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Altermagnets are an emerging class of unconventional antiferromagnets, characterized by a Néel ordering
that does not break the translational symmetry of the underlying lattice. Depending on the orientation of the
Néel vector, the anomalous Hall effect (AHE) may or may not exist. In the so-called pure altermagnets, the
AHE is forbidden by magnetic symmetry. Here, we demonstrate that in pure altermagnets, domain walls can
lift the symmetry constraints, thereby activating the AHE and orbital magnetization. Taking a representative
example of a rutile-lattice tight-binding minimal model in slab geometry, we use linear response theory to
demonstrate the emergence of the domain-wall AHE, finding that it is closely related to the orbital magnetization,
while the spin magnetization does not play a significant role. Using Landau theory, we argue that, while for
a random arrangement of π domain walls, the contributions from the individual domain walls will cancel one
another, an external magnetic field will favor domain-wall arrangements with specific chirality giving rise to a net
AHE signal. Using group theory, we discuss how these findings can be straightforwardly generalized to certain
other classes of altermagnets. Our work reveals a crucial role for domain walls in understanding Hall transport
and orbital magnetism of altermagnets. Our work generally calls for a rigorous analysis of Hall-transport data
for an altermagnet, ideally in conjunction with imaging data, in order to unambiguously assign an observed Hall
effect to magnetic domains or to domain walls.
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I. INTRODUCTION

Recent developments in the field of magnetism have un-
covered a new class of unconventional antiferromagnets,
known as altermagnets, wherein a Néel ordering together with
unusual crystal symmetry plays a crucial role in dictating
many physical properties [1–3]. In an altermagnet, sublattices
in each unit cell are divided into two sets based on the di-
rection of the staggering local dipole moments that define the
Néel vector. A defining feature that distinguishes an altermag-
net from a conventional antiferromagnet is the way the two
sets of sublattices can be interchanged, neither by translation
nor inversion, but by other symmetry operations such as ro-
tation. This prevents Kramers’ degeneracy in the electronic
band structures and results in a momentum-dependent band
splitting, which finds applications in spintronics and drives
intense research activity [1–8].

Because of spin-orbit coupling (SOC), the Néel vector is
commonly locked into an easy-axis direction. In the so-called
pure altermagnets, the easy axis lies in a high-symmetry direc-
tion such that the anomalous Hall effect (AHE) is forbidden
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by symmetry [9]. Since a net magnetization shares the same
symmetry properties as the AHE, a magnetic dipole-like order
parameter can be ruled out. Restricting to centrosymmetric
systems, the inversion symmetry also prevents order parame-
ters that behave like magnetic quadrupole moments [10–13].
The order parameters turn out to be higher-ranked magnetic
multipole moments such as magnetic octupoles and magnetic
hexadecapoles [9,14–16]. Notable implications of the mag-
netic multipolar nature of the order parameters include the
emergence of nodal-line structures in the electronic bands
[9,17–19] and characteristic nonlinear response properties
[20–23]. For instance, magnetic octupolar order parame-
ters lead to a third-order Hall response and a second-order
magneto-electric effect, while lower orders of these effects are
absent [20,22,23]. Closely related to the magnetic octupolar
order are such phenomena as piezomagnetism, strain-induced
AHE, and unusual couplings to strain fields [14,16,24,25].
In contrast, when the easy axis lies in a lower-symmetry
direction, the symmetry can allow for a nontrivial AHE as
well as a nonzero macroscopic magnetic dipole moment—
equivalently a net magnetization [26–32]. The latter arises
from the mechanism of a weak ferromagnetism, and its mag-
nitude can be small. Such altermagents have been referred
to as mixed altermagnets since ferromagnetic-like order pa-
rameters are present [9]. Recently, it was argued that in some
classes of altermagnets, in particular those with rutile struc-
ture, the weak magnetism is dominated by g-tensor anisotropy
and the corresponding anisotropy of orbital magnetism, with
weak magnetization dominated by orbital contributions [33].
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FIG. 1. Geometrical setup of a film periodic in the yz plane fea-
turing an open boundary condition along the x axis. The double-sided
arrows denote local Néel vectors that form a Bloch-type domain wall
along x.

In this paper, we investigate Hall transport in altermagnets
in the presence of magnetic domain walls (DWs), which are
ubiquitous in actual settings yet have received less attention
[18,34]. We focus on pure altermagnets where the AHE is
absent in the absence of DWs, so that if the AHE is activated,
it is obviously attributed to the DWs. We study this using
a rutile-lattice tight-binding model in a slab geometry and
coupling electrons to a Bloch-type DW of the Néel vector
as schematically shown in Fig. 1. The double-headed arrows
denote the local Néel vectors, each of which is associated
with the two antiparallel local dipole moments residing on
the A and B sublattices of the rutile lattice in Fig. 2. These
local dipole moments are denoted by the blue and red arrows.
We assume translational invariance in the slab plane; thus,
the Néel vector profile corresponds to an infinite DW plane.
We use the Kubo formula to compute the Hall conductivity
for the slab geometry and find that the DW indeed activates
the AHE. AHE with a similar DW-dominated origin has been
observed very recently for the first time in a layered collinear
antiferromagnet EuAl2Si2 [35]. This is in contrast to DWs
in ferromagnets, which commonly play a supplementary role
since the magnetic domains can also have a nontrivial AHE
contribution [36–38].

FIG. 2. A representation of a rutile lattice featuring the mag-
netic sublattices, A (blue dots) and B (red dots). The A and the
B sublattices reside on different xy planes and experience different
local potentials because of cages of nonmagnetic atoms (not shown),
whose orientation is shown with tilted line segments.

FIG. 3. Illustration of Bloch-type DWs of the Néel vector �N (�x).
The orientation of the local Néel vector is given by �N = 1

2 ( �mblue −
�mred ), where �mblue,red denote the orientation of the local magnetic
dipole moments that occupy the A and the B sublattices, respectively.
Panels (a) and (b) correspond to opposite chiralities. The bottom
plots show the profiles of Ny,z(�x). In the presence of an inversion
symmetry, the two chiralities are energetically degenerate.

We find that within our model for a uniform bulk and
for the easy-axis direction of �N corresponding to a mixed
altermagnet, the orbital magnetization is by far greater than
the weak spin ferromagnetism. In contrast, our analysis of the
DW impact on the orbital and spin magnetization shows that
they exhibit a similar order of magnitude. Nonetheless, the
computations reveal a strong connection between the orbital
magnetization and the DW AHE: the Hall conductivity is most
dominant in the plane perpendicular to the orbital magnetiza-
tion. Meanwhile, the spin magnetization lies predominantly
in the Hall plane. This means that the orientation of the spin
magnetization predicts the wrong Hall plane for which the
Hall effect is the strongest. Because of inversion symmetry,
the DWs of opposite chirality are energetically degenerate
(see Fig. 3). The AHE because of the latter has a canceling
effect on that owing to the former. As a result, when we
consider profiles with multiple DWs, a random arrangement
of DWs with equal populations of opposite chiralities is ex-
pected to yield a trivial AHE. However, using Landau theory
for altermagnets, we argue that an external magnetic field
favors a specific chirality population, and the AHE contri-
butions from individual DWs accumulate rather than cancel
one another. Meanwhile, the magnetic domains themselves
are less affected because of the magnetic multipolar nature
of the order parameter, which couples to the external field
only at the third order, whereas the coupling with the DW
chirality takes place at the linear order. Finally, we use a group
theoretical framework to generalize our results for the rutiles
to other classes of pure altermagnets.

This manuscript is organized as follows. In Sec. II, we
introduce the rutile-lattice tight-binding model and study the
band structure, the Hall conductivity, the orbital magnetiza-
tion, and the spin magnetization in the collinear bulk when
DWs are absent. Section III introduces a DW Ansatz in the
slab geometry and discusses the Hall conductivity, the or-
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bital magnetization, and the spin magnetization induced by
the DW. We also elucidate how, in multi-DW textures, AHE
contributions from individual DWs may accumulate or cancel
out one another. Section IV discusses insights from a Landau
theory for altermagnets on how an external field can select
a chirality population in multi-DW textures and thus result
in a nontrivial DW AHE. In Sec. V, we present a group-
theoretical analysis, which shows how our results for the rutile
altermagnetic model can be generalized to other classes of
altermagnets. Section VI is the summary.

II. MODEL

In this section, we introduce the tight-binding model and
then analyze the band structure, the Hall conductivity, the
orbital magnetization, and the spin magnetization for the
collinear bulk [39] featuring a uniform Néel vector �N . These
provide helpful insight for when we study the impact of DWs
later.

We consider a single-orbital tight-binding model on a rutile
lattice, as shown in Fig. 2. In reciprocal space and with the
basis (a�k↑, a�k↓, b�k↑, b�k↓)T of the annihilation operators, the
Bloch Hamiltonian is given by [17,18,40]

H = H0 + Hsoc, (1)

H0 = −8t1cx/2cy/2cz/2τx − 2t ′
2czτ0 − 2t2(cx + cy)τ0

− 4td sxsyτz + Jτz �N · �σ , (2)

Hsoc = −8λsz/2(sx/2cy/2σx − sy/2cx/2σy)τy

+16λ′cx/2cy/2cz/2(cx − cy)τyσz, (3)

where cα/n ≡ cos(kα/n) and sα/n ≡ sin(kα/n). t1, t2, t ′
2, and td

are hopping integrals for the processes illustrated in Fig. 2.
λ and λ′ are the SOC-enabled hoppings. τ ′

i s and σ ′
i s are

Pauli matrices that act on the sublattice indices and the spin
indices, respectively. We note that td , λ, and λ′ are essential
for altermagnetism since they originate in the distinct local
environment of A and B sublattices. In the latter expressions,
the Néel vector �N is assumed to be spatially uniform. When
�N exhibits a texture, the real-space version of the model is
employed. Without loss of generality, we assume that �N is
normalized.

Figures 4(a) and 4(b) show the band structure of the model
for �N = ẑ and �N = ŷ, respectively. As seen in (a), the band
structure supports Weyl nodal lines, such as those along MA
and � Z. On the kz = π plane, there are also Weyl nodal loops
intersecting along AZ and manifesting as two band-crossing
points. The symmetry protection of these Weyl nodal struc-
tures and their physical implications, e.g., the emergence of
unconventional antichiral surface states, have been discussed
in Refs. [17,18]. Particularly relevant for our AHE consider-
ations is a Weyl nodal loop in the kz = π plane, which are
protected by mirror Mz symmetry [17]. When �N = ŷ, the
mirror protection is removed, and the band-crossing points are
gapped out, as can be seen in Fig. 4(b). These anticrossings
support a large concentration of local Berry curvature that
results in a nontrivial dependence of the AHE on the chemical
potential, as will be seen in Sec. II A. Compared with AZ, the
Weyl nodal lines along � Z and MA seem to be intact upon

FIG. 4. Bulk band structures for (a) �Ni = ẑ and (b) �Ni = ŷ. A
notable distinction between the two panels is the band anticrossings
along the AZ line, which is plotted in a different color. In (a), the
band crossings along AZ are protected by z mirror and are a part of
a Weyl nodal loop in the kz = π plane. In (b), the Néel vector lowers
the symmetry, leading to the gap opening. The symmetry protection
of the Weyl nodal lines such as those visible along � Z and MA,
is discussed in the main text. The model parameters used are t1 =
−0.2, t2 = 0.025, t ′

2 = −0.35, td = 0.15, J = 0.2, λ = −0.025, and
λ′ = 0.0125; see the main text.

the change in the direction of the Néel vector. A more detailed
analysis reveals that, indeed, the Weyl nodal line along MA
is protected by a combination of nonsymmorphic symmetry
and an antiunitary symmetry (see Appendix A). However, the
nodal line along � Z is not protected by any symmetry and
can be gapped out by a symmetry-preserving perturbation (see
Appendix A).

Anomalous Hall effect and orbital
magnetization in collinear bulk

In this section, we will consider the AHE in the bulk with
a fixed direction of the Néel vector, i.e., when the DWs are

FIG. 5. The chemical potential dependence of the (a) Hall
conductivity σ H

yz and (b) orbital magnetization Morb,x and spin mag-

netization Msp,x for collinear bulk with �N = ŷ. Here, a is the length of
the lattice vector along the direction perpendicular to the Hall plane.
Note that the spin magnetization is multiplied with a factor of ten.
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absent, for two cases: (i) �N = ẑ and (ii) for �N = ŷ. Case (i)
corresponds to a pure altermagnet, where AHE is forbidden by
two mirror symmetries: S1 = {Mx| 1

2
1
2

1
2 } and S2 = {Mz|000}.

S1 requires the time-reversal-odd Hall pseudovector �σH =
(σ H

yz , σ
H
zx , σ H

xy )T to be in the x direction, where σ H
i j is the Hall

conductivity in the i j plane. Meanwhile, S2 requires �σH to be
in the z direction. As a result, �σH = 0.

On the other hand, in case (ii), S2 is broken, while S1 is
still present. Therefore, only σ H

yz is allowed to be nonzero.

Since the average magnetization �M is a time-reversal-odd
pseudovector that transforms identically to �σH , its first com-
ponent Mx is the only allowed component. Physically, it arises
in rutile structure through the orbital mechanism of g-factor
anisotropy [33]. Case (ii), therefore, is a mixed altermagnet.
In the convention of Ref. [41], it corresponds to a canted
altermagnet, where the small canting arises from the weak
ferromagnetism.

We compute the Hall conductivity σ H
yz from the k-

dependent Berry curvature,

σ H
i j = e2

h̄

∑
n

∫
d3k

(2π )3
f (E�kn)εi jl	l (�kn), (4)

where n is the band index, f (E ) is the Fermi-Dirac distribu-
tion function, εi jl is the Levi-Civita symbol, and �	(�kn) is the
local Berry curvature. Figure 5(a) shows σ H

yz as a function
of the chemical potential μ. Near μ = −0.75, σ H

yz becomes
pronounced and undergoes a sign change. This behavior is
closely related to the band anticrossings on the ZA line in
Fig. 4(b), which are associated with the gap opening of the
Weyl nodal loops in Fig. 4(a). We have also checked that
σ H

xy = σ H
zx = 0, consistent with the symmetry analysis.

We now compare the Hall conductivity for case (ii) with the
spin magnetization �Mspin and the orbital magnetization �Morb

[42–45],

Msp,i = −eh̄

2

∑
n

∫
d3k

(2π )3
f (E�kn)〈u�kn|σi|u�kn〉, (5)

Morb,i = eh̄

2

∑
n

∑
m 	=n

∫
d3k

(2π )3
f (E�kn)(E�kn + E�km − 2μ)iεi jl

[
(v j )nm

�k (vl )mn
�k − (vl )nm

�k (v j )mn
�k

(E�kn − E�km)2

]
, (6)

where we have assumed the spin g factor to be 2 and the unit
such that the bare electron mass me is 1. v j is the jth Cartesian
component of the velocity operator, and its matrix element
(v j )nm

�k is given by 〈u�kn| 1
h̄

∂H
∂k j

|u�km〉, where |u�km〉 is the Bloch
eigenvector. For the choice of the hopping integrals, the effec-
tive mass of electrons is comparable with the bare mass, which
allows a direct comparison between the numerical results for
Morb,i and Msp,i [46].

Figure 5(b) shows a nontrivial μ dependence of Msp,x

(dashed orange line) and Morb,x (solid blue line), which are
the only nonzero components allowed by symmetry. Note that
the spin magnetization data has been multiplied by a factor
of 10. Our results reveal that the orbital contribution is domi-
nant over the spin part. This strongly suggests the possibility
of a dominant orbital magnetism in a mixed altermagnet in
general.

In the rest of the paper, we study how a DW in a pure
altermagnet effectively realizes the scenario in the pure case
(i) away from the DW region while realizing a scenario
akin to the mixed case (ii) within the DW region. As a
result, a nonzero AHE and the concomitant orbital mag-
netization are activated and can be attributed solely to the
DW.

III. ANOMALOUS HALL EFFECT FROM
ALTERMAGNETIC DOMAIN WALLS

To study the AHE induced by altermagnetic DWs, we
consider a Bloch DW of the Néel vector in the slab geometry
as shown in Fig. 1. We consider the DW profile where the

Néel vector in the ith unit cell is given by �Ni, for −Lx/2 < i <

Lx/2, and Lx is the thickness of the slab. We use the following
Ansatz for the Néel vector profile: �Ni = (0, sin θi, cos θi )T .
For the left-hand-side domain, i � −wdw/2, θi = 0, and for
the right-hand-side domain i � wdw/2, θi = π . In the DW re-
gion, −wdw/2 < i < wdw/2, θi = π (2i + wdw)/2wdw, where
wdw characterizes the width of the DW. We then couple the
conduction electrons hopping on the rutile-lattice slab geome-
try with this DW profile. Reference [18] studied the electronic
spectrum in the presence of such DWs, uncovering the pres-
ence of unconventional bound states at the DWs. Here, we
focus on how the DW gives rise to a nontrivial anomalous
Hall response.

A. Anomalous Hall effect from altermagentic domain walls

We compute the DW Hall conductivity σ H,DW
i j in the pres-

ence of the DW using Kubo formula and the eigenvectors
of the Hamiltonian matrix for the slab-geometry problem.
The full expression for the Hall conductivity can be found in
the Appendix B (see also Ref. [37]). We will only show the
results for σ H,DW

yz and σ H,DW
xy , since σ H,DW

zx is forbidden by the
symmetry operation of twofold rotation C2y followed by the
time reversal and a fractional translation along the y-direction.

Figures 6(a) and 6(b) shows the chemical potential μ de-
pendence of σ H,DW

xy and σ H,DW
yz , respectively. We have used the

same tight-binding parameters as in Sec. II, and we have cho-
sen the film thickness Lx = 100a and the DW width wdw =
20a, where a is the length of the lattice vector. Our general
observation is that σ H,DW

yz has a larger magnitude compared
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FIG. 6. Anomalous Hall effect and magnetization driven by an altermagnetic domain wall. (a) σ H,DW
xy vs the chemical potential μ. (b) σ H,DW

yz

vs μ, featuring a nontrivial dependence near μ = −0.75, which is related to the anticrossings along AZ in the bulk band structure in Fig. 4(b).
(c) Orbital magnetization induced by the DW vs μ. �Morb is effectively pointing in the x direction. (d) Spin magnetization induced by the DW
vs μ. �Msp is effectively pointing in the z direction. Therefore, �Morb and �Msp are almost perpendicular to each other. The Hall pseudovector
�σH,DW , which is effectively along the x axis, is closer related to the orbital magnetization. For the slab geometry, we have chosen Lx = 100a
and wdw = 20a. The dashed lines in (b) and (c) are obtained from a site averaging, as described in the main text.

with that of σ H,DW
xy . The Hall pseudovector �σH,DW is thus dom-

inated by its first component, namely �σH,DW effectively points
in the x direction. We also observe a nontrivial μ dependence
of σ H,DW

yz , which strongly resembles that in Fig. 5(a). We
compare the full result in Fig. 6(b) with a site-averaged Hall
conductivity defined by

σ
H,avg
ab = 1

Lx + 1

Lx/2∑
i=−Lx/2

σ H
ab( �Ni ), (7)

where �Ni is the local Néel vector in the ith unit cell of the DW.
σ H

ab( �Ni ) is the Hall conductivity for the collinear bulk with the
Néel vector along �Ni. The μ dependence of σ H

yz ( �Ni )′s that enter
Eq. (7) can be found in Appendix C.

The result for σ
H,avg
yz is shown as the dashed line in

Fig. 6(b). We find that the site averaging works remarkably
well compared with the full calculation. Based on this, one
can effectively view the sign-changing behavior of σ H,DW

yz
near μ = −0.75 as the result of band anticrossings akin
to the collinear-bulk cases, but here the anticrossings are
caused by the DW texture. In general, we expect the site
averaging to work better for a smoother DW profile since
the DW-induced potential felt by the electrons varies more
slowly in space. A notable consequence is that, in a smoother

and correspondingly wider DW, there are more unit cells
that contribute a nonzero σ H

ab( �Ni ) in the right-hand side of
Eq. (7). In other words, for a fixed Lx, a wider DW with
a larger wdw has nonzero contributions from more ith sites
in Eq. (7). Consequently, the Hall conductivity is larger.
Therefore, DWs with a larger width are expected to induce
a larger DW AHE. We note also that the agreement between
σ

H,avg
yz and σ H,DW

yz provides strong evidence that the Hall
effect is indeed activated by the DW, while bulk regions
far from the DW do not contribute to the Hall effect, as
expected from the altermagnetic symmetry of each domain.
Through the definition of σ

H,avg
yz , it is also clear that an

experimental setup in which the Hall voltage contacts cover
the whole vertical x direction of the slab is needed in order to
observe the slab-averaged DW Hall effect given by σ

H,avg
yz and

equivalently the σ H,DW
yz . Next, we study how the DW AHE is

related to the orbital and the spin magnetization.

B. Relation to the orbital and spin magnetization

It is instructive to examine a connection between the Hall
conductivity and the magnetization. Because of the slab ge-
ometry, the expressions for the orbital magnetization and the
spin magnetization slightly differ from Eqs. (5) and (6) for the
collinear bulk,

Msp,i = −eh̄

2

1

Lx + 1

∑
n

∫
d2q

(2π )2
f (E�qn)〈u�qn|σi|u�qn〉, (8)

Morb,i = eh̄

2

1

Lx + 1

∑
n

∑
m 	=n

∫
d2q

(2π )2
f (E�qn)(E�qn + E�qm − 2μ)iεi jl

[ (v j )nm
�q (vl )mn

�q − (vl )nm
�q (v j )mn

�q
(E�qn − E�qm)2

]
, (9)

where �q = �k‖ = (ky, kz ) is the crystal momentum in the plane
of the slab, and the jth Cartesian component of the velocity
operator v j is defined in Appendix B.

Figure 6(c) shows the μ dependence of Morb,i induced by
the DW. This result shows that �Morb points primarily along
the x axis. Figure 6(d) illustrates the μ dependence of the
spin magnetization �Msp, which is effectively pointing along
the z axis. With the same assumption on the effective mass as

in the collinear bulk case, we can now compare the order of
magnitude between �Morb and �Msp. Our results show that the
orbital magnetization �Morb is of the same order of magnitude
as the spin magnetization �Msp. Moreover, it is clear that the
orbital magnetization is a better indicator, compared with the
spin magnetization, in terms of which components of the DW
Hall pseudovector �σH,DW are more dominant: the dominant
first component of �Morb correctly indicates that the AHE is
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FIG. 7. (a)(b) Time-reversed counterparts of Figs. 3(a) and 3(b),
respectively.

strongest in the plane perpendicular to the x axis, namely
σ H,DW

yz dominates over the other components. However, the
spin magnetization, which is predominantly in the z direction,
incorrectly suggests the dominant σ H,DW

xy component.
We also find that the spin magnetization exists regardless

of the altermagnetism or the SOC. We have checked numer-
ically that the spin magnetization persists even when we set
td = λ = λ′ = 0, which switches off the SOC and the alter-
magnetism part in the model. In Appendix D, we explain the
persistence of �Msp as arising from the gradient of the Néel
vector and the fact that the A and B sublattices are located at
slightly different positions, none of which, in contrast to the
AHE and the orbital magnetization, require altermagnetism
or SOC. Our observation strongly indicates that the orbital
magnetization is more closely related to the DW AHE than
the spin magnetization, in analogy to the collinear bulk case,
where it is the orbital magnetization that provides the domi-
nant contribution to the overall magnetization.

C. Symmetry-imposed relations to other DW profiles

So far, we have discussed the DW AHE for the specific
DW illustrated in Fig. 3(a). To obtain the DW AHE for the
DW in Fig. 3(b), we execute a z mirror, which is an operation
that flips the chirality of (a) and turns it into (b). If we denote
the DW Hall conductivity for the DW of type (a) by �σH,DW =
(σ 0

yz, σ
0
zx, σ

0
xy)T , then the DW Hall conductivity for type (b) is

given by its z-mirror image

( − σ 0
yz,−σ 0

zx, σ
0
xy

)T
. (10)

There are also time-reversal counterparts of the DW pro-
files in Fig. 3, which are shown in Fig. 7. Their AHE responses
are similarly obtained by implementing a time-reversal oper-
ation. Therefore, the Hall pseudovector for the DW profile in
Fig. 7(a) is given by

(−σ 0
yz,−σ 0

zx,−σ 0
xy

)T
, (11)

while that of the DW in Fig. 7(b) is given by

(
σ 0

yz, σ
0
zx,−σ 0

xy

)T
. (12)

FIG. 8. The four possible DW-pair combinations that are ex-
pected to arise in multiple-parallel-DW profiles. They differ by the
combination of the sign of Ny at the two DWs. (a) Ny component
at the two DWs has (+, +) sign. (b) (+, −) sign. (c) (−, +) sign.
(d) (−, −) sign. If an applied magnetic field favors a positive Ny,
then the combination (a) has the lowest energy.

D. AHE from mutli-domain-wall profiles

We are ready to discuss the DW AHE in the presence of
multiple parallel DWs by examining how the contributions
from the constituent DWs may cancel or add up. This depends
on which combination of the 4 DW configurations in Figs. 3
and 7 appears; see Fig. 8. For a random combination of a large
number of DWs, the contributions are expected to cancel. As
will become clear in Sec. IV, it may be possible to apply a
magnetic field to select the sign of Ny within the DW region,
thereby favoring the pair in Figs. 8(a) or 8(d). As a result, the
DW AHE contributions from the constituent DWs add up to a
nonzero value. However, the DW AHE is expected to vanish
for Figs. 8(b) and 8(c). We also note that σ H,DW

xy cancels out
when combining all configurations in Fig. 8.

Finally, we estimate the order of magnitude of the DW
AHE for a profile consisting of parallel DW planes as in either
Figs. 8(a) or 8(d) to ensure a nonzero DW AHE. The average
separation between neighboring DW planes is inversely pro-
portional to the density of the DW ρdw. The net DW AHE is
expected to scale like

σ H,DW
yz Lxρdw, (13)

where σ H,DW
yz is the Hall conductivity from the slab-geometry

calculation corresponding to the slab thickness Lx and a DW
width wdw. This is expected to be a good approximation,
assuming that the Hall contributions from the constituent DWs
do not strongly interfere with one another, and thus these
contributions simply add up. We note that the final outcome
depends on ρdw and wdw. The latter is intrinsic to each DW,
determining the product σ H,DW

yz Lx. This product is expected to
converge for a sufficiently large Lx. In other words, we expect
the AHE contribution from each DW to be mainly determined
by the properties of the DW itself, namely the width wdw in
this case. For Lx = 100a and wdw = 20a, σ H,DW

yz is of the or-
der of 10−1e2/ha; see Fig. 6(b). For ρdw = 1/1000 a, i.e., one
DW per 1000 lattice constant, the total Hall conductivity is of
the order of 10−2e2/ha. For a = 1′nm, the final value of the
Hall conductivity is of the order of magnitude between 1 S/cm
and 10 S/cm, which is an appreciable value. Our work reveals
a non-negligible role of DWs in understanding Hall transport
phenomena in altermagnets, which is particularly crucial for
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pure altermagnets since the bulk magnetic domains do not
support AHE. Therefore, our work generally calls for a careful
analysis of the Hall transport data, ideally simultaneously
with magnetic imaging data, in order to correctly attribute the
observed Hall effect to the bulk magnetic domains or to DWs.
In the next section, we return to the demonstration of how an
applied magnetic field may indeed select the DW patterns that
lead to a nonzero σ H,DW

yz .

IV. INSIGHTS FROM LANDAU THEORY

In this section, we employ Landau theory for rutile alter-
magnets to explain the qualitative features of our numerical
results and to outline a setup in order to achieve a nontrivial
DW AHE from multi-DW configurations.

We consider an important aspect of the Landau theory for
altermagnets formulated in Refs. [14,47]: coupling between
Néel vector �N and the magnetization �M. They are viewed as
order parameters that appear in the free energy for the sys-
tem. In particular, we are interested in the symmetry-allowed
bilinear couplings between the components of �N and �M. For
rutile altermagnets, such a coupling appears as the following
Lifshitz invariant [14,17]:

Lint = α1(MxNy + MyNx ). (14)

α1 is a coupling constant. We emphasize that this is the only
bilinear coupling. Note also that Nz and Mz do not appear at
the bilinear order, but they may appear in nonlinear terms.
Equation (14) implies that a nonzero My (Mx) can be induced
by a nonzero Nx (Ny)—the mechanism of weak ferromag-
netism discussed earlier [33,41]. Indeed, this explains the
emergence of the orbital magnetization �Morb in Fig. 6(c) from
the nonzero Ny component within the DW region [48]. It also
explains why the DW gives rise to a nonzero AHE since the
Hall pseudovector transforms like a magnetization vector. We
note that the Lifshitz invariant of Eq. (14) is not present in
Ref. [34] because of the absence of SOC in the study.

Since an external magnetic field �B also transforms like �M,
one can replace �M in Eq. (14) by �B. This implies that an
external magnetic field directly couples to the Néel vector,
allowing for control over the DW pattern. For example, a
magnetic field in the x direction couples linearly with Ny and
will thus energetically favor either the DW pair configuration
in Figs. 8(a) or 8(d). This ultimately leads to a nontrivial AHE
from DWs, as claimed earlier in Sec. III D. We note that the
magnetic domains themselves are less affected by the external
magnetic field since the order parameter, i.e., Nz, behaves like
a magnetic octupole in the rutile lattice [14,15]. That is, Nz

transforms identically as a magnetic octupole moment under
the symmetry operations of the point group and couples to the
external field, beginning only at the third-order: a Lifshitz in-
variant of the form NzBxByBz is allowed by symmetry [14,15].
Meanwhile, the coupling with the DW chirality already occurs
at the linear order.

V. GENERALIZATION BEYOND RUTILE
ALTERMAGNETS

So far, we have discussed a specific case of pure rutile
altermagnets where AHE is symmetry-forbidden within the

interior of each magnetic domain, and how altermagnetic
DWs lift the symmetry constraint and activate the AHE. In this
section, we discuss how a similar situation can arise in other
pure altermagnets. For simplicity, we restrict our attention to
pure altermagnets in which it is possible to have a bilinear
coupling between �N and �M of the following form:

Lint =
∑

α,β=x,y,z

cαβNαMβ, (15)

which is a more general version of Eq. (14) for rutiles with
coupling constants cαβ . It is expected that the bilinearity of
the coupling enables more effective manipulation of the DW
configuration by an external field �B, since nonlinear couplings
could, in general, lead to reduced controllability, such as re-
quiring a large external field.

We find three crystallographic point groups in three di-
mensions that support pure altermagnetism and the bilinear
couplings simultaneously; see Table I. This table is adapted
from a recent work on Landau theories for altermagents [47],
and we will describe how to use it in the following. The first
column is the crystallographic point group of the underlying
lattice. To describe the physical meaning of the second col-
umn, we first recall that an altermagnetic ordering does not
break the translational symmetry of the lattice. It is instructive
to visualize how the staggering dipole moments associated
with the Néel order occupy and divide the sublattices in
each unit cell into two groups. We define a sign-alternating
pattern by assigning the value +1 to one group and −1 to
the other. It is essential that a translation or an inversion
operation does not interchange the sublattices between the
two groups in order to avoid the Kramers’ degeneracy. Other-
wise, we would get conventional antiferromagnetism, i.e., no
momentum-dependent band splitting. Nevertheless, the two
groups may be interchanged by other operations, e.g., a ro-
tation operation of the crystallographic point group [49]. As a
result, such a rotation reverses the sign of the sign-alternating
pattern. While some operations of the point group change
the sign of the sign-alternating pattern, other operations do
not. This means that the sign-alternating pattern transforms
according to a one-dimensional irreducible representation of
the point group that defines �S . �S varies, depending on the
type of Wykoff positions occupied by the sublattices. For
rutiles, the point group is 4/mmm. Within each unit cell, the
A sublattice constitutes the first group, while the B sublattice
forms the second group. A fourfold rotation is an example
that interchanges the two groups. The sign-alternating pattern
transforms according to �S = B2g. Accordingly, the bilinear
coupling can be read off from the third column of the table
and is indeed given by Eq. (14). Finally, the fourth column
specifies the high-symmetry direction for �N corresponding to
the pure altermagnetism. Table I demonstrates the presence
of multiple examples of pure altermagnets where bilinear
couplings are possible. Our results for the rutile altermagnets
can then be readily generalized for these systems.

VI. SUMMARY

Our work demonstrates that in pure altermagnets the sym-
metry constraint, which forces the AHE to vanish, is lifted
by magnetic DWs, thereby activating a DW AHE and orbital
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TABLE I. Three-dimensional point groups that can support centrosymmetric pure altermagnetism exhibiting a linear coupling between �N
and �M. Other point groups may support nonlinear coupling beyond the bilinearity. The results are adapted from Ref. [47].

Point group Staggering Irr. Rep. �S Lifshitz invariant �N in domain interiors

mmm B1g α1NxMy + α2NyMx along ẑ
B2g α1NxMz + α2NzMx along ŷ
B3g α1NyMz + α2NzMy along x̂

4/m Bg α1(NxMx − NyMy ) + α2(NxMy + NyMx ) along ẑ

4/mmm B1g α1(NyMy − NxMx ) along ẑ
B2g α1(NyMx + NxMy ) along ẑ

magnetization. In the presence of many parallel DWs, while a
random arrangement of the DW chirality leads to a trivial DW
AHE, we argue using Landau theory that an external magnetic
field selects a chirality population that allows the AHE contri-
bution from each DW to add up instead of canceling out. Our
work also uncovers a crucial role of the orbital magnetization,
in that it is comparable to or, in some cases, even larger than
the spin magnetization. In addition, its orientation correctly
indicates the Hall plane where the DW AHE is the greatest,
whereas the spin magnetization fails to do so. Our work calls
for experimental investigations to confirm this important role
of altermagetic DWs in Hall transport and orbital magnetism
phenomena. Because of the important role of DWs in pure
altermagnets demonstrated here, future Hall-transport studies
should undertake a rigorous analysis of the Hall data, ideally
in conjunction with the information about the precise mag-
netic structure, in order to unambiguously assign an observed
Hall effect to the bulk magnetic domains or to the DWs. Our
work also motivates future studies of DW effects in mixed
altermagnets, where bulk magnetic domains are already AHE-
active and accompanied by weak ferromagnetism. It is proba-
ble that, in a field-sweep Hall measurement, the Hall contribu-
tion from bulk magnetic domains cancels out near the coercive
magnetic field, exposing the DW contribution—a scenario
proposed in the ferromagnet CeAlSi [38]. Future studies are
also needed to firmly establish the dominant effect of orbital
magnetism uncovered here in altermagnets. This last point is
further reinforced by a similar observation of a dominant or-
bital magnetism in MnTe in a recent first-principle study [50].
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APPENDIX A: SYMMETRY PROTECTION OF WEYL
NODAL LINES ALONG � Z AND MA

In this appendix, we discuss the symmetry protection of
the Weyl nodal lines along � Z and MA lines seen in the band
structure in Fig. 4(b) for the case of a uniform profile �N = ŷ.
As will be shown below, the Weyl nodal line along MA is
protected by a combination of a nonsymmorphic mirror g1 =
{Mx| 1

2
1
2

1
2 } and an anti-unitary symmetry g̃2 = �{C2y| 1

2
1
2

1
2 },

which involves the time reversal �. (Tilde on g̃2 denotes
its anti-unitarity.) Meanwhile, the nodal line along � Z is
not protected by any symmetry and can be gapped out by a
symmetry-conforming pertubation.

To see the absence of a symmetry protection for the
nodal line along � Z, we supplement the following symmetry-
conforming perturbation, which takes the form of a magnetic
field along x axis, into the model Hamiltonian H of Eq. (1),

Hpert = ησxτ0, (A1)

where η is a coefficient. One can see that Hpert. is symmetry-
allowed from our discussion on the Landau theory for rutile
altermagnets, where a Néel vector along y axis induces a
weak ferromagnetism with the magnetization along x axis.
Figure 9(b) shows how introducing Hpert gaps out the nodal
line along � Z in Fig. 9(a). In contrast, the Weyl nodal line
along MA is still protected.

Below, we outline the reason how g1 and g̃2 protect the MA
nodal line. One can check that for all k-point along MA, i.e.,
�k = (π, π, kz ), g1 and g̃2 are indeed the symmety. Let ψ�k be
an eigenstate and U1 is the unitary representation of g1, then

H(�k)ψ�k = E�kψ�k, (A2)

[H(�k),U1] = 0, (A3)

FIG. 9. Demonstration how the symmetry-conforming Hpert

gaps out the nodal line along � Z.
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U1ψ�k = ζψ�k, (A4)

where ζ is an eigenvalue of U1. The square of g1 is given by

g2
1 = {e|011}{C1x|000}. (A5)

We denote e as identity and C1x as a 2 π rotation. This means
that ζ depends on �k and satisfies the following condition:

ζ 2
�k = −eiπ+ikz , (A6)

where −1 arises from the 2π rotation of the spin-1/2 electron,
while the phase factor comes from the pure translation part of
Eq. (A5). This means that ζ�k takes two values,

ζ�k = ±eikz/2. (A7)

Next, we consider the relation between g1 and g̃2,

g1g̃2 = {e|001}{C1x|000}g̃2g1. (A8)

Let Ũ2 be the anti-unitary representation for g̃2 and, without
loss of generality, let ζ�k be eikz/2, then acting Ũ2 on the follow-
ing first equation yields

U1ψ�k = eikz/2ψ�k,

Ũ2U1ψ�k = e−ikz/2Ũ2ψ�k . (A9)

We will show that Ũ2ψ�k is also an eigenvector of U1 but with
the eigenvalue of −eikz/2. To see that, we use Eq. (A8),

U1Ũ2ψ�k = −eikzŨ2U1ψ�k = −eikz/2Ũ2ψ�k, (A10)

where in the last equality, we use Eq. (A9). This means that
Ũ2ψ�k is another eigenstate of H(�k) and carries the opposite g1

eigenvalue to that of ψ�k . Hence, it is guaranteed that there is a
twofold degeneracy protected by g1 and g̃2.

APPENDIX B: KUBO FORMULA FOR THE DOMAIN
WALL HALL CONDUCTIVITY

The Kubo formula for the Hall conductivity is given by
[37]

σ H,DW
i j = lim

ω→0

2π i

Lx + 1

e2

h

∑
m,n

∫
d2q

(2π )2

f (E�qm) − f (E�qn)

E�qn − E�qm[ (vi )mn
�q (v j )nm

�q
h̄ω + iγ + E�qm − E�qn

]
, (B1)

where �q = �k‖ = (ky, kz )T , γ is a small broadening, |u�qn〉 de-
notes the Bloch eigenstates, and v j is the velocity operator
whose matrix elements are defined below.

To obtain the velocity operator, we follow the standard pro-
cedure of the Peierls substitution: each hopping term ti jψ

†
i ψ j

acquires a phase because of the vector potential �A associated
with an external electric field �E = −∂ �A/∂t ,

ti jψ
†
i ψ j → ti jψ

†
i ψ j exp

(
−i

e

h̄

∫ �r j

�ri

d�r · �A
)

,

≈ ti jψ
†
i ψ j

[
1 − i

e

h̄
�ri j · �A(�ri ) + �A(�r j )

2

]
, (B2)

where �ri j = �r j − �ri. The velocity operator at site i is given by

vl (�ri) = −1

e

δH[ �A]

δAl (�ri )
, (B3)

where H[ �A] is the Hamiltonian after the Peierls substitution.
Finally, the velocity operator in Eq. (B1) is given by

vl =
∑

i

vl (�ri). (B4)

In the rest of the appendix, we will apply our expressions
to the case of the slab geometry and sketch the derivation of
a useful form of vl [Eq. (B4)] for the Kubo formula. We will
first derive the tight-binding Hamiltonian in the Fourier space
and then express vl in relation to the matrix elements of the
Hamiltonian.

The tight-binding Hamiltonian on the slab geometry has
the following form:

H =
∑

ii′ll ′μμ′
tilμ,i′l ′μ′ψ

†
ilμψi′l ′μ′ + H.c., (B5)

where site indices i and i′ specify the in-plane position. The
layer indices l and l ′ specify the out-of-plane position. μ and
μ′ are compact indices that specify the sublattices and the
spin. We note that the position vector consists of out-of-plane
and in-plane components: �r = (r⊥, �r). The in-plane transla-
tional invariance is encoded in the hopping integral tilμ,i′l ′μ′ =
tlμ,l ′μ′ (�ri′ − �ri ), i.e., it depends only on the displacement vec-
tor �ri′ − �ri within the slab plane. The Fourier form of H is
given by

H =
∑

�q,ll ′μμ′
ψ

†
�qlμHlμ,l ′μ′ (�q)ψ�ql ′μ′ , (B6)

where

Hlμ,l ′μ′ (�q) = tlμ,l ′μ′ (�q) + t∗
l ′μ′,lμ(�q), (B7)

FIG. 10. μ dependence of (a) σ H
yz ( �Ni ) and (b) Morb,x ( �Ni ) for the

collinear bulk.
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FIG. 11. Profile of Mz,A and Mz,B near the domain wall. The solid
curve illustrates an envelope function for the coarse graining.

tlμ,l ′μ′ (�q) =
∑

i′
tlμ,l ′μ′ (�rii′ )e

i �q·�rii′ , (B8)

where �rii′ = �ri′ − �ri. We have also used the Fourier
transformation

ψilμ = 1√
A

∑
�q

ψ�qlμei �q·�ri .

A is the area of the slab. The velocity operator Eq. (B4) can be
computed similarly. Following Eq. (B4), we can write

�v = 1

h̄

∑
ii′ll ′μμ′

itilμ,i′l ′μ′ (r⊥,ll ′ x̂ + �rii′ )ψ
†
ilμψi′l ′μ′ + H.c.

(B9)

Taking the same Fourier transformation akin to that for the
Hamiltonian, we arrive at the following form:

va =
∑

�q,ll ′μμ′
ψ

†
�qlμV

a
lμ,l ′μ′ (�q)ψ�ql ′μ′ . (B10)

FIG. 12. Profiles of 〈Mz〉 and 〈My〉 in a DW region. Upon sum-
ming over the domain wall region, the z component is nontrivial,
while the y component vanishes.

For the in-plane components a = y, z,

Va
lμ,l ′μ′ (�q) = 1

h̄

∂Hlμ,l ′μ(�q)

∂qa
, (B11)

whereas the out-of-plane component a = x corresponds to

Vx
lμ,l ′μ′ (�q) = i

h̄
r⊥,ll ′Hlμ,l ′μ′ (�q). (B12)

Note that there is no summation over the indices l and l ′ in
the right-hand side of the above equation. Finally, the notation
for the matrix elements of the velocity operator in Eq. (B4) is
given by

(va)mn
�q = 〈u�qm|Va(�q)|u�qn〉. (B13)

APPENDIX C: HALL CONDUCTIVITY AND ORBITAL
MAGNETIZATION FOR COLLINEAR BULK

To compute the site-averaged Hall conductivity of Eq. (7)
and a similar site-averaged orbital magnetization, we first
compute the same quantities for the collinear bulk with the
Néel vector orientation �N ′

i s that appear in the DW Ansatz
for wdw = 20. Recall that �Ni = (0, sin θi, cos θi )T and θi =
π (2i + wdw)/2wdw in the DW region −wdw/2 < i < wdw/2.
Figure 10 shows the μ dependence of the Hall conductivity
σ H

yz ( �Ni ) and that of the orbital magnetization Morb,x( �Ni ). Note

that �Ni=0 = ŷ.

APPENDIX D: NONALTERMAGNETIC ORIGIN
OF SPIN MAGNETIZATION

In this appendix, we illustrate how the z component of the
spin magnetization does not require altermagnetism. This can
be seen by observing that the magnetic moments on the two
sublattices reside at different positions, i.e., within each unit
cell the sublattices A and B are located at different positions.
As a result, a coarse graining of a Bloch DW profile of the
Néel vector can qualitatively explain the nonvanishing spin
magnetization. This arises independently of altermagnetism
or spin-orbit coupling.

FIG. 13. Spin magnetization of conduction electrons in the ab-
sence of altermagnetism and SOC, i.e., when td = λ = λ′ = 0. The
presence of the z component of �Msp indeed does not rely on the alter-
magnetism or SOC, which is in agreement with the coarse graining
picture in Fig. 12.
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We start by considering a Bloch domain wall of �N as
studied in the main text. Figure 11 shows the profiles of
the associated magnetic dipole moments of the sublattices A
and B. Without loss of generality, we only consider their z
components. We then perform a coarse graining procedure to
obtain an averaged local magnetization

〈 �M〉(x) =
∑

i

∑
s=A,B

f (x − xi ) �Ms(xi ), (D1)

where i is the unit-cell label, and f (x − xi ) is an envelope
function peaking at around x − xi = 0. The solid curve in
Fig. 11 illustrates a Gaussian envelope function. We note that
〈 �M〉 should be viewed as a proxy for the spin magnetization
studied in the main text.

Performing the coarse graining, we obtain the profile for
the z component as shown in Fig. 12. We can also repeat the
same calculation for the y component. Upon summing over
the DW region, only the z component survives. This means
that the DW profile of the Néel vector generally produces a
nontrivial magnetization, and it relies on neither altermag-
netism nor spin-orbit coupling; the same outcome arises in
a conventional antiferromagnet. To illustrate the last point,
we compute the spin magnetization when we switch off alter-
magnetism and spin-orbit coupling, i.e., by setting td = λ =
λ′ = 0. Figure 13 shows the μ dependence of �Msp and is to
be compared with Fig. 6(d) in the main text. The presence of
z component of �Msp indeed does not rely on altermagnetism
or spin-orbit coupling, and its value is qualitatively similar to
that in Fig. 6(d).
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[22] J. Ōiké, K. Shinada, and R. Peters, Nonlinear magnetoelectric
effect under magnetic octupole order: Application to a d-wave
altermagnet and a pyrochlore lattice with all-in/all-out magnetic
order, Phys. Rev. B 110, 184407 (2024).

[23] T. Farajollahpour, R. Ganesh, and K. V. Samokhin, Light-
induced charge and spin Hall currents in materials with C4K
symmetry, npj Quantum Mater. 10, 29 (2025).

[24] K. V. Yershov, V. P. Kravchuk, M. Daghofer, and J. van den
Brink, Fluctuation-induced piezomagnetism in local moment
altermagnets, Phys. Rev. B 110, 144421 (2024).

[25] K. Takahashi, C. R. W. Steward, M. Ogata, R. M. Fernandes,
and J. Schmalian, Elasto-Hall conductivity and the anoma-
lous Hall effect in altermagnets, Phys. Rev. B 111, 184408
(2025).

[26] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J.
Sinova, Crystal time-reversal symmetry breaking and sponta-
neous Hall effect in collinear antiferromagnets, Sci. Adv. 6,
eaaz8809 (2020).

245115-11

https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1002/adfm.202409327
https://doi.org/10.1039/C5CP07806G
https://doi.org/10.1103/PhysRevB.99.184432
https://doi.org/10.7566/JPSJ.88.123702
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1103/PhysRevB.102.144441
https://doi.org/10.1103/PhysRevB.109.024404
https://doi.org/10.1103/PhysRevB.76.214404
https://doi.org/10.1088/0953-8984/20/43/434203
https://doi.org/10.1143/JPSJ.78.072001
https://doi.org/10.1103/RevModPhys.81.807
https://doi.org/10.1103/PhysRevLett.132.176702
https://doi.org/10.1103/PhysRevX.14.011019
https://doi.org/10.1103/PhysRevB.108.144418
https://doi.org/10.1103/PhysRevLett.134.096703
https://doi.org/10.1103/PhysRevB.111.L161109
https://doi.org/10.1103/PhysRevLett.132.056701
https://doi.org/10.1103/PhysRevB.110.125127
https://doi.org/10.1103/PhysRevLett.133.106701
https://doi.org/10.1103/PhysRevB.110.184407
https://doi.org/10.1038/s41535-025-00746-7
https://doi.org/10.1103/PhysRevB.110.144421
https://doi.org/10.1103/PhysRevB.111.184408
https://doi.org/10.1126/sciadv.aaz8809


SOPHEAK SORN AND YURIY MOKROUSOV PHYSICAL REVIEW B 112, 245115 (2025)

[27] R. P. Rao, R. C. Sherwood, and N. Bartlett, “Weak” ferromag-
netism in PDF, J. Chem. Phys. 49, 3728 (1968).

[28] Z. H. Zhu, J. Strempfer, R. R. Rao, C. A. Occhialini, J.
Pelliciari, Y. Choi, T. Kawaguchi, H. You, J. F. Mitchell, Y.
Shao-Horn, and R. Comin, Anomalous antiferromagnetism in
metallic RuO2 determined by resonant x-ray scattering, Phys.
Rev. Lett. 122, 017202 (2019).

[29] Z. Feng, X. Zhou, L. Šmejkal, L. Wu, Z. Zhu, H. Guo, R.
González-Hernández, X. Wang, H. Yan, P. Qin et al., An
anomalous Hall effect in altermagnetic ruthenium dioxide, Nat.
Electron. 5, 735 (2022).

[30] L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T.
Jungwirth, Anomalous Hall antiferromagnets, Nat. Rev. Mater.
7, 482 (2022).

[31] M. Wang, K. Tanaka, S. Sakai, Z. Wang, K. Deng, Y. Lyu, C.
Li, D. Tian, S. Shen, N. Ogawa, N. Kanazawa, P. Yu, R. Arita,
and F. Kagawa, Emergent zero-field anomalous Hall effect in a
reconstructed rutile antiferromagnetic metal, Nat. Commun. 14,
8240 (2023).

[32] K. P. Kluczyk, K. Gas, M. J. Grzybowski, P. Skupinski, M. A.
Borysiewicz, T. Fas, J. Suffczynski, J. Z. Domagala, K. Grasza,
A. Mycielski, M. Baj, K. H. Ahn, K. Vyborny, M. Sawicki, and
M. Gryglas-Borysiewicz, Coexistence of anomalous Hall effect
and weak magnetization in a nominally collinear antiferromag-
net MnTe, Phys. Rev. B 110, 155201 (2024).

[33] D. Jo, D. Go, Y. Mokrousov, P. M. Oppeneer, S.-W. Cheong,
and H.-W. Lee, Weak ferromagnetism in altermagnets from
alternating g-tensor anisotropy, Phys. Rev. Lett. 134, 196703
(2025).

[34] O. Gomonay, V. P. Kravchuk, R. Jaeschke-Ubiergo, K. V.
Yershov, T. Jungwirth, L. Šmejkal, J. van den Brink, and J.
Sinova, Structure, control, and dynamics of altermagnetic tex-
tures, npj Spintronics 2, 35 (2024).

[35] W. Xia, B. Bai, X. Chen, Y. Yang, Y. Zhang, J. Yuan, Q. Li,
K. Yang, X. Liu, Y. Shi, H. Ma, H. Yang, M. He, L. Li, C. Xi,
L. Pi, X. Lv, X. Wang, X. Liu, S. Li et al., Giant domain wall
anomalous Hall effect in a layered antiferromagnet EuAl2Si2,
Phys. Rev. Lett. 133, 216602 (2024).

[36] F. R. Lux, F. Freimuth, S. Blügel, and Y. Mokrousov, Chiral
Hall effect in noncollinear magnets from a cyclic cohomology
approach, Phys. Rev. Lett. 124, 096602 (2020).

[37] S. Sorn and A. Paramekanti, Domain wall skew scattering in
ferromagnetic Weyl metals, Phys. Rev. B 103, 104413 (2021).

[38] M. M. Piva, J. C. Souza, V. Brousseau-Couture, S. Sorn, K. R.
Pakuszewski, J. K. John, C. Adriano, M. Côté, P. G. Pagliuso,
A. Paramekanti, and M. Nicklas, Topological features in the
ferromagnetic Weyl semimetal CeAlSi: Role of domain walls,
Phys. Rev. Res. 5, 013068 (2023).

[39] In the mixed altermagnetic cases, incorporating weak ferromag-
netism can lead to a slight deviation from a perfect collinearity.
In that case, the term “collinear” refers to the collinearity of the
sublattice exchange terms that enter the tight-binding Hamilto-
nian.

[40] M.è Roig, A. Kreisel, Y. Yu, B. M. Andersen, and D. F.
Agterberg, Minimal models for altermagnetism, Phys. Rev. B
110, 144412 (2024).

[41] T. Adamantopoulos, M. Merte, F. Freimuth, D. Go, L. Zhang,
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