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Figure 1: A participant performs an aimed-reaching interaction to hit a virtual bubble under the influence of gain-based
hand redirection (HR). The technique virtually scales up her real-world movement, and as a result, she needs to cover less
physical distance to reach the virtual target. Our study found that such visual-proprioceptive offsets induced by HR can lead to
a significant decline in proprioceptive accuracy, which users cannot easily recover from.

Abstract

To enhance interactions in VR, hand redirection (HR)-based illu-
sion techniques apply offsets between the virtual and real-world
position of users’ hands. While adaptation to such HR offsets is
recognized, their impact on proprioception accuracy remains unex-
plored. However, deploying HR without understanding its potential
effects on proprioception accuracy may pose risks to users in real-
life situations. To investigate this, we conducted an experiment
with 22 participants, studying the influence of prolonged expo-
sure to unnoticeable HR offsets on proprioceptive accuracy during
hand-reaching in VR. Our results show that proprioceptive accu-
racy declines significantly after prolonged exposure to redirected
hand interactions. However, short-time exposure to unaltered hand
interactions can - yet only partially — restore normal levels. Thus,
we advocate being aware of potential risks arising from prolonged
exposure to visual-proprioceptive offsets to ensure users’ safety.
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1 Introduction

Virtual Reality (VR) has experienced a rise in popularity throughout
the last decade, both in scientific research and in the consumer
market. However, many envisioned VR applications are still far
from becoming viable for several reasons. One major problem is
missing haptic feedback for interactions with virtual objects. Here,
haptic proxies, i.e., physical “stand-ins” for virtual objects, can help
to overcome this problem but are often severely limited in their
flexibility [43]. To address this issue, researchers developed hand-
based illusion techniques to improve the haptic resolution of proxies
by tricking users’ perception—decoupling what users see from what
they feel through visually manipulating the interaction [17, 30].
Typically, such illusions exploit the visual-dominance phenomenon,
where in the case of two conflicting senses, vision usually dominates
over other senses such as proprioception [11, 26].

As these techniques are very effective, they have resulted in a
continuously growing research stream with various kinds of hand-
based illusion techniques that can enhance interactions with haptic
proxies [8, 13, 23, 51, 53], expand the resolution of active haptic
devices [1, 3, 27], controller-based interactions [39, 50, 60, 65], or
allow users to interact with their surroundings more ergonomically
through novel ways of interaction [40], e.g., manipulate virtual
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objects that are out of reach [25, 46]. A large body of work specifi-
cally focuses on HR-based techniques in VR. HR offsets the virtual
hand’s position from the real hand’s position during reaching, as
illustrated in Figure 1. It is the underlying method for many tech-
niques, such as Haptic Retargeting [4], Redirected Touching [33],
or for creating Pseudo-haptic forces [23, 36, 51, 58, 65]—which can
remain completely unnoticed by users. While many papers openly
acknowledge that users quickly adapted to the induced offsets, we
ask the question of whether prolonged interaction time under the
influence of HR leads to a significant decline in proprioceptive
accuracy and, if so, whether users can recover from this, leading to:

RQ1: Does the presence of unnoticeable HR influence proprioceptive
accuracy?

RQ2: Does the absence of HR restore proprioceptive accuracy?

There is good reason to study the impact of HR, as proprioception
plays a significant role in our daily lives. For example, we can
manipulate objects without directly looking at our hands, e.g., using
a steering wheel in a car while paying attention to the road or
using a handrail while watching obstacles or steps—and making
errors in these situations could be fatal. However, the existing
work on hand-based illusions for VR has been studied with the
goal of manipulating perception with little consideration for after-
effects when exiting the VR environment. With increasing time in
simulated environments, potentially under prolonged exposure to
sensory manipulations, we want to highlight the question if we
can design perceptual illusions in a safe and responsible manner to
mitigate potential harms.

To do so, we conducted a within-subjects lab experiment with
22 participants, asking participants to play a simple VR game re-
quiring continuous hand reaching while being exposed either to
unmodified virtual reaching motions or to motions manipulated
by HR. We assessed participants’ proprioceptive accuracy through
the physiological joint position reproduction (JPR) method [31].
Our results show that participants’ proprioceptive accuracy of their
dominant hand significantly deteriorates with prolonged exposure
to visual-proprioceptive offsets caused by HR. This effect was still
present after 5 reach interactions without HR. Considering that our
task was only about 10 minutes and already significantly affected
users’ ability to perform basic reaching movements, we highlight
the importance of future research in this domain as illusions slowly
become an effective tool in VR interaction design.

2 Related Work

2.1 Threats Through Sensory Manipulations

The field of illusion techniques for VR is very broad, ranging from
redirected walking (RW) [12] and creating impossible spaces [54] to
body illusions [10]. These perceptual phenomena are truly fascinat-
ing; nevertheless, these techniques play with the users’ perception,
exploiting how our brain processes sensory inputs. While short
experiments or occasional use might be unproblematic, VR has the
potential to become an intrinsic part of our everyday lives. For exam-
ple, people might work, train, collaborate, meet, and play in virtual
environments [32]-the opportunities seem endless. However, with
more time in VR and with sensory manipulations becoming an
effective tool for VR designers, it is crucial to understand the poten-
tial harm they may cause. Tseng et al. [55] conceptually explored
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the risks posed by maliciously exploiting perceptual manipulations
through an attacker. They focus on the resulting action, such as a
loss of agency, which could result in hitting some unintentionally.
Our work differs substantially from theirs because we focus on
potential harm to users’ own sensory processing. However, if
HR techniques could also be exploited to recalibrate proprioception
unconsciously, threats in everyday situations could be as fatal as
those discussed by Tseng et al. [55].

2.2 Hand-based Illusions in Virtual Reality

Hand-based illusions manipulate the mapping between the real
and the virtual hand, which, e.g., can be achieved by changing the
Control/Display (C/D) gain, introducing a gain factor g, that, e.g.,
amplifies (g > 1.0) users’ real-world movements. For instance, the
Go-Go interaction technique [46] allows users to grasp and interact
with distant virtual objects beyond their arm’s reach ergonomically.
On the other hand, hand-based illusions have become a widely
used technique to improve proxy-based interactions. For example,
Haptic Retargeting [4] in combination with a sparse haptic proxy
to provide haptic feedback for interactions such as button presses
[13], manipulating sliders [19], knobs [23], buttons [3], switches
and toggles [38]. In summary, hand-based illusion techniques are
commonly applied to enrich interactions, resulting in a large body of
related literature [1, 5, 8, 15, 27, 51, 53, 58, 65]. Many of these studies
examined how much hand offset can be used while remaining
unnoticeable, reporting so-called detection thresholds (DTs) [16, 19,
20, 23, 28, 64]. However, unnoticeable illusions may be even more
problematic because users do not notice that their perception is
manipulated. Thus, we ask whether even unnoticeable HR can
already lead to a decline in the proprioceptive accuracy of the
user’s hand.

2.3 Proprioceptive Accuracy & Recalibration

Proprioception allows us to sense the position of our body parts
without directly looking at them [48]. It can be influenced by a vari-
ety of factors, such as age [49], physical activity [42], and diseases
[35], with research suggesting that the deterioration of proprio-
ception is one of the leading causes of accidents, because of falls,
collisions, or misjudgments of spatial relationships [24].

Exposing users to offsets leads to sensorimotor adaptation in
order to maintain a high level of control (agency) over their move-
ments [2]. Proprioceptive recalibration can result from sensori-
motor adaptation, describing that the effect is still measurable in
the absence of (visual) feedback [14]. For example, Cressman and
Henriques [14] studied a mouse cursor pointing task, where the
real hand was hidden from participants, and prolonged exposure to
movement offsets causes hand proprioception to recalibrate, with
the effect even being measurable the day after [44].

In VR, adaptation to sensory mismatches has been studied by
Bolling et al. [12] in the context of RW, which gradually offsets users’
viewports. This results in them walking in circles, even though they
think they walk in a straight line. Bolling et al. [12] found that
adaptation to such curvature gains during RW occurs after about
20 minutes and 150 repetitions in VR. Adaptation to hand offsets in
VR has been anecdotally noted by Kohli et al. [34], who examined
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the performance difference between redirected vs. normal move-
ments in VR. Here, visual-proprioceptive movement offsets that
were initially perceived as extreme became acceptable towards the
end of the experiment. Feick et al. [21] found that DTs of redirected
hand movements shift due to adaptation effects after 4-8 repeated
reach interactions. However, it remains unclear if these sensori-
motor adaptations are only coping mechanisms or truly lead to
proprioceptive recalibration, especially for visuo-proprioceptive
offsets below the noticeability level.

3 Experiment

We conducted an experiment to investigate how prolonged ex-
posure to gain-based HR affects proprioceptive accuracy in VR.
Participants repeatedly performed aimed hand movements in an
immersive game environment while being exposed to either unno-
ticeable gain-based HR or no HR. However, participants remained
uninformed about the presence of HR over the course of the ex-
periment. We assessed participants’ change in proprioceptive hand
accuracy caused by HR using the physiological JPR method. It in-
volves having a participant actively move a joint (e.g., hand or leg)
to a specific target position and then attempting to replicate that
position without seeing the respective body part [31]. The accuracy
of the reproduced position is measured to assess proprioceptive
accuracy. JPR is widely used in rehabilitation, sports science, and
clinical settings to assess joint stability, neuromuscular control, and
the effects of injuries or interventions on proprioceptive accuracy
[31]. In our experiment, each JPR measurement consists of 5 hand
position reproductions, where participants position their real hand
(invisible to them) at a virtual target (30 cm in front of them) and
then confirm the position verbally to avoid, e.g., jittering, which
could occur by using a secondary input device. The experimenter
pressed a button to record the position, automatically calculating
the offset vector between the position of the virtual target and the
fingertip of the real hand. Despite the target’s location, no visual
feedback of the hand position is provided during this procedure.

3.1 Design

We used a within-subjects design with one independent variable,
REDIRECTION (no HR vs. HR). We counterbalanced the order of
no HR vs. HR between participants to minimize potential carry-
over effects. We measured the dependent variables: propriocep-
tive accuracy of the hand through the JPR method and assessed
self-reported presence using the SUS questionnaire [56]. In total,
participants performed 6 rounds of the game, and we took 8 JPR
measurements (each consisting of 5 hand position reproductions)
to capture changes in proprioceptive accuracy over the course of
the experiment (see Figure 2).

3.2 Method

3.2.1 Does the presence of unnoticeable HR influence proprioceptive
accuracy? To answer RQ1, we exposed participants to unnoticeable
gain-based HR through a game that required continuous and precise
reaching movements for about 10 minutes. We measured partici-
pants’ proprioceptive accuracy in VR using the JPR method before
and after completing the game with and without HR (see Figure 2).
The change (A) between the proprioceptive accuracy observed from
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JPR2 to JPR3 (after the "no HR" condition) and the change observed
from JPR2 to JPR3 (after the "gain-based HR" condition) represents
the impact that gain-based HR has on proprioception. Note that a
decline or increase in proprioceptive performance observed within
a condition, i.e., when directly comparing JPR2 to JPR3 for either
the "no HR" or the "HR" condition, could be an effect of fatigue,
training, or other task-related factors.

3.2.2  Does the absence of HR restore proprioceptive accuracy? If the
presence of unnoticeable HR affects proprioceptive accuracy, we
wanted to understand if it can be quickly restored. To address this
research question (RQ2), we let participants perform 5 consecutive
aimed hand movements with unmodified visual feedback, i.e., with
a one-to-one mapping between the position of the virtual and real
hands, to investigate if the deactivation of HR can restore their
proprioceptive accuracy. After these 5 reach motions, we took a
JPR4 measurement. By comparing the change (A) in proprioceptive
accuracy from JPR3 to JPR4 (in the "no HR" condition) with the
change from JPR3 to JPR4 (in the "gain-based HR" condition), we
assessed the impact of 5 visible hand reaches on the process of
proprioceptive recalibration. Additionally, we look at the change
(A) in proprioceptive accuracy from JRP2 to JPR4 to assess if users
fully return to the expected, original proprioceptive accuracy.

3.2.3 Task: Bubble Game. We designed a game that requires con-
tinuous hand-reaching movements while allowing us to apply un-
noticeable gain-based HR (see Figure 1: left). The goal of the game
was to collect as many points as possible by touching bubbles in the
user’s environment using the index finger. 3-5 bubbles randomly
appeared in the environment at a fixed distance of 30 cm away from
the user’s body to ensure that they were reachable for the seated
participant. We varied the position and number of bubbles to keep
participants engaged, mixing up the kinds of interactions to mimic
a variety of touch interactions. Then, the bubbles were highlighted
in a randomized order, and participants had to touch them in this
order to receive the maximum number of points. They were not
required to retract their hand after touching a bubble, but after
completing one round, in order to start the next round. The bubbles
measured 2.5 cm in diameter, requiring some precision but without
being too challenging to hit, following our pilot tests. Hitting the
correct bubble resulted in +1 points, whereas hitting the wrong
bubble resulted in the deduction of —3 points. Initially, the game
setup was calibrated to the seated head position of the participant,
with the game origin placed 30 cm below and 30 cm in front of
the participant, as depicted in Figure 3. This way, we ensured that
the game and JPR bubbles could be reached comfortably without
requiring users to fully extend their arm.

3.3 Participants

We recruited 22 right-handed participants (10 female, 12 male) from
our campus through flyers and e-mail lists. This includes one partici-
pant who was omitted from the analysis due to technical issues with
the system. The average age of the participants was 27.62, ranging
from 24 to 33 (SD: 2.10). Participants had a range of backgrounds,
including computer science, law, cybersecurity, media informatics,
environmental biology, computer linguistics, office work, facility
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Figure 2: Study design, showing how the order of our joint position reproduction (JPR) measurements, the SUS presence
questionnaires, and the tasks relate to our two core research questions. We counterbalanced "no HR" and "gain-based HR".
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Figure 3: Study setup showing the game’s origin in relation
to the user, the JPR measurement, as well as the game area in
which the bubbles appeared that users were required to hit.

management, pharmacy, and teaching. All remaining 21 partici-
pants had normal (N=11) or corrected-to-normal vision (N=10). No
one stated any known diseases or health issues that may influence
their proprioception and vision, except for one person. The study
was approved by the Ethical Review Board of the University.

3.4 Apparatus

We used a simple virtual scene, which was implemented in Unity3D
(v.2021.3.3f1), consisting of a virtual replica of the real world (e.g., a
table) to provide visual depth cues, the game UI and an instruction
screen. We used the HTC Vive Pro Eye HMD and HTC Vive tracker
(v3), which we attached to the back of the user’s hand using a rub-
ber band. To fixate the position of the index fingertip in relation
to the tracker, we attached a finger splint alongside the palm of
the participant’s hand. For HR and fingertip calibration, we used
the procedure provided by the open-source Virtual Reality Hand
Redirection Toolkit by Zenner et al. [63]. We included an androgy-
nous hand model® with a generic skin color RGB (250, 227, 195), as
suggested by Schwind et al. [52] to prevent unwanted effects such
as increased sensitivity to visuo-proprioceptive offsets [45].

Gain-based Hand Redirection. Redirecting users’ hand movements
is most often done by gradually offsetting the virtual hand from
its physical counterpart as users reach a virtual target (in our case,
the virtual bubbles). For example, Cheng et al. [13], Azmandian
et al. [4], Kohli [33], Matthews et al. [37], and Zenner et al. [62]
presented algorithms to achieve this, where the virtual hand can be

!https://assetstore.unity.com/packages/3d/characters/hands-for-vr-basic- 54532

offset horizontally, vertically, and in the depth axis. We only opted
for gradual depth displacement by applying a gradual gain factor in
this experiment because it is a well-studied direction [7, 16, 21, 64].
As a result, the user’s virtual hand moves faster than the real hand.
Thus, the user’s real hand needs to cover less distance to reach the
virtual target (see Figure 1 left).

Conservative DTs for HR are typically established by directly
comparing two hand reaches while participants are aware of the
technique, with the objective of detecting offsets and no factors
that distract from this task [22, 61, 64]. As a result, they provide a
lower bound that often does not allow for manipulations that have
practical relevance. This neither applies to our task nor typical VR
applications, where users are unaware of HR and distracted, e.g.,
by a game [6]. Benda et al. [7] recently reported DTs for unaware
HR (gain = 3.37) that promised to be more suitable for our task.
However, our pilot studies suggested that this gain-value was too
high to remain unnoticed in our setup, which is why we decided
to use a gain-value just below the 75% DT (gain = 1.7) [21]. This
seemed to be a reasonable trade-off in terms of a likely unnoticeable
gain-value that designers can use in practical settings. As notice-
able HR can disrupt the immersive experience, we used a presence
questionnaire before and after the intervention to assess if our HR
magnitude affected the experience.

3.5 Experimental Protocol

Participants arrived at the location and first received a general intro-
duction to the study without being informed about HR or the true
purpose of the study. Next, we gathered participants’ consent and
asked them to fill in a demographic questionnaire. We then started
with the procedure of attaching the Vive tracker and the finger
splint, followed by the calibration routine in VR. Subsequently, par-
ticipants were placed in the game environment and guided through
the practice and warm-up phase, where they learned the JPR proce-
dure and the game (without HR applied). By doing so, we allowed
them to familiarize themselves with the system and the task. They
were told to sit comfortably and to move their hand at a comfortable
speed. Once the participant’s virtual index fingers hit the bubble, it
popped and, as a result, disappeared with the achieved points dis-
played. The overall points score was always visible to participants.

One round of the game consisted of 42 hand-reaching move-
ments (i.e., bubbles), which roughly took 10 minutes to complete
due to memorization of the order and execution of movements.
The first JPR measurement and the initial game were used to let
participants practice the task. In the second round, they served as a
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Figure 4: The results of our four JPR measurements that are
relevant to our research questions show that with no HR,
participants improved their proprioceptive accuracy after
repeated interaction through repeated reaching. Propriocep-
tive accuracy significantly declined after exposure to HR,
which could not immediately be restored to the normal level.

washout phase to reduce potential carry-over effects. Hence, JPR2
was the first measurement that was included in the analysis. After
completing JPR2 and the game, the virtual hand was made invisible,
and participants performed the third JPR measurement procedure.
Following this third JPR measurement procedure, we enabled the
virtual hand and continued with 5 hand reaching movements be-
fore performing the fourth JPR measurement procedure (without a
visible virtual hand). In addition, participants filled in the presence
questionnaire (in VR) as indicated in Figure 2. The study took about
70 minutes, and participants received candy for their participation.

3.6 Data Collection

We collected data from five sources: a pre-study questionnaire for
demographic information, the offset vectors recorded for each JPR
measurement, the responses in the SUS presence questionnaire
[56] in VR using the VRQuestionnaireToolkit [18], field notes and
observations, and a short post-study interview.

3.7 Analysis

First, we removed significant outliers in the recorded JPR offsets
using the box plot method. Next, for each JPR, we averaged the
5 related JPR offsets to compute a single score. We statistically
analyzed the changes in proprioceptive accuracy (A) after verify-
ing the parametric test assumptions at =.05. We performed RM
ANOVAs and applied Greenhouse-Geisser corrections when the
assumption of sphericity was violated. In the presence of a main
effect, we performed post-hoc pairwise t-tests adjusted using the
Bonferroni-Holm method. In addition, we conducted a Bayesian
analysis using JASP? (v.0.19.3.0) following Wagenmakers et al. [57].

Zhttps://jasp-stats.org/
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Table 1: Mean results of JPR measurements

2.HR 3.HR 4.HR
-1.20cm -6.73cm  -3.10cm  -0.24cm -0.32cm  0.00 cm

2noHR  3.noHR 4.noHR

3.8 Results

First, we were interested in participants’ proprioceptive perfor-
mance in the "no HR" condition. Generally, we found a slight ten-
dency of participants to underestimate their real hand position in
VR (JPR2.noHR mean: -0.24 cm; SD: 3.23 cm) that improved with
repeated reach interactions in VR (JPR4.noHR mean: 0.00 cm; SD:
3.54 cm) according to the descriptives and our analysis (p = .040,
d = —.258, BFjo = 1.644) with Bayesian providing only anecdotal
evidence for an effect. In the latter case, participants were extremely
accurate with the positioning of their hands, and thus, they did not
seem to suffer from fatigue over the course of the experiment.

Our analysis of the changes (A) in proprioceptive accuracy caused
by unnoticeable HR suggested a main effect (F(5.0) = 53.603,
p <.001, ’1127 = .728, BF;;,c; > 1000). Thus, we applied post-hoc tests
to investigate our two research questions.

3.8.1 Does the presence of unnoticeable HR influence proprioceptive
accuracy? We found strong evidence for an effect of unnoticeable
HR on proprioception accuracy (p < .001, d = 2.709, BFjp >
1000). Participants moved from very accurate estimates of their
real hand position to significant underestimation after exposure
to gain-based HR (A;pgr3_jpr2 = -5.53 cm). The direction of the
effect, i.e., undershooting the virtual target, is in line with the effect
caused by gain-based HR, which provides further evidence that the
presence of HR caused proprioceptive recalibration to occur.

3.8.2  Does the absence of HR restore proprioceptive accuracy? Per-
forming 5 restorative aimed hand movements to the virtual target
without HR had a measurable positive effect (Ajpgrs—jpr3 = 3.42
cm) on proprioceptive accuracy (p < .001, d = 1.348, BFjy = 332)
compared to the baseline case "no HR" (A;pra—jpr3 = -0.10 cm).
However, it was insufficient to restore proprioceptive function
completely, as there still remained a significantly greater miscali-
bration (p < .005, d = 1.072, BF1p > 1000) in proprioceptive accu-
racy (Ajprs—jpR2 = -1.90 cm) compared to the "'no HR" condition
(AjpRa—jPR2 = 0.24 cm).

3.8.3 Detecability of HR. Finally, our goal was to study if even
unnoticeable HR already results in a decline in participants’ pro-
prioceptive accuracy of the hand. As previous work suggested that
HR DTs are highly individual, we wanted to ensure that our gain
factor of gain = 1.7 remained largely unnoticeable and, if not, how
it may have impacted participants’ experiences.

We analyzed the self-reported responses in the presence question-
naire, comparing the change in presence through the intervention
(see Figure 5). Our results suggest that HR was not strong enough
to disrupt presence measurably in the experiment (F(3.0) = 1.004,
p=.397, 1712, = .048, BF,,; = 5.422). Especially the Bayesian analy-
sis provided moderate evidence, suggesting that it is 5.4 times more
likely there was no effect on the SUS score within our collected data.
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Figure 5: Average SUS presence scores remained consistent
throughout the experience, suggesting that HR did not sig-
nificantly disrupt the experience.

This is supported by the results of interviews, where we asked par-
ticipants about their experience, and they did not mention anything
that would suggest an overly strong presence of HR.

3.84 Summary of Results. Our study showed that even an unno-
ticeable HR could lead to a significant decline in the proprioceptive
accuracy of the hand. Proprioceptive performance increased again
but remained significantly worse than in the condition without HR,
even after participants performed 5 restorative hand movements
with an unmodified visual view of their real hand position.

4 Discussion & Future Work

Finally, we discuss our findings and limitations in light of existing
work and provide recommendations for future work.

4.1 HR Influence on Proprioceptive Accuracy

4.1.1 Recalibration occurs regardless of Proprioceptive Accuracy.
We found that participants initially underestimated the position
of their hand, which is in line with previous work on distance
estimation in VR [29]. This significantly improved with more time
and repeated interactions in the virtual environment, leading to an
impressive 0.00 cm mean error. When inspecting individual users’
JPR measurements (see Figure 4), it becomes clear that there is
quite a large range of errors. However, this remained consistent
over the conditions and followed a normal distribution, suggesting
that, like with DTs [21], participants differed in their proprioceptive
accuracy [42]. Our data suggest that all our participants experienced
proprioceptive recalibration. Thus, we believe that the initial level
of proprioceptive accuracy of the hand does not seem to affect this.

4.1.2  Recalibration to Average Offset Induced by HR. Our results
show that proprioceptive accuracy significantly declines after pro-
longed exposure to hand-reaching movements under the influence
of HR vs. no HR. Proprioceptive accuracy decreased in the form of
undershooting the goal position by an average of -6.36 cm. This is in
line with previous findings suggesting proprioceptive recalibration
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following visual-proprioceptive sensory conflicts [14]. Interestingly,
the magnitude of JPR undershooting was about 50% of HR offset in
the target position (12.35 cm difference in the z-axis between the
virtual and real hand position in the target location, 30 cm away
from the start position). This suggests that proprioception did not
recalibrate to the maximum offset in the final position but to the
average offset between the real and virtual hand over the course
of one reaching movement. However, whether this is just a coinci-
dence remains to be explored. For example, it could be that with
more interaction time under the influence of gain-based HR, users
would eventually recalibrate to the maximum offset. Nevertheless,
introducing a gradual offset, as typically done by HR, separates our
work to the best of our knowledge from any other works in the
psychology literature on proprioception, which typically use fixed
offsets and report that users can fully adapt to them [9, 14].

4.1.3 Recalibration Limits Application Space of Illusions. As HR
techniques are frequently used in the field of ergonomics [40, 41]
and haptic feedback [4, 13] to enhance VR experiences, designers
should be aware of the potential harm caused by unconscious recal-
ibration. This is even more important for training and simulation
applications, as this could lead to incorrect acquisition of motor
behavior that potentially transfers to real-life scenarios. For ex-
ample, skills acquired in flight or surgical simulators would be of
limited utility and could even lead to dangerous situations. Recently,
redirection techniques have also been proposed for rehabilitation
purposes to enhance the motivation of patients with motor impair-
ments [59]. While acknowledging the potential of motivating users,
we want to sensibilize research in this domain. As proprioceptive
training is an essential part of improving recovery from injuries
and preventing them in the future [48], the application of HR-based
techniques could, in fact, interfere with these therapy goals if effects
on proprioception are not considered.

4.1.4  Effects May Be More Severe Than We Found. Finally, as con-
cerns about the malicious use of perceptual manipulations have
already been discussed by Tseng et al. [55], unnoticeable propriocep-
tive recalibration leaves users completely unaware when returning
to the real world. Despite our efforts, we cannot guarantee that
the HR offset was unnoticeable for every user because we applied
an average conservative DT, but HR DTs are known to be highly
individual [21]. Still, such conservative DTs are relatively low in
comparison to offsets used by many techniques [4, 13], which may
result in more severe effects on proprioception.

4.1.5 Generalizability of Applied HR Technique. In this paper, we
only investigated proprioceptive recalibration of one type of hand-
based illusion, i.e., HR, and only along one axis by introducing a
gain factor > 1.0, speeding up virtual hand movements. However, it
remains to be explored if, e.g., horizontal or vertical offsets show
similar recalibration effects. We recommend that future work con-
sider different types of hand-based illusions. Moreover, the external
validity of our experiment needs to be verified. To this end, partici-
pants performed all reaching movements inside VR. Future studies
should investigate study designs in which proprioceptive accuracy
can also be assessed after users exit the virtual environment.
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4.2 Restore Proprioceptive Accuracy after HR

4.2.1 Retention of Recalibration Remains to Be Explored. We chose

5 aimed hand reaches without HR to restore proprioceptive accu-
racy because of previous work on adaptation to visual-proprioceptive
offsets [9, 21]. Following these hand reaches, proprioceptive accu-
racy was partially restored but was still significantly worse than in

the baseline condition. On the one hand, this is good news because

it shows that proprioceptive function can be restored, but it leaves

us with the question of how many hand movements in the absence

of HR are necessary to achieve this. Most likely, there is no absolute

number of interactions that are needed to restore proprioception,

but it may depend on how much time users were exposed to the il-
lusion and the magnitude of the visual-proprioceptive offset. Thus,

we are not yet able to draw conclusions about the retention of
this HR-induced proprioceptive recalibration effect because this

requires a different study setup.

4.2.2  Trade-offs between Proprioceptive Fatigue and Exposure Time.
Due to the repetitive hand-reaching, we aimed to keep the total num-
ber of hand movements as low as possible so as not to induce too
much fatigue, which could affect the JPR measurements. However,
this limits the interaction time under the influence of HR, leading
to the question of whether 42 hand movements (about 10 minutes)
are sufficient to create very robust proprioceptive recalibration—
especially in light of Bélling et al’s [12] study on RW, in which
participants were exposed to 150 trials (about 20 minutes) over the
course of 3 days. While we saw a significant decline in proprio-
ceptive accuracy immediately after exposure to HR, only 5 aimed
hand movements without HR could partially restore normal propri-
oceptive performance levels. Thus, one may argue that the effect
can be reversed relatively quickly; however, we believe that with
more time under the influence of HR, proprioceptive recalibration
may become more robust. In this study, we tried to find a balance
between reducing fatigue and increasing interaction time to system-
atically measure the effects. Nevertheless, we recommend future
work to investigate how long-time exposure to HR influences the
robustness of proprioceptive recalibration.

4.2.3 Recalibration Method & Sensory Manipulations Beyond HR.
Understanding how time under exposure and HR magnitude affect
the robustness of recalibrated proprioception could help to inform
the design of a method that facilitates the transition between real
and simulated VR environments [17]. This could help to mitigate
the immediate risks when re-entering the real world. However, the
use of hand-based illusions for training and simulation applications
may still be questionable based on our findings. Therefore, we see
our findings as a call for action, encouraging the community to fur-
ther look into this topic before illusions become ubiquitous tools in
VR design. In this work, we only considered proprioceptive manip-
ulation of the hand because it is widely used, but the design space
for illusions in VR does not stop here. For example, researchers
introduce mismatches between the vestibular (balance) and visual
sense to create flying illusions [47]. Recalibration of the vestibular
sense has not been investigated yet, but adaptation to mismatches
could have even more serious consequences than proprioception.
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5 Conclusion

In this work, we investigated how gain-based HR affects the propri-
oceptive accuracy of users’ dominant hand. To do so, we conducted
an experiment with 22 participants, exposing participants to an
unnoticeable magnitude of HR and measuring if the induced virtual-
to-real hand offsets resulted in a decline in proprioceptive accuracy.
We applied the physiological JPR method to assess proprioceptive
accuracy before and after prolonged exposure to gain-based HR.
Our results showed that participants’ ability to position their hands
accurately in VR significantly deteriorated in the form of under-
shooting, which is in line with the expected direction caused by
HR. Participants partially recovered from this recalibration of hand
proprioception after 5 non-manipulated hand reaching movements,
but proprioceptive performance was still significantly worse than
users’ normal performance, i.e., their performance when HR is not
applied. Our results have implications for a large range of hand-
based perceptual illusions in VR. Especially because people spend
an increasing amount of time in virtual environments, and with
illusion techniques becoming an effective tool for designers. Thus,
we need to carefully consider their impact on people.
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