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We investigate phase transitions in a non-Hermitian Su-Schrieffer-Heeger (SSH) model with an imaginary
chemical potential via Krylov spread complexity and Krylov fidelity. The spread witnesses the 7 -transition
for the non-Hermitian Bogoliubov vacuum of the SSH Hamiltonian, where the spectrum goes from purely real to
complex (oscillatory dynamics to damped oscillations). In addition, it also witnesses the transition occurring in
the PT -broken phase, where the spectrum goes from complex to purely imaginary (damped oscillations to sheer
decay). For a purely imaginary spectrum, the Krylov spread fidelity, which measures how the time-dependent
spread reaches its stationary-state value, serves as a probe of previously undetected dynamical phase transitions.
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I. INTRODUCTION

Krylov complexity plays an essential role in understanding
quantum dynamics, as it measures the spread of an oper-
ator (or state) in a natural basis spanning the underlying
subspace where the time evolution takes place. This com-
plexity measure was initially used in the context of operators
evolving under chaotic many-body Hamiltonians. It was hy-
pothesized that the Lanczos coefficients of chaotic quantum
systems should be asymptotically linear in the ordered-basis
numbering, implying, thus, an exponential growth of Krylov
complexity in time [1]. These coefficients are obtained when
the evolution-produced orthonormal basis is constructed from
the repeated action of the generator of the dynamics and
the initial state or operator, and their statistics have not only
proven to be useful in probing chaotic dynamics alone but also
to detect integrability, localization, and the transition from
such phases to chaotic ones [2-22].

Other, more standard, complexity measures, such as, e.g.,
circuit complexity [23,24] and Nielsen complexity [25-27],
can be seen as less “canonical,” as they require the introduc-
tion of penalty factors, universal gates, and tolerance bounds,
among other properties. Relations between Krylov complexity
and other complexity measures are expected, as the latter is, in
a way, a more natural measure. In fact, Krylov complexity has
been shown to be an upper bound of circuit [28] and Nielsen
[29] complexities, thus indicating that Krylov complexity is a
bona fide measure of complexity.

Applications of Krylov complexity beyond its initial scope
have been found. For example, it has been used as a probe
of topological phases in spin chains [30,31], dynamical phase
transitions emerging from quantum quenches [32-34], Trot-
ter transitions [35], the Zeno effect [36], among many other
applications [37-46]. We remark that Krylov complexity has
been heavily studied in the context of open systems governed
by Lindbladian dynamics (see, e.g., Refs. [47-51]). For a
review of Krylov complexity, see Refs. [52,53]. The term
Krylov complexity is typically used in the Heisenberg picture,
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whereas Krylov spread complexity or spread complexity is
used in the Schrodinger picture. This work focuses on Krylov
spread and uses these terms interchangeably.

Despite the aforementioned applications of Krylov com-
plexity, its relation with measurement-induced entanglement
phase transitions [54—66] has not been fully understood: while
the entanglement entropy is calculated in subregions of the
system, Krylov complexity is calculated for the entire system
(see, e.g., Ref. [67] for a discussion on this matter). For ex-
ample, it is known that in a monitored 1D Ising chain with
a transverse magnetic field in the zero-click limit, there is
an entanglement entropy transition from a logarithmic law
when the imaginary part of the spectrum is gapless to an
area law when it is gapped [68]. For the same model, in
Ref. [39], it was shown that the second derivatives of the
Krylov complexity density with respect to the magnetic field
and measurement rate display an algebraically divergent be-
havior when the imaginary part of the spectrum goes from
gapless to gapped. Therefore, this seems to indicate that the
derivatives of the Krylov complexity display either disconti-
nuities or divergences when the spectrum undergoes certain
changes, e.g., when it goes from gapful to gapless, when it
displays nonanalyticities, etc. This conjecture, if true, could
be used to analyze other quantum phase transitions that are
either difficult to calculate with more standard measures or
that have not been discovered.

In this spirit, systems that possess the parity and time-
reversal (P7) symmetry [69-71] are ideal for testing the
above conjecture further, as their associated spectrum is real
in the P7 -symmetric phase and can become complex, as
well as purely imaginary, in the P7 -broken phase. To ad-
dress this issue, we consider a PT -symmetric non-Hermitian
Su-Schrieffer-Heeger (SSH) model with a complex chemical
potential. It was shown in Ref. [63] that the entanglement
entropy in this model obeys a volume law in the parameter
space corresponding to the P77 -symmetric phase, as well as
in a subregion where this phase is broken. Within the P7 -
broken phase, a volume-to-area transition in the entanglement
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entropy was found when the spectrum goes from complex to
purely imaginary.

In this work, we investigate phase transitions in a non-
Hermitian SSH model via Krylov spread complexity and
Krylov fidelity. We demonstrate that the derivatives of the
Krylov spread complexity calculated in the non-Hermitian
Bogoliubov vacuum of the non-Hermitian SSH Hamiltonian
distinguish the two types of phase transitions by displaying a
nonanalytic behavior across the parameter space. In addition,
by implementing the Krylov fidelity introduced in Ref. [39],
which describes how the complexity reaches its stationary
state, we are able to refine part of the P77 -broken phase that
corresponds to a purely imaginary and gapped spectrum and
find two additional dynamical phases. As we shall see, these
two phases are mainly controlled by the slowest decay modes
of the imaginary spectrum. This should be contrasted with the
non-Hermitian Ising chain studied in Ref. [39], where three
dynamical phases were found when the imaginary part of the
spectrum was gapped. As that model lacks P7 -symmetry,
its spectrum can have gapless points and not whole gapless
regions as in the SSH model we treat in this work. Thus, the
real part of the spectrum also contributes to the emergence of
the dynamical phase transitions. We also point out that Krylov
complexity has been studied in systems having P7 -symmetry
[36,38], where it was found that it distinguishes between the
PT-symmetric and broken phases. However, this was done
mainly by studying the behavior of complexity over time, and
hidden dynamical phases were not reported.

This article is organized as follows. In Sec. II, we define the
non-Hermitian SSH Hamiltonian and describe its spectrum. In
Sec. III, we briefly introduce the Krylov spread complexity.
In Sec. IV, we discuss the Krylov spread complexity for
the Hermitian evolution that transforms a particular initial
state to the non-Hermitian vacuum of the SSH Hamiltonian.
We demonstrate that the second derivative of the spread
with respect to one of the parameters either diverges or is
discontinuous at the boundaries between regions where the
spectrum of the Hamiltonian changes when it goes from real
to complex or purely imaginary and vice versa. In Sec. V,
we find the Krylov spread of the evolution of the same
initial state used in the unitary evolution, but this time via
the non-Hermitian SSH Hamiltonian when its spectrum is
purely imaginary. We define the time to achieve the station-
ary state and find two dynamical phase transitions dictated
by it. Finally, we present our conclusions and summary in
Sec. VI. Technical details of calculations are relegated to the
Appendixes.

II. MODEL

We consider the SSH model with an even number of sites
L and with an imaginary chemical potential [63,72], which is
described by the Hamiltonian

L
H = Z(llcxnd&n + lzcj;'ndg_nfl + H.c.)

n=1

L
+iy Y (ch ycan + d ,dp.n) ()

n=1

and it obeys periodic boundary conditions. Here, y € R and
ca.n and dp , are the fermionic operators in sublattices A and B,
respectively. For convenience, we set the intracell and intercell
hoppings as t; = —J — h/2 and t, = —J + h/2, respectively,
where i € R andJ > 0is fixed. The anti-Hermitian part of the
Hamiltonian can be thought of as the result of the backaction
of a continuous measurement of the local density of particles
and holes on sublattices A and B, respectively, where no click
was detected [73].

The Hamiltonian (1) can be diagonalized by implementing
the Fourier representation (see Appendix A)

CAn e i an { €k
= e , 2)
(dB,n> «/Z keZ}C (dk>

where o, is a Pauli matrix and

3)

is the momenta set in the first Brillouin zone, yielding

H = ARG Xk = X kX k) €
k

Here, x1 ; are non-Hermitian quasiparticle fermionic opera-
tors obeying the anticommutation relations

{X::k’ XS’,k’} = 855/8](](/, {X:kv X;jyk’} = 09

{Xs,ka Xs/,k’} =0. (5)
The non-Hermiticity also implies XsTk # X, The relations
between the non-Hermitian operators and the sublattice op-

erators ¢ and d are given in Eqgs. (A5) and (A6). The spectrum
of H is

+AKk) = :I:\/hz — y2 4 (4J2 — h?) cos? g (6a)
= +E(k) + iT(k), (6b)

where E (k) :== Re A(k) and I'(k) := Im A (k). Fora given k €
IC, A(k) is either real or imaginary, and it completely vanishes
at the points

2_h2

14
thkpp = £2 —
EP arccos YN

(N
which correspond to two exceptional points (EPs) [74].

Based on the above features, we identify the following six
subregions in the -y plane displayed in Fig. 1(a):

(M A{lyl < 1hl, |l < 273 Ufly| < 2J, |h| = 2J}. E(k) is
gapped, i.e., E(k) # 0,and I'(k) = 0.

@ {lyl=Ihl, |hl <27y Uflyl =2/, |hl =2 2J}. T(k) =
0 and E(k) is gapless at tkgp = £7 for h < 2J, and at
kgp =0 forh > 2J. A(k)=0forh =y = 2J.

3) {27 < |yl < |h|, |h| > 2J}. E(k) =0 for |k| < kgp
and I'(k) = O for |k| > kgp.

@ {lyl=2J,n < 2J}U{ly| = |hl, |h| = 2J}. E(k) =
0 and I'(k) is gapless at kgp =0 for h < 2J, and at
:i:kEp = *m.
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FIG. 1. Negative branch —A (k) of the spectrum (6) in terms of the parameters (%, y) for J = 1. Panel (a) displays the #-y plane with
the six subsets I-VI identified in the main text. Note that regions II and IV are, respectively, all the black and all the red lines separating the
two-dimensional regions (I, IIL, V, and VI). Panels (b)—(d) display the real (solid lines) and imaginary (dotted lines) parts of —A (k) for several
values of (h, y). Specifically, in panel (b), h =1 and y € {1/2,1,3/2,2, 3}; in panel (c), h =2 and y € {3/2, 2, 3}; and in panel (d), z = 3
and y € {1,2,5/2, 3, 4}. For each of the panels (b), (c), and (d), the values of y go from bottom to top in the vertical cross-sections of diagram
(a) indicated by arrows b, c, and d, referring to the corresponding panels. The line colors in (b)—(d) correspond to the position of the ordered
pair (4, y) in the diagram (a), where each pair is located in one of the distinct colored regions.

5) {lyl > 2J, |l < 27} Ufly| > |hl, |h| = 2J}.
gapped and E (k) = 0.

©) {|h| <yl <2J,0 < |h| <2J}. T'(k)=0 for |k| <
kep and E (k) = 0 for |k| > kgp.

The reason the spectrum is purely real in regions I and
II, even though the Hamiltonian (1) is not Hermitian, is the
PT -symmetry [63,69,70,75], where P is the parity operator
defined as

I'k) is

PecanP =dpr—nt1, Pdp,P =car—ntis (8)

and 7 is the antiunitary time-reversal operator defined as
TAT = A* for A € C. Thus, regions I and II correspond to
a PT-symmetric phase, and the other regions correspond to
PT -broken phases.

III. SPREAD COMPLEXITY

Here, we briefly review the Krylov spread complexity to
establish further notation. We shall not address the Krylov
complexity of density matrices [76] and operators. For a re-
cent review, see Refs. [52,53]. Moreover, the formulation of
Krylov complexity with a time-dependent generator is dis-
cussed in Ref. [77].

Let H be a Hamiltonian generating the dynamics

e My (0))
lle=H 1y ()|

where |¢¥(0)) € H is some initial state, and H need not be
Hermitian. The Krylov space, generated by the initial state
and the Hamiltonian, is

R (0), H)= span{|y(0)), H [¥(0)), ..., H" |¥(0)), .. .}.
(10)

V(@) = C))

By implementing the Gram-Schmidt orthonormalization pro-
cedure on the linearly independent set of vectors from the
ordered set {H" [/(0))},>0, one can find the ordered basis,
called the Krylov basis, {|K,)},, where n =0, ...,dim K <
dimH and |Ky) = |¢(0)). Hence, the non-Hermitian and

evolution can be expanded in terms of this basis as | (¢)) =
S UM R 0.(t) 1K), where @,(t) = (K, | (¢)). We note that for
a non-Hermitian H, the Krylov coefficient ¢,(¢) carries the
normalization factor appearing in Eq. (9). This factor is, of
course, equal to unity when H is Hermitian. In addition, for a
non-Hermitian generator of the dynamics, there are alternative
approaches, such as the bi-Lanczos algorithm, where left and
right Krylov bases are used (see, e.g., Ref. [51]), or via singu-
lar value decomposition [78,79], where the Krylov subspace is
spanned by vectors of the form (vVHTH )" |Ky). Each method
has its advantages. In our particular case, as we show in the
next section, using the standard prescription allows us to write
the Krylov spread of a state that is the lowest weight state of
a semisimple Lie algebra g = su(2)®L with H € g, even with
H' # H, as the the sum over the individual spreads per mode
[see Egs. (17b) and (29)].

The Krylov spread complexity of the evolved state | (¢))
is defined as

dim 8

CWOLH:N=C) =Y nlg,P. (D

n=0

and it measures the mean value of the evolved state on the
Krylov basis. As was shown in Ref. [80], Eq. (11) is the spread
that minimizes ) n|(y (¢)|B,) | on all possible ordered bases
(1B),}n.

The above construction also holds for non-Hermitian
Hamiltonians and is what we implement in this work. Other
approaches, such as, for example, the bi-Lanczos algo-
rithm [51,52] and the singular-value decomposition [78,79],
among others, focus on different ways of obtaining the
Krylov basis. Those methods are implemented primarily for
computational reasons, and we do not use them in our
analysis.

IV. KRYLOV SPREAD VIA UNITARY DYNAMICS

In what follows, we calculate the spread complexity den-
sity for a state that evolves unitarily to the non-Hermitian
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vacuum of H. We demonstrate that the second derivatives
of the spread complexity density with respect to y display
a nonanalytic behavior in regions II and IV, implying that
this complexity measure can detect the P7T -symmetry break-
ing, as well as the spectral transition from a complex to a
purely imaginary spectrum. The latter provides the mecha-
nism responsible for the volume-to-area entanglement phase
transition reported in Ref. [63].
Consider the two Hermitian Hamiltonians

hy i ¥
-3 <J+ 5) sink(cjcx — df dy) (12)

kelkC

Hy =

and

Ho = Y liyi(k)cjdy + iy_(k)d e, + Hel,  (13)
ket

where
ty +trcosk Fy

yx(k) = — . (4
\/tlz +1} —y2 4210 cosk + 1 sink

Let |0) be the vacuum annihilated by ¢; and d; for any k € IC,
and consider the ground state of H,

It turns out that if we evolve this state via Hg during unit time,
we reach the ground state of Eq. (1),

Q) = l_[ Xf,kaik
rercr OFOC _ox DT XE x4

o 0). (16)

As we show in Appendix A, Hg is induced by the unitary
operator © € SU(2)®F/U(1)%L, satisfying |Q2) = ©|GS). In
other words, |€2) is a generalized coherent state of |GS), and
[ (1)) = e |GS) = Q|GS).

Moreover, as |GS) is the lowest-weight su(2)®-state, the
spread complexity per site (or spread complexity density) of
[ (1)) = |R2) is given by the thermodynamic limit of the sum
over complexity spreads of each mode [30,31]:

1
Co = Jim > G =1:k) (17a)
ket
s=+
= Z/ K =110, (17b)
—t 0 27
where
k 2
Cli = 1) = ys (k)| i
1+ |ys (k)]

is the complexity per mode.
Upon replacing y4 (k) and performing the integral, we get

[¥(0)) = |GS) = 1_[ c,d; i [0) . (15) the following results for the spread in regions I-VI:
kelCt |
o \/hz—yz—\/élﬂ—yz—yarccot;—i—yarccotL , I+11,
2 mth+2J) /h2 — 2 /472 =2
1 1 %
-/ —y2—y arccot—), 111,
Cq = % w(h+2J) h2 — 2 (18)

-, IV+V,
> +
1
=+ V4J? — y2 — y arccot VL
2 n(h+2J)< v a7 =2 _yz>

There is no divergence of Cq in regions I and II for
h=-2J,as

4J% — 2

1
Calnens = =
oli=—2 =3+ —

This can be shown either by taking the limit # — —2J in
Eq. (18) or by setting # = —2J in Eq. (17b). For regions III
and VI, the value of Cq tends to 1/2 in the limit 7 — —2J,
where |y| — 2J in these regions [see Fig. 1(a)]. As we can
see in Figs. 2(a) and 3, the spread is continuous across the
entire domain of regions I-VI [Fig. 1(a)]—this appears to be
a characteristic of the spread for this type of non-Hermitian
system; see, e.g., Ref. [39].

However, the derivatives of Cp with respect to i or y
display singular behavior. If we start in region I (i.e., the
PT-symmetric phase) with # = —2J [blue curve in Fig. 3(a)],

(

the first derivative with respect to y is

(acﬂ|h=21> __ 14 (19)
dy L 2n A =7

and it diverges at |y| = 2J. For any other point of region I
with h £ —2J, the second derivative with respect to y is

9%Cq 1 1 1
3 = - . (20)
ay* )1 wh+2D)\ a2 —y2  Jh2—y2
and it diverges as region II is approached. Furthermore, start-
ing with y = 0 [blue curve in Fig. 3(b)], which corresponds
to the Hermitian case, the spread is
1 |h| —2J
Calymoi == — —, 21
(Caly=ol > T whE2)) (21)
and it is equal to 1/2 4+ 1 /7 for h < 0 [81]. This phase cor-
responds to a nontrivial topological phase (in the convention
of Ref. [31]) of the Hermitian SSH model, where the circle
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FIG. 2. (a) Krylov spread complexity density Cq [Eq. (17b)] of the unitary evolution taking |GS) [Eq. (15)] to |2) [Eq. (16)] via the
Hamiltonian Hg, Eq. (13), at J = 1. (b) 1 — C, where C is the time-averaged Krylov spread complexity density (36) of a non-Hermitian
evolution of |GS) induced by Hamiltonian (1) of the non-Hermitian SSH model. In regions IV and V (see Fig. 1), the spectrum is purely
imaginary, and it can have at most two gapless points in region I'V. Thus, the state |GS) reaches |2) in the infinite-time limit in the non-Hermitian
evolution, and the two spreads coincide in such regions, i.e., Co = C=1 /2.

(R: —11)* + R2 = 1} [see Eq. (A2)] encloses the origin. Thus,
the topological index is nonzero as k varies in [—mx, ) [82].

Starting in region III, the second derivative with respect
to y is

(22)

(a%) B 1 1
2 i wh+20) 2 — 7

Note that there is no divergence as we approach region II,
yet there is a divergent behavior as we approach region V.
Clearly, if we start in region V, (Cq)y = 1/2, and there is no
divergence as we approach region IV. Finally, if we start in
region VI, we have

aC 1
<_Q> - arccot—Y—. (23)
0y ) mh+2]) 47— 2
1.0
(a)
0.9f
0.8f h
S 0.7t -
0.6f 0
2
0.5
—3
0.4
—4 -2 0 2 4

For h = 0, this derivative is discontinuous at y = 0. The sec-
ond derivative gives

(24)

(azcg) B 1 1
a2 )y wh+2)) J4g2 — 2

and it starts diverging only when we approach region IV.

We point out that the derivatives of Cq with respect
to h also display discontinuities or divergences across the
phase diagram at the borderlines separating distinct phases.
This can be seen directly from Cq displayed in Figs. 2(a)
and 3. Thus, we conclude that the Krylov spread induced
by the unitary evolution from |GS) to the vacuum of the
non-Hermitian Hamiltonian captures, through its derivatives,
the known phase transitions of the non-Hermitian SSH
model.

1.0

0.9¢

0.81%
0.7¢

0.6f

0.5f

04
-4 -2 0 2 4

FIG. 3. Transverse cross-sections of the spread Cq, Eq. (18). (a) Spread as a function of y for h € {—2, 0, 2, 3}. (b) Spread as a function of

hfory € {0,3/2,2,3}. Inall cases, J = 1.
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V. TIME-DEPENDENT KRYLOV SPREAD
AND DYNAMICAL PHASE TRANSITIONS

In this section, we calculate the Krylov spread of the evo-
lution of | (0)) = |GS) via the non-Hermitian Hamiltonian
H in the P7T-broken phase where its spectrum is purely
imaginary and gapped, i.e., A(k) =il'(k) #0Vk € K, and
we find C(t) = (Cq)y = 1/2 as t — oco. We also implement
the Krylov fidelity introduced in Ref. [39] to identify dynam-
ical phases based on how the time-dependent Krylov spread
reaches its infinite-time limit. We close the section by pro-
viding some comments about the relation between the above
spread and the one (induced by the unitary evolution with Hg)
addressed in the previous section.

A. Krylov spread fidelity

Under the non-Hermitian Hamiltonian (1), the initial state

[¥(0)) = |GS) evolves as (see Appendix B)
Wiy = 19 (259)
lle=H |GS) ||
_ explAL (k; 1)/ (k)] GS) . (25b)

f:i J1+ |As+(k;r)|

where A, (k;1) is given by Eq. (B4). We note that this time-
dependent state is a generalized coherent state of |GS), as well
as the infinite-time limit

W ooy = [[ ZEEOEO] 65 - 2)
o VI )
where
_ R FIiR,
x(h) = s 7

The state (26) is related to |2) [Eq. (16)] via the unitary
operator

0. = [ ] exp [2int: (k) + 2] (28)
k>0

s=%

belonging to the isotropy group of |GS), U(1)®%, where ¢ =
Arg[R, + iT"(k)]. Specifically,

[yt — 00)) = 0.]1Q) = Q|GS) = ),
where @ = 0.Q0! € SU(2)®L/U(1)®-.
|

L (A2 =4y
a/yr =4l \Emyi@ar -

1 W 4()/2 — %)}
4./y? — h? e2ry*(h?* —4J?

ti(e) =~

th(e) ~

where Wy (z) is the Lambert W function, which has the asymp-
totics Wy(z — 00) =~ Inz — In(In z). These times refine region
V as shown in Fig. 4, where #{ corresponds to {|A| < 2J,

1
- ——In-
)) =2/ - e

The spread of the evolved state (26) reads

B dk  |AS (k;1)[?
C(t)_;/o 27 14 A% (k)2 (29)

and it tends to 1/2 as t — oo when A(k) = il'(k). Note that
this is precisely (Cq)v = 1/2, so that the spread of | (2)), as
it evolves from |GS) to |Q) via H with a purely imaginary
spectrum, is the same as the spread of the same initial state
evolving to |€2) via the Hermitian Hamiltonian (13).

In the thermodynamic limit, the nth Krylov vector is given
by [30,31]

n

K) =N | D et (I | IGS). (30)

k>0

s=

Then, for the sake of completeness, for |y (¢)) given as in
Eq. (25) regardless of the spectrum of H, the Krylov coeffi-

cient @, (t) = (K, | (1)) is

1

H—
>0 4/ 1+ |AS (k; 0|’

SN [ [CROMEH] (31)

S:|S|=n keS
s==%

ou(t) = N;‘ln'

where S is a set of n momentum modes (see Appendix C).
Given Eq. (29), we can characterize how C(¢) reaches
(Ca)v = 1/2 with the Krylov spread fidelity [39]

F@)=1C1) — Cal (32)

by requiring F () < € < 1 and then finding the time #(¢) for
which the inequality holds. Hence, we denote

Ca(t) =C@t > 1(€)) ~ Cq

as the stationary-state spread. Once #(¢) is found, we find the
limit

t
+* = lim -

33
e—~0 |In €| 33)

to obtain an e-independent description, which serves two pur-
poses: it defines the stationary state for times ¢ > t*, and
it acts as a probe to detect dynamical phase transitions. By
following this description, we find that #* can attain two values
(see Appendix D):

1 1 1
O e (34)
2)) ~~ 274 € T2/ ap
I 1
o= (35)

N

(

ly| > 2J} and t; corresponds to {|h| > 2J, |y| > h}. Qualita-
tively, the change in the time ¢* from region 1 to 2 is due to the
location of the slowest dissipation mode of A (k) = i['(k): in
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4
D
1
2
= 0
2
4
4 -2 0 2 4
h

FIG. 4. Schematic phase diagram defined via the Krylov fidelity
(32) with J = 1. Region 1 (in gray) corresponds to the time (34), and
region 2 (in light blue) corresponds to the time (35). The points in
red correspond to region IV (see Fig. 1), where A(k) = il'(k) =0,
so we do not associate any * with those points. The white regions
correspond to the points where the spectrum is either purely or
partially real, so there is no ¢* for these regions.

region 1, |I'(0)] = 0, whereas in region 2, |['(7)| = 0. This
can be seen in Figs. 1(b)-1(d) in the purple, dotted lines.
Due to this change in the slowest dissipation mode as region
V is traversed, the first derivative of * with respect to & is
discontinuous, indicating thus the presence of the dynamical
phase transition.

Let us consider the other regions where the spectrum can
have a nonvanishing real part. To address this, we consider the
time-average of the spread complexity density

T
C = lim l/ drC@), (36)
T Jo

where C(¢) is as in Eq. (29). The order of the limits in Eq. (36)
can be interchanged as the integrand of C(¢) behaves well
(see Appendix F). Now, in regions III and IV, where the
spectrum is complex, one could naively expect C = Cq, where
the latter spread is given by Eq. (18). However, this does
not hold because the continuum of imaginary gapless modes
appears whenever E (k) # 0. The above equality holds in the
non-Hermitian Ising model studied in Ref. [39] due to the
presence of only two gapless modes in the imaginary part
of the spectrum. Hence, as an educated guess, C = Cq holds
only when there is a finite number of gapless modes in the
imaginary part of the spectrum. This can be seen in Fig. 2(b),
where we show 1 — C. In region V, where the spectrum is
imaginary and can have at most two gapless modes, the two
spreads match and equal 1/2. In the remaining regions, the
spreads do not coincide [see Fig. 2(a)]. However, this averaged
spread could also serve as a probe for the phase transitions we
explored before with Cq, as the boundaries corresponding to
regions II and IV are not smooth. The overall resemblance of
1 — C and Cg, requires further research.

VI. SUMMARY AND DISCUSSION

In this work, we implemented the Krylov spread complex-
ity density as a probe to detect a P77 -symmetry breaking in a

non-Hermitian SSH model, where the spectrum goes from real
to complex, and another spectral transition when the spectrum
goes from complex to purely imaginary. In the P7 -broken
phase, where the spectrum is imaginary, we used the Krylov
fidelity to determine how the spread reaches its stationary state
limit, and we found two characteristic times that define two
dynamical phases.

As we saw in Sec. III, the spread depends on the initial
state and the generator of the dynamics. Therefore, different
initial states can yield different spreads for the same Hamil-
tonian. Hence, since we aimed to study the non-Hermitian
vacuum |€2) of the non-Hermitian SSH Hamiltonian (1), we
chose an appropriate initial state |y (0)) = |GS) [Eq. (15)] for
which |Q2) = Q|GS) [Eq. (16)] is a generalized coherent state.
Thanks to this relation, we could find the Hermitian Hamilto-
nian (13) inducing the evolution of |{(0)) to |2) atr = 1. We
calculated the spread complexity density Cq [Eq. (18)] of this
evolution when the non-Hermitian vacuum was reached. The
first important conclusion is the lack of symmetry in C with
respect to the reflection of the parameters (k, y) — (—h, —y)
[see Fig. 2(a)]. In contrast, the spectrum (6) is symmetric
with respect to this reflection (see also Fig. 1). Second, even
though Cg is continuous across the h-y plane, its first and
second derivatives with respect to y and h are either dis-
continuous or diverge when P7 -symmetry breaks [Eqs. (19)
and (20)] and when the spectrum becomes purely imaginary
[Egs. (22)-(24)]. With this, we can assert the usefulness
of the spread as a probe for detecting phase transitions in
general.

The other spread we considered was of the same initial
state |GS), but this time evolving under the non-Hermitian
SSH Hamiltonian (1). In the P77 -broken phase corresponding
to an imaginary spectrum, |GS) evolves to |€2) in the infinite-
time limit, proving, thus, the importance of that particular
initial state as it is related to the vacuum of H in two different
ways. Since the same state is reached via the unitary dynamics
mentioned before, the time-dependent spread (29) of the non-
Hermitian dynamics tends to Cg, in the infinite-time limit. By
implementing the Krylov fidelity (32) to study how C(¢) ap-
proaches Cq in this region of the P77 -broken phase where the
spectrum is imaginary, we were able to determine two times,
Egs. (34) and (35), characterizing two previously unknown
dynamical phases existing in this subregion. Interestingly, in
this subregion, C(t — c0) = Cq, is constant, and the entan-
glement entropy calculated in the [2) same state obeys an
area law [63]. However, having a constant spread does not
necessarily imply that the entanglement entropy obeys an area
law. In Fig. 3, we can see a constant spread for 7 < 0 and
y = 0, where the PT-symmetry is unbroken. In this phase,
the entanglement entropy obeys a volume law. Furthermore,
in Ref. [39], it was shown that the spread of a non-Hermitian
Ising chain is not constant in the region where the entangle-
ment entropy calculated in its vacuum obeys an area law [68].
More research is needed to clarify the relationship between
these two quantities.

In addition, it is worth noting that the timescales 7{, also
appear in the quantity £(¢) := |r(t) — r(c0)|, where

1
r(t) = — lim —In o () (37

035427-7



MEDINA-GUERRA, GORNYI, AND GEFEN

PHYSICAL REVIEW B 112, 035427 (2025)

is associated with the return (or survival) amplitude ¢, (z) =
(GS |¢(t)) (see Appendix E). For Hermitian generators of
the dynamics, it is known that the time derivatives of the
survival amplitude ¢o(¢) evaluated at t = 0 yield moments
that are directly related to the Lanczos coefficients [1,52].
However, beyond this connection, there is no general re-
lationship between r(z) and C(z)—and even less so in the
non-Hermitian case. Hence, the fact that these two quantities
approach their stationary states at the same rate is both inter-
esting and nontrivial, given that the spread does not have a
simple dependence on the return probability (or Loschmidt
echo [83]) |g00(z‘)|2 [see Eq. (11)]. This raises the question
of whether r(¢) and C(¢) are sensitive to the same dynamical
phase transitions for other Hermitian and non-Hermitian sys-
tems. It is also natural to explore whether other observables,
including correlation functions and entanglement entropy, are
capable of detecting these dynamical phase transitions.

We calculated the time-averaged spread (36) in the regions
where the spectrum is complex. We found that C # Cq, except
for the region where the spectrum is imaginary. This should
be of no surprise, as the non-Hermitian SSH model has the
peculiarity of having either a real or imaginary spectrum for
each momentum mode k. Thus, the absence of those dissi-
pation modes whenever the real part is nonzero impedes the
convergence of |GS) to |€2), which translates into a different
spread even after performing a time-averaging. Nonetheless,
C is qualitatively similar (see Fig. 2) to Cg, throughout the /-y
plane. In particular, it also shows singularities in its derivatives
at the critical lines. Therefore, either spread can be used as
a probe to detect the phase transitions we described above.
However, as the time-averaging produced a quite complicated
function in k, we were unable to derive an analytic expres-
sion for C in the closed form; therefore, Cq is perhaps more
convenient for these purposes.

The conjecture stated in Ref. [39]—that the derivatives
of the Krylov spread diverge across any quantum phase
transitions—was also corroborated for the model treated here.
Naturally, while a formal proof is still worth pursuing, it
would also be valuable, albeit technically demanding, to
verify this conjecture across a wide range of other phase
transitions, such as, e.g., measurement-induced and P7 tran-
sitions. We restricted our analysis of the Krylov spread to the
right eigenbasis of the non-Hermitian Hamiltonian; extending
this measure to both left and right bases via a biorthogo-
nal approach would be a reasonable next step. Interestingly,
in the Hermitian SSH model, the spread is constant in the
nontrivial topological phase, see Eq. (21) and Ref. [31]. It
is worth researching the relation, if any, between topological
phases and the spread in other models and their generaliza-
tions [72,75,84-90]. Another possible direction is to study the
non-Hermitian SSH model with several quenches [44].

Before closing the paper, it is worth mentioning that,
while finalizing this manuscript, Ref. [91] was posted, where
the dynamics of the same non-Hermitian SSH model with
periodic and open boundary conditions were analyzed in
Krylov space by implementing numerical methods. The
authors were able to detect the P7 -transition in the time-
dependent Krylov spread calculated via the bi-Lanczos
algorithm. However, Ref. [91] had to go beyond standard
Krylov methods and utilize the quantum Fisher information

in Krylov space to detect the complex-to-purely-imaginary
spectral transition. In contrast, in our work, all these phase
transitions were identified by means of the Krylov spread
on an equal footing, based on the analytical solution us-
ing a canonical state. Moreover, by using the same Krylov
framework, we uncovered previously hidden dynamical phase
transitions.
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APPENDIX A: DIAGONALIZATION OF H
AND THE NON-HERMITIAN BOGOLIUBOV VACUUM

In this Appendix, we diagonalize the non-Hermitian
Hamiltonian (1) by implementing the Fourier representation
(2), and we find the eigenvalues (6) as well as the ground
state (16). We also demonstrate that this ground state is a
generalized coherent state of the ground state (12).

After using the Fourier representation (2), the Hamiltonian
can be written as H = ), H(k), where

1 sink

H(k) = (c] d]
k) = (o ")(tl—i-tzcosk—i-)/

Cr
X .
di
Alternatively, we can set H (k) = \Il,: R(k) - & Wy, where W), =
(e, di)”,

ty +tcosk —y
—t sink

(AD)

R, t +tycosk
Rlky=|R =] —ir (A2)
R, tysink

is a complex Bloch vector, and 6 = (oy, 0y, 0;) is a vector

of Pauli matrices. For convenience, we set Ry, = —iR,. Recall
that

h=-J h fhh=—-J+ i

1 = 27 2 = 2'

The matrix R(k) - & can be diagonalized by a similarity trans-
formation as V, 'R(k) - & Vi = diag[A(k), —A(k)], where

Uy Uj
Ve = ( N _> = (U4 (k) v_(k)) (A3)
U U
and
Ba(k) = ;<R" N iRy) (Ad)
SRR T RI\ER —R.)’

Here, R = A (k) is the positive root given by Eq. (6).
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Thanks to the above similarity transformation, we can de-
fine the non-Hermitian fermionic operators

XF =0, x0 =YV

= (ukci + v,jd,j ukci + vk_d,j) (A5)

and

X, = (X+,k) =V, = 1 ( Uk+Ck — udy ) (A6)
X—k det Vi \ —v; cx + urdy.
which satisfy the anticommutation relations (5). Given these
new fermionic operators, we can write the Hamiltonian as in
Eq. (4).

Akin to the Hermitian version of Eq. (1), the unnor-
malized ground state of H [cf. Eq. (16)], which is a
non-Hermitian Bogoliubov vacuum, is obtained by populating
the vacuum |0), which is annihilated by ¢; and di, by the non-
Hermitian quasiparticles associated with a negative complex
spectrum, i.e.,

1 =[] %% x4 100,

kelkCt

where Kt =K NRxq. Thus, H|Q) = Eq|Q), and so the
ground-state energy is

Eq=— Y Ak).

kelCt

(AT)

(A8)

This is a natural choice of the sign of the spectrum for each
k, for whenever Im A (k) = I'(k) # 0, 1) decays the slowest.
Moreover, if I'(k) = 0, then A(k) = E(k) < 0 is a real num-
ber, and Eq. (A7) is the state with the lowest energy in the
given non-Hermitian system.

To demonstrate that |Q2) = ||§2||71/ : |2), a generalized co-
herent state of Eq. (15), which is the ground state of Eq. (12),
let us consider the non-Hermitian Hamiltonian once more, this
time written in a slightly different way:

H= Z [R.(k)(ciex —dldy) + Rycldy +R_d]c,
kelCt
— R(k)(c! ey —d'yd ) + Riclyd  + R-d' e 4],
(A9)
where we used R,(—k) = —R,(k) and set Ry (k) = R.(k) —
iR,(k) and R_(k) = R,(k)+ iR,(k). Contrary to the Her-
mitian case, R} # R_. In this form, H(k) can be seen as

an element of the semisimple Lie algebra g =gt x g~ =
su(2) x su(2). More precisely, if we set

JEk) = cldy, JT(k) =djck, (k) = L(cjex —dfdy)
(A10)
and
Jo(k)y=d ey, JZ()=cl dy,
J7(k) = =5l e —dlyd ), (A11)
it holds that
[J5.(k), IS (K] = 28,581 02 (k).
[J2(k), TS (K] = 8,583 (k). (A12)

where s, s’ = £. The superindices denote the Lie algebra to
which the element belongs, and the subindices denote the
generator in the given Lie algebra. Thus, Eq. (A9) can be
rewritten as

H= Z H(k), (A13)

ket

s=+
where
H® (k) = 2R (k)J: (k) + RS, (k)J3.(k) + R (k)J_ (k).

Note that Rf =R_ =R, and Rt =R, =R_.

Given this Lie-algebraic language, and by noting that
JE(k) |GS) = 0, we can identify |GS) with the lowest-weight
state of g,

1GS) = [ cLidf 100 =) 11/2, —1/2),,

kelkCt kelkC

(Al4)

for which we have
JEK)[1/2, =1/2) 14 =0,
TEU)11/2,=1/2) a5 = 11/2,1/2) iz
and
JER) 172, £1/2) 5 = £1 (172, £1/2) .

Moving forward, by noticing that [Jf k), cik,d,j,] =0 for
k # k', we can analyze the action of Jf(k) on |GS) by focus-
ing on the following states:

JEtoct,dl 10y = ' el 10y, (A15)
JL et al 10y =d" a0y, (A16)
and
JEUIZ (k) 10y = dT ) 10) . (A17)
Now, for yL(k) € C and k € KT, let
Qi = exply; (T (k) +y_ (k)T (k)] (A18)

and consider
Q! d] 10) = exply+ ()T (k) + y_ (k)T (k)]et df 10)
= (' d +yict el +y-d' df
+y4y-d’ )10} (A19)

On the other hand, by expanding Eq. (A7), we get
5 oot M o Vg
|€2) = 1_[ uv, (el d + —clep +—d’ d;
v U_x
kelkCt k

urv

1 d*kcz) |0) . (A20)
U_g Uk
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Hence, if we set

U, v_
yik)y=— and y (k)= —=
vk Uu_y

(A21)

we can write Eq. (A20) as

~ v_
1) = 1_[ U_kV, eXp (:—k.li(k) + u—_k];(k)> IGS),
N —k

ket
(A22)
and, after normalizing, it reads
u_v; exply+ (k)J5 (k) + y-(k)J{ (k)]
@) = [ ok SR Lo D LG
rercs kU] VA + P+ [y-()P)
(A23)

As our final step, let o, oy € C, and J,J, € su(2),
and consider the normal-ordering su(2) decomposition
formula [92]

explayJy +aJ, +a_J-)
= exp(o4J ) expllog(a;)J;] exp(a_J-), (A24)
with
a+ sinh ¢

¢ cosh ¢ — ;—;sinhqs’

a4

a, . -2
o, = |cosh¢ — % sinh¢ |

&2
¢ = ZZ +ara_

applied to the following unitary operators:

(A25)

Q= exply+(k)J] (k) —H.c.] and

Q= exply_(k)J; (k) —H.c.] (A26)

actingon |1/2, —1/2), and |1/2, —1/2)_,, respectively. Upon
applying those steps and some simple algebraic manipula-
tions, we get

exply+ (k)J5 (k)]

V1t ye(o)?

QEN1/2,=1/2) 1 = 11/2, =1/2) 4 .

(A27)

Thus, by calling Q:=Q;Q; and explip(Q)] = [];cic+
U v U, 7', we can immediately conclude that
Eq. (A23) is equal to

1£2) = explip(£2)]€2|GS) . (A28)

Finally, noting that the action of operators of the form
explaJ (k) +a;J (k)] on |GS) only produces a phase,
we can conclude that |Q2) is a generalized coherent state of
|GS) defined in the coset space SU(2)®F/U(1)®F [93,94],
and thus the phase appearing in Eq. (A28) is not important
in our analysis. Note also that the Hermitian Hamiltonian
(13) used in the unitary evolution [y (1)) = e~ |GS) is ob-
tained from Q2 [see Eq. (A26)]. Indeed, for s = %, consider

Qp = exp[—i(iys(k)J} (k) + H.c.)]. Then,

Q=QfQ =exp |:—i > Gy (I (k) + H.c.):|

s=%

= exp(—iHg),

with Hg given by Eq. (13).

APPENDIX B: TIME EVOLUTION OF |GS)
UNDER THE NON-HERMITIAN SSH HAMILTONIAN

In what follows, we find the time evolution of the state
|GS) induced by H by invoking the same su(2) decomposition
formula (A24), and we obtain Eq. (26). To this end, let s = +
and consider

exp[—iH*(k)t] = exp{—i[2R.(k)J] (k) + R’ (k)J (k)
+ R (k)JZ (k)]t} (Bla)
= explA’ (k;1)J (k)] explln (Al (k;1))J] (k)]

x exp[AL (k;)JZ (k)] (B1b)
where
A (k1) = _l_RjE(k) 'sin Akt ’
A (k) cos A(k)t + i[R,(k)/A(k)]sin A(k)t
(B2)
and

AF(k;t) = (cos A(k)t + i[R.(k)/A(k)]sin Ak)t)™2. (B3)

Thus, up to a phase, the time-evolution of |GS) is given by
Eq. (25). Given this equation, let us assume that A(k) =
il’'(k) € iR, where I'(k) = x/Iéy(k)2 — R%(k) — R?(k). Thus,
we can conveniently rewrite Af(k; t) as

R(K) FR(k) 1

+/7. —
AT (k1) = R (k) +iT(k) 1 = k()

(B4)

where

2
L B5
O e Y

and fi =1+ R, (k)[iT'(k)]~". In the limit r — oo, L(t) —
2f;" and AZ(k;t) — x4(k) [see Eq. (27)]. Thus, Eq. (25)
yields Eq. (26) in the limit t — oo.

Let us note that Eq. (A21) yields

R.(k) — Ry(k
yi(k) = :t_f — M (B6)
k

T R, (k)+il(k)
and

= e RO R

— T (B7)
u_x  R.(k)+il(k)

Hence, yi(k) and x4 (k) differ by phase, which implies
that |y (t — oo)) can be related to |2) via the unitary
operator (28).
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APPENDIX C: KRYLOV COEFFICIENTS
IN THE THERMODYNAMIC LIMIT

We proceed to prove Eq. (31), which corresponds to the
nth Krylov coefficient in the thermodynamic limit when the
evolved state |{(¢)) is a coherent state of a lowest weight
state. For simplicity, we drop the indices s = =+ in the fol-
lowing equations.

Let H € su(2)®L, which need not be Hermitian, and let
[¥(0)) be the lowest weight state of su(2)®F. Then, as in
Eq. (25), the evolved state

exp(—iH1) [(0))
llexp(—iHt) [ (0)) |
1—[ exp[ B ()4 (k)]
VI+ B

= MO [ [ U+ BT () 1¥(0))  (CD)
k

V() =

1¥(0))

is a coherent state of | (0)). Here, Bi(¢) is a coefficient ob-
tained when the normal decomposition of su(2) is performed

(see Appendix B), and M(t) = ([, /1 + B!
Moreover, the authors of Ref. [30] demonstrated that the

nth Krlyov vector generated by H € su(2)®F and a lowest

weight state |1/(0)) in the thermodynamic limit is given by

IKy) = N, (Z a+(k)J+(k)) 1 (0)) (e2))
k

where H =), H(k) and H (k) = oy (k)J (k) + o (k)J, (k)
+ a_(k)J_(k). The multiplication table of these operators is
given by Eq. (A12). The vector (C2) can be written as

K=Y n!]Jer®It)p©),  (C3)
S:|S|=n keS

where S is a set of momenta. Similarly, the state (C1) can be
written as

@) =M@®) Y [] B G 1¥(0),  (C4)

T keT

where T is a set of momenta ranging from 7' = J, where the
above product would yield /, to T = K [see Eq. (3)]. Given
all this, we have

@n(t) = (K [¥ (1))

=nN;M@) Y Y [er A0

(C5a)

S:|S|=n T keS qeT
O [T 210 (Csb)
keS qeT
drs
=nIN;M(@) Y [ et (C5¢)
S:|S|=n keS

For the state Eq. (25), we just set B¢ (t) = A% (k; ) and add
the additional products over s = =+ as in Eq. (31).

APPENDIX D: KRYLOV FIDELITY

In this Appendix, we outline the steps that lead to the times
(34) and (35) obtained from F(¢) < €.
By expanding Eq. (32), we get

/”%( |AT (k1)) _ 1 )‘
o 2n\ 1+ AT 1+ATkn)2)|

(DD

F@) =

After a few algebraic manipulations, we get

[Ro(k) F R, (k)2

+
|A (k; t)| Rz(k) + ]"2(k)00th2 F(k)t

and, given this expression, for the points belonging to the
set {|y| > 2J,0 < |h| < 2J}, |[I'(k)| has a minimum at k = 0,
which corresponds to the slowest decay mode, and the inte-
grand of Eq. (D1) is concentrated around this point. Hence,
for sufficiently large I'(k)z,

2 _ 2 oo
Fiy~ | L—=— ;” eV / dk
0

Ty

4J% — n?
X exp | — ——=k’t
4,/y? —4J?
(y2 _ 4]2)5/4 6_2‘/7/2_4]2[
VAP =Ry Jat
For a given € € (0, 1), we invert F(¢) < € and get Eq. (34).
Turning to the region {|y| > ||, |h| > 2J}, the minimum

of |I'(k)| shifts to k = w and the integrand of Eq. (D1) con-
centrates at this point. Thus, under similar steps,

(D2)

h2_ 2 5 b4
F) ~ N f dk

wy?
—(h? —4J?

X exp ¥(k — )%t
4y =2

(]/2 _ h2)5/4 672«/y27h2t
VR =Ry Jmr

Once again, by fixing an € € (0, 1) and setting F(¢) < €, one
can invert the resulting expression to find the time (35).

(D3)

APPENDIX E: RETURN PROBABILITY

In this Appendix, we show that L(t) = |r(t) — r(oc0)| is
also sensitive to the dynamical phase transitions characterized
by the timescales Eqs. (34) and (35). To this end, consider

1
2= _—. El
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Thus, Eq. (37) reads

3 ™ dk RO
r(t)-é/o o 0+ AL K 0P). (E2)
For I'(k)t > 1, we have
> In(l+ |AY (k1))
s==+
4R3 (k) 4T2 (k) exp[—2T(k)t]
~ y
~ In <R}2,(k) = R}(k)) + R%(k) —R®) (E3)

Next, we integrate the first term from £k =0 to k = 7 and
call it r(oo). Then, we expand the second term around

J

k =0 and extend its integral to infinity, and we add them
to get

2(]/2 o 4]2)1/4 6—24/)/2—4]21
V(42 —y?) Vi

This approximation holds for the region {|y| > 2, |h| < 2J}.
Performing similar steps around k = 7 yields

2(V2 _ h2)l/4 e—2«/y2—h2t
Jr2 =42y St

and this approximation holds for the region {|y| > |A]|, |h| >
2J}. Hence, from L(t) = |r(t) — r(00)| < €, we can also find
the times #;" and #; as was done for Eq. (D1).

r(t) = r(co) +

(E4)

r(t) =~ r(o0) + (ES)

APPENDIX F: TIME-AVERAGED SPREAD COMPLEXITY DENSITY

In this Appendix, we demonstrate that the order of the integrals in Eq. (36) can be interchanged. Namely,

.17 T dk Tdk o
g o2 mewn =2 5t

T
dr Cy(k; ). (F1)

Let H have a purely real spectrum, i.e., A(k) = E(k), which is also gapped. Then,

A% (k1)

[R.(k) — 5IR,(K)|]* sin” E (k)t

Cy(k;t) = =
CO = A kor

[[R. (k) — sIR, (k)I1? + R2(k)] sin® E (k)t + E2(k) cos® E(k)t

Let T, = 2wn/E (k) for n € Z* and define the sequence of functions {f;(k)}, with

T,

k—l

converging to

"4 (G 1) + Calki )]

[R: (k) = sIR, (k)|

fo = lim f,(k) =)

for every k € [0, w]. Now, since

=% [Re(k) = sIR, ()| 1? + R2(k) + [[Ro(k) — IRy (k)| 1? + R2(k)[R2 (k) — Ry (k)? + R?\(k)]]l/2

1 T, 1 T,
)] < —f 41[Cy (k) + Calks )] < —f 412 =2 = g(k)
T, 0 1, 0

™ dk
—gk)=1
/(;an()

for every n € Z*, we can use the dominated convergence theorem [95] and get

n

and

b/g

n

. dk T dk
tim [ 20 = /0 )

n—o0 0

If E(k) is gapless at some k = ¢q, Cs(g;¢) = 0 and so f,(g) = 0 and f(q) = 0.
Let H now have a purely imaginary spectrum, i.e., A(k) = i['(k), that is also gapped. Then,

Ci(k;t) =

[Ry(k) — s|Ry(k)|]? sinh® T'(k )t

[[R.(k) — sIR, (k1> + R2(k)] sinh? [(k)t + I'2(k) cosh? T'(k)t

Under similar steps as before, but this time with f(k) = 1, we have

n—o0

LTk Tk
nnogfn()—/o Erw=1.
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Now, for a complex spectrum, we only need to separate the region of integration accordingly and apply the same analysis as

above. Finally, by noting the equivalence

we have that Eq. (F1) holds.

1 [T 1 (&
lim —/ dr[C (k3 1) + Co(k:0)] = lim —/ dt[C1 (k3 1) + (ks )],
T 0 n—oo T, 0

n
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