EFT DNN model the signal is represented by a
mixture of EFT linear and quadratic contributions weighted with unity values for cyyw and
cw . For the second model a mixture of linear and quadratic contributions from all the dim-8
EFT operators included in the study is considered, with the corresponding Wilson coefficient
values approximately equal to the 95% confidence level (CL) limits obtained performing a
statistical fit with m.; (defined in eq. (5.3) below) with the strategy outlined in section 8. In
both cases, the SM EW VBS contribution is considered part of the background sample. The
optimized models consist of 1, 2, and 4 hidden layers. Adam Optimizer [68], early stopping,
dropout, and L2 regularization [69] techniques are utilized to avoid the overfitting effect,
consisting of excessive adaptation to training data of the DNN model.

The sets of input variables for the DNNs, detailed in table 2, are each constructed with
a dedicated optimization that includes some quantities introduced to exploit the particular
kinematical properties of the EW VBS SSWW reaction [70]. The agreement of the input
variables used to train the DNN models has been thoroughly checked in the CRs introduced
at the beginning of this section. First, there are the transverse masses

2
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The variable myt is the transverse mass of the 7¢ system with p%ﬁss. For the second quantity,

Mo1, the 7, £ momenta, and piiss are treated as if coming from a system with a null invariant
mass when calculating the transverse mass of the three objects. These two variables are a
proxy for the energy of the scattering W boson pair, as well as for the angular distribution
of the decay objects coming from that pair. With these quantities it is possible to access
direct information on the process of interest for this study, more complete than the invariant
mass of the VBS jet pair and the pt of the leptons. In this way, it is possible to enhance the
discrimination of the SSWW VBS signal processes against the background, especially when
investigating the sensitivity to EFT contributions, as shown for m.; in figure 3. The three
transverse masses introduced in egs. (5.1), (5.2), and (5.3) are among the most important
features for all of the DNNs.

Furthermore, the transverse masses mt(7y, ™) and mr (€+7y, pf®), defined similarly
to m (€, %) in eq. (5.1), are introduced. Next, we define the event Zeppenfeld variable [71]:

- |77j1+nj2 ’ _ ‘ﬂjﬁm‘z |
2 2

Lne
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1777'}1

Zevent =

(5.4)

introduced to exploit the centrality of the leptons in the EW VBS processes with respect to
the scattered VBS jets j1, jo. Finally we add the component p!ﬁllj of the £ or 7, momentum

p1 perpendicular to the momentum p; of VBS jet j:

rel __ ‘ﬁl X ﬁj‘

T,1j 5 (5.5)
This variable evaluates how close a lepton is to the flight direction of a jet. For EW VBS
processes, this quantity is expected to be distributed towards values larger than for the
other processes, since the light lepton and the 71, produced by the scattered W bosons are
far from the VBS jets. The pre-fit mo; distributions in the SRs for the electron and muon
final states are shown in figure 3.

For the measurement of the SM VBS processes under investigation, the statistical analysis
is implemented with an ML fit to extract the signal strength taking the asymptotic limit of
Wilks’s theorem [72] to infer the test statistic’s dependency on the signal strength. The ML
fit is implemented with the CMS statistical analysis tool COMBINE [73], which is based on the
RoOOFIT [74] and ROOSTATS [75] frameworks. To validate the results obtained by relying on
the asymptotic limit, we perform the same measurement by generating pseudo-experiments
for the signal and the background, taking into account their statistical fluctuations. The
outcomes from the pseudo-experiments are consistent with the ones returned by applying
Wilks’s theorem, and in the following, the latter are presented. Data yields in both SRs
and CRs are incorporated in the likelihood via Poisson probability density functions. The
inputs to the fit are the distributions in the DNN output of the data, the signal, and the
backgrounds estimated as described above. The distributions in the SRs and CRs are affected
by common sources of systematic uncertainty, described in the next section, and thus their
expectations are treated as correlated in the fit.

The statistical analysis for the investigation of the EFT contributions in the EW VBS
processes of interest is also based on an ML fit, considering that the expected number of events
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Figure 3. Distributions in m.; transverse mass for the data and the pre-fit background prediction
for the (left) em, and (right) um, SRs. The stacked filled histograms show the background components,
and the overflow count is included in the last bin. The expectations for the EW SSWW signal, the
Ow dim-6 operator with ¢y = 1 TeV ™2, and the Oy dim-8 operator with fm=1 TeV~* are shown
by the dashed red, blue, and green lines, respectively. For the latter two, the interference with SM
and pure EFT contributions are summed together with the SM contribution. The hatched error band
shows the bin-by-bin statistical uncertainty. The lower panels show the ratio of data to the total
background prediction, with statistical uncertainties indicated by error bars and shading, respectively.
In all the panels, the vertical bars represent the statistical uncertainty assigned to the observed number
of events.

Nexp inherits the quadratic dependence on the EFT Wilson coefficients from the scattering
amplitude |Apgm| reported in eq. (1.2). When the contribution of a single EFT dim-6 (with
¢; Wilson coefficient) or dim-8 (with f, Wilson coefficient) operator is considered, and all the
others are set to null values, the expected number of events can be written as follows:

2

Nezxp = Nsm + A_;Nﬂin + A_ZN(ZQuadv (5'6)
N& = N, Ja ~— N{ fa “&N§ 5.7
exp — {VSM + A4 Lin T A8 Quad> ( . )

where Ngy; stands for the contribution from the SM processes, Nii, for the one from the
interference of the considered EFT operator with the SM EW VBS processes, and Nquad
for the pure term produced by the specific operator. In the following, this fit setup will
be referred to as a 1D dim-6 or dim-8 EFT study, respectively. When two EFT dim-6
operators with Wilson coefficients ¢;, c¢; are considered active, and all the other ones are
set as negligible, the same quantity reads:

CiCj

Nez)’ijp = Ngm + Z ( NLln A4 NQuad) + 11\] NCross’ (58)
k=i,j

where Ncypogs represents the interference between the two EFT operators under study. This

fit setup will be called a two-dimensional (2D) same-dimension EFT study in the rest of

this paper. Finally, when considering one EFT dim-6 and one dim-8 operator with Wilson
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Input variable SM DNN dim-6 DNN dim-8 DNN
Th PT v v v
¢ pr v v v
Th 7
tn
leading VBS jet pr v
subleading VBS jet pr v
leading VBS jet mass

SNENIENIEN

subleading VBS jet mass
VBS jet pair A¢
myj v

mar v

NN N N NN NN

Mol \/
mr (Th7 ﬁTmiSS)

= miss

mr (€, pp™ss) v
mr (0 + Ty, PERsS)
PE(¢, 1)
P (L 52)
PE (Th, 1)
PN (T, J2)
Ap(L, jr)
Ap(L, j2)
A¢(Th, j1)
A¢(Tn, j2)

PT,leading 11, track/pT7 Th v

(\
NN

AN N N N N N NIEN

Zevent

Table 2. List of the input variables for the three DNN models developed in this study. The check
mark indicates that the variable is included in the DNN model identified in the column header.

coefficients ¢;, f,, to be active, the expected number of events becomes:

Ci . 02 . f 2
T;Nﬁin + KZNéuad + ﬁNSin + T%Nguad' (59>
This fit setup will be referred to as a 2D different-dimension EFT study. It neglects the

contributions due to the possible interference between the dim-6 and the dim-8 operator,

Ng& = Nsu +

exp

for which there are no clear theoretical predictions. The absence of this type of EFT
contribution precludes consideration of any linear correlation between the two different classes
of operators. Consequently, within this theoretical framework, our physics interpretation
is limited to the independent effects arising from the interplay between two operators of
different dimensions. For every EFT statistical study, the signal strength of the SM EW
SSWW VBS contribution is fixed to 1.
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6 Systematic uncertainties

Systematic uncertainties in the signal and background yields are introduced as log-normal
or Gaussian nuisance parameters in the ML fit, both for the measurement of the EW VBS
SSWW processes and for the EFT investigations.

The uncertainties determined by the CMS luminosity monitoring are partially correlated
among the data sets [76-78], resulting in overall uncertainties of 1.2, 2.3, and 2.5% for the
2016, 2017, and 2018 integrated luminosities, respectively. This uncertainty affects only the
integrated yields, not the shapes of the distributions.

Uncertainties at the matrix-element level, which impact both the normalization and
shape of the background and signal processes, are evaluated through separate variations of the
renormalization and factorization scales. Specifically, the renormalization and factorization
scales are varied independently by a factor of 2 and 0.5. The resulting uncertainties are
then combined by taking the envelope of these variations relative to the nominal expectation,
without considering the combinations where one scale is varied by a factor of 2.0 and the
other one by a factor of 0.5 [79, 80]. These uncertainties are considered uncorrelated across
different process categories but are correlated across the data-taking years.

The MC samples are generated using a default PDF set, as mentioned in section 3,
and event weights corresponding to the 100 PDF alternative set members are also stored,
evaluated with the MADGRAPH5_aMCQNLO reweighting technique introduced in section 3.
These are used to evaluate the PDF systematic uncertainties according to the procedure
recommended by the PDFALHC group [81], which is based on the same strategy explained in
the previous paragraph. They are correlated among the data-taking years and processes.

Among the possible theoretical uncertainties affecting MC simulations are those related to
the QCD-induced parton-shower modeling. These uncertainties are divided into initial-state
radiation (ISR) and final-state radiation (FSR) and are estimated by separately varying each
of them by the same up and down factor. The resulting shape distortions induced by the
alternative scenarios are used to evaluate the magnitude of the associated uncertainties. They
are considered correlated among the data-taking years and processes.

Uncertainties in b tagging and mistagging data-to-simulation scale factors (SFs) are
applied to reproduce the corresponding efficiencies measured in the data, and implemented
in the ML fit as correlated among the data-taking years.

Systematic uncertainties related to the pileup modeling are introduced as a +4.6%
variation in the total inelastic cross section of 69.2 mb that is used to estimate the data
pileup distributions [82]. They are correlated among the data-taking years.

The impact of the uncertainty in the trigger efficiency measurement is estimated by
varying the SFs within their uncertainties separately for each data-taking year and final state.
This uncertainty is treated as uncorrelated among data-taking years.

In 2016 and 2017, a portion of trigger primitives in the ECAL was associated with the
wrong bunch crossing, leading to a trigger mistiming effect and a nonnegligible decrease in
the trigger efficiency that is not modeled in the simulated samples [83]. Events have been
corrected for this effect with a per-event weight, and the corresponding uncertainties have been
propagated throughout the analysis chain. They are correlated among the data-taking years.
In the following, we will refer to the effect described in this paragraph as trigger mistiming.
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In simulated events, reconstructed four-momenta of all of the jets are simultaneously
varied according to the n- and pr-dependent uncertainties in the jet energy scale; they are
correlated among data-taking years. These variations are then propagated to the pfiss.
Moreover, to properly evaluate the systematic effect coming from differences in the jet energy
resolution between data and simulations, smearing is also applied to the latter by varying the
jet resolutions according to their uncertainties; they are uncorrelated among the data-taking
years [84]. Because of the high efficiency of the jet quality requirements, no SFs or associated
uncertainties for those are applied.

Systematics related to uncertainties affecting unclustered energy in the calorimeters are
included in the fit and correlated among data-taking years.

Systematic uncertainties due to SFs used to match the efficiencies in light lepton re-
construction, identification, isolation, and energy scale and resolution as measured in the
MC samples with those observed in data, are evaluated by varying the corresponding event
weights by the SF uncertainty. They are uncorrelated over the data-taking years.

For the uncertainty arising from charge sign misreconstruction in the ery channel we assign
a uniform uncertainty of 15% to the distributions of the background processes, consistent
with the data-background agreement observed in the OS/DY CR.

Statistical uncertainties related to the 7 lepton identification SFs and the corrections
to their energy scale and resolution [65] induce a systematic effect on the expected signal
and background distributions. Their impact is evaluated following a procedure similar to
the one applied for light-lepton systematic uncertainties. They are uncorrelated among
the data-taking years.

The LO to NLO corrections to the VBS signals come with statistical uncertainties that
are propagated to the fit [40-42].

For the signal and background processes estimated from simulation, the precision of the
modeling is limited by the event count in the MC samples. The corresponding statistical
uncertainties are therefore taken as systematic uncertainties applied to each bin of the
corresponding distribution, according to the lite Barlow-Beeston method [85].

The estimate of the nonprompt background is affected by the statistical uncertainties of
the auxiliary regions used to measure the transfer factors. This uncertainty is propagated
by the lite Barlow-Beeston method [85]. We assign a further 30% normalization uncertainty
based on a closure test performed in the nonprompt VR. This uncertainty is treated as
uncorrelated among the data-taking years.

In the following, we collectively refer to the statistical uncertainties assigned to the back-
grounds, extracted from data CRs or from simulation, as background statistical. It represents
the dominant source of overall uncertainty. The impacts of the systematic uncertainties in
the signal strength, as extracted from the ML fit, are summarized in table 3.

7 Measurement of the SM SSWW VBS processes

We extract values of the signal strength and the statistical significance from the fit of the SM
SSWW VBS signal, with two separate interpretations. As the primary interpretation, we
measure the purely EW signal strength keeping the QCD SSWW production contribution
fixed to the SM prediction. In the second interpretation, we measure the signal strength
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Uncertainty source +Ap —Ap

Theory (PDF, scales, ISR, FSR) +0.21  —0.12

Nonprompt background estimation +0.062 —0.070
Jet energy scale, resolution, and identification +0.077 —0.059
Trigger mistiming +0.071 —0.040
tt normalization +0.048 —0.037
Pileup +0.042 —0.010
Luminosity +0.025 —0.026
LO-to-NLO VBS corrections +0.037 —0.024
Th energy scale and identification +0.040 —0.010
b tagging and mistagging +0.031 —0.008
Unclustered energy +0.007 —0.005
Charge misidentification +0.009 —0.009
Lepton reconstruction, identification, and isolation +0.002 —0.003
MC sample size (bin-by-bin uncertainty) +0.28 —0.28

Total systematic +0.36 —0.32

Data sample size +0.50 —0.46

Total +0.62 —0.56

Table 3. The impact of each systematic uncertainty, together with the impact of the data statistical
uncertainty, on the signal strength u, as extracted from the fit to measure the SM SSWW VBS signal
with the DNN output distributions. Upper and lower uncertainties are given for the various sources.

treating as signal the combined EW and QCD SSWW processes, fixing the ratio between
the two contributions to the SM value. For the primary result of the EW signal strength
measurement, the post-fit distributions of the output score of the SM DNN (SM DNN output)
of the SRs are shown in figure 4 for both the electron and muon flavors.

In figure 4, the data are compared with the background estimated before (pre-fit) and
after (post-fit) the simultaneous fit of the SRs and CRs. The pulls shown in the lower
panels are defined, for each bin, as

Ndata — Mpost-fit

[ 2 2 ’
Odata — post-fit

where ngata and npesi-y are respectively measured event numbers and post-fit background

Pull =

(7.1)

predictions, and oqata and opesi-fit are their corresponding uncertainties; when oqata < Opost-fits
the pull is set to 0. The quadratic difference of the uncertainties appearing in the denominator
is taken to account for the correlation between the data and the post-fit prediction. The
observed (expected) EW signal strength is 1.44f8:gg (1.00f8:gg), corresponding to a signal
significance of 2.7 (1.9) standard deviations. The simultaneous measurement of the EW
and QCD-associated SSWW production results in an observed (expected) signal strength
equal to 1.4370%9 (1.007027), with a significance of 2.9 (2.0) standard deviations. The
largest contribution to the overall uncertainty is the statistical uncertainty of the data, as
reported in table 3.
Tabulated results are provided in the HEPData record for this analysis [86].
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Figure 4. Distribution of the DNN output for the (left) er, and (right) pm, SR. The data points are
overlaid on the post-fit background plus signal (stacked histograms). The overflow is included in the
last bin. The middle panels show ratios of the data to the pre-fit background prediction and post-fit
background yield in yellow and green, respectively. The corresponding colored bands indicate the
systematic component of the uncertainty. The lower panels show the distributions of the pulls, defined
in the text. The vertical bars represent the statistical uncertainty assigned to the observed number of
events for the upper panel, and its propagation to the quantities shown in the middle panel.

8 Effective field theory interpretation

The sensitivity of the measurement to the dim-6 and dim-8 EFT operators, considered one at
a time, is estimated from a likelihood scan performed by varying the corresponding Wilson
coefficients as they appear in the quadratic parametrization of the signal yields given by
egs. (5.6) and (5.7). For this part of the study, we use the distributions of the dim-6 and
dim-8 DNN outputs, respectively. No significant deviations from the SM predictions are
observed. The 68 and 95% confidence intervals on the Wilson coefficients are extracted from
the scan and reported in table 4. Although CMS and ATLAS have published dim-8 VBS
analyses (as reported in section 1), and ATLAS has set limits on the dim-6 ¢y and cygwp
Wilson coefficients via the reinterpretation of differential cross section measurements [28],
our study for the first time investigates EF'T dim-6 effects directly at the reconstruction
level. With this strategy, it is possible to tailor the analysis for maximum sensitivity to
EFT-induced deviations in the event kinematics, specifically through DNN models optimized
towards EFT effects. In addition, in contrast to reinterpretation approaches, reconstruction-
level studies can fully capture correlations among multiple dim-6 operators. As a result,
we obtain the first detector-level one- and two-dimensional limits on a broad set of EFT
dim-6 contributions in VBS processes.

In addition, a 2D likelihood scan is performed over pairs of Wilson coefficients as they
appear in egs. (5.8) and (5.9), exploiting the distributions of m.;, which we find to be the

,16,



68% CL int 1 95% CL int 1
Wilson coefficient 0 interval(s) % interva

Observed Expected Observed Expected
V/AZ [211.6,0.045] [—12.9,—8.03] U [-2.95,1.91] [—13.5,2.11]  [—14.6,3.53]
AW IAZ [-0.341,0.416] [—0.501,0.576] [—0.605,0.681] [—0.742,0.818]
cw /A2 [~0.513,0.481] [—0.681,0.669] [—0.842,0.818] [—0.987,0.974]
caw /A2 [—5.48,4.31] [—7.00,6.09] [—8.68,7.60]  [—9.99,9.05]
g CHWB/A 307,892 [—41.7,69.6] [—49.7,110]  [—66.6,96.4]
crn/A2 [~12.0,14.0] [—16.6,18.1] [-20.9,22.7]  [~24.7,26.3]
cup/A? [~15.3,31.5] [—24.6,34.7] [—31.4,45.5]  [-38.2,48.8]
/A? [-38.2,39.5] [—28.8,20.9] [—69.3,68.3]  [~49.4,49.7]
B /A [-0.045,858)  [~1.43,2.23] U [5.88,9.54]  [—1.59,9.94]  [—2.64,10.8]
A% [-3.27,3.44] [—4.53,4.42 [5.55,5.60]  [—6.56,6.44]
fro/AY [~0.774,0.842] [—1.02, 1.08] [-1.32,1.38]  [~1.52,1.58]
fri/A* [0.319,0.381] [—0.426,0.480] [—0.552,0.613] [—0.640,0.695]
fra/At [~0.851,1.12] [—1.15,1.37] [~1.51,1.76]  [~1.75,1.98]
fao/At [—8.07,7.70] [—9.89,9.74] [-13.1,12.8]  [-14.6,14.5]
dig /At [-9.54,11.15) [—12.5,13.3] [-16.4,17.7]  [~18.7,19.6]
fur/AY [~17.6,15.3] [—20.3,19.2] [-27.6,25.8]  [—29.9,28.8]
Fso/A* [~9.60,9.82] [—11.6,12.0] [—15.9,16.1]  [~17.4,17.9]
fsi/AY [-40.9,41.3) [—37.4,38.8] [—60.9,61.8]  [—57.2,58.6]
feo/AY [-40.9,41.3) [—37.4,38.8] [—60.9,61.8]  [~57.2,58.6]

Table 4. Observed and expected 68 and 95% 1D confidence level (CL) intervals on the Wilson
coefficients associated with the EFT dim-6 and dim-8 operators considered. The results reported here
are obtained by fixing the Wilson coefficients other than the one of interest to their SM values in the
fit procedure. These limits are reported in units of TeV ™2 (TeV™*) for the dim-6 (dim-8) Wilson
coefficients.

most sensitive variable to EFT effects among the kinematic quantities considered. This choice
ensures the stability of the 2D fits and at the same time enhances the physical interpretability
of the results in the broader context of EFT reinterpretation. For the same-dimension fits,
we consider pairs of EFT operators that both modify either the WW — WW amplitude or
the W pairing with fermions. For the different-dimension fits, we consider pairs that modify
the WW — WW amplitude. The operators in these pairs typically impact the scattering
amplitude with similar magnitudes, when the dim-6 (dim-8) coefficients are set to TeV 2
(TeV~*). The results are reported in figures 5 and 6.

For the same-dimension pairs shown in figure 5, combining the effects of two operators
leads to a broadening of the 68 and 95% CL intervals extracted with the corresponding
one-dimensional fit to the mo; distributions, an effect that is slightly more pronounced for
the operators to which this analysis is less sensitive. On average, this effect results in a 10%
difference for the observed limits and a 13% difference for the expected limits. In general,
the contours exhibit an elliptical shape, with correlation effects driven by the interference
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Figure 5. Observed (black) and expected (red) 68 (solid) and 95% (dashed) CL contours for —2In AL
as functions of the reported dim-6 bosonic (upper two rows) and mixed (lower row) Wilson coefficient
pairs. When there are two contours for the same CL value, the constrained set of Wilson coefficient
values is represented by the area between the two of them if they are concentric, otherwise it consists
of the internal areas of the contours.

between the operators in each pair, leading to either negative or positive linear correlations
that tilt the axes of the ellipses. Additionally, for some operators, the interference with the
SM contribution is more significant than the quadratic term, resulting in a double-minima
structure in the two-dimensional —21n AL profiles in the direction of the Wilson coefficient

,18,



. CMS L=138fb" (13 TeV) . CMS L=138fb" (13 TeV) . CMS L=138fb" (13 TeV)
% — Expected (68%) ---- Expected (95%) % — Expected (68%) ---- Expected (95%) i — Expected (68%) ---- Expected (95%)
+% — Observed (68%) ---- Observed (95%) + SM .5 — Observed (68%) ---- Observed (95%) + SM % — Observed (68%) ---- Observed (95%) + SM
L L B L B B B BB UL I A B B B A R L B B O A O BB
20F E
151 E
10 E
5F E
0 E
-5F e
-10F E
-15F E
—20F = E 1 —20F E
Bl b e b e 10 3 bl v b b 103 Bl b b b b b 104
-1 -0.5 0 0.5 -10 -5 0 5 10 -30 20 -10 O 10 20 30
Cy/A? Crn/ A Crpod A
- CMS L=138fb" (13 TeV) - CMS L=138fb" (13 TeV) - CMS L=138fb"(13 TeV)
% — Expected (68%) ---- Expected (95%) % — Expected (68%) ---- Expected (95%) % — Expected (68%) ---- Expected (95%)
— — Observed (68%) ---- Observed (95%) + SM — — Observed (68%) ---- Observed (95%) + SM — — Observed (68%) ---- Observed (95%) + SM

I RSN VUV I A RER AV |

-1 -0.5 0 0.5 1 -10 -5 0 5 10 -30 20 -10 O 10 20 30
C/A? Crn/A? Crpod A
CMS L=138fb" (13 TeV) CMS L=138fb" (13 TeV) CMS L=138fb" (13 TeV)
<r< — Expected (68%) ---- Expected (95%) Q< — Expected (68%) ---- Expected (95%) <r< — Expected (68%) ---- Expected (95%)
} — Observed (68%) ---- Observed (95%) + SM } — Observed (68%) ---- Observed (95%) + SM } — Observed (68%) ---- Observed (95%) + SM
2,‘\‘\\\\‘\\\\‘\\\\‘\\\\‘\L j{\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘J:

SE T T T T[T I T T T I Tg

,2:
-30

-10 -5 0 5

Bl bl boe o d
-1 -0.5 0 0.5 1
Cy/A?

-20 -10 O 10 20

Figure 6. Observed (black) and expected (red) 68 (solid) and 95% (dashed) CL contours for —2In AL
as functions of the reported (dim-6, dim-8) Wilson coefficient pairs.

associated with the operator introducing such effect. For the observed contours, these effects
are further enhanced by data fluctuations that the EFT operators can accommodate. These
effects, either individually or in combination, are visible in the upper right, middle right, and
lower panels of figure 5, where operators Qpw g, @m0, Qgg, Q%Z are involved. Notably, they
are most pronounced for the Qpwp, Qpo pair (middle right of figure 5), where significant
mutual interference and relatively more important linear terms (compared to the quadratic
contributions at unity Wilson coefficient values) are observed.
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For the different-dimension pairs, the results indicate that adding the linear and quadratic
dim-8 contributions to those of a given dim-6 operator leads to a broadening of the one-
dimensional 68% and 95% confidence intervals for the dim-6 operators extracted from the
same Mo distributions, regardless of the specific dim-8 operator considered. This broadening
is quantified by comparing the 1D intervals obtained from individual fits with the intervals
derived from the 2D limits for one coefficient when the other is fixed at its null value. On
average, this effect on the dim-6 Wilson coefficients results in a 10% difference in the observed
limits and a 12% difference in the expected limits. A similar broadening is observed for the
dim-8 Wilson coefficients in the pairs displayed in figure 6, with average differences of 10% for
the observed limits and 13% for the expected limits. Moreover, by setting ¢/A? = 1 for the
dim-6 operator and f/A* =1 for the dim-8 operator, we can directly compare the effects of
the dim-6 and dim-8 operators in each pair and relate them to the shape of the corresponding
2D contours. When the contributions of these operators are comparable, the 68% and 95%
confidence contours in the 2D fit appear more circular; conversely, if the effect of the dim-8
operator is negligible relative to that of the dim-6 operator, the contours tend to be more
rectangular. For example, in the bottom left of figure 6 the 2D fit for operators Qs and Org
shows circular contours when the effects are similar, whereas the plot on top left of figure 6
illustrates that when the dim-8 contribution of the Ogg operator is negligible compared to
the dim-6 contribution of the operator Qyy, the contours become rectangular. In addition,
the contour does not show evidence of linear correlations, as the possible interference between
the dim-6 and the dim-8 operators in the pair is neglected in this study.

These considerations lead to the conclusion that, within the EFT framework, the one-
dimensional constraints on a Wilson coefficient associated with a given operator could
be biased by neglect of the contributions of other operators arising in the same physical
process and at the same or different power of Aggy, with the same or different dimension.
This bias is not an experimental artifact but stems from the fundamental structure of the
SMEFT model. Contributions from dim-6 and dim-8 operators can interfere nontrivially
and can be visible at the reconstruction level. This finding aligns with the EFT theory
community’s recommendation to perform studies that simultaneously investigate dim-6 and
dim-8 contributions and to encompass as wide a range as possible of operator classes and
processes [87-91].

It is worth noting that the 2D EFT fits with two dim-6 operators represent the first
results of this type for an analysis investigating EW VBS processes, and the 2D EFT fits
with one dim-6 and one dim-8 operator represent the first results ever for combinations of
different-dimension EFT operators in the same physics processes.

9 Summary

Electroweak (EW) production of a same-sign W boson pair in association with two jets,
with a hadronically decaying 7 lepton in the final state, is investigated for the first time,
together with an interpretation of possible deviations from the standard model expectations
in terms of effective field theory (EFT) operators of dimension 6 and 8. The analysis is
performed with a sample of proton-proton collisions at /s = 13 TeV recorded by the CMS
experiment at the CERN LHC in 2016-2018, corresponding to an integrated luminosity of
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138fb~!. Events are selected with the requirement of one 7 lepton together with one light
lepton (e or ) of the same sign, missing transverse momentum, and two jets with large
pseudorapidity separation and large dijet invariant mass. Deep neural network algorithms
are employed to discriminate different types of signal events from the main backgrounds,
significantly boosting the sensitivity of the search.

The amplitude for same-sign WW production includes terms that account for strong
interactions between partons with W boson radiation. A small fraction of these QCD-
mediated events falls within the acceptance of the search. The measured cross section for
EW same-sign WW scattering, extracted with the QCD-mediated amplitudes fixed to the
standard model (SM) expectations, is 1.44798% times the SM prediction. The observed
(expected) significance of the EW signal is 2.7 (1.9) standard deviations. A measurement of
the combined EW and residual QCD-mediated contributions yields an observed (expected)
significance of 2.9 (2.0) standard deviations.

Also presented are the limits on dimension-6 EFT operator contributions, including both
one operator and two operators active at the same time, extracted with a reconstruction-level
strategy for the first time in vector boson scattering. This is the first study of the combined
effects of EFT operators with different dimensions, showing that focusing on one dimensionality
can lead to an overestimate of the sensitivity to the corresponding EFT operator class, and
that the contributions of terms combining operators with different dimensions should not be
neglected, in accordance with the latest recommendations from the EFT theory community.
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