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Abstract. We study a new variant of malicious obfuscation, where untrusted
third-party obfuscation tools/platforms covertly insert master backdoor in software
programs. We show that such malicious obfuscation could be hard to identify by
the software developer who knows the original unobfuscated program. We demon-
strate both undetectable and detectable malicious obfuscators for a number of ob-
fuscation schemes in the theoretical literature, in particular conjunction obfuscation,
compute-and-compare obfuscation, hamming-distance obfuscation, and point-function
obfuscation.
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1 Introduction
Program obfuscation is used by software developers to protect intellectual property in
programs [Col18]. Rather than doing the obfuscation themselves, most developers use
obfuscation tools from third-parties, such as Tigress [Col23] or obfuscation-as-a-service
providers [Int21]. This leads to the theoretical possibility of malicious obfuscators that
cause the obfuscated program to have some undesired properties. (We stress that we
are not implying any of the current tools are malicious; this is discussed in the Tigress
FAQ [Col23].) On the mild end of the spectrum, the malicious obfuscator may result in the
program having errors that were not present in the original source. On the more severe end,
a malicious obfuscator could insert malware into the honest program (using it as a Trojan
Horse) or could insert a master backdoor that allows access to the program when running on
user devices. In fact, malicious obfuscation tools such as python-based Pyobfgood [For23]
are known to embed backdoor and data-stealing routines during obfuscation.

This issue has received relatively little attention in the past. Most literature on
obfuscation treats the obfuscator as honest, presumably based on the assumption that the
obfuscator is controlled by the original software developer. But this does not match the
reality of software development, which outsources the obfuscation service to third parties.

Canetti and Varia [CV09] introduced the notion of verifiable obfuscation, where they
consider an end user who does not trust a developer distributing obfuscated version of a
program, and hence wants to verify some predicate(s) of the program. The obfuscator itself
is still considered honest in their work. Badrinarayanan, Goyal, Jain and Sahai [BGJS16]
consider a similar scenario with an untrusted distributor of obfuscated programs, and
aim to provide assurance to the end user running the protocol, by allowing the user
to check a specific predicate on the program. Canetti, Chakraborty, Khurana, Kumar,
Poburinnaya and Prabhakaran [CCK+22] use a perfectly binding commitment that attests
some property of the unobfuscated circuit.
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Given that the original developer knows the intended behaviour of the program, one
might think that he could easily check the obfuscated program for malicious behaviour by
simply running the program on some chosen test inputs. For example, this would detect
the cheating in the password example used by Canetti and Varia [CV09]. However, the
task of checking correctness of a program can often be much more complex. Also, as we
will show in our examples, there are situations where a malicious obfuscator can introduce
a secret hard-to-guess master password that unlocks every program, and there is no way
for the original developer to be able to guess such a password. Hence, black-box testing the
obfuscated code, while a good idea in practice, does not provide a solution to the problem.

The purpose of this paper is to initiate a study of “malicious obfuscation" from the
point of view of a software developer using an untrusted implementation of an obfusca-
tion tool. Our main conceptual contribution is to explain that a formal definition of
malicious obfuscation can be built using the existing notions of correctness. Our main
technical contribution is to demonstrate undetectable malicious obfuscators for a number
of obfuscation schemes in the theoretical literature, in particular conjunction obfuscation
and compute-and-compare obfuscation. Additionally, we give examples of obfuscation
schemes that cannot be leveraged to introduce malicious functionality. While the concept
of malicious obfuscation has been discussed by many authors, we believe we are the first
to point out undetectable malicious obfuscators for schemes in the literature.
On the verifiability of obfuscation. While verifiability in obfuscation has been explored
by [CV09, CCK+22] in the context where an end-user, who does not know the original
unobfuscated program, receives an obfuscated program and verifies some predicate(s) of the
program, we consider an easier case where a software developer, who knows the original
unobfuscated program and uses an untrusted obfuscation tool/platform (provided by a
third-party), verifies whether the obfuscation procedure has been honest or malicious. One
general approach to verify the correctness of obfuscation procedure (in our context) is that
the obfuscator outputs a proof that can be checked by a verifier. If the proof is accepted,
then the verifier can be sure that the obfuscated program is correct.

There are several ways to do this, including using non-interactive zero knowledge proofs.
If we consider a model where the verifier knows how the obfuscation algorithm works (in
addition to the original unobfuscated program), then zero knowledge is not necessary. A
trivial non-interactive proof could be as follows: provide the random coins used by the
obfuscator. The verifier simply re-computes the obfuscation using the same random coins,
and checks if the output is the same. However, this approach is not very efficient as it
requires the verifier to re-do the obfuscation. One can trade-off efficiency and security by
just checking a random subset of the steps, to get some assurance that the obfuscation is
honest.

We consider the development of efficient methods for checking the correctness of
obfuscation from the point of view of a software developer using untrusted obfuscation
tool/platform as an interesting open problem for future follow-up work. The main finding
of our paper is that malicious obfuscation can be performed via dishonestly computing
values that are supposed to be random. So, our paper shows that if one wants to use
ZK proofs to certify that an obfuscator has been run correctly, then this has to go right
down to the level of proving that the pseudorandom numbers used by the obfuscator are
generated correctly.

1.1 Main Contributions
We now summarize our main contributions:

• We demonstrate undetectable malicious obfuscators for several well-known theoretical
obfuscation proposals with strong security guarantees. In particular, we show mali-
cious obfuscators for the conjunction obfuscators by Bishop, Kowalczyk, Malkin, Pas-
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tro, Raykova and Shi [BKM+18], and Bartesuk, Lepoint, Ma and Zhandry [BLMZ19].
We also show malicious obfuscators for the compute-and-compare construction by
Goyal, Koppula, and Waters [GKW17], Wichs and Zirdelis [WZ17], and Goyal, Kop-
pula, Vusirikala and Waters [GKVW20]. We prove that our malicious obfuscators
are indistinguishable from honest ones, even with respect to an auditor who knows
the original un-obfuscated program.
We argue that our attacks are meaningful, since developers may use third party
obfuscation tools/platforms. A key observation is that our attacks work by replacing
values that are supposed to be random by carefully chosen values. It means that any
preventative measure (e.g., giving succinct proofs of correct obfuscation) will not be
able to neglect the process of random number generation.

• We show existence of obfuscation schemes that cannot be leveraged to inject malicious
functionality. More specifically, we show that the proposed malicious obfuscation
notion does not apply to the hamming-distance obfuscator by Galbraith and Zobernig
[GZ19], and the point-function obfuscator by Bartusek, Ma and Zhandry [BMZ19].

2 Notions of Obfuscation
In this section, we present background definitions for obfuscation from the literature, and
introduce the definitional framework of malicious obfuscators. We follow the foundational
work on obfuscation by Barak et al. [BGI+12], and use the circuit model for programs,
although in the main body of the paper the programs will be written in pseudo-code.

Malicious obfuscation is the insertion of un-desired functionality or behaviour into
a program. Our main conceptual contribution, which is not deep, is that malicious
obfuscation is therefore a violation of correctness. Barak et al. [BGI+12] first consider
perfect correctness (also called functionality preserving), where the obfuscated program
C̃ computes the exact same function as C. However, perfect correctness is hard to
obtain in some settings, and so weaker variants of correctness have been considered,
and we will review them in the case of circuits in Definition 1. Section 4.1 of [BGI+12]
mentions approximate correctness, but does not give a formal definition. In fact, there
are several different versions of approximate correctness in the literature, for example see
[GR07, BR17, BKM+18, HMLS07]. We give two formulations of approximate correctness
in Definition 1.

Definition 1 (Distributional Virtual Black-Box Obfuscator (DVBB) [BBC+14]
[BGI+12]). Let λ ∈ N be the security parameter. Let C = {Cλ} be a family of polynomial-
sized programs parameterized by inputs of length n(λ), and let D = {Dλ} be the class
of distribution ensembles, where Dλ is a distribution over Cλ. A PPT algorithm O with
correctness ϕi is an obfuscator for the family C and the distribution D, if it satisfies the
following conditions:

• Correctness:

- ϕ1 : (Perfect correctness) For every λ ∈ N and every C ∈ Cλ and every possible
output C̃ = O(C),

∀x ∈ {0, 1}n(λ) : C̃(x) = C(x)

This is formalized in [BGI+12].
- ϕ2 : (Approximate correctness) There is a negligible function µ(λ) such that, for

every λ ∈ N and every C ∈ Cλ:

Pr
O

[ ∀x ∈ {0, 1}n(λ) : O(C)(x) = C(x) ] > 1− µ(λ)
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where the probability is over the coin tosses of O in computing C̃ = O(C). This
is formulated in Definition 3.1 of [WZ17].

- ϕ3 : (Approximate correctness) There is a negligible function µ(λ) such that, for
every λ ∈ N, for every C ∈ Cλ, and for every x ∈ {0, 1}n(λ) to C:

Pr
O

[O(C)(x) = C(x) ] > 1− µ(λ)

where the probability is over the coin tosses of O. This is called “weak function-
ality preservation” in [BLMZ19].

• Polynomial Slowdown : For every λ ∈ N and for every C ∈ Cλ, there exists a
polynomial q such that the running time of C̃ = O(C) is bounded by q (|C|), where
|C| denotes the size of the program.

• Virtual Black-box : For every (non-uniform) polynomial size adversary A, there exists
a (non-uniform) polynomial size simulator S with oracle access to C, such that for
every distribution D ∈ Dλ:∣∣∣ Pr

C←Dλ,O,A
[A(O(C)) = 1]− Pr

C←Dλ,S
[SC(1λ) = 1]

∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.

We note that the constructions we study in this paper mainly follow ϕ2 and ϕ3
correctness, and belong to the family of programs with the property that for a fixed input,
a random C ∈ Cλ evaluates to 0 with overwhelming probability (evasive programs).

2.1 Defining Malicious Obfuscators
Our formalism of malicious obfuscators is that the output program does not have the
same correctness guarantee as the honestly obfuscated program. For example, suppose
the malicious obfuscator inserts a master backdoor y that is accepted by every program it
obfuscates. Then correctness ϕ1 and ϕ2 are not possible (a program is never correct on all
inputs) and correctness ϕ3 is also not possible (for the specific input y, we have C(y) = 0
but O(C)(y) = 1).

In addition, we require that a polynomial distinguisher cannot detect that C̃ is mali-
ciously generated, either by inspecting the source code of C̃, running it on chosen inputs,
or both.

In reality, an obfuscation tool is used by many users to obfuscate many programs. Hence
it is necessary for a malicious obfuscator to be undetectable even when used to obfuscate
many programs. Therefore our security definition allows the distinguisher to receive
obfuscations of polynomially many chosen programs C, including repeated obfuscations
of the same program. We do this by providing oracle access to the obfuscator. We also
consider the case where the malicious obfuscator may be introducing a master backdoor
that is the same for every execution. This is modeled in our formalism as a fixed auxiliary
input aux that is used for all executions.

We stress that our definition holds for any aux, which we demonstrate later in the
concrete realizations of our notion. Given the malicious obfuscator could be a software
tool that is sold by an obfuscation company and executed locally and offline by a software
developer to obfuscate many programs, it does not make sense to choose aux adaptively as
the adversary never sees the input. Moreover, aux should be hard to determine by the
distinguisher, and hence we require aux to be sampled randomly.

Definition 2 (Malicious Obfuscation). Let λ, n satisfy the conditions as given in
Definition 1. For any family of programs C and distribution class D over C, let O be an
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obfuscator that satisfies the conditions given in Definition 1 with correctness ϕi. Then a
malicious obfuscator for the family C and distribution D is a PPT algorithm A that takes
an auxiliary input aux ∈ {0, 1}λ, such that:

• (Correctness violation) : For any choice of aux, A(1λ, ·, aux) does not satisfy ϕi.

• (Indistinguishability) : There exists a negligible function µ(λ), such that for every
PPT distinguisher B that has oracle access to an obfuscator (so can adaptively ask
for obfuscations of polynomially many adaptively chosen C ∈ Cλ)∣∣∣ Pr

aux,B,A
[ BA(1λ,·,aux) = 1]− Pr

B,O
[ BO(1λ,·) = 1]

∣∣∣ ≤ µ(λ)

where the first probability is taken over the choice of aux and the coin tosses of B, A,
and the second probability is taken over the coin tosses of B, O.

The indistinguishability game is that a distinguisher can request and receive obfuscations
of C. We write BO(·) to indicate that B has access to an oracle that can be queried on
any C (but with respect to fixed aux in the malicious case). The string aux represents
randomly generated secret data that is known to the malicious obfuscator, such as the
value of a master backdoor. The distinguisher has to decide if it is interacting with the
honest obfuscator or a malicious one.

3 Malicious Obfuscators for Conjunctions
We now show that malicious obfuscators exist for schemes in the literature, that are
indistinguishable from honest obfuscators. In this section we focus on conjunctions, which
are also called pattern matching with wildcards.

3.1 Reviewing the [BKM+18] Construction
We now review the construction by Bishop et al. [BKM+18] for obfuscating conjunctions
(alternatively called pattern matching with wildcards), and design a malicious obfuscator,
seemingly identical to the honest obfuscation instance. We first recall the definition of
conjunctions.

Definition 3 (Conjunctions). Let n ∈ N and let pat ∈ {0, 1, ⋆}n be a pattern, where ⋆ is
a wildcard character. Let W = {i : pati = ⋆} be the set of wildcard positions in pat, and let
w = |W |. A conjunction function C : {0, 1}n → {0, 1}, x 7→ C(x) on an input x ∈ {0, 1}n

is defined as

C(x) =
{

1 , if ∀i such that pati ̸= ⋆ ∧ xi = pati

0 , otherwise.

Bishop et al. designed an efficient DVBB obfuscator for conjunction functions using
Lagrange interpolation. Their security goal roughly states that a PPT adversary cannot
distinguish the obfuscation of C from obfuscation of a function that always outputs 0.
The construction satisfies “approximate" functionality preservation (ϕ3 in Definition 1) for
an ensemble of uniform distributions. The scheme relies on the difficulty of the discrete
logarithm problem in a group of size q, and the security proof takes place in the generic
group model. Hence we need q > 22λ where λ is the security parameter.

The high-level overview of the obfuscation is as follows: to obfuscate pat ∈ {0, 1, ⋆}n

that has w wildcards, define polynomial F (t) =
∑n−1

k=1 aktk ∈ Fq[t] with F (0) = 0. The
coefficients a1, . . . , an−1 are sampled uniformly random in Fq, where q is exponential in
λ. If the ith bit of the pattern is j, where j ∈ {0, 1} or if pati = ⋆, then evaluate the
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Algorithm 1 Obfuscator OCon(1λ, C)

1: Sample large prime q > 22λ; Select G = ⟨g⟩ of order q

2: Sample (a1, . . . , an−1) $←− Fq

3: Let F (t) = a1t1 + · · ·+ an−1tn−1

4: for i = 1 to n do
5: for j = 0 to 1 do
6: if (pati == ⋆ ∨ pati == j) then
7: hi,j ← gF (2i+j)

8: else
9: hi,j

$←− Fq

10: end if
11: end for
12: end for
13: return v = (ghi,j )i∈[n],j∈{0,1}

polynomial at 2i + j, otherwise sample a uniformly random element from Fq. The final
step is to publish the 2n field elements in the exponent of the group G = ⟨g⟩ of order q.
The formal description is given in Algorithm 1, where the input C may be viewed as a
circuit that computes the conjunction function, or as a description of the pattern (in either
case, it is assumed that it is easy to determine pat from C).

Interpolating the polynomial in the exponent with n Lagrange coefficients corresponding
to a correct input x ∈ {0, 1}n gives g0, and the evaluator correctly accepts the input. For
an input that does not match the pattern, a uniformly random group element is returned by
the algorithm, and the evaluator correctly rejects the input with overwhelming probability.

3.2 Malicious Obfuscator for [BKM+18]
As is clear from Definition 3, a conjunction function C for a pattern pat ∈ {0, 1, ⋆}n with
w wildcard characters, defines 2w accepting inputs. Our goal is to design a malicious
obfuscator that allows a certain input string y that does not match the pattern.

The input y should be fixed and independent of the pattern being obfuscated (so that y
can be a single master backdoor that works for all instances). Furthermore, we require that
any poly-time distinguisher B with a priori knowledge on pat cannot distinguish between
honest and purported obfuscation instances.

The malicious obfuscator must accept the 2w inputs strings that correctly match the
pattern. This means that for every pati = ⋆ or pati = j, the elements hi,j should be
correctly structured. Given we require the obfuscator to accept bad inputs, a naïve solution
would be to output hi,j ← gF (2i+j) for every i ∈ [n] and j ∈ {0, 1}, as the obfuscator would
then accept all strings of length n. Slightly more cleverly, one could add wildcard positions
only in those places where yi does not match the pattern (namely, we are setting pati = ⋆
for all i such that pati ∈ {0, 1} but pati ̸= yi. Certainly such an obfuscated program would
accept the master backdoor y, but a PPT distinguisher who knows pat can simply flip the
n− w non-wildcard bits one by one, and check if any of the inputs are accepted in O

(
n

)
time. Hence it is easy to detect this malicious behaviour. Thus it remains to construct an
un-detectable malicious obfuscator around the apparent constraints.

The basic idea is to choose the “random” values in Algorithm 1 in a structured way
so that the polynomial interpolation also works for the input y. First, since y is fixed
and independent of C, it might happen that C(y) = 1 anyway. In this case there is no
malicious behaviour and the original obfuscation works. Similarly, if y matches the pattern
except for one non-wildcard position (call it k) then the malicious obfuscator is exactly
the same as an obfuscation of the pattern where location k is now a wildcard. In this case
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it is impossible to have an obfuscated program that accepts y but that can’t be detected
by a distinguisher who checks the wildcard positions.

Hence in reality we focus on the case where C(y) = 0 and where y does not match the
pattern in at least two positions (this is the case with overwhelming probability for evasive
conjunctions). Let Ly be the set of indices in y that do not satisfy the pattern. Note that
such a string would be correctly rejected with overwhelming probability by the [BKM+18]
construction. We require the malicious obfuscator to agree with the honest obfuscator
except for the input string y, which it allows with noticeable advantage.

To achieve this, we construct the random degree n − 1 polynomial F (t) following
Algorithm 1, while we define another polynomial H(t) ∈ Fq[t], such that H(0) = 0, and H
evaluates to the same value as F at the positions where yi satisfies pati. Such a polynomial
exists and can be chosen to be not equal to F if there are at least two positions where y
does not match the pattern, as two distinct degree n−1 polynomials may intersect at n−1
points. If y matches the pattern except at one position, then we have H = F , and that
position behaves as a wildcard. The obfuscation follows Algorithm 1, except that certain
random choices are now defined using H, so that y is accepted. This ensures that the
obfuscated program always accepts all inputs satisfying the pattern, as well as the input y.
Other inputs are rejected with overwhelming probability. A distinguisher who does not
know y is unable to check whether the allegedly random group elements have instead been
generated using the polynomial H. The formal description is given in Algorithm 2.

Lemma 1. Let λ ∈ N be the security parameter. Let C = {Cλ} be the family of polynomial-
sized conjunction programs parameterized by inputs of length n = n(λ), and let D = {Dλ}
be a class of distribution ensembles, where Dλ is a distribution over evasive conjunctions
in Cλ. Then algorithm ACon (Algorithm 2) violates ϕ3. Precisely, for every y ∈ {0, 1}n,
there exists a C ∈ Dλ and x ∈ {0, 1}n such that

Pr[ACon(1λ, C, y)(x) ̸= C(x) ] > 1− µ(λ)

for some negligible function µ.

Proof. Let y ∈ {0, 1}n. Since Dλ is a distribution on evasive conjunction functions, there
exists some C such that C(y) = 0 (indeed, one can efficiently find such a C in expected
constant time, since C(y) = 0 with overwhelming probability over the choice of C). Now,
by construction, ACon(1λ, C, y)(y) = 1 with probability 1. So taking x = y, the result
follows.

One can prove that the scheme is indistinguishable in the generic group model, but due to
lack of space we omit the security proof and instead give the proof details for the more
efficient construction from [BLMZ19]. The indistinguishability shows that the malicious
obfuscator is also distributional VBB in the generic group model.

3.3 Reviewing the [BLMZ19] Construction
We now present the dual version of conjunction obfuscation by Bartesuk, Lepoint, Ma and
Zhandry [BLMZ19], which is more efficient than the [BKM+18] construction. The dual
scheme takes into account evasive conjunctions with patterns of length n, and achieves
distributional virtual black box security for n− ω(log n) wildcards in the generic group
model with n + 1 group elements, rather than 2n.

Definition 4. Let B be the (n + 1)× 2n dimensional matrix with (i, j)-entry ji.

Then matrix B has the property that any of its n + 1 columns form a full rank matrix.
To encode a pattern pat ∈ {0, 1, ⋆}n, compute a 2n dimensional error vector e structured

as follows: if the ith bit of the pattern is b, then e2i−b = 0, otherwise e2i−(1−b) is sampled
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Algorithm 2 Malicious Obfuscator ACon(1λ, C, y ∈ {0, 1}n)

1: Sample large prime q > 22λ; Select G = ⟨g⟩ of order q
2: if (C(y) == 1) then
3: return OCon(1λ, C)
4: else
5: Sample (a1, . . . , an−1) $←− Fq

6: F (t) = a1t1 + · · ·+ an−1tn−1

7: Ly := {1 ≤ k ≤ n : yk ̸= patk}
8: Sample random degree n−1 polynomial H(t) ∈ Fq[t] s.t. H(0) = 0 and H(2k+yk) =

F (2k + yk) for all k ̸∈ Ly

9: for i = 1 to n do
10: for j = 0 to 1 do
11: if (pati == ⋆ ∨ pati == j) then
12: hi,j ← gF (2i+j)

13: else
14: if i ∈ Ly then
15: hi,j ← gH(2i+yi)

16: else
17: hi,j

$←− Fq

18: end if
19: end if
20: end for
21: end for
22: end if
23: return v∗ = (ghi,j )i∈[n],j∈{0,1}

randomly from Zq. If pati = ⋆, then e2i−1 = e2i = 0. The obfuscator outputs the encoding
of the vector Be in the exponent of the group G = ⟨g⟩, as gBe ∈ Gn+1.

On input string x ∈ {0, 1}n, the evaluation procedure solves for a vector t, such that
tB = 0 at positions 2i− (1− xi), for every i ∈ [n]. Finally, x is accepted if tBe = 0, which
is tested by computing in the group.

The correctness of the scheme is proved by Bartesuk, Lepoint, Ma and Zhandry [BLMZ19].
They prove DVBB security (for certain parameter ranges and for uniformly sampled pat-
terns) in the generic group model. Bartusek et al. [BLMZ19] claim to achieve correctness
ϕ3 (see Definition 1).

3.4 Malicious Obfuscator for [BLMZ19]
To construct an obfuscated program that accepts the bad input y ∈ {0, 1}n with noticeable
advantage, we again replace random values with specially chosen values. We assume y
does not match pat (i.e. C(y) = 0 in Definition 3) otherwise we just have to return an
honest obfuscation. Hence we may assume that y does not match the pattern in at least
one entry. Since any n + 1 columns of B are linearly independent, By ∈ Z(n+1)×n

q will
have rank n and there is a unique one-dimensional space of vectors ty ∈ Z1×(n+1)

q , such
that tyBy = 0 (by the rank-nullity theorem). Since By differs from Bx for every x that
satisfies the pattern, the vector ty differs from the vector t for any honest x.

Recall that the 2n dimensional vector e has n + w zero entries by construction. To
design a purported error vector e∗ that works with both y and the correct inputs, we fix
the n+w positions with zero entries (corresponding to the honest obfuscation). Computing
e∗ is done by finding a non-zero vector in the (2n− 1)-dimensional subspace orthogonal to
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Algorithm 3 Obfuscator ODual(1λ, C)

1: Sample large prime q > 22λ; Select G = ⟨g⟩ of order q

2: Let B ∈ Z(n+1)×2n
q as in Definition 4

3: Initialize error vector e← Z2n×1
q

4: for i = 1 to n do
5: if (pati == ⋆) then
6: e2i−1 = e2i = 0
7: end if
8: if (pati == b) then
9: e2i−b = 0 ; e2i−(1−b)

$←− Zq

10: end if
11: end for
12: return B, v = gBe

tB that also has the correctly structured zero entries. Let U ∈ Z2n×1
q be the subspace of

vectors with basis {u2i−(1−b) : pati = b}. Let U′ = {w : w ∈ U∧ tyBw = 0}. Since n + w
are fixed zero entries, the dimension of U′ is n−w− 1. Thus, for an input y that does not
match pat, if the obfuscator selects a vector e∗ from U′ and publishes Be∗, the evaluation
algorithm will accept y, as tyBe∗ = 0. We specify the procedure formally in Algorithm 4.

Algorithm 4 Malicious Obfuscator ADual(1λ, C, y ∈ {0, 1}n)

1: Sample large prime q > 22λ; Select G = ⟨g⟩ of order q

2: Let B ∈ Z(n+1)×2n
q as in Definition 4

3: if (C(y) == 1) then
4: return ODual(1λ, C)
5: else
6: Define By ∈ Z(n+1)×n

q , where column j is set to (By)j = B2j−yj

7: Solve for non-zero vector ty ∈ Z1×(n+1)
q such that tyBy = 0

8: Compute U ∈ Z2n×1
q with the basis {u2i−(1−b) : pati = b}

9: Compute U′ = {w : w ∈ U ∧ tyBw = 0}
10: Sample e∗ $←− U′
11: return B, v∗ = gBe∗

12: end if

Lemma 2. Let λ ∈ N be the security parameter. Let C = {Cλ} be the family of conjunction
programs parameterized by inputs of length n = n(λ), and let D = {Dλ} be a class of
distribution ensembles, where Dλ is a distribution over evasive conjunction programs in
Cλ. Then Algorithm 4 violates ϕ3. Precisely, for each y ∈ {0, 1}n there exists a C ∈ Dλ

and an x ∈ {0, 1}n(λ) such that

Pr[ADual(C, y)(x) ̸= C(x) ] > 1− µ(λ)

for some negligible function µ(λ).

Proof. It is proved by Bartusek et al. [BLMZ19] that the dual scheme satisfies ϕ3. Hence
the following holds for every C and every x ∈ {0, 1}n :

Pr
ODual,C

[ODual(1λ, C)(x) = C(x) ] > 1− µ(λ)
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To show that a malicious obfuscator does not satisfy ϕ3 it suffices to exhibit a single C
and x such that ADual(C, y)(x) ̸= C(x) with high probability.

Let y ∈ {0, 1}n. Since Dλ is a distribution on evasive conjunction functions, there
exists some C such that C(y) = 0. Now, by construction, ADual(1λ, C, y)(y) = 1 with
probability 1. So taking x = y, the result follows.

3.5 Indistinguishability of our Malicious Obfuscator
We now prove computational indistinguishability of the malicious and honest obfuscators
(specified in Algorithms 3 and 4) in the generic group model.

The generic group model (GGM) is an abstract model of computation where a generic
adversary can access the group structure through oracle calls but cannot exploit the
representation of the group elements. The adversary is initialized with “handles” that
represent the GGM group elements. This model is used for the security proofs in [BKM+18,
BLMZ19], so it is natural to use it here.

We use the same formulation of generic group as in Bartesuk, Lepoint, Ma and
Zhandry [BLMZ19]. Specifically, the two oracle calls available are: (i) sub(σ1, σ2), which
computes the handle corresponding to the group element x− y, where σ1 is a handle for
x and σ2 is a handle for y; (ii) isZero(σ), which returns true if and only if the handle
corresponds to the identity element of the group.

The fact that our malicious obfuscator is indistinguishable from the honest obfuscator in
the generic group model implies the distributional VBB security of the malicious obfuscator
under the same conditions as required in [BLMZ19].

We consider a distinguisher B that can request polynomially many obfuscated programs
and determine whether it is interacting with an honest or malicious obfuscator. We require
B to be a generic algorithm, and do not give it direct access to the group. Instead, group
elements are replaced by abstract “handles”, and the algorithm B is required to make
oracle queries to compute group operations (where the group is viewed as an additive
group).

Theorem 1. Let λ ∈ N be the security parameter and let n, w be polynomials in λ with
w = n− ω(log n). Let G be a group of prime order q > 22λ.

Then for all PPT distinguishers B in the generic group model, there exists a negligible
function µ(λ), such that for all λ ∈ N, the following holds:∣∣∣ Pr

y,B,ADual

[ BADual(1λ,·,y) = 1] − Pr
B,ODual

[ BODual(1λ,·) = 1]
∣∣∣ ≤ µ(λ)

Proof. We prove the theorem by designing a simulator that plays the role of the challenger
in the security game with B and controls the generic group oracles.

The intuition behind the proof is that the simulator “decides” whether to play as an
honest or malicious obfuscator only after the algorithm B has returned its guess.

Let T be an upper bound on the number of queries made by B to the obfuscation
oracle. For simplicity of notation we assume all obfuscation queries are with respect to the
same parameters n, w and use the same prime q (group order). The general case where
the groups are varying is handled using a hybrid argument. To simulate the generic group
we will need to work with linear polynomials in Tn variables. So we work in the ring
R = Zq[X(t)

i ] for 1 ≤ i ≤ n and 1 ≤ t ≤ T .
To begin the simulator initializes a list L ← { }, which will keep track of the generic

group queries. We set t = 1, as the counter for the number of obfuscation queries.
For each query to obfuscate a program C, the simulator first derives from C the pattern

pat. The simulator must set up the n + 1 handles that will be provided to B. Handles are
strings in {0, 1}τ , where τ > log2(q). This is done in the O(C) query part of Algorithm 5.
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This ensures that the group elements correspond to Be for some vector e that satisfies the
requirements of the scheme. The vector e has length 2n, and has n + w entries fixed to
zero and n− w entries that are supposed to be random group elements. The idea of the
simulation is to treat the n− w entries as indeterminates. Hence, in the i-th execution
the simulation introduces n − w variables X

(t)
1 , . . . , X

(t)
n (we only use n − w variables,

but for simplicity of notation we go all the way to n) and sets e to be the vector whose
non-wildcard entries are variables. The simulation then returns n + 1 random handles to
B, where each handle is associated with the polynomial that is given by the corresponding
entry of Be.

Note that, by construction, if B executes the obfuscated program on an input that
matches the pattern, then the final isZero query will return True and the input will be
accepted. On the other hand, if B executes the obfuscated program on an input that does
not match the pattern, then the final isZero query will return False and the input will be
rejected.

Algorithm 5 Oracle Handler

O(C) query

1: e(t) ∈ R2n s.t. R = Zq[X(t)
1 , . . . , X

(t)
n ]

is a zero vector
2: for i = 1 to n
3: if (pati == b)
4: e(t)

2i−(1−b) ← X
(t)
i

5: end if
6: end for
7: Let (F1, . . . , Fn+1) = Be(t) ∈ Rn+1

8: Sample random handles (σ1, . . . , σn+1)
from {0, 1}τ

9: L ← L ∪ {(σi, Fi)i∈[n+1]}
10: t← t + 1
11 return: (σ1, . . . , σn+1)

Sub(σi, σj) query

1: Find Fi, Fj ∈ Zq[X(1)
1 , . . . , X

(T )
n ] s.t.

(σi, Fi) ∈ L and (σj , Fj) ∈ L (if they don’t
exist return ⊥)
2: F = Fi − Fj

3: if ∃ σ : (σ, F ) ∈ L return σ
4: else
5: σ

$←− {0, 1}τ ;
6: L ← L ∪ {(σ, F )}
7: end if

isZero(σ) query

1: F ∈ Zq[X(1)
1 , . . . , X

(T )
n ] s.t. (σ, F ) ∈ L

(return ⊥ if none exists)
2: if (F == 0) return True
3: else return False
4: end if

After polynomially many oracle queries, B outputs a bit b′. The simulator now generates
a random bit b and proceeds as follows.

If b = 0 then the simulator chooses random vectors (x(t)
1 , . . . , x

(t)
n ) ∈ Zn

q for each
1 ≤ t ≤ T . We now fix the vector e(t) by evaluating the polynomials on the point
(x(t)

1 , . . . , x
(t)
n ). The values Be(t) are now distributed as in the honest obfuscation. The

simulation has been correct as long as all isZero queries were answered consistently with
this choice of group element. If isZero answered true then the answer was correct, but
some false answers (on non-zero polynomials) may have been incorrect. Let Q be the
number of isZero queries, which is an upper bound on the number of non-zero polynomials
F that might have had the point (x(1)

1 , . . . , x
(T )
n ) as a root. Note that Q is bounded by

a polynomial in the security parameter. Since the non-zero polynomials F in queries to
isZero are all linear, by the Schwartz–Zippel lemma and the union bound, the probability
the simulation is incorrect is at most Q/q, which is negligible since q > 22λ.

Now consider the case when b = 1. Then the simulator chooses a malicious input
y ∈ {0, 1}n. This represents the choice of aux in Definition 2. Since there are polynomially
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many chosen C, each corresponding to some evasive pattern pat, then y does not satisfy
any of the patterns with overwhelming probability.

Now, we imagine choosing the vectors e(t) as in the malicious scheme. Once again, this
is the same as choosing a point (x(t)

1 , . . . , x
(t)
n ) ∈ Zn

q , but this time subject to the additional
linear constraint tyBe(t) = 0. We model this by defining additional linear polynomials
F0(X(t)

1 , . . . , X
(t)
n ) that correspond to the condition tyBe(t) = 0. The simulation chooses

the point (x(t)
1 , . . . , x

(t)
n ) ∈ Zn

q uniformly at random. Again, the only things we need to
be concerned about are whether F0(x(t)

1 , . . . , x
(t)
n ) = 0 and whether queries to isZero were

answered incorrectly. This is the same as the case b = 0, except there are T additional
linear constraints. Hence, as in the previous case, the probability the simulation is incorrect
is bounded by (Q + T )/q, which is negligible. Let p = PrB,ODual

[ BODual(1λ,·) = 1 be
the probability that B outputs 1 in the honest game. Let Fail be the event that the
simulation answers an isZero query incorrectly when b = 0. Then in the simulation we
have p = Pr[B = 1|¬Fail]. Hence, in the simulation we have PrB,ODual

[ BODual(1λ,·) =
1] = p Pr[¬Fail] + Pr[B = 1|Fail] Pr[Fail] = p + µ1(λ) for some negligible function µ1(λ).

Similarly, let Fail′ be the event that the simulation is incorrect when b = 1. We have
shown that Pr[Fail′] is negligible. When event Fail′ does not occur, the view of B is
identical to the view of B when playing the game with b = 0 against an honest obfuscator,
since none of the generic group queries have detected the additional linear equation that is
due to the malicious choice of input y. Hence Pr [ BADual = 1|¬Fail′ ] = p. It follows that
Pr [ BADual = 1 ] = p + µ2(λ), for some negligible function µ2(λ).

4 Malicious Obfuscators for Compute-and-Compare
Programs

Compute-and-compare obfuscation is a very general tool that solves a wide class of
obfuscation problems. In fact, almost all previous provable obfuscation schemes for
evasive functions are special cases of evasive compute-and-compare programs. Solutions to
compute-and-compare obfuscation have been given by Wichs and Zirdelis [WZ17], and
Goyal, Koppula and Waters [GKW17] (who call it “lockable obfuscation”). The two
schemes are very similar and are both based on the learning with errors (LWE) assumption.
Goyal, Koppula, Vusirikala and Waters [GKVW20] design perfectly correct obfuscators
for the [GKW17, WZ17] schemes. Our techniques apply to all the three schemes, but we
only present the details for the obfuscation scheme by Wichs and Zirdelis [WZ17], as this
gives the main idea for the constructions.

We show that malicious obfuscators exist for compute-and-compare obfuscation con-
structions. This is a particularly important class, since it is not necessarily easy to
reverse-engineer a compute-and-compare function even when given the original program.
For example, if the function computes a cryptographic hash H then one can obfuscate
the program “Does H(x) = h?” without knowing an accepting input. Our malicious
obfuscator can sample its own secret input x0 and compute h0 = H(x0) and ensure that
the obfuscated program accepts inputs that evaluate to h or h0, giving the malicious
obfuscator a master backdoor even though it would otherwise have been hard to find an
input when given the original (unobfuscated) program.

Definition 5 (Compute-and-compare Programs). Let ℓin, ℓout ∈ N. Let f :
{0, 1}ℓin → {0, 1}ℓout be a polynomial-time computable function and let α ∈ {0, 1}ℓout

be a target value. A compute-and-compare program on input x ∈ {0, 1}ℓin is defined as

CC[f, α](x) =
{

1 , if f(x) = α

0 , otherwise.
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We focus on the case of evasive compute-and-compare programs, meaning that if one
samples a random y and sets α = f(y), then there is a negligible probability that other
random inputs x satisfy f(x) = α. Indeed, Wichs and Zirdelis [WZ17] require α to have
high pseudo-entropy in the security parameter λ and the branching program length, which
requires ℓout to be sufficiently large.

4.1 Reviewing the [WZ17] Construction
We now review the compute-and-compare obfuscator by Wichs and Zirdelis [WZ17] that
achieves DVBB security under the learning with errors (LWE) assumption. Their scheme
employs GGH15 encodings by Gentry, Gorbunov and Halevi [GGH15] in a restricted
setting. We state the LWE problem by Regev [Reg09].

Definition 6 (Decisional LWE (DLWE)). Let q ∈ N be a large prime and let n, m ∈ N.
Let χ be a noise distribution over Zq. The (n, q, χ)-DLWE problem of dimension m states
that the following holds: (A, sA + e) c

≈ (A, u) : A $←− Zn×m
q , s← Zn

q , e← χm, u $←− Zm
q

Extending the work of [ACPS09], where security is achieved for a secret s← χn, the
authors in [WZ17] show that for a noise distribution χ = χ(λ), bounded by β = β(λ), such
that H∞(χ) ≥ ω(log λ), the following holds (A, SA + E) c

≈ (A, U) : A $←− Zn×m
q , S ←

χn×n, E← χn×m, U $←− Zn×m
q where ∥S∥∞ ≤ β, ∥E∥∞ ≤ β.

The GGH15 scheme [GGH15] encodes secrets along edges of a directed acyclic graph,
where each node u associates a matrix Au and a trapdoor tu. Encoding a matrix S along
Au ⇝ Av is given by Cu = A−1

u (SuAv + E), where the notation Cu = A−1
u (Y) means

Cu is a low-norm matrix such that AuCu = Y. Multiplying encodings of Su, Sv along
Au ⇝ Av ⇝ Aw satisfies the relation AuCuCv = SuSvAw + (small error).

Wichs and Zirdelis [WZ17] restrict to a case where S is tensored with an identity matrix
Iw ∈ {0, 1}w×w and GGH15 encoding of Iw

⊗
S is computed instead, where

⊗
denotes

the Kronecker product of the matrices. They prove semantic security under the DLWE
assumption: (Au, (Iw

⊗
S)Av + E) c

≈ (A, U). The directed encoding scheme in [WZ17]
encodes the same LWE secret S ∈ Xn×n along multiple paths {A0 ⇝ A′0, . . . , Aw−1 ⇝
A′w−1}.

Lemma 3. (Lattices with Trapdoors [Ajt99, GKPV10, MP12]) Let n, m and q satisfy the
conditions in Definition 6. There exists a pair of PPT algorithms (TrapSamp, SampPre)
defined as follows:

• (A, tA) ← TrapSamp(1n, 1m, q): A randomized algorithm that samples a matrix
A ∈ Zn×m

q and trapdoor tA, where q ≥ 2, m > 2n log q

• C← SampPre(A, A′, tA): A pre-sampling algorithm that samples a low-norm matrix
C such that AC = A′, where A, A′ ∈ Zn×m

q .

Then for q ≥ 2, m > 2n log q, n ≥ 1, the following distributions are statistically indistin-
guishable:

1. A s
≈ Ã : ( A, tA)← TrapSamp(1n, 1m, q), Ã $←− Zn×m

q .

2. (A, tA, C) s
≈ (A, tA, C̃) : C← SampPre(A, A′, tA), A, A′ ← Zn×m

q , “small” matrix C̃←
Zm×m

q .

At a high-level, the encoding scheme generates base matrix and trapdoor (B, tB)←
TrapSamp(1w.n, 1m, q) and employs Algorithm 6 to calculate w encodings. The algorithms
TrapSamp, SampPre and Encode all access a random tape T .
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Algorithm 6 Encode(B, B′, S, tB)

1: Parse B =

 A0
...

Aw−1

 and B′ =

 A′0
...

A′w−1

, where Ai, A′i ∈ Zn×m
q

2: E← χwn×m, where E =

 E0
...

Ew−1


3: Set V = (Iw

⊗
S) B′ + E

4: return C← SampPre(B, V, tB)

The compute-and-compare obfuscator encodes a function f which can be represented
by a polynomial length permutation branching program, rather than any polynomial-sized
circuit. Note that, any circuit of size O

(
L

)
and depth O

(
log L

)
can be converted to

permutation branching program of length polynomial in L.

Definition 7 (Permutation Branching Programs). Let L, w, ℓin ∈ N, let (x1, . . . , xℓin
)

∈ {0, 1}ℓin be an input sequence. A permutation branching program of length L and width
w computes a function P : {0, 1}ℓin → {0, 1}, (xk)k∈ℓin 7→ P ((xk)k∈ℓin) based on a graph
G defined as follows: G has (L + 1)w nodes grouped into L + 1 levels of w nodes each,
denoted by

{vi,j}i∈[L+1],j∈{0,1,...,w−1}.

At each level i′ ≤ L, one processes input variable xI(i′) as follows: vi′,j associates permu-
tations πi′,0(j), πi′,1(j) which define the branch to walk to reach the nodes vi′+1,j1 and
vi′+1,j2 , j1 ̸= j2. At input (xk)k∈ℓin

, the function starts from node v1,0 (without loss of
generality) at level 1, and at each level i′ ≤ L follows permutation πi′,xI(i′)(ji′) till it
reaches the terminal node at level L + 1 labeled by vL+1,b, b ∈ {0, 1}.

Consider a family of distribution ensembles D = {Dλ}λ∈N, where every D ∈ Dλ is
poly-time samplable. Then D determines a program collection F = {Fλ}λ∈N = {f :
{0, 1}ℓin(λ) → {0, 1}ℓout(λ)}, where f is computable by ℓout polynomial-size permutation
branching programs. The [WZ17] construction obfuscates CC[f, α] where f ∈ F and
α ∈ {0, 1}ℓout , such that the obfuscation reveals no information about f, α. Hence Dλ

must satisfy HHILL(α|f) ≥ nm log q + ω(log λ).
The [WZ17] obfuscator works as follows: let (P (k))k∈[ℓout] be a sequence of permutation

branching programs corresponding to each output bit of f , where the programs have a
common length L and width w. For 1 ≤ k ≤ ℓout, sample matrices A(k)

i,j with trapdoors
t
(k)
i,j corresponding to nodes v

(k)
i,j , where i ≤ L, 0 ≤ j < w. At level L + 1 of the

branching program, select matrices such that A(1)
L+1,α1

+ · · · + A(ℓout)
L+1,αℓout

= 0 mod q,
where α = (α1, . . . , αℓout) ∈ {0, 1}ℓout is the target value. To achieve this, sample uniformly
random matrices A(k)

L+1,j and set A(ℓout)
L+1,αℓout

= −
∑ℓout−1

k=1 A(k)
L+1,αk

. Next, sample secret
low-norm matrices Si,0 and Si,1 with ∥Si,b∥∞ ≤ β which are the same across the ith levels
of all the ℓout branching programs.

Encode the secret matrices into C(k)
i,0 and C(k)

i,1 following the directed encoding scheme dis-
cussed above, such that for an input x = (x1, . . . , xℓin

), the condition A(k)
1,0

(∏L
i=1 C(k)

i,xI(i)

) c
≈(∏L

i=1 Si,xI(i)

)
A(k)

L+1,P (k)(x) is satisfied, where the common secret
∏L

i=1 Si,xI(i) is encoded

along all the ℓout LWE samples. In the end, the obfuscator outputs (A(k)
1,0) and the

encodings (C(k)
i,0 ), C(k)

i,1 ) for i ∈ [L]. The procedure is formally specified in Algorithm 7.
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Algorithm 7 Obfuscator OCC(1λ, (P (k))k∈[ℓout])

1: for k = 1 to ℓout do
2: Parse P (k) = (π(k)

i,b )i∈[L],b∈{0,1}; Sample A(k)
L+1,j

$←− Zn×m
q , j ∈ {0, . . . , w − 1}

3: if k == ℓout then
4: A(ℓout)

L+1,αℓout
= −

∑ℓout−1
l=1 A(l)

L+1,αl

5: end if

6: Set B(k)
L+1 =


A(k)

L+1,0
...

A(k)
L+1,w−1


7: for i = 1 to L do

8: Sample (B(k)
i , t

(k)
i )← TrapSamp(1wn, 1m, q) with B(k)

i =


A(k)

i,0
...

A(k)
i,w−1


9: end for

10: end for
11: for i = 1 to L do
12: for b = 0 to 1 do
13: Sample Si,b ← Xn×n

14: for k = 1 to ℓout do

15: C(k)
i,b ← Encode

(
B(k)

i , π
(k)
i,b (B(k)

i+1), Si,b, t
(k)
i

)
, where π(B(k)

i+1) =


A(k)

i+1,π(0)
...

A(k)
i+1,π(w−1)


16: end for
17: end for
18: end for
19: return {A(k)

1,0}k∈[ℓout], {(C
(k)
i,0 , C(k)

i,1 )}k∈[ℓout],i∈[L]

On input x, the evaluation procedure calculates D(k) = A(k)
1,0

( ∏n
i=1 C(k)

i,xI(i)
) and checks

if
∑ℓout

k=1 D(k) ≤ βℓout(2mβ)L−1. For an accepting input (f(x) = α), the summation of
ℓout LWE samples reduces to

∑ℓout

k=1 E(k) as
∑ℓout

k=1 A(k)
L+1,P (k)(x) = 0. Since ∥E(k)∥∞ ≤

βℓout(2mβ)L−1, the evaluation procedure allows the input. If f(x) ̸= α, the summation of
the LWE samples will be uniformly random and contain large entries with high probability.

Wichs and Zirdelis prove that their compute-and-compare construction satisfies cor-
rectness ϕ2.

4.2 Malicious Obfuscator for [WZ17]
We show a malicious obfuscator ACC for the [WZ17] scheme that violates correctness ϕ2.
As already noted, unlike our prior constructions of malicious obfuscators, ACC does not
know the set of accepting inputs. Given CC[f, α] is evasive in nature, finding an accepting
input has a probability negligible in λ. Furthermore, inverting f requires computations of
order exponential in λ.

The malicious obfuscator takes an auxiliary input y ∈ {0, 1}ℓin . Let α′ = f(y). We
think of y as a fixed backdoor that is used in all executions of the obfuscator (this
corresponds to the aux in Definition 2). Since the function is evasive we have α′ ̸= α with
overwhelming probability. Hence y should not be accepted by the input program CC[f, α]
with overwhelming probability. Recall that in the [WZ17] construction, the top-level
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matrices are sampled such that A(ℓout)
n+1,αℓout

= −
∑ℓout−1

k=1 A(k)
L+1,αk

, while the remaining
ℓout(w − 1) matrices are uniformly random in Zn×m

q . To ensure that y is accepted by the
program, we impose an additional constraint

∑ℓout

k=1 A(k)
L+1,α′

k
= 0 mod q.

To do this, note that α′ ≠ α implies there is some index z ∈ [ℓout] such that αz ̸= α′z.
The malicious obfuscator then chooses all matrices A(k)

L+1,j for k ̸= z at random, and then
solves A(z)

L+1,αz
= −

∑
k ̸=z A(k)

L+1,αk
and A(z)

L+1,α′
z

= −
∑

k ̸=z A(k)
L+1,α′

k
. This ensures that

ACC accepts all correct inputs, along with y as
∑ℓout

k=1 D(k) ≈ 0 holds for either of the
cases. We describe the steps formally in Algorithm 8.

Algorithm 8 Malicious Obfuscator ACC

(
1λ, (P (k))k∈[ℓout]), y ∈ {0, 1}ℓin)

1: if (f(y) == α) then
2: return OCC(1λ, (P (k))k∈[ℓout])
3: else
4: Set α′ = f(y) ; Compute z

$←− {1, . . . , ℓout}, s.t. α′z ̸= αz

5: for k = 1 to ℓout do
6: Parse P (k) = (π(k)

i,b )i∈[L],b∈{0,1} ; Sample A(k)
L+1,j

$←− Zn×m
q , j ∈ {0, . . . , w − 1}

7: if (k == z) then
8: A(z)

L+1,αz
= −

∑
l ̸=z A(l)

L+1,αl
; A(z)

L+1,α′
z

= −
∑

l ̸=z A(l)
L+1,α′

l

9: end if
10: Set B(k)

L+1 (line 6, Algorithm 7) ; Sample (B(k)
i , t

(k)
i ) (lines 7-9, Algorithm 7)

11: end for
12: Construct C(k)

i,j as in lines 11-18 of Algorithm 7.
13: return {A(k)

1,0}k∈[ℓout], {(C
(k)
i,0 , C(k)

i,1 )}k∈[ℓout],i∈[L]
14: end if

Lemma 4. Let λ ∈ N be the security parameter. Let F = {Fλ} be an evasive compute-and-
compare program collection parameterized by inputs of length n = n(λ). Let α ∈ {0, 1}ℓout(λ).
Let D = {Dλ}, where Dλ is a distribution over evasive Fλ. Let (P (k))k∈[ℓout] be a sequence
of permutation branching programs that computes the evasive function f ∈ F . Then
algorithm ACC (Algorithm 8) violates ϕ2. Precisely, for every y ∈ {0, 1}n, there exists a f ∈
Dλ such that it is not true that for all x ∈ {0, 1}n we have ACC(1λ, (P (k))k∈[ℓout], y)(x) =
CC[f, α](x).

Proof. We show that ACC violates ϕ3, which implies violating correctness ϕ2. Fix y ∈
{0, 1}ℓin .

Since Dλ is a distribution on evasive compute-and-compare programs, there is some
f ← Dλ such that CC[f, α](y)] = 0. The malicious obfuscator ensures that ACC(1λ,
(P (k))k∈[ℓout]), y)(y) = 1 with probability 1. The result follows for this choice of f and
x = y. This shows that ACC violates ϕ3, which implies it violates ϕ2.

4.3 Indistinguishability of Obfuscators
We now prove that, under certain conditions, our malicious obfuscation cannot be detected
by any distinguisher B who has knowledge of the program being obfuscated and who
makes at most T adaptive queries to the obfuscator. In particular, our result requires
ℓout to be large enough with respect to the LWE parameters (n, m, q) and the value
of T . This is similar to the condition on ℓout that appears in Claim 4.12 of [WZ17].
Our proof follows a fairly similar approach as used in [WZ17] where we require Dλ to
satisfy HHILL(α|f) ≥ nmT log q + ω(log λ), such that the honest and malicious obfuscation
distributions are statistically close, by the leftover-hash lemma.
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Let (P (k))k∈[ℓout]) be a chosen compute-and-compare program and let P ′ be a program
output by the obfuscation oracle in the security game of Definition 2. As we have noted,
just knowing (P (k))k∈[ℓout]) does not imply knowledge of one or more inputs x such that
f(x) = α. However, let us assume that the distinguisher B does know some such inputs.
Then the distinguisher can run the program P ′ on such inputs x and check they are
accepted. The distinguisher can also choose some random x′, check that f(x′) ̸= α, and
run P ′(x′) to check that it rejects such inputs. Our malicious obfuscator has chosen an
input y and defined α′ = f(y). Hence the program will accept any input x′ such that
f(x′) = α′. Such malicious behaviour could be detected by B if there are many inputs that
map under f to α′. This is why we require that f is evasive.

Theorem 2. Let D = {Dλ}λ∈N be a family of distribution ensembles, such that (f, α)← Dλ

satisfies HHILL(α|f) ≥ nmT log q + ω(log λ), where λ is the security parameter. Then for
all PPT distinguishers B, there exists a negligible function µ(λ), such that for all λ ∈ N,
for all pairs ACC(1λ, ·, y) and OCC(1λ, ·), the following holds:∣∣∣ Pr

y,B,ACC

[ BACC(1λ,·,y) = 1]− Pr
B,OCC

[ BOCC (1λ,·) = 1]
∣∣∣ ≤ µ(λ)

Proof. The only difference between the honest and malicious obfuscator is line 8 of
Algorithm 8. Recall that the distinguisher can request up to T obfuscations of chosen
circuits, including repeated obfuscations of the same circuit. Hence, for the worst case
we assume that there are T requests to obfuscate the same f and α, and for which the
malicious obfuscator would insert the same backdoor α′ = f(y). The computation in
line 8 is A(z)

L+1,α′
z

= −
∑

l ̸=z A(l)
L+1,α′

l
=

∑
l ̸=z(α′l(A

(l)
L+1,0 −A(l)

L+1,1) −A(l)
L+1,0. Following

the same proof technique as [WZ17], we view A(z)
L+1,α′

z
as the output of a universal

hash function h(α′1, . . . , α′ℓout
) =

∑ℓout−1
k=1 (α′k(A(k)

0 −A(k)
1 ) −A(k)

0 ) for certain matrices
A(k)

0 , A(k)
1 (we set A(z)

b = 0). As this is repeated up to T times, we concatenate all
T output matrices. The output set of the hash function is thus (Zn×m

q )T , with size
qnmT . This family is universal. Since, f, α is sampled from a distribution which satisfies
HHILL(α′1, . . . , α′ℓout

|f) ≥ nmT log q + ω(log λ), the statistical distance between the hash
values (T maliciously formed matrices) and matrices chosen uniformly random in (Zn×m

q )T

is at most 2−T ω(log λ) (by the leftover-hash lemma), which is a negligible function in λ.

4.4 Malicious Obfuscator for [GKVW20]
Goyal, Koppula, Vusirikala and Waters [GKVW20] show how to remove the evaluation
errors in the [GKW17, WZ17] schemes, and obtain a perfectly correct obfuscation.

Algorithm 9 Obfuscator OP C

(
1λ, (P (k))k∈[ℓout]))

1: for k = 1 to ℓout do
2: Parse P (k) = (π(k)

i,b )i∈[L],b∈{0,1} ; A(k)
L+1,j

$←− Zn×m
q ; A(k)

L+1,1−αk
← A(k)

L+1,1−αk
+ D

3: if (k == ℓout) then
4: A(ℓout)

L+1,αℓout
= −

∑ℓout−1
l=1 A(l)

L+1,αl

5: end if
6: Set B(k)

L+1 as line 6, Algorithm 7; Sample (B(k)
i , t

(k)
i ) as lines 7-9, Algorithm 7

7: end for
8: Construct C(k)

i,j as in lines 11-18 of Algorithm 7.
9: return {A(k)

1,0}k∈[ℓout], {(C
(k)
i,0 , C(k)

i,1 )}k∈[ℓout],i∈[L]
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The authors claim that their construction, even though randomized, cannot be manipulated
for inserting a secret backdoor. Nonetheless, we show how to cheat and design a malicious
obfuscator for the [GKVW20] scheme. We present the construction in Algorithm 9, in the
context of [WZ17].

Recall that for obfuscating CC[f, α], Wichs and Zirdelis sample the level L+1 matrices
uniformly at random with the restriction

∑ℓout−1
k=1 A(k)

L+1,αk
= 0 mod q. Then for an input

x s.t. f(x) = α, the LWE samples sum up to a matrix with small entries, and for f(x) ̸= α,
at least of the A(k)

L+1,αk
’s are uniformly random, and with a high probability outputs a

matrix with large entries. To remove errors in evaluating the obfuscated program on
non-accepting inputs, Goyal, Koppula, Vusirikala and Waters [GKVW20] impose an added
constraint : sample ℓout matrices A(k)

L+1,1−αk
from a new distribution obtained by adding a

fixed correction matrix D with “large” entries to the uniform distribution on Zn×m
q . This

guarantees that for any x with f(x) ̸= α, the summation of LWE samples always contains
large entries and thus is rejected by the obfuscator.

Algorithm 10 Malicious Obfuscator AP C

(
1λ, (P (k))k∈[ℓout]), y ∈ {0, 1}ℓin)

1: if (f(y) == α) then
2: return OP C(1λ, (P (k))k∈[ℓout])
3: Set α′ = f(y) ; Compute z

$←− {1, . . . , ℓout}, s.t. α′z ̸= αz

4: for k = 1 to ℓout do
5: Parse P (k) = (π(k)

i,b )i∈[L],b∈{0,1} ; A(k)
L+1,j

$←− Zn×m
q ; A(k)

L+1,1−αk
← A(k)

L+1,1−αk
+ D

6: if (k == z) then
7: A(z)

L+1,α′
z

= −(
∑

l ̸=z(A(l)
L+1,α′

l
+ D)) ; A(z)

L+1,αz
= −

∑
l ̸=z A(l)

L+1,αl

8: end if
9: Set B(k)

L+1 as line 6, Algorithm 7; Sample (B(k)
i , t

(k)
i ) as lines 7-9, Algorithm 7

10: end for
11: Construct C(k)

i,j as in lines 11-18 of Algorithm 7.
12: return {A(k)

1,0}k∈[ℓout], {(C
(k)
i,0 , C(k)

i,1 )}k∈[ℓout],i∈[L]
13: end if

We now design a malicious obfuscatorAP C that violates correctness ϕ1 in the [GKVW20]
scheme. In the default settings, the ℓout top-level matrices are sampled uniformly random,
prior to adding D. Note that, the hardness of LWE implies it is infeasible to distin-
guish (A, SA + E) from (A, SA + E + D), and hence it is hard to determine whether
the [GKVW20] obfuscator has been performed honestly.

We begin with the assumption that y is a bad input as otherwise we would have to
return OP C . Since α′ ̸= α, there is at least one index z ∈ [ℓout] where they differ. The
malicious obfuscator simply samples A(z)

L+1,α′
z

= −(
∑

l ̸=z(A(l)
L+1,α′

l
+ D)), while the other

matrices are sampled following Algorithm 9. The obfuscated program then allows good
inputs, along with the secret backdoor y. We formalize the details in Algorithm 10.

5 Detectable Malicious Obfuscators
This section shows examples of randomized obfuscators that cannot be exploited to allow a
master backdoor input. In particular, we discuss the obfuscation scheme for fuzzy matching
under Hamming distance [GZ19]. We show that its correctness proof is incomplete, but
a small tweak gives perfect correctness and so a backdoor cannot be inserted. We also
briefly review the point function obfuscator [BMZ19], and show that the natural attempt
to introduce a backdoor into their scheme is easily detected.
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5.1 Reviewing the [GZ19] Construction
The hamming-ball membership obfuscator [GZ19] achieves DVBB security based on the
distributional decisional modular subset product assumption.

Definition 8 (Hamming-Ball Membership Programs). Let r, ℓ ∈ N. Let Hamα,r

denote a hamming-ball of radius r < ℓ around the center α ∈ {0, 1}ℓ. A hamming-ball
membership program P : {0, 1}ℓ → {0, 1} on an input x ∈ {0, 1}ℓ is defined as

PHamα,r (x) =
{

1 , if ∆(α, x) ≤ r

0 , otherwise.

The authors restrict to “evasive" hamming-ball membership programs P = {PHamα,r
:

α← D}, where distribution D ∈ {0, 1}ℓ has high min-entropy.

Definition 9 (Distributional Decisional Modular Subset Product Assumption
[GZ19]). Let λ ∈ N be the security parameter and let r, ℓ be polynomials in λ, with r <
ℓ
2 −
√

ℓλ log 2. Let D be a distribution over {0, 1}ℓ with hamming-ball min-entropy λ. Let
B ∈ N be such that B = O(ℓ log(ℓ)). The distributional decisional modular subset product
assumption states that the following distributions on ((pi)i∈[ℓ], q, A) are computationally
indistinguishable: The first distribution samples (α1, . . . , αℓ)

$←− D, (p1, . . . , pℓ) a sequence
of distinct primes sampled uniformly from {2, . . . , B}, q a uniformly sampled safe prime
in {Br, . . . , (1 + o(1))Br}, and A =

∏ℓ
i=1 pαi

i mod q. The second distribution samples
(p1, . . . , pℓ) and q in the same way, but samples A uniformly in Z∗q .

For correctness the [GZ19] scheme uses an auxiliary point-function obfuscator OP T

(with ϕ2 correctness) which encodes c ∈ {0, 1}ℓ in a point function f : {0, 1}ℓ → {0, 1}
defined as fc(x) = 1 if x = c, and 0 otherwise. The scheme works as follows: to encode α
in Hamα,r, sample distinct primes (p1, . . . , pℓ) uniformly at random in {2, . . . , B}, together
with a large prime modulus q such that

∏
i∈I pi < q

2 , for all I ⊂ {1, . . . , ℓ}, |I| ≤ r.
Finally, compute A =

∏ℓ
i=1 pαi

i mod q and OP T (α), and publish the values, along with
the ℓ + 1 primes. The formal procedure is given in Algorithm 11. On input x ∈ {0, 1}ℓ, the
evaluation procedure computes X =

∏ℓ
i=1 pxi

i mod q and E = AX−1 mod q. The idea is
to recover the error vector (ei)i∈[ℓ] ∈ {−1, 0, 1}ℓ from E =

∏ℓ
i=1 pαi−xi

i mod q using the
convergents of the continued fraction representation of E

q . Note that, E can be expressed
as ND−1 mod q, where N =

∏ℓ
i=1 pui

i mod q, D =
∏ℓ

i=1 pvi
i mod q, ui, vi ∈ {0, 1} and

uivi = 0 for all i. Then, there exists an s ∈ Z, such that ED = N + sq holds. By the
theorem of Diophantine Approximation, s

D is a convergent of E
q when ND < q

2 (which
happens when PHamα,r (x) = 1). The algorithm Factor((pi)i∈[ℓ], k) returns a list of prime
divisors of k as long as k is a product of primes in (pi)i∈[ℓ].

Algorithm 11 Obfuscator OH(1λ, P,OP T )

1: Sample distinct primes (p1, . . . , pℓ) randomly from {2, . . . , B}, where B = O
(
ℓ log ℓ

)
2: Sample safe prime q such that

∏
i∈I pi < q

2 , for all I ⊂ {1, . . . , ℓ}, |I| ≤ r

3: A←
∏ℓ

i=1 pαi
i mod q ; α′ ← OP T (α)

4: return ((p1, . . . , pℓ), q, A, α′)

The [GZ19] scheme is not precise about their correctness guarantees. They show that
every input within the Hamming ball Hamα,r is correctly accepted by the obfuscator, but
they do not discuss whether every input outside the set is rejected with overwhelming
probability. In fact, it seems that there will typically be some points just outside the
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boundary of the Hamming ball Hamα,r which will be accepted by the program (depending
on the choice of (p1, . . . , pℓ)). So the scheme does not have ϕ2 correctness, but it probably
has ϕ3 correctness. Perfect correctness can be achieved by adding an extra check in line 10
of Algorithm 12: check that the Hamming weight of e is ≤ r. This check prevents malicious
obfuscation for the [GZ19] scheme: a distinguisher who knows α can check that x = α is
accepted and, as long as the point function obfuscator is verifiable to be secure against
malicious obfuscation, it follows that only values x of distance r from α are accepted.

Algorithm 12 Evaluation Eval(with embedded values 1λ, (pi)i∈[ℓ], q, A, α′,OP T )

1: X ←
∏ℓ

i=1 pxi
i mod q ; E ← AX−1 mod q ; C ← {h

k : h
k is a convergent of E

q }
2: for h

k ∈ C do
3: e ← (0, . . . , 0) ∈ {0, 1}ℓ ; F ← Factor((pi)i∈[ℓ], k ) ; F ′ ← Factor((pi)i∈[ℓ], kE

mod q)
4: if F ̸=⊥ and F ′ ̸=⊥ then
5: for i = 1 to ℓ do
6: if pi ∈ F ∪ F ′ then
7: ei ← 1
8: end if
9: end for

10: if (α′ == OP T (x⊕ e)) then
11: return 1
12: end if
13: end if
14: end for
15: return 0

5.2 Reviewing the [BMZ19] Construction

The non-malleable point-function obfuscator by Bartusek, Ma and Zhandry [BMZ19] is
ϕ3 approx correct and DVBB secure in the GGM. Let G = ⟨g⟩ be a group of prime order
q ∈ (2λ−1, 2λ). For a fixed x ∈ Zq, sample a, b, c

$←− Zq and publish (a, b, c, gP (x), gQ(x),
gR(x)) as the obfuscation of x, where P (x) = ax + x2 + x3 + x4 + x5, Q(x) = bx + x6,
R(x) = cx + x7. The evaluation re-calculates the values and compares them with the
published obfuscation. There are at most four roots y ≠ x of the fifth-degree polynomial
P (x), and for each such value, (x6 − y6) + (x − y)b = 0 and (x7 − y7) + (x − y)c = 0
with negligible probability by a union bound. Having a secret backdoor y would imply
P (x) = P (y), Q(x) = Q(y) and R(x) = R(y). The idea behind this being detectable is
that a poly-time distinguisher who knows x, can compute all y ≠ x such that P (x) = P (y).
It can then check if Q(x) = Q(y) and R(x) = R(y). This should not happen (with
overwhelming probability), otherwise the obfuscation is flagged as malicious. By the same
argument, no malicious obfuscator exists for the Fenteany and Fuller’s scheme [FF20].
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