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Kurzfassung

Der globale Fertigungssektor steht vor einer doppelten Herausforderung: die
Produktivität durch Digitalisierung zu steigern und gleichzeitig seinen ökol-
ogischen Fußabdruck im Einklang mit internationalen Nachhaltigkeitszie-
len drastisch zu reduzieren. Obwohl Künstliche Intelligenz leistungsstarke
Werkzeuge zur Prozessoptimierung bietet, wird ihre Anwendung in der realen
Fertigungspraxis oft durch Datenknappheit und mangelnde Modelltransparenz
erschwert, was das Vertrauen untergräbt und die Einführung behindert. Diese
Dissertation entwickelt und validiert ein KI-gestütztes methodisches Rahmen-
werk, das darauf ausgelegt ist, diese Herausforderungen zu überwinden, indem
es die ökologische Nachhaltigkeit in der Fertigung systematisch verbessert.
Das Rahmenwerk ist dateneffizient konzipiert, was den Einsatz in Umgebungen
mit begrenzten und teuren experimentellen Daten ermöglicht. Ebenso integri-
ert es Techniken der erklärbaren Künstlichen Intelligenz, um sicherzustellen,
dass die Empfehlungen für Fachexperten transparent und umsetzbar sind. Die
Wirksamkeit wird in einem zweistufigen Validierungsprozess mit drei Anwen-
dungsfällen gezeigt. Stufe 1 prüft die Wahl der Optimierungsverfahren anhand
offener Datensätze. Stufe 2 demonstriert das vollständige Rahmenwerk in zwei
industriellen 3D-Druck-Fallstudien. In Fallstudie 1 zielte die Methodik auf
die Verringerung des produktbezogenen CO2-Fußabdrucks und erzielte eine
Reduktion um 31,9%, von 31,1 gCO2e auf 21,2 gCO2e pro Bauteil. In Fall-
studie 2 stand der Energieverbrauch im Fokus und wurde um 70,0% gesenkt,
von 20,0Wh auf 6,0Wh. Zugleich reduzierte sich der produktbezogene CO2-
Fußabdruck um 26,7%, von 20,6 gCO2e auf 15,1 gCO2e. Zusätzlich zeigten
die Ergebnisse Zielkonflikte zwischen den ökologischen Zielsetzungen und der
mechanischen Bauteilqualität.
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Abstract

The worldwide manufacturing industry is confronted with a twofold challenge:
enhancing productivity via digital transformation while significantly diminish-
ing its environmental impact to comply with global sustainability objectives.
Although Artificial Intelligence offers powerful tools for process optimization,
its application in real-world manufacturing practice is often complicated by
data scarcity and a lack of model transparency, which undermines trust and hin-
ders adoption. This dissertation develops and validates a novel methodological
framework, driven by Artificial Intelligence, that is designed to overcome these
challenges by systematically improving environmental sustainability in manu-
facturing. The framework is designed to be both data-efficient, which allows for
its use in environments with limited and expensive experimental results and un-
derstandable, by incorporatingmethods fromExplainable Artificial Intelligence
to guarantee that the suggestions are clear and actionable for domain experts. Its
effectiveness and adaptability are demonstrated through a two-stage validation
process comprising three application cases. In the first stage, the optimization
strategy selection logic is empirically tested on diverse open-source datasets.
In the second stage, the complete framework is applied in two industrial case
studies in the field of 3D printing. In Use Case 1, the methodology targeted the
product carbon footprint and achieved a 31.9% reduction, from 31.14 gCO2e to
21.19 gCO2e per part. In Case 2, it targeted energy consumption and reduced
energy usage by 70.0 %, from 20.0 Wh to 6.02 Wh, while also lowering the
product carbon footprint by 26.7 %, from 20.6 gCO2e to 15.1 gCO2e. Across
both cases, the results showed clear trade offs between ecological objectives and
mechanical part quality.
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1 Introduction

This chapter situates the thesis within its broader context. It first motivates the
work by outlining why improving the environmental performance of manufac-
turing with the help of artificial intelligence (AI) matters. Then it characterizes
the industrial landscape to delimit the problem space and derive the guiding
objectives and research questions. The chapter concludes with a brief outline
of the structure of the thesis.

1.1 Motivation

Manufacturing and production are foundational to the modern economy. At the
same time, they are major contributors to environmental impacts. Collectively,
these sectors are responsible for approximately one-fifth of the world’s green-
house gas (GHG) emissions and one-third of its total energy consumption [1].
This impact is highly concentrated in industrialized nations. In the European
Union, manufacturing releases an estimated 880 million tons of carbon dioxid(e
equivalents annually [2], while in the United States it represents 24% of direct
GHG emissions in 2020 [3]. This immense environmental footprint, which
includes not only GHG emissions but also water consumption, resource deple-
tion, and waste generation, has placed the industry at the center of the global
push for net zero manufacturing.

In response, a confluence of regulatory and societal forces is driving a fun-
damental shift towards greater environmental accountability. At the global
level, the United Nations Sustainable Development Goals (SDGs) provide the
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1 Introduction

ethical foundation for international efforts and guidelines, with SDG 9 advanc-
ing industry, innovation and infrastructure and SDG 12 promoting responsible
consumption and production [4]. The wedding cake model of these SDGs,
illustrated in Figure 1.1, visually emphasizes the dependence of social and eco-
nomicwelfare on themaintenance of the biosphere, underscoring environmental
protection as a foundational prerequisite for all other goals [5].

Figure 1.1: The wedding cake model for the SDGs, as presented by the Stockholm Resilience
Center, taken from [5].

At the policy level, this strategy is operationalized through European Union-
wide benchmarks. The Net Zero Industry Act sets an overall benchmark for
the manufacturing capacity of the Union in net zero technologies to reach or
exceed at least 40 % of the annual deployment needs by 2030 [6]. Clear
terminology is essential for the transition. Emission reduction denotes the
targeted reduction within existing processes, including efficiency improvements
and leak control. Decarbonization refers to the substitution of high-carbon
inputs and processes with low- or zero-carbon technologies. A net-zero strategy
is broader because it integrates both approaches and addresses residual, hard-
to-abate, emissions through capture or durable removal. Implementing this
strategy requires a complete reconfiguration of the value chains [7]. Achieving

2



1.1 Motivation

net zero requires translating high-level objectives into production paradigms
that align technological capabilities with societal objectives. In parallel, the
Industry 5.0 vision of the European Commission extends the Industry 4.0
focus on automation by explicitly centering human well-being, resilience, and
environmental stewardship [8]. It calls for production systems that enable close
collaboration between the workforce and emerging technologies, including AI,
while actively mitigating environmental impacts throughout the value chain. In
this context, intelligent production and operations provide the operational lever
that links strategic ambitions to day-to-day execution. Through an integrated and
synergistic suite of digital tools that raise transparency, strengthen traceability,
and improve the efficient use of resources, these systems make the goals of
Industry 5.0 actionable at scale [9].

Taken together, the industry 5.0 orientation and net zero ambitions translate into
a multidimensional challenge for industrial enterprises, as shown in Figure 1.2.
Externally, they must respond to stringent regulatory imperatives. Internally,

Figure 1.2: Key challenges for sustainable industrial manufacturing.

they face the costs, operational complexity and risks inherent in the adoption
of innovative production techniques or the retrofit of existing systems. The
challenge extends beyond the factory floor, requiring the decarbonization of
entire industrial supply chains and the integration of the principles of circular
economy [10, 11]. Addressing these dual pressures requires a systematic and

3



1 Introduction

intelligent approach to optimize energy use, minimize material waste, and make
manufacturing processes more sustainable [12].

1.2 Scope of the Thesis

Within the broader realm of industrial sustainability research, this disserta-
tion focuses on environmental impacts arising specifically from production
processes. By production processes, this work refers to the operational and
managerial activities that transform raw materials into final products, includ-
ing aspects such as material consumption and energy usage. A fundamental
principle in sustainable engineering is that early stage product development
exerts a disproportionate influence on the lifecycle impact of a product. As has
been widely established in the literature, design decisions regarding material
selection, geometric complexity, and functional requirements effectively "lock
in" a large fraction of the total manufacturing costs and the analogous share of
environmental burdens [13]. A truly holistic optimization would therefore need
to begin at this conceptual stage.

However, this dissertation deliberately delimits its scope to the subsequent pro-
duction phases. In most industrial contexts, there is a clear organizational
separation between the design and production functions [14]. The manufac-
turing department typically receives a finalized product blueprint and must
operate under constraints imposed by client directives or pre-existing technical
limitations. Within this operational reality, the most effective and often only
actionable levers to improve resource efficiency and ecological impact are the
process parameters themselves [15]. This focus is further reinforced bymethod-
ological considerations. The optimization of product design is an inherently
multi-objective problem, often involving complex, qualitative trade-offs [16].
In contrast, the optimization of a defined production process is a more tractable
problem, focused on tuning a specific set of operational variables against a
quantifiable objective. By focusing on the latter, this thesis maintains a clear

4



1.3 Goal of the Thesis

methodological focus, ensuring the development of a verifiable framework for
data-driven improvement.

To operationalize this focused scope, the research is empirically grounded in
parameter- and sensor-based data sets from additive manufacturing (AM). This
approach deliberately concentrates on quantitative metrics that directly inform
both cost and environmental impact, notably CO2 emissions, material consump-
tion, and energy usage. The selection of these metrics is twofold. First, they
are readily measured or inferred from production logs, ensuring that research
identifies actionable improvements with immediate practical utility. Second,
this focus aligns with the operational realities of industrial collaborations, which
prioritize concise outcomes within the manufacturing sphere where engineers
have the most direct influence.

Although this work focuses on production, the connection to product design
remains decisive. Insights from process optimization, such as identifying
material- or energy-intensive steps, should inform subsequent design cycles.
Although this feedback loop is not empirically traced in the present work, it
represents a key strategic recommendation for organizations seeking a deeper
long-term integration of sustainability objectives into their product development
roadmaps [17].

1.3 Goal of the Thesis

The primary objective of this dissertation is to develop and validate a data-driven
framework for process optimization that is grounded in the practical constraints
of modern manufacturing while explicitly prioritizing environmental sustain-
ability. To be effective, this framework must be comprehensive and adaptive,
guiding the entire optimization lifecycle from the foundational stages of ex-
periment planning and data acquisition to the final validation of an optimized
solution.

5



1 Introduction

Central to this objective is the explicit integration of environmental sustain-
ability metrics. Methodologically, this is achieved by formally treating en-
vironmental metrics, such as energy consumption or CO2 emissions, as the
objective function within the optimization framework, rather than as secondary
constraints. The research then aims to quantify the achievable reductions in
ecological impact and, through the use of explainability analysis, to identify
and rank the key process levers that govern this impact.

To ensure that this framework is not only theoretical but also designed for
practical applicability, another objective is to design it for real-world indus-
trial environments. To this end, the methodology must address two pervasive
constraints: it must be highly sample efficient to minimize the need for costly
physical experiments, and it must be robust to metric latency by handling both
rapid, sequential data acquisition and slow, batch-based data collection. Build-
ing upon this principle of practical application, the final objective is to ensure
that the framework is modular and generalizable, thus maximizing its poten-
tial impact. Guided by this objective, the thesis is framed by the following
overarching research question:

How can data-efficient, explainable optimization be operationalized in indus-
trial environments to advance sustainable manufacturing?

To address this question, the framework adopts a modular architecture in which
the core components can be adapted to suit different manufacturing technolo-
gies. By designing for this adaptability, the ultimate aim is to bridge the gap
between academic research and industrial practice by translating state-of-the-
art AI techniques into a transparent and deployable methodology that delivers
tangible real-world value.

6



1.4 Structure of the Thesis

1.4 Structure of the Thesis

The thesis is composed of six core chapters that build logically on each other to
guide the reader from motivation through validation to the final outlook. The
sections and their objectives are summarized in Figure 1.3.

Figure 1.3: Overview of the structure of the thesis.

This chapter 1 introduces the dissertation by motivating the work from macroe-
conomic, regulatory, and technological perspectives. It defines the research
problem, delineates the scope, and establishes the need for an AI-supported
methodological framework aimed at ecological optimization of manufacturing
processes. Chapter 2 lays the theoretical foundation in three interrelated do-
mains: AM, environmental assessment, and data-driven process optimization
techniques. Chapter 3 synthesizes the current state of research using a system-
atic literature review guided by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guided literature review, evaluating
contemporary approaches to sustainable, data-driven production and reveal-
ing the research gap that this dissertation addresses. Chapter 4 presents the
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1 Introduction

methodological framework developed to reduce the environmental impact of
manufacturing processes. It elaborates the derivation of target variables and
system boundaries, the experimental design and data collection strategies, the
algorithmic pipeline from preprocessing to sequential and offline optimization,
the embedding of explainable AI (XAI) for decision support, and the criteria
that determine industrial readiness such as robustness and break-even analysis.
Chapter 5 validates the framework in a two-stage process comprising three val-
idation cases. Stage 1 empirically tests the selection logic of the optimization
strategy on various open-source data sets. Stage 2 applies the complete method-
ology to AM in two industrial case studies: one aiming to minimize the carbon
footprint of the product under data-rich conditions, and the other focusing on
reducing energy consumption under severe data constraints. Chapter 6 summa-
rizes the main contributions, reflects on limitations, and delineates avenues for
future research.
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2 Theoretical Foundations

This chapter establishes the theoretical foundations for the dissertation. It
begins in Section 2.1 by detailing the principles of AM, the core production
technology under investigation. Section 2.2 then introduces the frameworks
for environmental assessment, providing the metrics and strategies needed to
quantify and improve sustainability. Finally, Section 2.3 sets out the theoretical
foundations of data-driven process optimization.

2.1 Additive Manufacturing

AM denotes a family of processes that build three-dimensional parts directly
from digital models by adding material only where it is needed [18]. In contrast
to subtractive methods that shape a component by removing stock from a solid
blank, AM routes accumulate material in place, which reduces offcuts and scrap
[19]. The technology originated in the 1980s as rapid prototyping for visual
models, but modern improvements in precision, material range, and reliability
have allowed AM to evolve into a viable option for end-use production in
industries such as aerospace, medicine, and automotive [19, 20]. All AM
processes share the principle of building objects layer by layer, but differ in how
layers are formed and fused [21]. The typical workflow begins with an CAD
model that is converted to a mesh and digitally sliced into layers [18]. For each
slice, the machine deposits or solidifies material in the cross-sectional pattern
of that layer, gradually forming the 3D part as the layers accumulate [18]. A
detailed, process analysis was conducted in advance of this thesis. The study
traces the 3D printing workflow from feedstock production through fabrication
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and application to disposal and recycling, identifying relevant stakeholders, the
scope of the product, and the corresponding environmental burdens, as shown
in Figure A.1 of the appendix. The study revealed that material selection
and process parameter decisions account for most of lifecycle environmental
impacts, highlighting them as key leverage points for sustainable design (Hauck
and Greif [2]).

In compliancewith the ISO/ASTM52900:2021(E) standard, which serves as the
primary framework for terminology and categorization in the realm of AM, all
existing commercial methodologies are classified into seven process categories.
These categories include material extrusion, vat photopolymerization, powder
bed fusion, binder jetting, material jetting, sheet lamination, and directed energy
deposition [21]. In the process of material extrusion, commonly represented by
fused deposition modeling (FDM), in which a thermoplastic filament undergoes
heating before being extruded through a nozzle. This technique involves tracing
each individual layer and ensuring that it adheres to the layers beneath it [18].
This process is visually depicted in Figure 2.1.

Figure 2.1: Simplified schematic of a FDM process, adapted from [22].
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In vat photopolymerization, exemplified by stereolithography (SLA) and digital
light processing (DLP), a laser beam or projected image selectively cures a thin
layer of liquid photopolymer resin before the build platform indexes to the next
layer [21]. Powder bed fusion spreads a thin layer of polymer or metal powder
and then fuses the required cross section with a scanning laser or electron beam,
repeating the sequence until the part is complete. Binder jetting also spreads
powder in layers, but instead of melting it, an inkjet printhead deposits droplets
of liquid binder that bind the particles together [21]. Material jetting relies on
inkjet-style printheads that eject microscopic droplets of photopolymer or wax,
which are immediately cured by ultraviolet light to build each layer [21]. In
sheet lamination, sheets of paper, polymer film, or metal foil are successively
bonded using adhesive, ultrasonic welding, or brazing and then cut to the desired
outline before the next sheet is applied [21]. Finally, directed energy deposition
feeds metal wire or powder into the focal zone of a laser, electron beam, or
plasma arc, melting material as it is delivered so that the part is built or repaired
bead-by-bead [18, 19, 21]. These additive manufacturing processes differ in
energy input, feedstock form and attainable microstructure, producing different
cost and performance envelopes [21].

As this work focuses on FDM, the choice of material is a primary determinant
of printability, mechanical performance, and environmental impact. Table 2.1
summarizes the main advantages and limitations of the commonly used FDM
thermoplastics.

Differences in printability and performance are directly related to polymer
chemistry and morphology, which is illustrated in Figure 2.2. Amorphous
aromatics such as PC, PEI, and PPSU exhibit high glass transition temperatures
and thermal stability, but demand elevated processing temperatures and enclosed
printers [23]. Semi-crystalline nylons form hydrogen bonds and crystallize on
cooling, delivering fatigue and wear resistance at the cost of moisture sensitivity
and shrinkage/warpage [24]. ABS and ASA share a styrenic matrix. ASA
replaces butadiene with acrylic rubber, improving UV durability compared to
ABS [25]. The aliphatic polyester structure of PLA and its low glass transition
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temperatures make it easy to print with a good surface finish, but limit heat and
chemical resistance through softening and hydrolysis [26].

Table 2.1: Advantages and limitations of FDM materials based on [27, 28].

Material Advantages Limitations

Acrylonitrile–
butadiene–
styrene (ABS)

Tough; good impact strength;
machinable; moderate cost

Warping; odors; requires heated
bed/enclosure; poor UV resis-
tance

Acrylonitrile
styrene acrylate
(ASA)

UV and weather resistant; good
mechanical strength; color sta-
bility outdoors

Higher cost than ABS; shrink-
age/warping risk; odor during
printing

Polyamide 12
(Nylon 12)

High fatigue and impact re-
sistance; good chemical resis-
tance; wear resistant

Hygroscopic; warping; higher
print temperatures; dimensional
drift if not dried

Polycarbonate
(PC)

Very high tensile/flexural
strength; heat resistant; durable

Very high print temperature;
strong warping; enclosure re-
quired; hygroscopic

Polyphenylsulfone
(PPSU/PPSF)

Excellent chemical and heat re-
sistance; sterilizable; high me-
chanical strength

Very high processing tempera-
ture; expensive; limited printer
compatibility

Polyetherimide
(PEI, ULTEM)

High strength-to-weight; ther-
mal/chemical stability; flame
retardant; biocompatible grades
available

Requires high-temperature
printers; costly material; lim-
ited color options

Polylactic acid
(PLA)

Easy to print; lowwarping; good
surface quality; low odor; bio-
based feedstock

Brittle; low heat deflection tem-
perature; limited UV/chemical
resistance

Thermoplastic
polyurethane
(TPU)

Highly flexible; excellent abra-
sion and tear resistance; good
impact performance; oil/chemi-
cal resistant

Slow printing; stringing; needs
tuned extrusion path; reduced
dimensional precision

The segmented block architecture of TPUproduces high elasticity and resistance
to abrasion, but slows the printing and can reduce the precision of the dimensions
[29].
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(a) ABS — styrene aro-
matic unit.

(b) ASA— methacrylate
ester segment.

(c) Nylon 12 — dode-
canamide repeat unit.

(d) PC — bisphenol-A
carbonate linkage.

(e) PPSU — diphenyl
sulfone linkage (sim-
plified).

(f) PEI, ULTEM—
aromatic imide motif.

(g) PLA — lactic acid
ester unit.

(h) TPU — urethane
carbamate functional
group.

Figure 2.2: Simplified representative chemical repeat units or motifs of common FDM thermoplas-
tics oriented on [30]. Structures are schematic and illustrate the dominant chemical
functionality influencing material properties.

Concurrently, research is advancing AM to include mineral-based pastes such
as clay and concrete [31]. In the realm of 3D printing, clay and concrete
systems operate as extrusion processes. However, the underlying material
dynamics and mechanisms diverge from those in polymer-based FDM. Rather
than introducing a thermoplastic filament into a hot end where it is melted, these
systems pump a moist, thixotropic mixture, such as hydrated clay or cement
paste, from a reservoir and extrude it through a nozzle with awider hole [32, 33].
Conventional extruder setups in this context typically employ pneumatic pistons,
screw pumps, or auger feeders to propel the paste, in contrast to the gear driven
motors used to feed the filament in FDM [33, 34]. As highlighted in recent
research, clay printers are designed to compress the clay paste and disperse
it in successive layers, notably without employing a heated nozzle [32, 35].
Given that the paste is delivered from a reservoir, often situated at a distance
from the nozzle, managing the flow becomes more challenging. Pump-based
feeders are subject to latency and hysteresis, necessitating the use of local buffer
capacities or pressure feedback systems to ensure a consistent volumetric flow
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rate [34, 36]. Furthermore, the heavy weight of the extruder assembly and the
extended material feed lines introduce inertia and compliance, requiring motion
paths with gentle acceleration and deceleration to prevent pressure fluctuations
or nozzle wobbling [36, 34]. Ultimately, the extruded clay or concrete retains
its plasticity until it undergoes curing, hardening, either through hydration
processes or drying, instead of cooling. Therefore, printmixtures are specifically
formulated to have very high viscosity and produce stress for self-supporting
capacity, making their buildability dependent on rheological properties such as
slump flow and open time [37, 32, 35].

AMhas evolved into amultifaceted instrument across diverse industries. Within
the aerospace and automotive domains, AM facilitates the fabrication of com-
ponents that are not only lightweight but also incorporate intricate internal
lattice structures or consolidated assemblies of multiple parts. This advance-
ment results in significant weight reduction and enhanced performance metrics
[38]. For example, complex fuel nozzles and bracketry have been 3D printed
in titanium or nickel alloys, reducing the number of assembly joints and overall
mass while maintaining strength. In the medical field, AM is used to fabricate
patient-specific implants, such as orthopedic implants and dental restorations
and prosthetics with custom geometry that would be impractical to mold or
machine [19]. AM also accelerates product development through rapid pro-
totyping, as engineers can quickly iterate design concepts by printing physical
models in hours or days, compared to weeks for tooling fabrication in traditional
processes [19]. Furthermore, 3D printing has enabled on-demand manufactur-
ing and spare parts production in remote or distributed locations, for example,
printing replacement parts on-site in space or in military operations, thereby
reducing the need for large inventories of parts [20].

These applications leverage several key benefits inherent to AM. A primary
advantage is its extensive design freedom, which allows for the realization of
intricate geometries such as internal channels, lattice structures, and organic
shapes to optimize performance or functionality [19]. It also enables cost-
effective customization, as individual parts can be modified via their digital
modelswithout financial or time penalties associatedwith tooling. This tool-less
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nature inherently removes the significant lead times and expenses of processes
such as injection molding, rendering low-volume production and rapid design
iteration economically viable [39].

Despite its advantages, 3D printing also faces several limitations that currently
restrict its broader use in manufacturing. One primary challenge is production
speed and throughput. Layer-by-layer fabrication is relatively slow, often yield-
ing only a few cubic inches of material per hour, depending on the process and
part size, which is much slower than molding or machining in large quantities
[20]. This makes AM less competitive for mass production of simple parts.
Another limitation is unit cost at scale because each 3D printer typically pro-
duces one part or a batch of parts in its build volume over a given cycle time,
scaling up production means adding more machines rather than speeding up
a single machine. As a result, the cost per part remains roughly constant and
does not decrease substantially with volume, in contrast to other processes, such
as injection molding, where high initial tool costs are amortized and per-part
costs drop dramatically with volume [39]. Material selection is also more lim-
ited in AM. Although the range of printable materials has expanded, including
various thermoplastics, photopolymers, metals, and ceramics, these materials
often come at a premium price and some have inferior properties compared to
their conventionally processed counterparts, for example, fewer fiber-reinforced
plastics are available for AM, and some printed metals may have higher porosity
or residual stress [19]. Additionally, the layer-wise surface finish of as-printed
parts is usually rougher. Achieving a smooth surface or tight dimensional tol-
erances may require post-process machining or polishing [19]. There are also
size constraints, because each printer has a finite build volume, therefore very
large parts might need to be printed in sections and joined [39]. Lastly, qual-
ity consistency and certification remain concerns as parts intended for critical
applications must meet rigorous standards, and ensuring each printed part is
defect-free can be challenging without extensive testing or process validation
[20]. The key aspects of AM are summarized in Table 2.2.
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Table 2.2: Summary of applications, benefits, limitations of AM.

Aspect Key Points Examples/Notes

Applications Aerospace and automotive
lightweight structures; patient-
specific implants and prosthetics;
rapid prototyping; on-demand spare
parts in remote or distributed loca-
tions

Fuel nozzles, titanium
brackets, dental restora-
tions; spare parts for space
missions and military use

Benefits Design freedom for complex geome-
tries; customization without extra
cost; tool-less manufacturing; feasi-
ble low-volume production; rapid it-
eration

Customized orthopedic im-
plants, tailored consumer
goods, fast design testing

Limitations Slow production speed and low
throughput; high per-unit cost at
scale; limited and expensive mate-
rials; rough surface finish, need for
post-processing; build volume restric-
tions; challenges in ensuring quality
consistency and certification

Build rates of only a few cu-
bic inches/hour; fewer fiber-
reinforced materials; poros-
ity issues in printed met-
als; certification complex-
ity in aerospace/biomedical
sectors

2.2 Environmental Assessment and
Reduction Strategies in Manufacturing

This thesis proposes a methodology to reduce the environmental footprint of
a product. To establish the proper context, this chapter will first outline the
fundamentals of environmental assessment and discuss general impact reduc-
tion potentials within manufacturing processes. Following this overview, it will
specify which of these aspects the present research will address. Over the past
decades, a variety of frameworks have been developed to provide a systematic
and scientific basis for environmental assessment [40]. These methodologies
vary in scope and focus, ranging from holistic, multi-impact evaluations to
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detailed tracking of specific material or energy flows [40]. This section pro-
vides a detailed exposition of the two most prominent frameworks: Life Cycle
Assessment (LCA) and Carbon Footprint Analysis.

LCA is acknowledged as the most thorough and methodologically strict frame-
work for assessing the prospective environmental impacts related to a product,
process, or service [41]. This approach provides a structured and detailed analy-
sis to quantify and evaluate the environmental implications systematically [42].
A feature of its system is its comprehensive viewpoint that includes the entire
life cycle. This begins with the extraction of raw materials and the procurement
of energy, continuing through the phases of production and usage [43]. It also
extends to end-of-life management, which includes processes such as disposal
and recycling [41]. This systematic approach prevents the problem of burden
shifting, where a solution in one part of the life cycle, such as the manufactur-
ing plant, inadvertently creates a larger environmental problem elsewhere, for
example, in the supply chain or during the disposal of the product [44]. The
methodology of conducting an LCA is a framework standardized by the Inter-
national Organization for Standardization (ISO) in the ISO 14000 series. The
core standards governing its practice are ISO 14040:2006 [45], which outlines
the Principles and Framework, and ISO 14044:2006 [43], which specifies the
Requirements and Guidelines. The process of conducting an LCA is guided by
four phases as illustrated in Figure 2.3.

Figure 2.3: The four phases of an LCA, based on [45].
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The initial phase, Goal and Scope Definition, establishes the framework and
objectives of the study to ensure alignment with its intended purpose [46].
This phase delineates the boundaries and methodological choices that guide
the entire assessment [45]. Critical determinations consist of specifying the
functional unit, which is a quantified metric that represents the function of
the product system and acts as a basis for comparing all associated inputs and
outputs [43]. In addition, it involves delineating the system boundaries to
identify the particular stages and processes of the life cycle to be incorporated
into the analysis [43].

Subsequent to establishing the goal and scope, the Life Cycle Inventory (LCI)
phase involves gathering comprehensive data on all environmental inputs and
outputs associatedwith the product or service being studied [45]. This inventory
covers all stages of the life cycle, beginning with the extraction and manufacture
of raw materials and continuing through the use and eventual disposal phases
[47]. To ensure consistency and transparency, the data collection process must
adhere to the established boundaries of the system. The LCI is often the most
labor- and data-intensive stage of an LCA, with a practical challenge being the
availability and quality of data, particularly for complex global supply chains
[48].

In the following Life Cycle Impact Assessment (LCIA) phase, the data gathered
from the LCI are transformed into possible environmental impacts [45]. This
transformation is carried out by organizing the inventory results into different
impact categories and calculating them using established indicators [43]. For
example, Global Warming Potential (GWP) is a category that assesses the
potential contribution of a GHG to global warming over a particular time
frame, which is generally considered to be 100 years [49]. The corresponding
indicator is expressed in carbon dioxide equivalents (CO2e), which normalizes
the impact of various GHGs relative to CO2. ISO 14044 outlines optional
processes such as normalization, grouping, and weighting, which facilitate the
aggregation of multiple categories. Depending on the method selected, this
aggregation is capable of producing endpoint results, such as effects on human
health, ecosystems, resources, or even a single overall score [43].
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The final phase, Interpretation, involves a systematic analysis of the LCI and
LCIA results to formulate conclusions, provide recommendations, and com-
municate the findings to stakeholders [45]. This phase is critical to support
informed decision making, identify opportunities to improve environmental
performance, and highlight areas for future research [50]. The LCA process is
inherently iterative. Insights gained in later phases, particularly during interpre-
tation, often require revisions of the initial goal and scope, creating a feedback
loop that refines the accuracy and relevance of the assessment [43]. Therefore,
interpretation is not merely the final step, but a continuous process that occurs
throughout the study to ensure ongoing alignment and validation [51].

Among the most critical of these choices is the delineation of the system bound-
aries, which shapes the study’s outcome and applicability. The main types of
boundary are illustrated in Figure 2.4. The boundary that typifies the most

Figure 2.4: Visual representation of LCA system boundaries.

exhaustive linear methodology is referred to as the cradle-to-grave framework.
This framework includes every phase of the life cycle of a product, from the
initial extraction of raw materials to the final disposal or recycling process of
the product [52]. This holistic assessment is essential for robust product com-
parisons, particularly when use phase or end-of-life impacts differ significantly.
Conversely, the cradle-to-gate boundary provides a narrower scope of analysis,
encompassing all steps in the production lifecycle, beginning with the extraction
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of raw materials and concluding at the stage where the manufactured product
exits the manufacturer’s facility. This approach is used to quantify a product’s
embodied environmental impact before it is transported to the consumer and is
frequently applied in business-to-business (B2B) contexts, where for example,
component data are supplied to an original equipment manufacturer (OEM) for
integration into a larger product LCA. The most restrictive boundary is gate-to-
gate, which isolates a single facility or process within the value chain. Although
this narrow perspective is useful for targeted process optimization and internal
decision-making, it carries a high risk of overlooking upstream or downstream
impacts, potentially leading to problem-shifting and suboptimal environmental
outcomes from a whole-system perspective [53]. Evolving from these linear
models, the Cradle-to-Cradle (C2C) concept redefines the end-of-life stage.
Instead of a final grave, this framework envisions a closed-loop system where
post-use materials become the cradle for new products [54]. This approach dis-
tinguishes between biological nutrients that can safely return to the biosphere
and technical nutrients that are designed to be continuously re-utilized within
industrial cycles without loss of quality [54]. Although these represent the most
common frameworks, other specialized system boundaries exist, which can be
tailored to the specific questions and contexts of a given LCA.

Although the frameworks described represent common approaches, the LCA
methodologies can be adapted formore focused inquiries. A prominent example
of such a specialized assessment is the Carbon Footprint Analysis, which con-
centrates exclusively on a single environmental impact category, climate change
[55]. This analysis quantifies the total amount of GHG emissions caused di-
rectly and indirectly by an entity and expresses the final result in the standardized
metric of CO2e. Methodologies for calculating carbon footprints are governed
by widely recognized standards, most notably the GHG Protocol [56] and ISO
14067 [57]. In corporate carbon accounting, as defined by the GHG Protocol,
a key principle involves categorizing emissions into three separate scopes. This
categorization is crucial to structuring the emissions inventory and pinpointing
specificmechanisms to achieve reductions. The definitions follow theCorporate
Accounting and Reporting Standard of the GHG Protocol [56]:
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• Scope 1: This category encompasses GHG emissions originating directly
from sources owned or under the control of the organization preparing
the report. For instance, within a manufacturing entity, such emissions
generally arise from the combustion of fuel in industrial furnaces and
boilers, as well as from vehicles owned by the company. Additionally,
this scope includes process emissions, which are chemical by-products
generated during the manufacturing process.

• Scope 2: Indirect emissions from purchased energy arising from the gen-
eration of electricity, steam, heat, or cooling consumed by the company.
The releases occur at the supplier’s facilities but are attributable to the
organization’s energy use.

• Scope 3: This category broadly encompasses all indirect emissions that
arise throughout the value chain of a company, in addition to direct
emissions accounted for in other scopes. Often, Scope 3 emissions
represent the most substantial and complex set of emissions to quantify,
as they entail gathering data beyond the sphere of the organization’s direct
influence. For manufacturers, Scope 3 encompass emissions associated
with the extraction and production processes of acquired materials, i.e.,
upstream activities, alongside those from transportation and distribution,
business travel, and both the utilization and end-of-life management of
products sold by the company, i.e. downstream activities.

The difficulty of obtaining high-quality data, especially for activities in Scope
3, is a challenge that often requires extensive supplier engagement and the use
of industry average data as a proxy [58].

Table 2.3 provides a comparison that highlights the primary distinctions between
performing an LCA and performing a targeted carbon footprint analysis.

21



2 Theoretical Foundations

Table 2.3: Comparison of LCA and Carbon Footprint Analysis.

Feature LCA Carbon Footprint Analysis

Primary Goal To evaluate a broad range of
potential environmental im-
pacts across a product’s entire
life cycle

To quantify the total GHG
emissions associated with a
product, process, or organiza-
tion

Governing Stan-
dard(s)

ISO 14040, ISO 14044. GHG Protocol, ISO 14067

Typical Scope /
Boundary

Cradle-to-Grave, Gate-to-
Gate, Cradle-to-Gate.

Organizational Scopes 1, 2, 3

Key Output Multi-indicator environmental
profile.

A single metric expressed in
CO2e

Typical Application
in Manufacturing

Comparing alternative product
designs or materials; identify-
ing environmental hotspots in
a value chain

Corporate sustainability re-
porting; product labeling;
identifying primary sources of
GHG emissions for reduction
efforts

Following the quantification of environmental impacts, the subsequent step is
their systematic reduction. Themanufacturing sector is currently experiencing a
paradigm shift, moving beyond reactive end-of-pipe pollution control to proac-
tive strategies that embed sustainability into the core of business operations [59].
This section explores the dominant high-level paradigms that reshape industrial
activity and details the specific operational strategies that translate these visions
into tangible improvements in environmental performance. These approaches
range from the reconceptualization of material flows throughout the economy,
as seen in CE [60], to the process-level integration of best practices in green and
sustainable manufacturing, all of which are supported by targeted interventions
in high-impact areas such as energy consumption and waste generation [61].

The CE represents an ambitious systemic shift away from the traditional linear
economic model, which is predicated on the perpetual extraction of finite re-
sources, their manufacture into products, and their eventual disposal as waste
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[60]. CE is conceived as a regenerative system with the objectives of decou-
pling economic activity from the consumption of finite resources and eliminat-
ing waste entirely [60]. The foundation of CE is based on three principles as
described by [62]. The primary goal is to design processes that prevent waste
and pollution from arising in the first place. The next goal is to preserve the
maximum functional value of products, components, and materials over the
longest feasible period. Third, it is important to focus on the regeneration and
restoration of natural systems.

The operationalization of these principles is often described through a hierarchy
of "R" strategies. This framework extends beyond the conventional "Reduce,
Reuse, Recycle" framework to encompass a more comprehensive set of actions,
often presented in models such as the 10R framework [62], as illustrated in
Figure 2.5.

Figure 2.5: The 10R hierarchy for resource management strategies.
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A key concept within this hierarchy is the prioritization of inner loops over outer
loops [62]. For example, maintaining a product through repair is preferable to
remanufacturing it, which is in turn preferable to recycling its constituent mate-
rials, as each successive outward loop tends to lose more embedded value and
requires greater energy input. In a manufacturing context, the implementation
of a circular model requires profound changes across the value chain. This
transformation begins at the product design stage, emphasizing modularity,
durability, and design-for-disassembly to facilitate easy repair and component
harvesting at the end of life. It also requires the development of innovative
business models, such as shifting from selling products to providing them as
services, implementing product leasing agreements, or establishing compre-
hensive take-back schemes [63]. Operationally, CE requires the establishment
of robust reverse logistics systems to collect used products and the creation of
closed-loop production systems where end-of-life products can serve as high-
quality feedstock for new manufacturing [64]. However, the transition is not
without obstacles. Key challenges include the substantial investment needed for
new technologies and infrastructure, the organizational inertia of established
linear business models, the logistical complexity of managing reverse supply
chains, and, in some cases, a lack of supportive policies and regulation [63].

Although CE offers an overarching macro-level perspective, sustainable man-
ufacturing emphasizes the incorporation of sustainability principles in a more
granular way [61]. Specifically, it focuses on embedding these principles di-
rectly at the levels of processes, products, and systems within a single orga-
nizational entity. This view aligns with the Triple Bottom Line framework
[65], which holds that sustainability depends on a balanced advancement of
economic viability, environmental stewardship, and social equity. Achieving
this requires integrating these three domains so that progress in one does not
undermine the others. Within sustainable manufacturing, eco-design serves as
a primary approach that integrates environmental objectives from the beginning
of product development, thus increasing durability, reducing energy demand,
and facilitating recycling [66]. Currently, resource optimization focuses on

24



2.2 Environmental Assessment and Reduction Strategies in Manufacturing

minimizing inputs, such as raw materials, water, and energy, per unit of pro-
duction, which directly reduces costs and reduces the environmental footprint.
Furthermore, it is crucial to acknowledge that the influence of a manufacturer
transcends the confines of its individual operations [61]. Consequently, the
principle of sustainability within the supply chain includes participating in co-
operative efforts with partners. These collaborations are essential to ensure that
these associates adhere to the highest environmental and social benchmarks,
thus ensuring a comprehensive approach to sustainability that pervades the sup-
ply chain network [61]. Despite its clear benefits, the transition to sustainable
manufacturing is impeded by practical barriers, most notably the prohibitive
initial capital investment for new technologies, the technical complexity of
retrofitting legacy factories, and the market uncertainty created by inconsistent
regulatory landscapes [67].

The overarching concepts of CE and sustainable manufacturing are constructed
on the basis of well-defined, deliberate interventions. Typically, within manu-
facturing operations, these strategic measures focus primarily on addressing the
two primary culprits of environmental degradation: the consumption of energy
and the production of waste. The industrial sector is the largest consumer of
energy and is one of the leading contributors to global GHG emissions [68].
Therefore, optimizing energy efficiency represents one of the most effective
levers for environmental improvement. A comprehensive approach to this be-
gins with foundational energy audits and formal management systems, such as
ISO 50001 [69], which systematically assess equipment and processes to estab-
lish performance baselines. From this understanding, savings can be achieved
through process and parameter optimization, where, for example, adjusting the
toolpaths of the machine in the machining can reduce energy use by up to 50 %
without major capital investment [70]. These strategies are increasingly ampli-
fied by advanced monitoring and control systems enabled by Industry 4.0. The
deployment of IoT sensors allows granular real-time energy monitoring, while
AI algorithms can leverage these data to optimize production schedules and
dynamically adjust process parameters to maintain peak efficiency [70]. Waste
in manufacturing is the physical manifestation of inefficiency, representing both
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a direct economic loss of materials and an additional cost for disposal. Waste
minimization, therefore, is a cornerstone of both economic and environmental
performance. A foundational approach is the application of Lean Manufactur-
ing principles [71]. Although primarily focused on eliminating economic waste,
the systematic reduction of defects, overproduction, and unnecessary processing
inherently curtails the consumption of materials and energy. This philosophy
aligns perfectly with the creation of closed-loop systems, a core tenet of CE,
wherein processes are redesigned to turn waste streams such as scrap metal or
wastewater into valuable internal inputs. Amore proactive strategy involvesma-
terial substitution, which seeks to replace virgin, hazardous, or non-recyclable
materials with recycled, renewable, or benign alternatives at the source [72].
These physical strategies are improved by improved process control facilitated
by digital technologies. Automated systems can manage material inputs with
greater precision to reduce scrap, while real-time monitoring can detect process
deviations before they result in defective products, thus improving first-pass
yield and overall resource productivity. The preceding discussion has outlined
a comprehensive framework that encompasses high-level paradigms such as
the CE and sustainable manufacturing, as well as the targeted operational in-
terventions that underpin them. These concepts, from systemic approaches to
specific process-level tactics, are deeply interconnected. To visually synthesize
the hierarchical nature and relationships between these diverse strategies, an
integrated conceptual model is presented in Figure 2.6.
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Figure 2.6: Conceptual framework for environmental impact reduction strategies in manufacturing.

2.3 Data-Driven Manufacturing Process
Optimization

This section establishes the theoretical foundations of data-driven process opti-
mization inmanufacturing. It is organized into four sequential stages that mirror
the logical dependencies of the method. First, the methodological requirements
define assumptions, objectives, and constraints. Second, data acquisition and
preprocessing lay the foundations for building a representative and quality-
assured dataset from heterogeneous sensor streams, production logs, and ex-
periments. Third, optimization paradigms introduce the fundamental concepts
of mathematical optimization and machine learning used to identify operating
regimes that meet the stated objectives under the defined constraints. Fourth,
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xai and decision support set out the principles for interpreting model outputs so
that recommended actions remain transparent, verifiable, and implementable.

2.3.1 Requirements on Methodologies

A comparative analysis of structured continuous improvement and quality man-
agement frameworks for the optimization of industrial processes showed that
effective methodologies are characterized by a clearly articulated phase struc-
ture with explicit objectives for each phase, supported by systematic procedures
and decision gates [73]. In addition, such structure has been shown to facilitate
disciplined execution and verifiable progress throughout the optimization life-
cycle of the process [73]. Established process modeling frameworks confirm the
importance of structuring data-driven projects into well-defined phases. For in-
stance, the Knowledge Discovery in Databases (KDD) methodology organizes
the workflow into distinct phases: Problem Specification, Data Understand-
ing, Data Preprocessing, Modeling, Evaluation, and Deployment [74]. Adopt-
ing such a phased methodology ensures a systematic and logical progression,
where decisions made in earlier phases directly inform later modeling choices.
Furthermore, this approach is inherently iterative, allowing for adjustments as
objectives or the understanding of the data evolve. The same line of research
indicated that high-quality methodologies must embed mechanisms for ongoing
incremental progress, thereby institutionalizing continuous improvement rather
than treating optimization as a one-off activity [73]. Adaptability was em-
phasized because methods should be extensible and tool-agnostic so that new
analytical techniques and domain-specific instruments can be incorporated as
manufacturing technologies evolve [73]. In addition, methodological quality
was shown to be enhanced when complementary tools are synthesized to ad-
dress multiple aspects of improvement in a coordinated manner. However, a
potential pitfall was identified, when the overall approach becomes too bulky
or complex, the implementation effort and the lead time can escalate, reducing
practicality [75]. Building on these foundations, subsequent studies argued that,
beyond the traditional criteria of being structured, systematic, and repeatable,
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modern methodologies should be technology ready and data-centric [76]. It
was shown that seamless integration with manufacturing execution systems, IoT
platforms, and broader Industry 4.0 infrastructures is required so that real-time
data streams, traceability, and feedback loops can be used for both monitoring
and control [76].

2.3.2 Data Acquisition and Preprocessing

The first step is data acquisition, as data is the basis for any optimization or
modeling effort [77]. As illustrated in Figure 2.7, manufacturing data can be
acquired from a broad spectrum of sources, including sensor andmachinemoni-
toring, process execution and production planning records, quality assurance and
inspection results, material and supply chain documentation, human-machine
interaction logs and outputs derived from experimental studies, simulationmod-
els, and predictive analytics frameworks.

Figure 2.7: Overview of manufacturing data types and sources.
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Data acquisition can follow two main pathways: using existing historical data
or generating new data through experiments. From an industrial perspective,
using historical data is more desirable, as the acquisition of new data always
incurs costs [78]. Although historical data require comprehensive extraction
and cleaning processes, they are generally much less expensive than gathering
new data [78]. However, when generating new data is necessary, a Design of
Experiments (DoE) allows maximizing the information gain while minimizing
the experimental cost and effort [79]. A fundamental concept in DoE, especially
in the context of Response Surface Methodology (RSM), is to estimate the
relationship between process factors and a response variable by employing
an adaptable empirical model [80]. A polynomial is widely used for this
purpose, which represents the response variable Y as a function of the factors
x1, x2, . . . , xk. A general form for this model is:

Y = β0 +
d∑

i=1
βixi +

d∑
i<j

βijxixj +
d∑

i=1
βiix

2
i + · · ·+ ϵ (2.1)

Where:

• Y is the measured response variable.

• xi is the level of the i-th factor.

• d is the total number of factors studied.

• β0 is the overall mean or intercept.

• βi are the coefficients for the main effects, which describe the direct and
linear influence of a single factor.

• βij are the coefficients for the interactions of two factors that describe
how the effect of one factor depends on the level of another.

• βii are the coefficients for the quadratic effects, whichmodel the curvature
in the response.
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• ϵ is the random unexplained error.

The goal of DoE is to strategically select experimental runs that allow the
model’s β coefficients to be estimated with high precision and efficiency. The
complexity of the design is a function of the number of runs (N) relative to
the number of factors (d) and their levels (L). A summary of common DoE
strategies to achieve this is provided in Table 2.4.

Table 2.4: Comparison of experimental design methods.

Method Principle & Complexity Advantages Disadvantages Ref.

Full Fac-
torial De-
sign

Evaluates all level combina-
tions across d dimensions.
Complexity: N = Ld

Enables estimation of all
main effects and all orders
of interactions

Prohibitive run count as d
increases; high cost and
times

[81]

Fractional
Factorial
Design

Uses a selected subset (1/2p)
of the full design.
Complexity: N = Ld−p

Drastically fewer runs;
maintains orthogonal esti-
mation of main effects

Confounding: some effects
are aliased

[82]

Plackett–
Burman
Design

Highly fractionated 2-level de-
sign, often N ≈ 4(d + 1)

Extremely efficient screen-
ing of many factors with few
runs

No resolution of interac-
tions

[83]

Taguchi
Method

Predefined orthogonal arrays;
focuses on robustness using
signal-to-noise ratios

Fewer runs; simple tables;
focuses on robustness

Ignores most interactions;
potential for bias from non-
randomized arrays

[84]

Central
Com-
posite
Design

2-level factorial + center + ax-
ial points for quadraticmodels.
N = 2d + 2d + nc

Fits a full quadratic model;
rotatable variance; moder-
ate extra runs

Requires 5 levels per factor;
axial points can be imprac-
tical

[81]

Box–
Behnken
Design

3-level quadratic design with-
out corner points; often more
efficient than CCD for d < 5.

Fewer runs than CCD for
quadratics; good rotatability

No exploration of the corner
points; limited to 7 factors

[85,
86]

Latin Hy-
percube
Sampling

Stratified random sampling
with a flexible number of runs
N .

Good marginal coverage;
lower variance than random
sampling

No guaranteed uniformity
in multi-dimensional sub-
spaces; stochastic

[87]

Sobol
Se-
quence

Quasi-random, low-
discrepancy sequence for
uniform coverage, often with
N = 2d

Very uniform space cover-
age; reproducible; fast inte-
gration convergence

less gain in very high dimen-
sions

[88,
89,
90]

D-
optimal
Design

Algorithmic selection of
points to maximize informa-
tion gain.

Flexible run counts and con-
straints; suitable for irregu-
lar spaces

Model-dependent; requires
a set of candidate points; it-
erative

[91]
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Once the data have been acquired, either through experiments or from existing
historical records, the phase of data preprocessing begins. This step is indis-
pensable because real-world manufacturing data, regardless of their origin, are
frequently compromised by noise, missing values, and inhomogeneity. A recent
meta-analysis highlights the significance of this phase, showing that thorough
data cleaning enhances model performance. In contrast, utilizing low-quality
data deteriorates the data attributes and does not effectively represent data pat-
terns [92].

The entire preprocessing pipeline can be broken down into several stages, which
are summarized in Table 2.5 and elaborated on in the sections that follow.

Table 2.5: Key data pre-processing stages.

Stage Main Tasks

Data Profiling Integration and inspection of data types, ranges,
and distributions; joining data from multiple
sources.

Outlier Treatment Identification and handling of anomalous data
points that can skew models.

Missing-Value Imputation Imputation of missing entries based on the un-
derlying missingness mechanism.

Scaling & Transformation Encoding and standardization of numerical fea-
tures and encoding of categorical variables.

Feature Engineering Selection and creation of new variables and re-
duction of data dimensionality.

Data Fusion Integrating data from multiple sources into one
data set.

The pipeline begins with a comprehensive profile of the properties of the data
including data types, value ranges, and statistical distributions, which estab-
lishes the diagnostic baseline for all downstream choices [93]. Building on this
profile, outlier management is undertaken to control anomalous observations
that could disproportionately skew model fitting and compromise optimization
results. This challenge is well recognized in large-scale data analytics [77].
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With outliers addressed, attention shifts to treating missing values. Manufac-
turing processes often produce incomplete data sets. Although simple methods
such as mean or median replacement are available, a robust strategy requires
understanding the underlying reason the data are missing. The appropriateness
of a method depends on assumptions about why data are missing, formalized
as Missing Completely at Random (MCAR), Missing at Random (MAR) and
Missing Not at Random (MNAR) [94]. This classification, illustrated in Figure
2.8. The illustration represents a simple causal chain A→ B together with the
missing data indicator M and an exogenous noise term Z.

(a)MCAR (b)MAR (c) MNAR

Figure 2.8: Taxonomy of missing data, adapted from [95].

• MCAR: Here, the probability of a value being missing is entirely stochas-
tic, independent of both observed and unobserved variables. As shown
in Figure 2.8, the missingness indicator M is driven only by the random
noise Z. In this scenario, analyses on the remaining complete data can
remain unbiased.

• MAR: In the case of MAR, the likelihood that data are missing is con-
tingent upon other observed variables, however it remains unrelated to
the actual missing value. For MAR data, likelihood-based methods or
multiple imputation can yield unbiased estimates if the model properly
includes the predictive observed variables.

• MNAR: Often referred to as non-ignorable missingness, MNAR arises
when the likelihood of a value being absent is influenced by the value that
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remains unobserved. This mechanism is the most challenging. Standard
methods assumingMCAR orMARwill produce biased results unless the
missingness mechanism itself is explicitly modeled.

Once missingness has been treated, scale heterogeneity is addressed through
normalization and transformation so that variables with large magnitudes do
not dominate distance-based models or optimization algorithms [96].

The subsequent stage involves shaping the feature space through feature engi-
neering and dimensionality reduction. Feature engineering refines input vari-
ables to better represent the underlying process phenomena. This involves
creating composite indicators from raw data. In data sets with numerous highly
correlated variables, dimensionality reduction methods are utilized. By trun-
cating the data, a lower-dimensional representation can be created that reduces
multicollinearity and noise, simplifying subsequent modeling without infor-
mation loss [96]. Moreover, diminishing the number of variables is essential
for alleviating the curse of dimensionality [97], because both optimization and
machine learning algorithms demonstrate enhanced efficiency and robustness
in spaces of reduced dimensionality.

Finally, when data originate from multiple systems, data fusion consolidates
sources by aligning timestamps, joining unique keys, and enforcing semantic
consistency. Proper profiling at the outset and rigorous integration at this stage
close the loop, producing a coherent, traceable, and model-ready dataset for
subsequent modeling and optimization [93].

2.3.3 Optimization Paradigms: Sequential vs. Offline
Approaches

Optimizing process parameters is crucial in modern manufacturing, as stringent
quality standards and increasing cost pressures require efficient examination of
complex high-dimensional design spaces. In today’s manufacturing research,
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process parameter optimization is often treated as a derivative-free search prob-
lem, where simulating the governing physics is prohibitively costly or the un-
derlying principles are not well-understood enough to reliably utilize gradient
information [98]. Two overarching paradigms dominate recent discourse.

1. Sequential Optimization: These methods operate in an iterative loop
directly on the physical process. After each trial, a model is updated,
which then guides the selection of the next experimental run [99].

2. Offline Optimization via Static Surrogates: This approach involves two
distinct stages. First, a comprehensive data set is generated in a one-time
data acquisition campaign, often using DoE. Second, these data are used
to train a static surrogate model which then serves as a computationally
cheap replacement for the real process. All subsequent optimizations are
performed on this static model [100, 101, 102].

Figure 2.9 illustrates, side by side, the two paradigmatic routes for data-driven
process parameter optimization.

(a) Sequential optimization workflow (b) Offline optimization workflow

Figure 2.9:Workflows for data-driven process-parameter optimization. Dashed arrows mark one-
off preparatory actions, solid arrows the closed optimization loop.

The sequential optimization workflow, shown on the left, operates as a tight,
iterative loop with the real process. After a minimal initial setup, which in-
cludes defining variables and objectives, the optimization begins. The solid
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arrows underscore that every iteration requires a physical execution of the man-
ufacturing process. The measured outputs are then immediately fed back into
the optimizer, which adapts its strategy to select the next promising test point.
This paradigm trades a higher number of sequential, individual experiments for
the ability to learn and adapt in real time, with the aim of finding the optimum
with a minimal total number of physical tests [99]. In contrast, the offline
optimization workflow on the right includes a two-stage process. Here, the
dashed arrows represents an upfront effort: a comprehensive data set needs to
be generated. This data set is then used to train a static surrogate model. All
subsequent optimization occurs virtually and exclusively on this static model
[100], as indicated by the optimizer interacting with its own surrogate. There
is no iterative loop with the real manufacturing process. The final output is a
single, theoretically optimal parameter set derived from the model, which can
then be validated in a final physical run. This approach front-loads the entire
experimental cost to create a global process model, avoiding a lengthy sequence
of iterative trials.

Scalability constitutes another decisive differentiator. The effectiveness of se-
quential optimization depends on the chosen algorithm. Sequential search
methods, typically degenerate at roughly 20 decision variables [99]. In con-
trast, offline optimization scalability is primarily limited by the ability to train a
robust surrogatemodel in a high-dimensional space, where deep learning frame-
works generally outperform traditional models, provided that the training set is
sufficiently large and diverse [101]. In manufacturing, static process assump-
tions are rarely tolerated, making adaptivity crucial. As sequential optimization
constantly probes the real process, it can naturally adapt to slow process drifts.
However, major perturbations to boundary conditions or material batches may
still require a re-initialization. The static models used in offline optimization
are not inherently adaptive to process changes post-creation. Any larger drift
requires a new data acquisition campaign and retraining of the surrogate, al-
though techniques such as transfer learning can reduce this cost [102]. The
benefits derived from modeling are also demonstrated in interpretability. Se-
quential optimization often returns a sparse cloud of observations and a single
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optimum, offering limited global insight. The explicit surrogate models central
to offline optimization, particularly transparent structures such as polynomials
or decision trees, admit sensitivity analysis, improving stakeholder confidence
[103]. Finally, the approaches differ in their risk of model error. By grounding
each decision in a recent, real-world observation, sequential optimization is
less vulnerable to large-scale surrogate model bias, although it remains sus-
ceptible to experimental noise. Offline optimization, by relying entirely on its
surrogate after the initial data acquisition, introduces a non-negligible risk of
model misprediction. This requires careful validation of the final recommended
parameters prior to deployment in a facility [101].

The success of both paradigms has been demonstrated in the literature. For
the offline approach, a greater than twofold reduction in finite element analysis
for textile draping was achieved by implementing a deep neural network sur-
rogate [100]. In contrast, the power of sequential optimization was showcased
by achieving laser process convergence in approximately thirty experiments via
Bayesian optimization (BO), which represented an order of magnitude improve-
ment over exhaustive searches [101]. Table 2.6 summarizes the key differences
of both approaches.

In the field of sequential optimization, there are a multitude of algorithms avail-
able. These encompass traditional direct search techniques, including pattern
search and Nelder-Mead, as well as population-based heuristics, such as Ge-
netic Algorithms (GA) and Particle Swarm Optimization (PSO) [104]. Despite
their adaptability, several of these approaches exhibit low sample efficiency
[105]. Because they often lack an explicit model to guide their search, they can
probe the objective landscape inefficiently, requiring many evaluations to find
an optimum. This is a drawback when each evaluation corresponds to a costly
physical experiment.

To overcome this limitation, BO has emerged as the state of the art method
for expensive black-box problems [105]. The superiority of this approach is
well documented. Numerous empirical studies and benchmarks consistently
show that BO achieves equal or better performance with an order of magnitude
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Table 2.6: Comparison of sequential and offline optimization paradigms.

Aspect Sequential Optimization Offline Optimization

Process Knowl-
edge

Iteratively learned during the
search; model is often local or
implicit.

Encoded in a global, static sur-
rogate model from an initial
DoE.

Evaluation Type A sequence of real experiments,
where each step informs the
next.

A one-time batch of real experi-
ments, followed by purely vir-
tual evaluations on the surro-
gate.

Data Require-
ments

Low initial requirement; data is
gathered one point at a time.

High initial requirement for a
comprehensive DoE to build the
model.

Computational
Effort

Low per iteration; dominated by
the duration of the physical ex-
periment.

High upfront cost for model
training; virtual evaluations are
then very fast.

Adaptivity High; can adapt to process drift
in real-time as it constantly
probes the process.

Low; the static model is not
adaptive to drift and requires
complete retraining.

Interpretability Low; provides an optimal pa-
rameter set but limited global
process insight.

High; the global model allows
for sensitivity analysis.

Risk of Model
Error

Low risk of global model bias,
but susceptible to measurement
noise.

High risk of surrogate model in-
accuracy; the model might not
represent the true process

fewer evaluations compared to GAs, PSO, CMA-ES, and uninformed grid
or random searches, especially under the tight experimental budgets typical
in engineering and manufacturing [106, 107, 108]. Given this convergent
evidence, this dissertation adopts BO as the primary algorithm for implementing
the Sequential Optimization paradigm. BO is a state-of-the-art method for
the sample-efficient optimization of black-box functions that are expensive to
evaluate [109].

By building a probabilistic model of the objective function and using it to
intelligently select where to sample next, BO can find near-optimal settings with
an order of magnitude fewer trials than traditional methods such as grid search
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or evolutionary algorithms [105]. This strategywas first popularized to optimize
costly engineering simulations in the classic EGO algorithm [110]. The strength
of BO derives from the synergy of two fundamental elements: a probabilistic
surrogate model and an acquisition function [105]. The surrogate model serves
as a cost-effective statistical representation of the expensive objective function.
With every new observation, the surrogate is refined, progressively yielding a
more precise approximation of the true function as the optimization advances
[111]. The acquisition function uses the predictions of the surrogate model to
quantify the utility or desirability of evaluating any given point in the search
space [111]. In each cycle, BO employs the acquisition function to determine
the next sampling location. The main function of the acquisition function is to
balance the exploration-exploitation trade-off [112]:

• Exploitation: Directing the search towards regions where the surrogate
model predicts a high objective value.

• Exploration: Directing the search towards regions where the surrogate
model is most uncertain, as a surprisingly good function value might be
discovered there.

The iterative nature of this process is illustrated in Figure 2.10. The graphs
depict the mean and confidence intervals as estimated by a probabilistic model
of the objective function. Although the objective function is illustrated, it is
typically unknown in practice. In addition, the graphs include the acquisition
functions in the shaded lower plots, where the peaks indicate candidates that
either suggest a high objective value or are located in areas where the surrogate
exhibits uncertainty [105].

Algorithm 1 formalizes this workflow. The algorithm begins with an initial
dataset and then repeatedly performs the following steps: first, it fits the surro-
gate model to the current dataset. Subsequently, it maximizes the acquisition
function to determine the subsequent query point, where it evaluates the objec-
tive function and incorporates the new result into its dataset. This cycle repeats
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Figure 2.10: Schematic of the BO procedure, as described by [105]. The variable n denotes the
iteration step, corresponding to the number of observations collected so far.

until a stopping criterion is met, such as a predefined budget or an improvement
threshold [106, 113].

The second paradigm, offline optimization, takes a different approach. Instead
of relying on iterative physical trials, it seeks to replace the real process with a
data-driven surrogate model, which is then exploited for virtual optimization.
This workflow consists of two stages. First, in a one-time data acquisition
campaign, a comprehensive dataset is gathered. A supervised machine learning
model is then trained on these data to create a static surrogate that accurately
maps the input of the process to the output [114, 115]. Once trained, this
surrogate serves as a computationally inexpensive substitute for the real system.
Optimization algorithms, can then rapidly explore the model’s response surface
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Algorithm 1 BO Loop
1: Input: Initial dataset D = {(xi, yi)}n

i=1, search space X , surrogate model
classM, acquisition function α(·;D)

2: while termination criterion not met do
3: Update surrogate: Fit surrogate model m ∈M toD to obtain predic-

tive mean µ(x) and uncertainty σ(x)
4: Acquisition maximization:

xnext ← arg max
x∈X

α(x;D)

5: Evaluation: Observe objective value ynext = f(xnext)
6: Dataset augmentation: D ← D ∪ {(xnext, ynext)}
7: end while

to find optimal candidates. These candidates are only validated on the shop
floor at the very end. This surrogate-assisted approach is well-established in
the literature, both for accelerating complex searches and for modeling physical
processes in manufacturing [116, 100]. The general workflow for training the
surrogate model is summarized in Figure 2.11.

Figure 2.11: A typical supervised learning workflow.

The theoretical pipeline for supervised learning is structured into seven foun-
dational stages.

A reliable supervised learning system is built upon a data collection plan. The
process can be decomposed into four interlocking tasks [117]:

1. Sampling Design: This involves identifying the sources, temporal fre-
quency, and coverage of data to ensure that the sample space matches
the intended inference domain. When generating new data, rather than
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using historical records, this requires selecting a formal experimental de-
sign, such as those detailed previously in Table 2.4, to ensure maximum
information gain.

2. Instrumentation: This technical phase includes calibrating sensors, log-
ging code, defining fail-safe fallback values, and verifying time-stamp
synchronization between distributed data collectors.

3. Storage &Versioning: To guarantee reproducibility and enable rollbacks,
every batch of raw data should be committed to an immutable object store
along with an explicit schema.

4. Labeling & Quality Assurance: This involves creating provisional labels,
often through programmatic or weak supervision, followed by expert
adjudication and audit sampling to eliminate systematic errors.

Regarding production stability, large-scale postmortems at Google revealed that
more than 60% of major incidents were caused by unvalidated data changes
rather than errors in the model code [118]. Concerning label quality, research
has shown that corrupting just 5% of labels in a benchmark data set can halve
the accuracy of a model, highlighting the extreme sensitivity to annotation
errors [119]. Finally, in terms of efficiency, active learning surveys indicate
that intelligent sampling strategies can reduce annotation budgets by up to 70%,
demonstrating the immense value of a well-designed sampling plan [120].

However, even well-collected data are rarely available in a suitable format for
machine learning algorithms, which leads to the next stage in the pipeline: Data
Preprocessing, which was already explained in Section 2.3.2.

Once the preprocessing steps are complete, the result is a clean and structured
dataset. This data set forms the foundation for supervised learning and consists
of a set of input-output pairs (xi, yi). Each xi ∈ Rd is a feature vector that
describes the example of ith and yi is its associated target. Every instance z has
been documented as a pair (x, y) consisting of an input x and a scalar outcome
y [121]. The objective is to find a function fθ(x), parameterized by θ, that
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predicts y from x. This is typically achieved by minimizing the empirical loss
on the training pairs.

The most common metrics for evaluating the magnitude of prediction errors are
the Mean Squared Error (MSE) and the Mean Absolute Error (MAE) [122].
The Mean Squared Error (MSE) is defined as:

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (2.2)

Due to the squaring term,MSEheavily penalizes large errors, making it sensitive
to outliers. The RMSE is the square root of the MSE, which is often preferred,
as it returns the error to the original units of the target variable.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (2.3)

Due to the squaring term, both MSE and RMSE heavily penalize large errors,
making them sensitive to outliers. In contrast, the Mean Absolute Error (MAE)
grows linearly with the error and is therefore more robust [123].

MAE = 1
N

N∑
i=1
|yi − ŷi| (2.4)

The choice between theMSE,MAE andRMSE can be informed by assumptions
about the error distribution. RMSE is optimal under Gaussian noise, whereas
MAE is optimal under Laplacian noise; for this reason, it is common practice to
report both [122]. When the relative magnitude of the error is more important
than the absolute value, percentage-based or logarithmic metrics are used.
The Mean Absolute Percentage Error (MAPE) scales errors by the true value,
making it intuitive for percentage-based evaluation [124].

MAPE = 100
N

N∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (2.5)
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However, it is undefined when the true value yi is zero and is known to assign
a disproportionately high penalty to errors on small target values [124]. When
target values are strictly positive, the Root Mean Squared Logarithmic Error
(RMSLE) is often preferred because it measures the relative deviation between
predictions and targets.

RMSLE =

√√√√ 1
N

N∑
i=1

(
log(1 + yi)− log(1 + ŷi)

)2 (2.6)

The RMSLE inherently penalizes underestimation more than overestimation,
making it suitable when prediction shortfalls are more critical than overshoots
[125]. The coefficient of determination, R2, differs from error metrics as it
quantifies the proportion of variance in the dependent variable that can be
explained by the independent variables [126].

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(2.7)

R2 provides a measure of how well the model explains the variability of the
data, with a value of 1 indicating a perfect fit. A large R2 indicates that most
variability is explained, but R2 can be misleading because it never decreases as
predictors are added [126].

The performance metrics discussed above are only truly informative if they
estimate howwell themodel will perform on new unseen data, a property known
as generalization. To obtain a robust estimate of this generalization performance
and to diagnose issues such as overfitting, various model validation strategies
can be employed. Themost common family of such strategies is cross-validation
(CV), which systematically partitions the data to simulate training and testing
on different subsets [127]. A standard and widely adopted implementation of
this principle is k-fold CV. The procedure is illustrated in Figure 2.12.

The data set D is divided into k disjoint folds D1, . . . ,Dk, each containing
approximately N/k samples. For each fold j ∈ {1, . . . , k}, the model fθ is
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Figure 2.12: Schematic of k-fold CV using k = 5 as an example.

trained on the combined data D \ Dj and validated on Dj . The resulting CV
error LCV is computed as [128]:

LCV(θ) = 1
k

k∑
j=1
L

(
θ;Dj

)
, (2.8)

where L
(
θ;Dj

)
is the loss incurred by fθ on the validation fold Dj [128].

This procedure is repeated for each fold so that every data instance is used
exactly once for validation. Compared to a single train-validation split, k-fold
CV provides a more stable and reliable estimate of generalization performance,
which is particularly valuable for smaller datasets. The choice of the number
of folds, k, involves a well-known bias-variance trade-off.
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A special, extreme case of this method is Leave-One-Out CV (LOOCV) [129],
where k is set to be equal to the total number of samples, N. In this procedure,
the model is trained N times, each time using a single data point for validation
and the remaining N − 1 points for training. The LOOCV error is the average
of the errors from these N runs [129]:

LLOOCV(θ) = 1
N

N∑
i=1
L

(
θ;Di

)
(2.9)

Although LOOCV provides a nearly unbiased performance estimate, it can have
high variance and is computationally very expensive. Therefore, in practice,
values of k = 5 or k = 10 are commonly recommended, as they offer a robust
compromise between bias and variance for most applications [129, 128]. How-
ever, a caveat applies when CV is used in conjunction with Hyperparameter
Optimization. The standard k-fold CV provides a reliable performance estimate
for a model with a fixed configuration. If hyperparameters are tuned using the
same CV procedure that is also used for final performance reporting, the result-
ing estimate will be optimistically biased. This is because the hyperparameter
selection process has effectively seen all the data, and the model is no longer
being tested on truly independent folds [130]. To obtain an unbiased perfor-
mance estimate in such cases, a more advanced procedure known as nested CV
is required. This method uses an outer loop to estimate the generalization error
and a separate inner loop to tune the hyperparameters for each outer fold, thus
preventing information leakage [129]. When the target variable is heavily im-
balanced, a stratified CV is advisable. In this variant, each foldDj preserves the
overall proportion of each class, thus reducing biases in training and validation
and producing a more realistic measure of the model’s generalization capability
[131].

Once a validation strategy is defined, the task of Hyperparameter Optimization
(HPO) can be addressed. This is a meta-optimization problem where the goal
is to find the optimal configuration for the learning algorithm itself [132]. Let
Θ ⊆ Rm represent the hyperparameter search space. The aim is to identify the
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optimal set of hyperparameters h∗ that minimizes the projected generalization
error:

h∗ = arg min
h∈Θ
LCV(h) (2.10)

Solving this optimization problem can be approached with methods of varying
sophistication. Foundational approaches include exhaustive Grid Search and
Random Search, which are simple to implement but often sample inefficient as
they do not learn from past evaluations [113]. More advanced strategies treat
this as a sequential optimization problem. Methods such as BO are typically
more efficient [113].

In supervised learning, performance is an estimate of generalization under un-
certainty rather than a fixed constant. Even with CV, fluctuations arise from
finite sample noise and the randomness injected by common procedures such
as shuffling, resampling, stochastic optimization, and randomized model com-
ponents. Computationally, this randomness is generated by pseudo-random
number generators (PRNGs), which are deterministic algorithms that map an
initial state to a statistically well-behaved sequence of numbers [133]. A ran-
dom seed is a finite integer that initializes this state. By fixing the seed, the
subsequent pseudo-random stream becomes deterministic for a given algorithm
and software configuration [133]. To manage this variability, setting a random
seed is essential. It ensures that the results are reproducible, which is critical for
fair comparison, debugging, and verification. Moreover, averaging results over
multiple random seeds or experimental runs is a common practice to account for
performance variability and to provide more robust and reliable performance
estimates [134].

If the surrogate model demonstrates satisfactory predictive performance, it is
deployed for virtual optimization. Engineers or data scientists can then probe
this fast-to-evaluate surrogate to identify parameter settings that are predicted
to optimize the target metric [100].

x∗ = arg min
x∈Ω

ŷ = arg min
x∈Ω

fθ(x), (2.11)
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where Ω ⊂ Rd is the feasible design space.

2.3.4 Explainable AI and Decision Support

In modern engineering and production settings, advanced AI models such as
ensemble learners and deep neural networks are increasingly being used for
tasks ranging from design optimization to predictive maintenance. These mod-
els often reach high levels of predictive accuracy, but are generally considered
black-boxes due to the difficulty humans face in interpreting their internal
decision-making processes [135]. This opacity presents a problem in engineer-
ing contexts, where comprehending the rationale behind the prediction for a
model is essential to establish trust, ensure safety, achieve regulatory compli-
ance and extract new scientific insights from the data [136]. XAI is the field
devoted to addressing this challenge. It provides methods to extract human-
interpretable explanations from complex models, helping engineers to validate
the behavior of the model and gain confidence in the implementation of AI
solutions [137]. The aim is to improve transparency through XAI and help
users understand and trust AI decisions, ensure compliance with regulations,
and overcome the black-box problem [138]. A distinction in XAI is the clas-
sification of models into three categories - white box, black box, and gray box
[139], which is based on their internal transparency, as illustrated in Figure
2.13.

Figure 2.13: A comparison between white-box, gray-box, and black-box models, as outlined by
[139].
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White-box models are those with a transparent internal structure that is directly
understandable to humans, such as linear regression and rule-based systems
[140]. This transparency allows for direct inspection of model components,
such as analyzing the weights of a linear regression to understand the impor-
tance of features. Their primary advantage lies in this inherent interpretability,
which simplifies the explanation and aids in adherence to regulatory require-
ments [139]. However, this transparency frequently results in a decrease in
predictive capability, as such models are often overly simplistic to adequately
represent complex, non-linear interactions within the data. Moreover, while
technically a white box, the interpretability of a linear model with thousands of
interaction terms can diminish at scale, rendering it effectively opaque to human
understanding [141]. By contrast, black-box models, such as deep neural net-
works, are highly complex algorithms whose internal workings are obscured by
millions of interacting parameters and nested non-linear transformations [142].
The key benefit of these models is their ability to achieve high predictive perfor-
mance by automatically learning intricate patterns from high-dimensional data
[139]. Their drawback is their inherent opacity. This opacity, in turn, makes
post-hoc XAI techniques indispensable: The behavior of the model is explained
by analyzing input–output relations rather than inspecting its internal structure.
Without these supplementary methods, black-box models are difficult to trust
or troubleshoot, potentially obscuring hidden biases or errors [139, 143]. Gray-
box models occupy an intermediate position by integrating mechanistic domain
knowledgewith data-driven learning [144]. For instance, amodel for a chemical
reactor might use known differential equations for reaction kinetics but employ
a neural network to learn a complex, unmodeled heat transfer coefficient from
operational data. The advantage is that the model structure is partially grounded
in established theory, which enhances trust and can reduce data requirements.
However, this hybrid approach often leads to increased design complexity.
Moreover, while the mechanistic part is interpretable, the data-driven compo-
nents remain opaque, meaning the final system is not fully transparent and may
still require XAI techniques to explain the learned relationships [141]. In many
engineering domains, deriving good white-box models is infeasible, making
black-box models indispensable for accurately fitting complex phenomena from
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data. Although these models offer high predictive accuracy, their inherent lack
of interpretability poses a challenge, as engineers are reluctant to trust or deploy
systems that they cannot diagnose. This dilemma has motivated the develop-
ment of post hoc XAI techniques, which are designed to explain the predictions
of any pre-trained model, thus bridging the gap between high performance and
the need for transparency [145].

2.4 Summary of Theoretical Foundations

This chapter established the conceptual foundation on which the remainder of
the dissertation is based. It began by introducing AM, which details the layer-
by-layer fabrication principle that distinguishes it from traditional subtractive
methods. The second section introduced frameworks for environmental as-
sessment. Two primary methodologies were detailed: the holistic LCA, a
cradle-to-grave approach standardized by ISO 14040 and ISO 14044 for multi-
impact analysis, and the focused Carbon Footprint Analysis, which quantifies
GHG emissions according to scopes 1, 2, and 3. Based on these assessment
tools, dominant strategies for impact reduction were introduced. These ranged
from the systemic vision of the CE, with its hierarchy of resource management
strategies, to the operational focus of green and sustainable manufacturing on
improving energy and material efficiency at the process level. Furthermore,
the chapter introduced the necessary stages for data-driven optimization. Two
primary optimization paradigms were described: Sequential optimization, an
iterative online approach, and offline optimization, which relies on training a
static surrogate model from a comprehensive upfront dataset. Finally, to address
the need for trust and safety in complex algorithms, the chapter concluded by
introducing the principles of XAI, a field dedicated to making the decisions of
black-box models transparent and understandable.
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Having established the theoretical foundations for data-driven, sustainable man-
ufacturing, this chapter analyzes the state of the art to identify the specific
research gaps that motivate this dissertation. The review examines current ap-
proaches in both academic literature and industrial practice, focusing on their
intersection to pinpoint key deficiencies and opportunities for innovation. To
structure this analysis, a systematic review methodology is employed, as de-
tailed in the following subsection. The review concentrates on a representative
subset of the literature to highlight the most relevant use cases and models. This
approach allows for a clear formulation of the existing research gaps that this
thesis aims to address.

3.1 Methodology of Literature Review

The approach used to conduct the literature review is in line with the PRISMA
guidelines [146]. However, given the broad scope of the topic and the pri-
mary objective of identifying research gaps rather than providing an exhaustive
overview, the PRISMA methodology was applied in a simplified manner. Fol-
lowing this methodology, the state of the art analysis is structured into two
main parts. The first part provides a broad overview of comparable method-
ologies and applications in data-driven sustainable manufacturing. It examines
general approaches, drawing a distinction between those prevalent in academic
research and those implemented in industrial practice. This highlights the cur-
rent landscape and the common gap between theoretical potential and practical
application. The second part conducts a more focused technical review. It
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identifies the specific state of the art for each of the key theoretical foundations
established in the previous chapter.

The methodology underpinning this review of the literature is shown in Figure
3.1. This process ensures a reproducible and comprehensive analysis, guiding
the review from the initial search to the final synthesis and identification of
research gaps.

Figure 3.1:Methodological structure of the literature review.

Moreover, the analytical framework developed in this dissertation builds on
and complements two prior literature reviews: Greif et al. [1] and Greif et al.
[2], which examined the interaction between AI and environmental sustainabil-
ity from both a strategic and methodological point of view. The first review
provides a strategic assessment of the transformative role of AI in advancing
sustainability through a SWOT analysis, while the second offers a structured
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synthesis of AI methods applied in the context of the SDGs. In conjunction
with the present domain-specific investigation into data-driven manufacturing
optimization, these three reviews form a coherent analytical foundation. Their
combined insights enabled a triangulated gap analysis, thus guiding the identi-
fication of unresolved challenges and shaping the methodological scope of this
dissertation.

The basis of this review is a well-defined search query, constructed from the
terms detailed in Table 3.1. This search was performed in multiple scientific
databases including Scopus, Web of Science, and IEEE Xplore and was system-
atically restricted to English-language publications from January 2015 to May
2025 to capture contemporary advances.

Following the database search, all the records retrieved were exported to the bib-
liographic management software. The initial screening step involved removing
duplicate entries to create a consolidated master bibliography. Subsequently,
the titles and abstracts of the unique records were screened against a set of
predefined inclusion and exclusion criteria, as detailed in Table 3.2, to assess
their relevance.

To ensure comprehensive coverage, this pool of articles was then expanded
through snowballing, a process involving both backward checks of reference
lists and forward tracking of citations to capture influential studies missed by
the initial search. Finally, the full texts of the remaining articles were subjected
to a detailed quality assessment based on the checklist presented in Table 3.3.
This step evaluated the suitability, methodological transparency, and validity of
each study, and low-quality articles were excluded from the final synthesis.

Finally, the selected corpus of high-quality articles was subjected to detailed
analysis and synthesis. To structure this review, the literature was organized
into three primary thematic sections. The analysis first examines the core
methodological frameworks for data-driven optimization, then reviews the spe-
cific applications of these methods in manufacturing, and finally assesses their
impact on environmental sustainability. This structured synthesis allows for a
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Table 3.1: Composite search strategy integrating technology domains, method categories, and their
associated terms.

Layer Category Search Strings

Technology
Additive Manufacturing ("Additive Manufacturing" OR "3D

printing" OR "rapid prototyping")
General Manufacturing ("Manufacturing" OR "Production Pro-

cess" OR "Industrial Process")

Method

Experimental Design ("Design of Experiments" OR "exper-
imental planning" OR "sampling strat-
egy")

Data Preprocessing ("Data Preprocessing" OR "Data Clean-
ing" OR "Data Preperation")

Machine Learning ("Machine Learning" OR "predictive
analytics" OR "data-driven modeling")

Optimization ("Optimization"OR "Improvement"OR
"Efficiency" OR "Parameter Tuning")

Bayesian Optimization ("Bayesian Optimization" OR "prob-
abilistic optimization" OR "Bayesian
modeling")

Explainable AI ("Explainable AI" OR "XAI" OR "in-
terpretability" OR "transparency")

Goal
Sustainability ("Sustainability" OR "Environment"

OR "Green")
Robustness ("Robustness" OR "Variance" OR

"Noise" OR "Stability")
Template — (Technology AND Method) OR (Tech-

nology AND Goal) OR (Technology
AND Method AND Goal)

54



3.1 Methodology of Literature Review

Table 3.2: Inclusion and exclusion criteria for title and abstract screening.

Inclusion Criteria Exclusion Criteria

Focus on data-driven optimization in a
manufacturing or industrial context.

Purely theoretical works or applications
outside manufacturing.

Publication type is an original research
article.

Publication is a review, meta-analysis, ed-
itorial, or opinion.

Abstract indicates that a specific method-
ology was applied and data were used.

Abstract lacks information on the meth-
ods or data used.

Table 3.3: Quality assessment checklist for full-text screening. To be included, studies must satisfy
at least two of the three assessment items for each criterion.

Criterion Assessment Item

Suitability
• Direct application to manufacturing process optimization
• Explicit focus on environmental or sustainability out-
comes

• Clear description of use case context (industry sector, pro-
cess type)

Methodological Trans-
parency • Detailed description of data sources (origin, size, mea-

surement protocols)
• Clear specification of algorithms or experimental proto-
cols

• Disclosure of parameter settings and tuning procedures

Validity
• Use of appropriate evaluation metrics
• Presence of validation or replication
• Discussion of limitations and threats to validity
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systematic identification of converging findings, current limitations, and, ulti-
mately, the pressing research gaps that this dissertation aims to address.

A parallel but distinct approach was taken for the industry-oriented review.
Although the criteria in Tables 3.2 and 3.3 were strictly applied to the academic
literature, these were deliberately relaxed for industry sources to accommodate
the limited availability of peer-reviewed documentation. For these sources,
such as white papers, technical briefs, and reports from leading firms, the focus
shifted to capture representative use cases. Industry sources were included if
they:

• Were published by recognized industry players or industry consortiums

• Presented specific examples of data-driven optimization implementations
with stated sustainability or efficiency outcomes,

• Provided sufficient descriptive detail regarding technology, method, and en-
vironmental impact to permit categorization and thematic analysis.

Quality thresholds such as detailed methodological specifications and formal
validation procedures were considered desirable but not mandatory for industry
sources, given the non-academic context of these communications.

3.2 State of the Art in Academic Research
and Industrial Practice

This section presents a state-of-the-art analysis of data-driven, sustainable man-
ufacturing. The review is structured into two complementary parts to provide
a comprehensive overview: First, a review of the academic research landscape,
which examines the paradigms and trend in data-driven optimization, common
applications, and the extent to which sustainability has been integrated into
these studies. Second, an analysis of the industrial perspective, which identifies
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how these technologies are being implemented in real-world production envi-
ronments and the practical challenges encountered. By contrasting these two
domains, this analysis aims to systematically identify the key research gaps that
exist at the intersection of theoretical innovation and practical application.

3.2.1 Research

3.2.1.1 Paradigms, Trends and Applications of Data-Driven
Optimization

Recent academic literature on data-driven optimization in manufacturing re-
veals several key trends, particularly in the development of core optimization
paradigms and the deep integration of explainability. In the reviewed literature,
data-driven optimization approaches are broadly classified into three categories,
as illustrated in Figure 3.2.

(a) Decision-focused Learning (b) End-to-End Learning (c) Predict-then-Optimize

Figure 3.2: Overview of Data-Driven Optimization Approaches.

The classic predict then optimize approach first trains a predictive model and
then uses it as a surrogate for a separate optimization algorithm [147]. In con-
trast, end-to-end approaches embed the optimization task directly into the pre-
dictive model’s training by creating a differentiable optimization layer, thereby
training the model to maximize the actual decision quality rather than just pre-
dictive accuracy [148]. Decision-focused learning is a related paradigm that
modifies the training loss of the predictive model to explicitly account for how
its predictions will affect the downstream optimization task [149]. Alongside
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these, a key trend is the use of meta-learning for automated algorithm selection.
This approach uses machine learning to learn from the characteristics of past
optimization problems to automatically choose the most appropriate algorithm
for a new unseen problem. This enables systematic performance improvements
by taking advantage of experience from a library of problems and reduces the
need for manual comparisons of trial-and-error algorithms [150].

Within the manufacturing sector, there is a strong emphasis on not only improv-
ing performance but also ensuring that these optimized solutions offer reliability
and valuable insight for practitioners [137]. Two primary methodologies exist
for this purpose, as depicted in Figure 3.3.

(a) Interpretability by Design (b) Post-Hoc Explainability

Figure 3.3: Architectures for XAI in Data-Driven Optimization.

The first approach involves embedding explainability directly into the model’s
structure and objective function. This is often done in two distinct ways: One
strategy involves augmenting the classical objective function with a regulariza-
tion term. This term penalizes complexity or rewards similarity to a simpler
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model, effectively combining performance and interpretability into a single,
weighted objective. By pre-defining this weight, the user specifies their prefer-
ence a priori, and the algorithm returns a single solution that reflects this fixed
trade-off [151]. In contrast, the second strategy formulates interpretability as a
separate, competing objective, which is common in multi-objective evolution-
ary algorithms. Instead of finding a single solution, this approach generates
a pareto front, which is a diverse set of solutions where each represents an
optimal trade-off. This method allows the user to analyze the entire spectrum
of trade-offs after the optimization run and to select the solution that best meets
their specific needs for both performance and transparency [152]. An example
of such an inherently interpretable system is the InterOpt algorithm developed
for shale gas production. It uses XAI to quantify the importance of various op-
erational parameters to guide the optimization of drilling settings. By analyzing
the importance of the features, InterOpt was able to recommend adjustments
that led to a nearly 10% cost reduction, while also providing transparency about
which parameters were the most influential on the results [153].

The second approach involves using post-hocXAI techniques to provide insights
into complex, often black-box, models after they have been trained. Several re-
cent comprehensive applications in manufacturing exemplify this trend. These
methods often rely on established tools to analyze model behavior. In the
context of manufacturing, for example, Shapley Additive Explanations (SHAP)
were used to interpret a machine learning model linking 3D printing process
parameters to printed part characteristics, thus identifying which input factors
have the greatest impact on part quality [154]. Other works have proposed
model-agnostic systems that combine tools such as Local Interpretable Model-
agnostic Explanations (LIME) and counterfactual analysis to assist operators
in tuning machine tool parameters for optimal production quality and failure
reduction, with the system explaining its suggestions in human-understandable
terms [155, 153]. These XAI tools are increasingly integrated into comprehen-
sive frameworks for sustainability applications. The ’Sustain AI’ framework,
for instance, employs multimodal deep learning to minimize the carbon foot-
print of manufacturing operations from streaming Industrial IoT (IIoT) data.
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A notable feature is its use of SHAP and LIME to make recommendations
transparent. If the system suggests rescheduling an energy-intensive task, it
can highlight the input factors that most influenced the suggestion. The exper-
iments demonstrated reduced energy consumption and carbon emissions, and
the clear rationales provided for each recommendation led to greater reported
trust in the AI system [156]. Another powerful post-hoc technique is the use
of surrogate explanation models. In one study addressing a CE problem, an
optimization based on Reinforcement Learning (RL) found complex policies
for a degrading manufacturing system that balances production, maintenance,
and quality control. To make these policies understandable, simpler decision
tree models were subsequently trained on the RL-generated data to explain the
optimal policy in terms of human-readable rules. By following a tree path, it
becomes clear how factors such as machine condition or backlog influence the
recommended actions, thus building trust [157].

A framework designed to optimize sustainable manufacturing processes inte-
grated deep RL, evolutionary algorithms, and transfer learning. It embedded
XAI modules in the decision-making layer to provide transparency into how the
AI is balancing trade-offs, such as how a suggested process adjustment saves
energy at the cost of a small increase in cycle time. The application of this
framework across three separate manufacturing environments demonstrated an
average decrease of 27.4% in energy usage and an enhancement of 18.2% in
the efficiency of material use [158]. Such interpretable machine learning tech-
niques help domain engineers understand the why behind model predictions
and optimization recommendations, bridging the gap between black-box mod-
els and actionable process knowledge. The practical selection of such XAI
tools is also an active area of research, with recent benchmarks comparing the
robustness and real-time feasibility of methods such as SHAP and LIME for
industrial applications [159]. As XAI surveys in Industry 4.0 settings highlight,
introducing transparency and user trust is crucial when deploying AI-driven
optimization in resource-constrained manufacturing environments [160].
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3.2.1.2 Data-Driven Optimization in Environmental Sustainability

The data-driven optimization paradigm has emerged as a powerful tool for
addressing complex environmental challenges that are often characterized by
high-dimensional, nonlinear, and stochastic systems. By interfacingMLmodels
with advanced optimization algorithms, ranging from BO and metaheuristics
to RL, these approaches can navigate vast decision spaces to improve system
performance and policy outcomes. However, a critical review of the recent liter-
ature reveals a clear spectrum of maturity in the adoption of XAI. Although the
efficacy of data-driven optimization has beenwidely demonstrated, the degree to
which these systems provide transparent, trustworthy, and interpretable results
varies between domains. The following analysis explores this spectrum, from
fields with emerging XAI integration to those where mature implementations
exists.

In domains with mature data infrastructure, such as energy systems and water
resource management, XAI is transitioning from a concern to an integral com-
ponent for validating solutions and de-risking the deployment of autonomous
systems. In the energy sector, a framework for building design optimization
has been developed that couples a LightGBM surrogate model with a multi-
objective evolutionary algorithm (NSGA-II) to navigate trade-offs between en-
ergy demand, CO2 emissions, and thermal discomfort. SHAP analysis were
incorporated to decompose the predictions of the surrogate model [161]. In
parallel, an explainable reinforcement learning (XRL) approach has been ap-
plied to dynamic control problems such as power grid reconfiguration, in which
the agent’s learned policy not only optimizes network efficiency but also allows
the extraction of rules-based policies that are human-intelligible [162]. A sim-
ilar trajectory is observable in sustainable water management. To mitigate the
risks associated with black-box controllers, RL has been applied to optimize
urban drainage systems. To address the black-box nature of the RL agent, an
interpretability framework was introduced in the study, where a decision tree
surrogate is trained to mimic the agent’s policy. This pedagogical surrogate pro-
vided a transparent and logical approximation of the complex policy, allowing
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human experts to visualize how sensor inputs map to specific control actions
[163].

In contrast, other environmental domains are characterized by a performance-
centric application of data-driven optimization, where algorithmic efficiency
is prioritized over the transparency of the decision-making process. This is
particularly evident in pollution control, where, as highlighted in a recent review,
metaheuristic algorithms such as genetic algorithms (GA) and particle swarm
optimization (PSO) are used to navigate the complex, non-convex search spaces
typical of bioremediation processes [164]. Although these methods effectively
optimize parameters for the removal of contaminants, the resulting solutions
are often implemented without a clear understanding of their underlying causal
mechanisms. The literature indicates a gap in scientific insight and stakeholder
trust [164]. A similar gap is evident in waste management. In studies on
municipal waste collection, for example, predictive models of waste generation
have been coupled with route optimization algorithms to address variants of the
Vehicle Routing Problem (VRP), reporting double digit percentage reductions in
collection costs [165]. However, the decision logic remains opaque. The causal
drivers influencing the optimized routes are seldom investigated or reported.
In both domains, the focus remains on the optimization outcome, while the
reasoning behind the optimal solution is unaddressed. Beyond post hoc analysis,
the high-stakes domain of climate science, defined by its profound societal
implications and the imperative for scientific discovery, presents a compelling
case for a paradigm shift toward inherently interpretable models. In this field,
data-driven optimization is crucial for calibrating computationally intractable,
physics-based simulations. For example, a GP BO has been applied to tune
parameters of the WRF regional climate model. This successfully minimized
the discrepancy between model outputs and observed data for extreme heat
events, improving the fidelity of the model [166]. However, the why behind
the optimized parameter set remain elusive. Addressing this, the argument has
been made that the goal should not be to simply explain black-box AI models,
but to design gray-box or physics-informed AI architectures that embed known
physical constraints and causal relationships [167]. This perspective signals
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an open research frontier: developing climate optimization algorithms that
not only yield accurate solutions, but also provide mechanistic insights. Such
systemswould need to quantify epistemic uncertainty while offering transparent
reasoning that aligns with established domain knowledge, a prerequisite for
trusted adoption in climate policy. This entire spectrum of XAI adoption,
driven by application risk, is conceptually summarized in Figure 3.4.

Figure 3.4: Risk-Driven Selection of XAI Strategies in Environmental Optimization.

This evolution towards greater explainability also aligns with emerging reg-
ulatory landscapes, most notably the European Union’s AI Act [168]. This
regulation introduces a risk-based approach, classifying AI systems into tiers
with corresponding obligations for transparency and robustness. Many of the
applications discussed in environmental optimization fall into these categories.
AI systems employed in the management and operation of essential infrastruc-
ture, explicitly encompassing energy grids and water systems, are categorized
as high-risk. This designation mandates transparency, robustness, and human
oversight, providing a strong regulatory driver for the adoption of post-hoc XAI
techniques. Conversely, systems where the primary risk is economic, such
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as optimizing waste collection routes, would likely be classified as ’minimal’
or ’limited’ risk, thus having fewer formal explainability requirements. This
regulatory distinction helps explain the observed gap, where XAI is often ab-
sent in lower stakes applications. Furthermore, while domains such as climate
modeling may not fall into the same operational risk category, their profound
impact on policy and society places them in a de facto class of systemic risk.
This justifies the scientific community’s demand for a standard beyond mere
compliance, the call for inherently interpretable models, to ensure scientific
validity and public trust in high-stakes decisions. Therefore, the selection of
an optimization and XAI strategy is increasingly a function of this risk-based
calculus, shifting the paradigm from one focused purely on performance to one
grounded in transparency, safety, and regulatory alignment.

3.2.1.3 Artificial Intelligence for Sustainable Additive
Manufacturing

Building upon the general paradigms and application trends, AM serves as a
particularly illustrative case study where a multitude of AI techniques are being
applied to enhance sustainability across the entire product lifecycle.

AI is being applied from pre-process design to in-process control and system-
level management to reduce material use and eliminate waste. The optimization
of sustainability in AM begins in the preprocess phase, long before fabrication
starts. A primary area of impact is in design optimization, where AI-driven
generative design and topology optimization algorithms automatically evolve
part geometries. Thesemethods explore vast design spaces tomeet performance
requirements such as stress and stiffness with minimal material usage, often
creating complex lattice or bio-mimetic structures that are uniquely suited for
AM [38].

Complementing this is the use ofAI for predictive quality assurance. By training
machine learning models on historical build data, it is possible to predict the
likelihood of success for a given geometry and orientation before committing
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material and energy to the print, guiding users toward setup changes that improve
first-time success rates [20].

During the manufacturing process itself, AI is essential for navigating the high-
dimensional parameter space that governs quality, energy consumption, and
build time. The challenge lies in optimizing numerous controllable parameters,
such as laser power, scan speed, or extrusion temperature, where traditional tun-
ing is time consuming and often suboptimal. To address this, the predominant
approach in academic research involves surrogate-based optimization. Com-
putationally cheap data-driven surrogate models are trained to approximate the
complex input-output relationships of the AM process. For example, an ac-
tive learning framework that uses GP-based BO has been shown to iteratively
identify optimal printing parameters to improve geometric accuracy with only
a few hundred data points [169]. To handle the complex and dynamic nature of
processes such as DED,more complex surrogates such as long-short-termmem-
ory (LSTM) networks have been integrated with BO algorithms to dynamically
optimize laser power time series and achieve target material properties [170].
Their approach maximized heat treatment time within 50 BO evaluations.

Beyond setting optimal initial parameters, AI is also crucial for real-time, in-
process monitoring, and quality control to reduce waste from failed builds.
High-resolution cameras and sensors are used to monitor each layer as it is de-
posited, and computer visionmodels, particularly convolutional neural networks
(CNNs), are trained to recognize anomalies such as porosity, delamination, or
geometric deviations from the intended toolpath. For example, a CNN-based
machine vision system was demonstrated to detect defects during multiaxis 3D
printing, allowing the process to be stopped or adjusted immediately rather than
continuing a flawed build to completion [171]. By avoiding print failures or
correcting them on the fly, such AI systems reduce the scrap rate, conserving
the material and energy that would otherwise be lost.

Finally, at the system level, AI contributes to the sustainable operation of all AM
facilities. In settings with multiple printers, AI-driven scheduling algorithms
can intelligently batch and sequence print jobs to maximize energy efficiency,
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for example, by clustering parts with similar material requirements to avoid
frequent thermal cycling of machines [172, 173].

Furthermore, predictivemaintenance, powered bymachine learningmodels that
analyze sensor data for indicators of degradation, ensures that machines operate
at peak efficiency and avoids the production of faulty parts due to machine drift
or failure. Although indirect, these factory-level optimizations are integral to a
holistic approach to sustainable AM [20].

As illustrated in Figure 3.5, AI amplifies the sustainability of AM by enabling
material efficient designs through generative algorithms, improving the quality
through intelligent process optimization, and minimizing waste through predic-
tive quality control and real-time monitoring.

Figure 3.5: Overview of AI-driven contributions to Sustainable AM across the product and system
lifecycle, from pre-process design to in-process control and facility-level management.

3.2.2 Industry: State of the Art in Sustainable
Manufacturing Optimization

The contemporary industrial landscape is increasingly characterized by the
integration of digital technologies into manufacturing processes. From software
suites that simulate entire production lines to cloud-based IIoT platforms that
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gather real-time data from thousands of assets, industry leaders are building
powerful ecosystems for data-driven optimization.

The foundation for modern sustainable optimization is a robust data and simu-
lation infrastructure. Large industrial software providers are embedding AI and
sustainability metrics directly into their offerings. Siemens, for example, incor-
porates green scheduling techniques in its Opcenter APS to reduce energy use
during production planning, while its Tecnomatix Plant Simulation tools allow
companies to create digital twins of their facilities. These simulations enable
the virtual testing of numerous production scenarios to reduce development time
by 20 to 30 % [174, 175]. Similarly, AspenTech’s adaptive process control uses
AI (Aspen DMC3) to improve plant efficiency, increasing yields by up to 3 %
while reducing energy consumption by up to 10 % in process industries [176].
Alongside these established suites, specialized IIoT platforms from providers
such as Sight Machine and Uptake are enabling real-time analytics by ingesting
streaming plant data and applying machine learning to reduce downtime and
improve quality [177, 178].

One of the most mature application areas is cloud-based energy management.
Bosch’s Energy Platform, now deployed in over 120 of its facilities and of-
fered commercially, exemplifies this. The platform aggregates real-time data
from machines and building systems to pinpoint inefficiencies. At its plant in
Qingdao, China, this system saved approximately 380 MWh in a single year
by optimizing resource use [179]. Furthermore, by integrating an AI model to
autonomously regulate a chilled water system based on load forecasts, Bosch
achieved an additional 10 % energy reduction for that specific system [179].
Similarly, amajor automotivemanufacturer appliedmachine learning in its paint
shop operations, correlating patterns in temperature, humidity, and airflow to
paint quality. This data-driven approach cut energy consumption by 15% while
simultaneously improving the paint finish [180].

AI-driven quality control has a direct impact on sustainability by reducing scrap,
rework, and wasted materials. The initiative at Bosch provides a powerful case
study. In its Bamberg plant, anAI analytics platform ingests roughly onemillion
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data signals per day from assembly stations to automatically flag any deviation
from standard process signatures, enabling real-time quality control that virtu-
ally eliminates waste [181]. In the automotive sector, computer vision is a key
enabler. One manufacturer applied machine learning to inspect printed circuit
boards, catching 50 % more defects while reducing human inspection effort by
25 %, leading to higher first-pass yields and less waste [182]. Predictive main-
tenance uses AI to forecast equipment failures, preventing unplanned downtime
and associated energy waste and scrap. The BMWGroup used computer vision
and machine learning to monitor its robotic assembly lines, analyzing more
than 18,000 images per minute to predict robot failures with approximately
90% accuracy. This system prevents over 200 unplanned downtime incidents
annually, saving millions and reducing waste from sudden breakdowns [183].

On a large industrial scale, Siemens Energy’s Connected Factory platform
serves as another notable example. By linking numerous assets at 18 differ-
ent worldwide factories through an AWS cloud-based infrastructure, this IIoT
system employs analytics to oversee production and forecast maintenance re-
quirements. The reported outcomes include up to 25% lower maintenance costs
and 15% higher machine availability, demonstrating a direct link between im-
proved asset performance and more efficient, sustainable operations [184]. In
summary, the industrial state-of-the-art demonstrates a consistent, two-tiered
approach where a foundational layer of data and technology infrastructure en-
ables targeted optimization in key application areas. This integrated architecture
is conceptually summarized in Figure 3.6.

Beyond foundational platforms, industry is increasingly deploying a portfolio
of advanced AI methods to tackle complex optimization problems that were
previously intractable. This new wave of adoption moves beyond predictive
analytics toward more autonomous systems that can model, optimize, and con-
trol processes with greater precision and efficiency. A primary challenge in
manufacturing is optimizing processes that are too expensive, slow, or complex
for exhaustive physical tests. To address this, manufacturers are widely adopt-
ing surrogate models, data-driven approximations of physical processes—to
accelerate R&D and optimization. In the aerospace and automotive sectors,
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Figure 3.6: A two-layer architecture for industrial data-driven optimization.

high-fidelity digital twins of processes such as machining or injection mold-
ing are used to generate data, from which computationally cheap surrogates
are trained to predict outcomes such as energy use or product quality. These
surrogates can then be rapidly explored using optimization algorithms to find
optimal settings with minimal waste or energy [174]. Another example is
Google’s DeepMind. It used ML to cut the cooling energy of its data center
by 40 %[185]. As powerful but often opaque ML methods take on greater
decision-making roles, their adoption hinges on trust and transparency. Lead-
ing firms such as Bosch emphasize the need for "safe, robust, and explainable"
AI for industrial use [186].

3.3 Focused Review of state of the art
Technologies, Methods and Future
Directions

Having reviewed state of the art applications and methodologies in industry and
research, this section provides a focused analysis of the specific technologies and
algorithms that enable these solutions. First, the key algorithms and methods
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employed in the application-focused papers cited in the preceding sections will
be distilled, offering a top-down perspective grounded in documented practice.
Second, this is supplemented with a bottom-up review of foundational and
benchmark literature to identify the current state of the art algorithms for each
core component of a data-driven optimization system.

3.3.1 Data Preprocessing

The success and reliability of any data-driven application is critically dependent
on the quality of its input data. Data preprocessing is a prerequisite for building
robust models. However, the rigor with which these steps are applied and
reported varies across the literature. Table 3.4 provides a high-level summary
of the techniques used in the application studies.

Table 3.4: Data preprocessing techniques across selected manufacturing optimization papers.

Paper Outlier Detec-
tion

Missing-Data
Imputation

Feature Scal-
ing

Feature Selec-
tion

[187] Yes (residuals
obtained during
linear regres-
sion analysis)

No No Yes (feature im-
portance)

[188] Yes (removed
tool-breakage
outlier cuts)

Yes (linear in-
terpolation)

Yes (standard-
ized)

Yes (random &
tsfresh selec-
tion)

[189] No Yes (lin-
ear/poly/KN-
N/MICE/Miss-
Forest)

Yes (normal-
ized)

No

[190] Yes (pixel-
based anomaly
detection)

No No No

[170] Yes (not speci-
fied)

No Yes (not speci-
fied)

Yes (not speci-
fied)
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The literature demonstrates a variety of approaches, from statistical methods to
domain-specific knowledge. For example, in a study on Li-ion battery electrode
manufacturing, a trimmedmean criterionwas used to remove gross outliers from
sensor readings, while residuals from a linear regression analysis were used to
flag anomalous data points [187]. A more domain-specific approach was taken
in a tool wear prediction study, where entire failure cases corresponding to
broken tool outliers were explicitly discarded from the dataset, leveraging expert
knowledge of the process [188]. For predictive maintenance of semiconductor
equipment, an anomaly detection method was presented in which a median
reference image was used to calculate a pixel-wise outlier index to identify early
wear patterns [190].

Missing values are another challenge in real-world manufacturing data sets.
Although simpler methods such as linear interpolation between adjacent mea-
surements are common [188], more sophisticated approaches have been shown
to yield superior performance. In a study conducted using the SECOM semi-
conductor dataset, where 65% of the data was absent, an extensive evaluation
of five distinct imputation techniques was performed. The methods analyzed
included linear and polynomial interpolation, k-nearest neighbors (with k =
5), multiple imputations by chained equations (MICE), and the nonparametric
MissForest algorithm. MissForest was found to have the best downstream clas-
sification performance, resulting in a 15% improvement in the F1 score over the
other approaches [189]. This highlights the impact that the choice of imputation
strategy can have on the model outcomes.

With the high dimensionality of sensor data in modern manufacturing, feature
scaling and selection are crucial to improvemodel training efficiency and perfor-
mance. A simple yet effective method is to use the built-in feature importance
scores of tree-based models to rank and select inputs [187]. Another work-
flow was proposed for the prediction of wear of CNC tools using a two-stage
pipeline. This process first used a random subset search and then applied statis-
tical tests to reduce more than 200 raw and time series features to a core set of
25, which accelerated model training by 60% without compromising predictive
power [188].
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Despite the demonstrated importance of these techniques, a significant portion
of the literature on data-driven optimization omits preprocessing steps or does
not report them sufficiently in detail [155, 191, 169]. In simulation-based stud-
ies, data are often clean by design, while in some experimental studies, the
focus on surrogate modeling overshadows the need for systematic data clean-
ing. Even when preprocessing is mentioned, descriptions are often generic, for
example, ‘data cleaning’, lacking the specific algorithms, parameters, or thresh-
olds needed for reproducibility. This gap is a critical issue, as neglecting these
basic steps can degrade model accuracy, slow convergence, and compromise
the reliability of optimization results, especially under the tight data budgets
common in manufacturing.

To bridge the gap between the often ad-hoc preprocessing reported in applica-
tion papers and the standards required for reproducible research, it is essential
to detail the state of the art algorithmic approaches for these tasks. The data
preparation workflow begins with the identification and handling of outliers,
as these can disproportionately influence model training and compromise opti-
mization results. The choice of method depends on whether outliers are defined
based on statistical distributions, model performance, or algorithmic anomalies.
For industrial data, which often deviates from idealized Gaussian assumptions,
methods grounded in robust statistics are preferred over classical approaches
based on mean and standard deviation. A principal technique utilizes the Me-
dian Absolute Deviation (MAD), whose high breakdown point (nearly 50%)
ensures its influence function remains bounded even with significant data con-
tamination [192, 193]. An observation xj,i is flagged as an outlier based on
its absolute deviation from the feature median, rj,i = |xj,i − median(xj)|,
whenever the following condition is met:

rj,i > κ MAD(xj), where MAD(xj) = median
(
rj,·

)
. (3.1)
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The threshold κ is typically chosen in the range [2.5, 3.5], corresponding to a
cutoff from the χ2 distribution [194]. By normalizing with the MAD, robust
z-scores can be computed [195],

z
(rob)
j,i = xj,i −median(xj)

b ·MAD(xj) , (3.2)

which, unlike classical z-scores, are not affected by the presence of the outliers
themselves. The constant b is a scaling factor to make the MAD a consistent
estimator for the standard deviation under Gaussianity [195].

Alternatively, outliers can be defined as observations that are poorly predicted
by a model trained on the majority of the data. This model-based approach
assumes that outliers are observations that do not conform to the relationship
between the features and the target variable learned from the majority of the
data. As used by [187], a regression model is first trained on the data set to act
as a representation of the normal behavior of the process. The model prediction
errors are then used as an anomaly score, with the logic that large errors indicate
points that the model could not explain based on the learned patterns. Given an
observation yi and a model prediction f̂(xi), the centered absolute residual ri

is calculated [187]:

ei = yi − f̂(xi), (3.3)
ri =

∣∣ ei −median({ek})
∣∣. (3.4)

An observation is flagged if its residual exceeds a threshold based on the MAD
of all residuals: ri > κ ·MADe [194].

Complementing these methods, the Isolation Forest algorithm offers a non-
parametric, algorithmic approach. It isolates anomalies in high-dimensional
data by recursively partitioning the feature space [196]. Observations that
require fewer partitions to be isolated receive a higher anomaly score s(x), and
are flagged as outliers if they exceed a user-defined threshold τ [196]:

s(x) ≥ τ. (3.5)
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A related method, particularly suited for streaming data, is the Robust Random
Cut Forest (RRCF) algorithm [197]. Similar to the Isolation Forest, RRCF uses
an ensemble of trees to isolate points. However, its anomaly score is not based
on path length, but on the expected change in model complexity, specifically the
number of leaves upon removing a point from a tree. Anomalies, being far from
other data, cause a larger structural change when removed, and thus receive
a higher score, making the method robust and effective for online anomaly
detection.

Figure 3.7 illustrates the behavior of these methods applied to a synthetic data
set characterized by a linear trend y = 3x−20. The data was seeded with three
types of anomaly: vertical outliers, bad-leverage outliers, which represent large
deviations at high x, and genuine inliers.

(a) Residual-MAD method (b) Univariate MAD rule

(c) Robust Random Cut Forest (d) Isolation Forest

Figure 3.7: Comparison of anomaly-detection methods applied to a synthetic data set.
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The MAD rule primarily highlights vertical outliers but misses leverage-type
anomalies, because their distances from the feature median remain moderate.
The residualMADapproach, which relies onmodel errors, additionally captures
the bad-leverage points, yet leaves high-leverage observations lying exactly on
the regression line untouched, as their residuals are small. The isolation forest
isolates vertical and leverage anomalies, but introduces a few false positives
near the data boundaries. The RRCF reproduces this pattern while reducing the
false-positive rate through its complexity change scoring scheme. Overall, the
experiment confirms that univariate robust statistics suffice for strongly axis-
aligned anomalies, whereas model-based methods better handle multivariate
structures, albeit at the cost of a slightly higher false positive rate.

Subsequent to addressing outliers, the next task is tomanagemissing values. The
selection of an appropriate imputation method is determined by the mechanism
of the missing data, which can be categorized as MCAR, MAR, or MNAR
[198]. To empirically determine the most plausible mechanism, there are
several analyses. First, Little’s omnibus test χ2 probes the null hypothesis that
the data are MCAR, whereas a non-significant result supports this assumption
[199]. The test statistic pools deviations of pattern-specific means from the
overall mean [199]:

χ2
Little =

R∑
r=1

nr

(
ȳr − ȳ

)⊤
S−1(

ȳr − ȳ
)
, (3.6)

where R is the number of distinct missing data patterns, nr the sample size of
the pattern r, ȳr the vector of observed means for that pattern, ȳ the general
mean vector andS the pooled covariancematrix estimated from complete cases.
In MCAR, χ2

Little follows an asymptotic χ2 distribution with degrees of freedom∑
r(pr − 1), where pr denotes the number of fully observed variables within

the pattern r.

Furthermore, to investigate the MAR hypothesis, the dependence of the miss-
ingness on fully observed data can be modeled by fitting a logistic regression
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where R indicates a missing value and X represents the set of fully observed
predictors [200]:

Pr(R = 1 | X) = logit−1(α + Xβ
)

(3.7)

Substantial predictive power, measured by a pseudo-R2 or the Area Under the
Receiver Operating Characteristic Curve (AUC), supports theMAR assumption
[200].

Another two-stage approach first fits a model on complete cases to predict
missing values, Ŷ = f(X), and subsequently tests in a second regression
whether the propensity to be missing depends on Ŷ by testing H0 : γ1 = 0
[201]:

Pr(R = 1 | Ŷ ) = logit−1(γ0 + γ1Ŷ
)

(3.8)

A significant relationship strongly indicates an MNAR process [201]. Alter-
natively, especially with cross-sectional data or longitudinal dropout, selection
models such as the Heckman two-step procedure [202] or the Diggle-Kenward
model [203] are used. These approaches simultaneously model the outcome
and selection processes:

Yi = Xiβ + ui,

R∗
i = Ziγ + vi, Ri = 1[R∗

i > 0],
(3.9)

with Cov(ui, vi) = ρσuσv . A test showing a non-zero correlation (ρ ̸= 0)
rejects the ignorability assumption and thereby confirms an MNARmechanism
[202, 203].

The outcome of the diagnostics directly informs the selection of a suitable
imputation strategy. For data sets with a low percentage ofmissingness (< 10%)
that can be plausibly assumed to beMCAR, simple imputationmethods are often
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used. These include replacing missing values with the feature’s empirical mean
for symmetric distributions [204]:

x̃i = x̄ = 1
nobs

∑
i:xi ̸=NA

xi, (3.10)

or median for skewed distributions [204]:

x̃i = median
{

xi : xi ̸= NA
}

. (3.11)

Although trivial to implement, these single-imputation techniques are known
to artificially reduce the true variance of the data and can distort correlation
structures [204].

For categorical variables, mode imputation, substituting the most frequent level,
is defined as [205]:

x̃i = arg max
c

#{xj = c}, (3.12)

but also ignores variability.

In time series with brief gaps, the Last Observation Carried Forward (LOCF)
method extends the most recent valid measurement [206]:

x̃t = xt′ , where t′ = max{ s < t : xs ̸= NA}. (3.13)

When the missingness mechanism is more complex or when inter-feature cor-
relations are strong, more sophisticated methods are required. The k-nearest
Neighbors (KNN) imputation technique is a non-parametric approach that ad-
dresses missing data by substituting each absent value with an aggregate derived
from its k closest fully observed neighbors within the feature space [207].

x̃i,j = 1
k

∑
i′∈Nk(i)

xi′,j . (3.14)
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The Expectation Maximization (EM) algorithm is a powerful model-based
approach that assumes that the data follow a specific multivariate distribution.
The algorithm iteratively alternates between an "E-step," which computes the
expected value of the log-likelihood function [208]:

Q(θ | θ(t)) = EXmis|Xobs, θ(t)
[
log f(X | θ)

]
, (3.15)

and an "M-step," which updates the distribution parameters by maximizing this
expectation [208]:

θ(t+1) = arg max
θ

Q(θ | θ(t)). (3.16)

For a more flexible approach, Multiple Imputation by Chained Equations
(MICE) offers a robust framework. MICE generates M completed datasets
by cycling through features and sampling from their conditional predictive dis-
tributions [198]:

x̃
(m,ℓ)
j,i ∼ p(ℓ)(xj | x̃(m,ℓ−1)

−j,i

)
, ℓ = 1, . . . , L, m = 1, . . . , M. (3.17)

To demonstrate the influence of standard imputation methods, in Figure 3.8
three MCAR gaps were excised from a synthetic data set governed by the linear
equation y = 3x− 20.
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(a) EM (b) KNN (k = 5)

(c) LOCF (d)Median

(e)MICE

Figure 3.8: Visual comparison of five imputation strategies applied to identical MCAR gaps.

Simple mean and median imputation filled each gap with a single constant, vis-
ibly flattening local variance and producing horizontal plateaus that break the
underlying slope. LOCFpropagated the preceding value into each gap, introduc-
ing staircase artifacts that bias the series along the trend direction. In contrast,
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the kNN approach leveraged neighborhood information from both sides of ev-
ery gap and produced estimates that adhere closely to the ground truth line,
although the filled values still underrepresent natural variability. Expectation
maximization under a bivariate normal model placed the imputations exactly
on the conditional expectation, thereby preserving the slope but shrinking the
variance to zero within each gap. MICE restored both trend and dispersion:
posterior draws scattered around the regression line and thus conveyed realistic
uncertainty. Overall, the experiment shows that single-deterministic strategies
risk structural bias, while model-based approaches may oversmooth. In this
example, MICE offers the best trade-off between trend fidelity and variance
preservation, followed closely by kNN.

The most challenging scenario arises when data is MNAR. Tackling MNAR
data necessitates the formulation of specific, unverifiable assumptions regarding
the mechanism causing the data to be missing. Three principal frameworks
are available to do so. The first, selection models, involves simultaneously
modeling the joint distribution of the data and the missingness indicator [203].
A second approach, Pattern-Mixture Models, stratifies the data by the observed
missingness patterns and factorizes the joint distribution as P (Y, R) = P (Y |
R)P (R), where R encodes the missingness pattern [209]. Finally, shared
parameter models posit that a latent variable influences both the outcome of
interest and the probability that it is missing, enabling joint estimation assuming
conditional independence [210]. An MNAR analysis is a workflow, not a
single procedure. It should begin with a baseline MAR model for reference,
followed by fitting one or more well-justified MNAR models. A step is to
conduct extensive sensitivity analyses by varying the key untestable parameters
of the MNAR model to assess the robustness of the conclusions. Finally, for
any imputation method, a concluding sanity check is essential. This involves
comparing the distributions of imputed versus observed values and assessing the
sensitivity of the final, downstream model to the chosen imputation strategy.
This validation step ensures that the process of handling missing data does
not inadvertently introduce bias or distort the conclusions of the subsequent
optimization.
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Furthermore, manufacturing data sets often include features measured in dif-
ferent units and with varying ranges, which can cause attributes with large
magnitudes to dominate distance-based models and optimization routines. To
address this, several scaling techniques are commonly employed. Min-Max
rescaling linearly transforms each feature into the unit interval [211]:

x′
j,i = xj,i −mink xj,k

maxk xj,k −mink xj,k
, (3.18)

so that x′
j,i ∈ [0, 1] for all i. Although simple and interpretable, this method is

sensitive to extreme values. A more robust alternative, especially for data with
heavy-tailed distributions, centers each feature by its median and scales by the
interquartile range (IQR) [212]:

x′′
j,i = xj,i −Q0.50(xj)

Q0.75(xj)−Q0.25(xj) , (3.19)

where Qp(xj) is the empirical p-th quantile of feature j. Another widely used
approach is standard scaling, which centers each feature by its mean and scales
to unit variance [213]:

x
(std)
j,i = xj,i − µj

σj
, (3.20)

where µj and σj are the sample mean and standard deviation. This normal-
ization is most appropriate for features that are already close to Gaussian. If
approximate normality is required by the subsequent model, a monotone power
transform can rescale skewed distributions while preserving order. For strictly
positive variables, the Box-Cox transformation is adequate [214]:

x
(λ)
j,i =


(xj,i + c)λ − 1

λ
, λ ̸= 0,

ln(xj,i + c), λ = 0,

(3.21)

with a shift parameter c > −min(xj,·) ensuring positivity. Whenever a fea-
ture contains zeros or negative values, the Yeo–Johnson variant is preferred
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because it extends the Box–Cox approach to negative values while retaining
monotonicity [215]:

x
(λ)
j,i =



[(xj,i + 1)λ − 1]
λ

, xj,i ≥ 0, λ ̸= 0,

ln(xj,i + 1), xj,i ≥ 0, λ = 0,

− [(−xj,i + 1)2−λ − 1]
2− λ

, xj,i < 0, λ ̸= 2,

− ln(−xj,i + 1), xj,i < 0, λ = 2.

(3.22)

Both λ and, where applicable, c are estimated by maximizing the log-likelihood
under the assumption of normal residuals, ensuring that the transformed fea-
ture is as close to Gaussian as possible without sacrificing the rank order of
observations.

To illustrate the different scaling techniques, a bivariate synthetic data set was
created with heterogeneous feature ranges: a beta-distributed variable in (0, 1)
and a log normal variable scaled to [0, 1000]. Figure 3.9 shows how the joint
distribution changes under each transformation. In the raw space, distance-
based models are dominated by the high-magnitude feature. Min–Max scaling
compresses both variables into [0, 1], equalizing scale but retaining skewness
and outlier leverage. Robust IQR scaling, centered on the median and scaled by
the interquartile range, mitigates outlier influence and yields a more balanced
spread. Standard normalization removes mean offsets and enforces unit vari-
ance, producing a roughly elliptical cloud when the marginal distributions are
near-Gaussian, but remains sensitive to heavy tails. Finally, the Box-Cox power
transform symmetrizes skewed distributions and stabilizes variance, transform-
ing the log-normal feature into a shape comparable to the beta variable.
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(a) Raw data

(b) Box–Cox (c) Robust IQR

(d) Min–Max (e) Standard

Figure 3.9: Effect of different scaling techniques on two heterogeneously scaled features.

Converting categorical variables into a numerical form appropriate for ML
algorithms requires a set of techniques. The method selected is dependent on
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whether the levels of the variable have an intrinsic order. For unordered features,
one-hot encoding is the standard approach [216]. It produces a binary indicator
matrix E = [eik] that avoids imposing a false ordinal relationship [216]:

eik =
{

1, if xi = levelk,

0, otherwise.
(3.23)

Conversely, for ordered process states or grades, a simple integer mapping
preserves the monotonic structure of the data [217]. An ordinal map γ :
levelk 7→ k is defined such that [217]:

zi = γ(xi) ∈ {1, . . . , K}, (3.24)

thereby retaining the crucial rank-order information that a one-hot encoding
scheme would obscure.

Following scaling and transformation, feature engineering is the process of using
domain knowledge to construct new, more informative variables from the raw
data. The goal is to make the relationships between the underlying processes
explicit and more accessible to ML algorithms, which can significantly improve
the performance of themodel. A common example in sustainability applications
is the creation of an efficiency metric, such as energy consumed per unit of
throughput, which can be a more powerful predictor than either variable alone
[218]. This can be expressed as [218]:

f
(eff)
i = Ei

Ti
, (3.25)

where Ei is the total energy consumption and Ti is the throughput for the i-th
production run.

In the context of high-dimensional datasets obtained frommultiple sensors, or in
cases where feature correlation is substantial, dimensionality reductionmethods
are crucial for developing models that are both robust and efficient. PCA
offers a linear transformation that maps the data onto a new, lower-dimensional
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orthogonal basis [219]. Here, each new feature acts as a linear combination
of the original features. These components are ordered such that the first
component captures the largest possible variance in the data, the second captures
the largest remaining variance, and so on. This is achieved by performing an
eigen-decomposition on the sample covariance matrix Σ of the mean-centered
data matrix X ∈ Rn×p [219]:

Σ = 1
n− 1X⊤X. (3.26)

The eigenvectors vk of Σ form the principal axes, and the corresponding eigen-
values λk represent the variance captured by each axis [219]:

Σvk = λkvk, where λ1 ≥ · · · ≥ λp. (3.27)

The full set of principal components Z is obtained by projecting the original
data onto the matrix of eigenvectors V [219]:

Z = XV, where V = [v1, . . . , vp]. (3.28)

By retaining only the top k ≪ p components [219]:

Zk = X[v1, . . . , vk], (3.29)

a large fraction of the total variance, given by
∑k

i=1 λi/
∑p

j=1 λj , can be pre-
served in a much smaller feature set. This truncation removes multicollinearity
and reduces noise in subsequent optimization tasks [220, 221]. In manufactur-
ing contexts, PCA is often used to extract dominant, interpretable modes from
sensor data, such as vibration patterns or thermal gradients that explain most
of the variability of the process [222].

To illustrate this, a synthetic three–dimensional data cloud was generated such
that two coordinates, x and y, are almost perfectly correlated, while z contains
independent noise. Figure 3.10 contrasts the original space with the reduced
representation. In the left panel, the points form a thin diagonal sheet within
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the x−y plane. In the right panel, PCA replaces the redundant pair (x, y)
with a single score, PC1, which captures more than 98% of their joint variance,
while the uninformative correlation between PC1 and z is eliminated. The
transformation thus condenses the feature set from three to two dimensions
without loss of information.

(a) Original 3-D feature space (b) Reduced space

Figure 3.10: Dimensionality reduction using PCA.

3.3.2 Selection Metrics

Selecting an appropriate optimization strategy is a non-trivial task, often referred
to as the algorithm selection problem [223]. The challenge arises from the vast
number of available algorithms and the complex and heterogeneous nature
of real-world optimization problems. This challenge can be addressed by first
conducting a quantitative characterization of the problem that evaluates both the
sufficiency of the available data and the structural properties of the underlying
landscape.
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A first consideration is data sufficiency, which is most directly quantified by the
sample-to-dimension ratio (SDR). This metric measures data density as [224]:

ρ = N

d
, (3.30)

whereN is the number of labeled observations and d is the dimension. The SDR
is an indicator for optimization strategy selection. For example, GP surrogates
have been shown to typically require approximately N ≈ 10d observations for
reliable performance [225]. If a problemhas a lowSDR, sequential optimization
methods that actively acquire data are favored. In contrast, an exceptionally high
SDR can make a single offline optimization using a static surrogate particularly
efficient.

Beyond data sufficiency, the geometric and statistical properties of the land-
scape of objective functions are determinants of algorithm performance. The
discipline of Exploratory Landscape Analysis (ELA) seeks to quantify these
characteristics through a variety of statistical measures, thereby offering in-
sights into a problem’s modality, separability, and overall complexity [226].
One of the most informative ELA metrics is the Fitness Distance Correlation
(FDC), which computes the Pearson correlation between the fitness of a solu-
tion, fi, and its distance to a known global optimum, di [227, 228]:

FDC = corr(fi, di). (3.31)

A high positive FDC suggests a smooth unimodal landscape that is suitable for
local or model-based search methods, while a low or negative FDC indicates a
deceptive or rugged landscape that calls for a global search strategy, as contrasted
in Figure 3.11.

Another key property is the smoothness of the landscape, which can be quan-
tified by the length of the autocorrelation, τ . This metric measures the speed
with which fitness values correlate with distance and is given by [229]:

τ = − 1
ln

(
|ρ(1)|

) , (3.32)

87



3 State of the art

(a) High FDC (smooth landscape) (b) Low FDC (rugged landscape)

Figure 3.11: Effect of landscape smoothness on fitness-distance correlation.

where ρ(1) is the autocorrelation at a distance of one step. As illustrated in
Figure 3.12, a large τ indicates a smooth landscape suitable for surrogatemodels,
while a small τ points to a rugged landscape demanding exploration-focused
algorithms.

(a) Large τ (smooth landscape) (b) Small τ (rugged landscape)

Figure 3.12: Autocorrelation profiles for two different landscapes.

To understand the modality of the problem, the dispersion metric measures
how spread out the best solutions are in the decision space. For the top α% of
solutions, it is calculated as the average pairwise distance between them [228]:

Dispα = 1
αn(αn− 1)

∑
i<j

∥xi − xj∥. (3.33)
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As shown in Figure 3.13, low dispersion suggests a single basin of attraction
exploitable by learning-based methods, while high dispersion indicates a mul-
timodal landscape favoring multi-start or evolutionary search.

(a) Low dispersion (single basin) (b) High dispersion (multimodal)

Figure 3.13: Spatial spread of the top α% of solutions.

Finally, the Partial Information Content (PIC) characterizes the number of local
optima by analyzing a random walk and encoding its fitness values into a sym-
bolic string [228]. A high PIC value reflects many local optima, favoring global
search, whereas a low PIC implies a smoother landscape tractable for surrogate
modeling, a concept illustrated in Figure 3.14. Together, this quantitative assess-
ment of the sufficiency of data and the characteristics of the landscape provides a
principled foundation for selecting an appropriate optimization strategy, moving
beyond simple trial and error.

(a) Low PIC (few optima) (b) High PIC (many optima)

Figure 3.14: Symbol-encoded fitness walks for landscapes with low and high modality.
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3.3.3 Machine Learning Models

The selection of a predictive model is a critical step in any data-driven optimiza-
tion workflow. ML models can be divided into three paradigms, as illustrated
in Figure 3.15: supervised learning, unsupervised learning, and reinforcement
learning [230].

Figure 3.15: Illustration of machine Learning categorization, adapted from [230].

Although unsupervisedmethods focus on discovering hidden data structures and
reinforcement learning targets sequential decision-making, the optimization
problems central to this work are framed as prediction tasks using labeled
historical data. Consequently, this review will specifically focus on supervised
learning techniques.

Furthermore, manufacturing optimization problems are typically characterized
by structured tabular datasets and are often constrained by limited data avail-
ability due to the high cost of physical experimentation or data acquisition. A
review of recent algorithm benchmarks under these specific conditions reveals
three main categories of models that consistently achieve state of the art pre-
dictive performance: tree-based ensembles, transformer-based deep learning
models, and Automated Machine Learning (AutoML) frameworks. Alongside
these, a fourth category of inherently interpretable models has emerged as a
highly competitive alternative. These models are designed to offer a compelling
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balance between high accuracy and full transparency, making them critical for
applications where understanding the decision-making process is as important
as the outcome itself. These model classes are summarized in Table 3.5.

Table 3.5: Top performing algorithm classes, specific algorithms, and their performance summaries
on tabular datasets with fewer than 10,000 samples.

Algorithm
Class

Algorithms Performance Summary

Tree-based En-
sembles

XGBoost, Cat-
Boost, Light-
GBM, Random
Forest (RF)

Consistently the state of the art on small-to-
medium tabular datasets, typically outperforming
deep learning models in benchmarks [231]. Gra-
dient Boosting variants lead, with RF serving as a
robust and powerful baseline [232].

Transformer-
based Models

TabPFN, Tab-
Net, TabTrans-
former, Saint

Deep learning models adapted for tabular data,
particularly Transformers, have emerged as strong
competitors to tree-based ensembles [233, 234].
The pre-trainedTabPFNhas shown exceptional per-
formance on small datasets (N < 1000), often ex-
ceeding tuned ensembles with near-zero tuning cost
[235].

AutoML
Frameworks

AutoGluon,
AutoSklearn,
TPOT, H2O

Automated Machine Learning frameworks that au-
tomate the entire modeling pipeline consistently
produce high-performing models. Leading frame-
works such as AutoGluon and AutoSklearn are
highly competitive with expert-tunedmodels across
a wide range of benchmarks [236, 232].

Interpretable
Models

EBM Inherently interpretable models, particularly vari-
ants of Generalized Additive Models (GAMs) such
as the EBM, offer a compelling trade-off. Bench-
marks show EBMs achieve performance highly
competitive with top-tier black-box models such as
CatBoost, while providing full model transparency
and editability [237].

The benchmark results indicate a competitive landscape of high-performance
algorithms for small to medium-sized tabular data sets. Although the “no free
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lunch” principle holds, which implies that no single algorithm is universally
superior across all tasks [234], the analysis identifies a subset of model families
that achieve consistently strong performance.

To provide context for these findings, the following section reviews the leading
approaches by model class and begins with the primitive that underlies widely
used ensemble methods. Because both RF and gradient boosting are con-
structed from decision trees, the discussion first recapitulates the decision tree
model and its defining properties. A decision tree represents a non-parametric
supervised learning approach that systematically divides the feature space Rd

into hyperrectangles aligned with the axes [238]. At every internal node, there
is a selection of a feature j along with a threshold s aimed at optimizing a purity
criterion, such as minimizing squared error for regression tasks or enhancing
Gini impurity for classification purposes. Formally, every split segregates the
dataset into two resulting child nodes [238]:

{x : xj ≤ s} and {x : xj > s}. (3.34)

This process continues until a stopping criterion is met, with each terminal
node predicting a constant value, such as the mean response. While a single,
deep decision tree is a flexible model capable of capturing complex non-linear
relationships, its instability and high sensitivity to the training datamake it prone
to overfitting. To mitigate the high variance of individual trees, bagging was
introduced [239]. Bagging constructs an ensemble consisting of B independent
trees, denoted as {hb}B

b=1, with each tree being trained on a bootstrap sample
derived from the original training dataset. The final prediction is formed by
taking the average of the predictions made by each tree [239]:

ŷ(x) = 1
B

B∑
b=1

hb(x). (3.35)

This averaging process reduces the variance of the overall predictor. A key
advantage of this approach is the out-of-bag (OOB) error estimate [239]. Ap-
proximately 37% of the training data is excluded from each bootstrap sample.
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These OOB samples allow for the assessment of each tree’s performance, of-
fering a reliable estimation of the generalization error without the necessity of
a distinct validation set [239].

The RF algorithm improves the bagging approach by adding another level of
randomness, which helps to further reduce the correlation between individual
trees [240]. At each potential split within each tree, the search for the best
feature and threshold is restricted to a random subset of m features, where
m is typically set to ⌊

√
d⌋ for classification or ⌊d/3⌋ for regression. This

strategy reduces the correlation between the trees in the ensemble, which in
turn further reduces the variance of the averaged predictor, typically at the cost
of a negligible increase in bias, resulting in a model with excellent predictive
performance and robustness.

Complementary to the parallel ensemble method of bagging is boosting, which
was formalized as a form of gradient-based functional optimization [241].
Instead of training independent trees, gradient boosting builds an additivemodel
in a sequential, stage-wise fashion. The process begins with an initial constant
prediction, ŷ(0), and each subsequent iteration t fits a new, typically shallow
decision treeht to the negative gradient - or pseudo-residuals - of a differentiable
loss function L(y, ŷ) with respect to the current predictions [241]:

r
(t)
i = − ∂L(yi, ŷ)

∂ŷ

∣∣∣∣
ŷ=ŷ(t−1)(xi)

. (3.36)

The full ensemble is then updated by adding the contribution of the new tree,
scaled by a learning rate η [241]:

ŷ(t)(x) = ŷ(t−1)(x) + η ht(x). (3.37)

The learning rate, η ∈ (0, 1], is a key parameter for regularization. Smaller
values of η reduce the influence of each individual tree, improving the gen-
eralization performance of the model at the cost of requiring a larger number
of boost iterations to converge. This sequential process gradually corrects the
errors of the previous iterations, resulting in a highly accurate predictive model.
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Figure 3.16 visually summarizes the architectural differences between bagging
and boosting.

(a) Boosting (b) Bagging

Figure 3.16: Comparison of boosting and bagging.

Modern, highly optimized implementations of gradient-boosted trees include
XGBoost [242], LightGBM [243], and CatBoost [244]. Although all three
share the same core sequential learning process, they introduce distinct innova-
tions to address key challenges in scalability, regularization, and data handling.
XGBoost frames each boosting iteration as the minimization of a regularized
objective function. At step t, a new tree ft is added to the model by minimizing
[242]:

L(t) =
n∑

i=1
L

(
yi, ŷ(t−1)(xi) + ft(xi)

)
+ Ω(ft), (3.38)
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where the regularizer Ω(f) = γT + λ
2

∑T
j=1 w2

j penalizes both the number of
leaves T and the magnitude of the leaf weights wj . By taking a second-order
Taylor expansion of the loss L, an approximate objective is obtained [242]:

L̃(t) =
n∑

i=1

[
gift(xi) + 1

2 hift(xi)2
]

+ Ω(ft), (3.39)

with gradients gi and Hessians hi evaluated at the current predictions. This
formulation allows for highly efficient, parallelizable split-finding.

Expanding on this emphasis on efficiency, LightGBM incorporates two inno-
vative methods for managing extremely large datasets [243]. Gradient-Based
One-Side Sampling (GOSS) strategically reduces the number of instances by
keeping those with significant gradients and randomly selecting from the re-
maining instances, thereby preserving the most informative data points for
identifying splits [243]. At the same time, Exclusive Feature Bundling (EFB)
reduces dimensionality by merging sparse, mutually exclusive features into
single features without information loss [243].

Addressing the distinct challenge of high-cardinality categorical variables, Cat-
Boost implements a sophisticated ordered, permutation-based target encoding
[244]. For a given random permutation π of the training data, the encoding for
a categorical value at position πm is calculated using only the target values of
the preceding observations in that permutation [244]:

x̃πm
=

m−1∑
j=1

1
(
xπj = xπm

)
yπj + α

m−1∑
j=1

1
(
xπj = xπm

)
+ α

, (3.40)

where α is a smoothing prior. This method effectively leverages categorical
information while preventing the target leakage common in simpler encoding
schemes.
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Finally, the frameworks differ in their tree growth architecture, as illustrated in
Figure 3.17. XGBoost employs a level-wise strategy, growing all nodes at a
given depth before proceeding deeper [242]. In contrast, LightGBM uses a leaf-
wise approach that prioritizes splitting the leaf with the highest expected gain
[243]. CatBoost constructs symmetric or oblivious trees, where all nodes at the
same level use the same splitting criterion, a structure that is highly efficient for
both CPU and GPU execution [244].

(a) CatBoost (b) LightGBM (c) XGBoost

Figure 3.17: Comparison of split structures across the three gradient-boosting frameworks.

Adapting the powerful self-attention mechanism of transformers to non-sequen-
tial, tabular data presents unique challenges, particularly the lack of inherent
feature order and the quadratic complexity of the attention operationwith respect
to the number of features. To address this, several specialized architectures have
been proposed, including TabTransformer [245], SAINT [246], and TabNet
[247]. These models are built around the core self-attention layer, defined as
[248]:

Attn(Q, K, V ) = softmax
(QK⊤
√

dk

)
V, (3.41)

which in principle allows every feature token to attend to every other. TabTrans-
former approaches the problem by first creating robust feature representations.
Each categorical feature is converted into a learned vector embedding, and these
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embeddings are then processed by standard multi-head attention layers. It em-
ploys a self-supervised pre-training objective, where a fraction of input tokens
is masked and the network is tasked with reconstructing them, thereby learning
powerful, context-aware feature representations [245].

SAINT, on the contrary, modifies the attention mechanism itself by decompos-
ing it into two distinct stages. It first applies column-wise attention to model
inter-feature interactions within each sample [246]:

Hcol = Attn
(
XW col

Q , XW col
K , XW col

V

)
, (3.42)

followed by row-wise attention across the batch to capture inter-sample depen-
dencies [246]:

Hrow = Attn
(
SW row

Q , SW row
K , SW row

V

)
. (3.43)

This decomposition effectively models complex relationships without comput-
ing a full, dense attention matrix across all features and samples simultaneously.

TabNet introduces a third paradigm, using sequential attention with a learned
sparse mask to mimic the decision-making process of tree-based models [247].
At each of its decision steps, a differentiable masking mechanism, powered by
a Sparsemax activation, selects a small subset of the most salient features for
processing [247]:

p = Sparsemax(A h), Sparsemax(z) = arg min
p∈∆d−1

∥p− z∥2. (3.44)

This forces the model to reason about features sequentially and sparsely, making
its decision process more interpretable. These architectural innovations are
critical for computational feasibility. By avoiding a full quadratic self-attention
matrix, the training cost of these models can scale nearly linearly in the number
of samples, making them viable alternatives to traditional ensembles onmodern
hardware.
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Building on these prior models, TabPFN (Tabular Prior-Data Fitted Network)
is a transformer-based foundation model that learns to solve arbitrary small-to-
medium tabular tasks in a single forward pass by leveraging in-context learning
on millions of synthetic datasets sampled from a structural causal prior [249].
During pre-training, the model parameters ϕ are optimized to minimize the
expected negative log-likelihood of test set labels given the training context
[249]:

ϕ∗ = arg min
ϕ

E (Xtrain,ytrain,
Xtest,ytest)∼Π

[
− log qϕ

(
ytest | Xtrain, ytrain, Xtest

)]
,

(3.45)
whereΠ denotes the prior synthetic data. At inference time in a new dataset, the
network ingests both labeled training rows and unlabeled test rows as a single
sequence of tokens, applies alternating feature and sample self-attention blocks,
and outputs a predictive distribution over each test label in one shot. Concretely,
each TabPFN layer m computes [249]:

H(m+1) = MLP
(

Attnsample
(
Attnfeature(H(m))

))
, (3.46)

ensuring invariance to row and column order while efficiently capturing both
intrasample and intersample dependencies. By pretraining on diverse synthetic
tasks, TabPFN internalizes a powerful, fully learned tabular learning algorithm
that requires no gradient updates at inference and achieves state of the art
accuracy on datasets up to 10,000 rows and 500 features [235].

Automated Machine Learning (AutoML) frameworks such as AutoGluon [236]
and Auto-Sklearn [250] automate both pipeline selection and hyperparameter
tuning by searching a joint space of feature preprocessors, learners, and their
configurations to directly minimize an empirical validation loss, as illustrated
in Figure 3.18.

98



3.3 Focused Review of state of the art Technologies, Methods and Future Directions

Figure 3.18: Schematic overview of an AutoML system.

The goal is to find the optimal configuration θ∗ that minimizes the cross-
validated loss over the space of all possible pipelines, Θ:

θ∗ = arg min
θ∈Θ

1
K

K∑
k=1
L

(
y(k), f(x(k); θ)

)
(3.47)

The leading frameworks employ distinct strategies to navigate this vast search
space. Auto-Sklearn, for instance, utilizes meta-learning to warm-start a BO
over Θ [250]. It iteratively builds a surrogate model of the validation error
to intelligently select new configurations to evaluate. After identifying a set
of high-performing pipelines {θi}M

i=1, it constructs a final weighted ensemble
[250]:

F (x) =
M∑

i=1
wi f

(
x; θi

)
,

M∑
i=1

wi = 1, (3.48)

with weights wi typically derived from the cross-validation performance.

In contrast, AutoGluon employs a multi-layer stacking architecture [236]. It
begins by training a diverse set of base learners and then iteratively creates new
layers of models. Each subsequent layer l learns on an augmented feature set
z

(l)
i that includes the original features xi plus the out-of-fold predictions from
all models in the preceding layers [236]:

z
(l)
i =

[
xi, ŷ

(1)
i , . . . , ŷ

(l−1)
i

]
. (3.49)
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A final greedy selection process then chooses and weights a subset of the best
models from all layers to form the final predictive ensemble [236]:

F (x) =
M∑

m=1
wm f (lm)(z(lm); θ(lm)),

M∑
m=1

wm = 1. (3.50)

Ultimately, both the BO and multi-layer stacking strategies encapsulate the
end-to-end automation of the machine learning pipeline—from preprocessing
to ensembling—within a single, user-friendly ’fit’ operation.

Finally, a class of inherently interpretable models, GAMs, offers a powerful
alternative to black-box approaches [251]. GAMs maintain transparency by
expressing the expected response as an additive sum of feature-wise shape
functions [251]:

g
(
E[Y | x]

)
= β0 +

d∑
j=1

fj(xj), (3.51)

where g is a link function and each fj is a one-dimensional function that can be
visualized to understand the effect of each feature on the prediction. To take ad-
vantage of this structure with the predictive power of modern machine learning,
the EBM was introduced [252]. An EBM is a modern GAM implementation
that learns each shape function fj using a round-robin process with gradient
boosting. For each feature, a very shallow decision tree is fit to the current
residuals of the model, and its contribution is added to the corresponding shape
function, scaled by a learning rate. To capture higher-order effects, this can be
extended to include pairwise interaction terms [252]:

g
(
E[Y | x]

)
= β0 +

d∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk). (3.52)

This modular architecture is the key to the EBM’s value; it achieves predictive
performance that is often competitive with complex ensemble models while
remaining fully interpretable, as the contribution of each individual feature and
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pairwise interaction can be independently visualized and inspected by domain
experts.

The achievement of optimal performance from any selected algorithm is con-
tingent upon the systematic tuning of its hyperparameters. This process can be
formalized as an optimization problem [253]:

x∗ = arg min
x∈X

L
(
Dval;A(Dtrain, x)

)
, (3.53)

where A(Dtrain, x) denotes the model produced by algorithm A on training
dataDtrain with hyperparameters x, L(Dval; ·) is the loss function evaluated on
validation data Dval, and X is the hyperparameter search space. To address the
computational inefficiency of traditional hyperparameter search methods, such
as grid or random search [253, 254], a suite of advanced model-based HPO
frameworks has been developed to find optimal configurations with minimal
evaluations. These methods accelerate the discovery of optimal configurations
by intelligently sampling the search space. Frameworks such as Optuna [255],
Hyperopt [256], and SMAC3 [257] operate on the principles of BO, iteratively
building a probabilistic surrogate model of the objective function to guide the
search towards more promising regions. They differ primarily in their choice of
surrogate: Optuna and Hyperopt predominantly use a Tree-structured Parzen
Estimator (TPE), while SMAC employs a RF [254]. Optuna’s define by run
API enables the dynamic construction of complex conditional search spaces
at runtime and integrates built-in pruning strategies to stop underperforming
trials based on intermediate results [255], while Hyperopt relies on a statically
declared search graph and lacks native early stopping, requiring each trial to run
to completion [256]. SMAC3, on the contrary, uses its RF surrogate to provide
explicit uncertainty quantification and variable importance measures, and uses
ensemble-based surrogate updates along with parallel trial evaluation to effi-
ciently navigate high-dimensional andmixed-type hyperparameter spaces [257].
Empirical benchmarks demonstrate that the choice of the optimal framework
is task-dependent. For complex Combined Algorithm Selection and Hyper-
parameter tuning (CASH) scenarios, Optuna has been shown to excel, while

101



3 State of the art

Hyperopt has demonstrated superior performance in neural architecture search
tasks. Despite these nuances, these modern HPO frameworks consistently pro-
vide significant performance gains over naive search strategies, achieving higher
model quality with a fraction of the computational budget [254].

3.3.4 Bayesian Optimization

As described in Section 2.3.3, BO has emerged as a principal methodology
for optimizing expensive-to-evaluate black-box functions. The efficacy of this
sample-efficient approach hinges on the interplay of its two core components:
the probabilistic surrogate model and an acquisition function. This section
details the state of the art choices for these two components, beginning with an
analysis of the surrogate models.

The most widely used surrogate model in BO is the GP, a non-parametric model
that defines a prior distribution over functions [115]:

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (3.54)

where m(x) denotes the mean function and k(x, x′) represents the covariance
function, also known as the kernel function, which incorporates assumptions
regarding the smoothness of the function. The behavior of the GP is governed
by its kernel, which can be broadly categorized as isotropic or anisotropic. The
isotropic kernel depends solely on the Euclidean distance between the points,
∥x − x′∥. A frequently encountered example is the squared exponential RBF
kernel [258]:

kiso(x, x′) = σ2 exp
(
−∥x− x′∥2

2ℓ2

)
, (3.55)

where a single length-scale parameter, ℓ, controls the smoothness across all
dimensions. For problems where input dimensions have differing sensitivities,
anisotropic kernels are more appropriate. A typical anisotropic variant of the
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RBFkernel introduces a diagonalmatrix of length-scales,L = diag(ℓ1, . . . , ℓd),
allowing the model to capture more nuanced relationships [258]:

kaniso(x, x′) = σ2 exp
(
− (x− x′)⊤L−1(x− x′)

2

)
. (3.56)

Isotropic kernels typically suffice in settings with modest dimensionality, but
anisotropic kernels can capture more complex parameter interactions in real-
world processes, particularly if some input dimensions have a greater influence
on the objective than others [111].

AlthoughGPs are commonly used for BO [110, 105], alternative non-parametric
models, especially those grounded in tree ensembles, have demonstrated ef-
ficacy as substitutes. RF, for example, serve as surrogate models within
frameworks such as SequentialModel-Based AlgorithmConfiguration (SMAC)
[259]. Although RFs do not provide a closed-form posterior distribution such
as GPs, uncertainty can be approximated by the empirical variance of the pre-
dictions across the different trees in the ensemble [260]:

µ̂RF(x) = 1
B

B∑
b=1

fb(x), σ̂2
RF(x) = 1

B − 1

B∑
b=1

(
fb(x)− µ̂RF(x)

)2
, (3.57)

where fb(x) is the prediction of the b-th tree. A different strategy is employed
by the Tree-Structured Parzen Estimator (TPE), a model-based optimization
approach widely used in automated hyperparameter tuning [113]. Instead of
directlymodeling the conditional distribution p(y|x), TPE inverts the generative
process to the model p(x|y). It partitions the observed data based on a quantile
γ of the objective function values into a "good" set and a "bad" set, and then
fits two separate non-parametric density estimators, l(x) and g(x), to each
set respectively. The acquisition function, which maximizes the Expected
Improvement, is then proportional to the ratio of these densities. The next point
to evaluate, x∗, is chosen as [261]:

x∗ = arg max
x

l(x)
g(x) . (3.58)
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By sampling from regions where the density of high-performing points is large
relative to the density of low-performing points, TPE efficiently navigates com-
plex and conditional parameter spaces, making it a powerful alternative to
kernel-based methods.

To illustrate the different trade-offs between the surrogate models, Figure 3.19
juxtaposes their posterior surfaces. The chosen ground-truth objective is a
sinusoidal function, designed to test the flexibility of each model:

f(x1, x2) = sin(8x1) + sin(1.5x2). (3.59)

The high frequency along the x1 axis and the low frequency along the x2 axis
challenge each surrogate’s ability to adapt to different length scales. The com-
parison reveals how different model assumptions interact with these landscape
characteristics. The isotropic Gaussian process, constrained to a single length
scale, fails to capture the rapid oscillations along the x1 axis and consequently
oversmooths the landscape. In contrast, the anisotropic GP adapts by learning
separate length scales for each dimension, allowing it to accurately model the
high-frequency structure in x1 while preserving the smoothness along x2. Its
posterior mean aligns closely with the ground truth, particularly in data-rich
regions. Tree-based surrogates offer different representations. The RF captures
the non-stationary features without assuming global smoothness, successfully
reproducing the function’s overall structure. However, it introduces piecewise
constant artifacts and lacks a principled, built-in measure of predictive uncer-
tainty, which can be problematic for acquisition functions that rely on variance.
The TPE visualizes a completely different concept. Its density ratio heatmap
does not reconstruct the objective surface.

After defining a surrogate model, BO employs an acquisition function, α(x;D),
to strategically determine the utility of sampling a new point x. Several strate-
gies exist to balance the exploration-exploitation trade-off, with three being
particularly common.
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(a) Ground-truth objective

(b) Isotropic GP surrogate (c) Anisotropic GP surrogate

(d) RF surrogate (e) TPE surrogate

Figure 3.19: Posterior mean surfaces of four surrogate models compared with the true objective.
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The most widely used is Expected Improvement (EI), which quantifies how
much improvement over the current best observation, f(x+), can be expected
at a new point [110]:

αEI(x) = E
[
max{0, f(x+)− f(x)}

]
(3.60)

A simpler and more exploitation-focused alternative is the Probability of Im-
provement (POI), which calculates the probability that a new point will yield a
better value than the current incumbent [105]:

αPoI(x) = Pr
[
f(x) ≤ f(x+)

]
= Φ

(
f(x+)− µ(x)

σ(x)

)
(3.61)

A third prominent strategy, the Upper Confidence Bound (UCB), makes the
exploration-exploitation trade-off explicit through a tunable parameter κ. The
function directs the search by balancing the surrogate’s mean prediction, µ(x),
with its uncertainty, σ(x) [262]:

αUCB(x) = µ(x)− κ · σ(x) (3.62)

where a larger κ encourages more exploration by prioritizing regions of high
uncertainty.

Figure 3.20 shows the three acquisition functions after fitting the same anisotropic
GP to just ten training points, illustrating their distinct exploration-exploitation
strategies. EI, which combines the predicted mean with uncertainty and scales
the gain by the survival function, produces a tight, elliptical hotspot. This
peak is centered near the best-observed region, and the function’s value quickly
drops to zero in areas where no substantial improvement is expected. In con-
trast, the POI exhibits a markedly wider area of interest. Because POI ignores
the magnitude of improvement and considers only the probability of exceeding
the incumbent, any point with a non-vanishing chance of being better receives
a high score. This results in a less selective surface that is more broadly ex-
ploratory. The UCB, shown with an exploration factor of κ = 1, offers a
tunable compromise. Its surface, defined by µ(x) + σ(x), still follows the
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predicted ridges of the surrogate, but the one-sigma bonus keeps the regions of
high uncertainty elevated. UCB therefore provides a middle ground: it is more
exploratory than the focused EI but more selective than the broad POI.

(a) EI (b) POI

(c) UCB

Figure 3.20: Acquisition landscapes with ten training points.

Although the iterative loop of surrogate modeling and acquisition function op-
timization is the core of BO, its performance is influenced by the initial set of
data points used to train the first surrogate model. This initial sampling phase
provides the algorithm with its first view of the objective landscape. To investi-
gate this step, a preliminary study for this dissertation was conducted by Greif
et al. [3]. The study was designed to compare the impact of different initial
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sampling strategies on BO performance across both benchmark mathematical
functions. The following analysis details the key strategies investigated, specifi-
cally Latin Hypercube Sampling (LHS), Fractional Factorial Design (FFD), and
a baseline with no structured initial sampling, and presents the main findings of
this comparative study.

BO may proceed without any dedicated initial design by drawing the very first
sample directly from the acquisition function. In this ’cold start’ scenario, every
point queried by the optimizer serves a dual purpose: it both explores unknown
regions of the space and exploits promising areas indicated by the current surro-
gate. The practical effectiveness of this approach hinges on dynamically tuning
the exploration-exploitation balance of the acquisition function, for instance
by assigning a higher exploration weight during the early iterations to ensure
adequate coverage. A traditional method employed is Factorial Designs, aiming
to systematically investigate the extremities of the design space to assess both
main effects and interactions among parameters. In a complete factorial design,
represented as 2d, each possible combination of d factors is assessed at two
levels, producing experimental runs 2d. When there are numerous factors, a
FFD presents a cost-effective option by selecting a subset of these runs [82].
This reduction is achieved by confounding higher-order interactions that are
assumed to be negligible, allowing the study to focus on the most significant
effects with fewer trials [263]. The most common strategy in modern computer
experiments is LHS, a stratified sampling method that ensures that the full
range of each input parameter is evenly represented [87]. For a design with
N samples and d dimensions, each dimension is first stratified into N equally
probable intervals. Then, for each dimension j, a random permutation πj of the
integers {1, . . . , N} is generated. The i-th sample point xi is then constructed
such that its j-th coordinate is sampled from the interval corresponding to the
i-th element of the permutation for that dimension [87]:

xi = (xi1, xi2, . . . , xik) , where xij ∼ U

[
πj(i)− 1

N
,

πj(i)
N

]
(3.63)
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This procedure guarantees that when the design is projected onto any single
dimension, each of the N intervals contains exactly one sample point. This
avoids the sample clustering common in simple random sampling and ensures
a more efficient exploration of the parameter space, leading to a more accurate
initial surrogate model.

The key finding from Greif et al. [3], illustrated for a representative case in
Figure 3.21, is that the choice of initial design has a significant impact on
optimization performance.

Figure 3.21: Sampling-iteration effects on performance for a representative example. Taken from
Greif et al. [3]

Notably, performance discrepancies are most pronounced within the first 30
iterations, where optimization trajectories diverge significantly before converg-
ing in later stages. Although no single strategy proved universally superior, as
the relative performance of methods such as LHS and FFD is highly depen-
dent on the specific characteristics of the objective function, clear differences
in convergence speed were observed. Crucially, in the vast majority of test
cases, initiating the search with a structured design provided a warm start lead-
ing to statistically significant performance gains within approximately the first
30 iterations when compared to a cold start scenario with no initial sampling.
However, the study also demonstrated the robustness of the BO process. Over
a longer horizon, typically by the 100th iteration, the adaptive nature of the
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acquisition function was able to compensate for a poor or non-existent initial
design, with all strategies ultimately converging to a similar performance level.
The performance difference between the strategies can be explained by their
different approaches to explore the design space, as visualized in Figure 3.22.

Figure 3.22: Comparison of FFD and LHS sampling strategies on the unit cube (d=3).

An FFD concentrates its sample points at the corners of the unit hypercube,
systematically evaluating combinations of extreme factor levels. This approach
is particularly valuable when preliminary insights, or even domain intuition,
suggest that high-value regions may lie near particular boundaries or when
assessing multifactor interactions is essential to refining the search domain. In
contrast, LHS provides a more globally representative, space-filling coverage,
ensuring that each region is sampled equally.

3.3.5 XAI and Parameter Influence Analysis

To move beyond the predictive accuracy of complex black-box models and into
understanding their internal logic, a variety of XAI and parameter influence
analysis techniques will be introduced. Although the number of available
methods is large, they can be organized into a taxonomy based on the type
of insight they provide [264], as illustrated in Figure 3.23. This taxonomy
distinguishes between four primary approaches.
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• Marginal Effect Plots: These techniques represent the average functional
correlation between one or two attributes and the prediction made by the
model [265]. They separate the impact of a specific feature by either
integrating across the distribution of other attributes or by summing up
local gradients, thereby uncovering the overall tendency of the feature’s
impact.

• Global Feature Importance: This category of methods provides a sum-
mary ranking of each feature’s overall contribution to the model’s pre-
dictive performance [89]. By measuring the drop in model accuracy
when a feature is shuffled or by aggregating local attribution values, these
techniques identify the most influential drivers of the model’s decisions
across the entire dataset.

• Local Additive Attributions: These approaches elucidate individual pre-
dictions by breaking themdown into an aggregate of additive components,
each corresponding to an input feature [266]. They respond to the inquiry,
"What led to this particular prediction?" by attributing credit or criticism
to each feature’s value for the specific instance, thereby offering detailed,
instance-specific transparency.

• Clustering and Grouping: These techniques address explanation hetero-
geneity by identifying subgroupswithin the datawhere themodel exhibits
systematically different behaviors [267]. By clustering instances based
on their local explanations, these methods can uncover interaction effects
or conditional relationships that are obscured by global analyses.

An established method for elucidating black-box models involves assessing the
marginal impact of an input feature on the predicted result. Partial Dependence
Plots (PDPs) are a primary method for this analysis, illustrating how the model
output changes, on average, as one or two features are varied, while marginal-
izing the influence of all other features [241]. Given a trained model f̂(x), the
partial dependence function for a subset of features S is defined as the expected
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Figure 3.23: Taxonomy of interpretability methods.

value of the model output, where the expectation is taken over the marginal
distribution of the complementary features, C [241]:

f̂S(xS) = EXC

[
f̂(xS , XC)

]
=

∫
f̂(xS , xC) pC(xC) dxC .

In practice, this integral is intractable and is estimated using a Monte Carlo
approach by averaging the model’s predictions over the empirical distribution
of the training data. For a single feature xj , the partial dependence at a specific
value v is thus approximated by [241]:

f̂{j}(v) ≈ 1
N

N∑
i=1

f̂(xj = v, x(i)
C ),

where x(i)
C represents the values of all other features for the i-th observation

in the data set. By plotting the estimated f̂{j}(v) against different values of v,
the resulting curve visualizes the average marginal effect of that feature on the
output of the model. This can reveal whether a feature has a positive or negative
influence and whether its effect is linear, monotonic, or exhibits more complex
patterns such as thresholds or saturation points. Figure 3.24 shows a simple
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Figure 3.24: Example of a PDP Plot.

example of a PDP plot in which a roughly linear positive influence, the higher
values of the feature increase the predicted output of the model.

While PDPs offer an intuitive global summary, their reliance on averaging
can be a limitation. By presenting only the mean effect, they may obscure
heterogeneous relationships or strong interaction effects present in the data.
To address this, individual conditional expectation (ICE) graphs disaggregate
this average by displaying a separate prediction curve for each individual data
instance [265]. For a given instance i, an ICE curve is produced by altering the
feature of interest, xj , and keeping all other features, x(i)

C , fixed at their observed
values. The resulting bundle of curves reveals the conditional relationships
specific to the instance. The PDP is simply themean of all individual ICE curves.
The primary utility of ICE plots comes from analyzing the variation within
this bundle. If all curves are roughly parallel, this suggests a homogeneous
feature effect with minimal interactions, which means that the PDP is a reliable
summary for the entire data set. In contrast, if the curves diverge, cross, or
form distinct clusters, there is strong evidence of interaction effects, indicating
that the influence of xj depends on the values of other features. In such cases,
the PDP alone would be misleading, whereas the ICE plot correctly reveals the
underlying heterogeneity in the model’s behavior. The key insight is gained by
analyzing the geometry of the bundle. If the curves are parallel, it indicates
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Figure 3.25: Example of an ICE Plot.

the absence of interaction effects, meaning the feature’s influence is primarily
a homogeneous main effect and the PDP is a reliable summary. However, if
the curves are non-parallel, cross, or form distinct clusters, it provides strong
evidence of higher-order interaction effects. This heterogeneity signifies that the
PDP’s global averagemasks the true conditional nature of the feature’s influence,
and the model’s behavior can only be understood at a local or subgroup level.
An example is shown in Figure 3.25. The plot shows the individual ICE curves
for a subset of data instances, with their average, the PDP curve, overlaid as a
bold red line.

In engineering contexts, marginal effect plots such as PDP and ICE plots serve
as powerful tools for model validation and knowledge discovery. A primary
application is to verify that the learned relationships of a model align with
established domain knowledge. For example, in a study on injection molding
quality control, PDPs visualized themarginal effects of machine settings such as
injection pressure and melt temperature on the predicted defect rate, supporting
the physical plausibility of the learned relationships [268]. The same study used
ICE plots to examine heterogeneity at the instance level, delineating sample-
specific control ranges and revealing interaction effects that are obscured by
PDP averages [268].
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Whilemarginal effect plots visualize the shape of a feature’s influence, a comple-
mentary global approach, Global Sensitivity Analysis, quantifies the magnitude
of each input’s contribution to the model’s output variance. Global sensitivity
analysis evaluates how each input variable affects the variability of the model’s
output, considering the model as a function y = f(x1, . . . , xd), where there
are d inputs. The most prominent variance-based method is the calculation
of Sobol indices [89]. This technique provides a detailed and interpretable
decomposition, estimating first-order indices that represent the fraction of vari-
ance caused by a single feature acting alone, as well as total-effect indices that
account for the variance caused by a feature’s interactions with all other inputs.
The core principle of variance-based sensitivity analysis is the decomposition
of the total variance of the model output, Var(Y ), into fractions that can be
attributed to each input feature and their interactions. The Sobol method, based
on the Hoeffding-Sobol decomposition, provides a formal way to achieve this
[89]. The most fundamental measure is the first-order Sobol index, Si, which
quantifies the main effect of an input Xi. It represents the fraction of output
variance explained by varying Xi alone, while averaging the uncertainty of all
other inputs [89]:

Si =
Var

(
E[Y | Xi]

)
Var(Y ) . (3.64)

A large Si indicates that Xi is highly influential on its own. After accounting
for all first-order effects, the remaining variance is due to interactions between
variables. The second order index, Sij , measures the variance contribution
from the interaction between Xi and Xj that is not captured by their individual
main effects [89]:

Sij = Var(E[Y | Xi, Xj ])−Var(E[Y | Xi])−Var(E[Y | Xj ])
Var(Y ) . (3.65)

This concept extends to higher-order interactions among larger subsets of fea-
tures. For practical purposes, the most comprehensive and useful measure is
often the total-effect index, STi . It captures the full contribution of an input
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Xi, including its first-order effect and all higher-order interactions in which it
is involved. It is efficiently calculated as [89]:

STi
= 1−

Var
(
E[Y | X∼i]

)
Var(Y ) , (3.66)

where X∼i denotes the vector of all input features except Xi. Intuitively, STi

quantifies the expected output variance that would remain unexplained if the
value of Xi were known. Therefore, a value of STi close to zero indicates that
Xi is a non-influential feature and could potentially be fixed or removed from
the model without loss of information.

The estimation of Sobol indices for a black-box model is typically performed
using Monte Carlo or quasi-Monte Carlo methods. These approaches involve
evaluating the model f at many thousands of input points, sampled from their
respective distributions, to numerically approximate the required expectations
and variances. Efficient algorithms, often based on clever resampling tech-
niques, have been developed to compute first-order (Si) and total effect (STi

)
indices with reasonable computational cost [269]. The output of the analysis is
a set of indices that fully decomposes the model’s output variance. The sum of
the first-order indices,

∑
i Si, is less than or equal to one, with the remainder

attributed to the cumulative effect of all higher-order interactions. From an in-
terpretability perspective, this variance decomposition provides a powerful and
intuitive global summary of the model’s behavior. The first-order indices, Si,
rank the input features by their direct influence, allowing engineers to identify
the primary drivers of output variance. For example, in a thermal simulation
model, Sobol analysis might reveal that material thermal conductivity and ambi-
ent temperature are the dominant factors, while other parameters have negligible
main effects. Furthermore, the difference between a feature’s total effect index
and its first-order index (STi − Si) quantifies its involvement in interactions.
A large gap indicates that a feature’s influence is highly context-dependent and
coupled with other variables, providing insights for robust design. Figure 3.26
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provides an example visualization of these results, allowing a direct compari-
son of the main effect of each feature versus its total contribution, including all
interactions.

Figure 3.26: First-order and total Sobol indices of an example model.

Figure 3.26 shows an example of a synthetic model. The bar chart decomposes
the total Sobol index of each input Xi into its first-order contribution Si and
the residual interaction contribution STi − Si. The plot reveals that X1 and
X2 dominate the variance of the output through strong main effects, while X3

shows only a modest main effect but a substantial share of interaction, indicating
that its influence arises primarily through synergistic terms with other variables.
In contrast, X4 and X5 show negligible indices, suggesting that they could be
fixed or removed without materially affecting the model variance. However, it is
important to acknowledge the assumptions and limitations of this method. The
resulting Sobol indices are conditional on the chosen probability distributions
for the input features, and their values can change if these distributions are
modified. The standard formulation also assumes that the model is a determin-
istic function. Evaluating models exhibiting intrinsic stochasticity necessitates
extensions to the methodology. Additionally, determining the indices can pose
computational challenges, since the volume of model simulations needed for
reliable estimates may escalate swiftly with increasing input dimensions. In
engineering design and process control, a primary application of Sobol analysis
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is to identify and rank the most important parameters that govern a system’s
behavior.

For example, in a lifecycle assessment of an AM process, first-order Sobol
indices were used to rank input parameters according to their contribution to
the variance in environmental impact [270]. Similarly, for an injection molding
simulation, the Sobol analysis of a surrogate model quantitatively identified
which process and material parameters explained the largest share of variance
in pressure output, thus informing quality control strategies [271]. Beyond
ranking these individual main effects, Sobol analysis is crucial for uncovering
and quantifying interaction effects. By computing total-effect indices, which
capture a feature’s main effect plus all variance from its interactions, engineers
can gain a more complete picture of the system. A large gap between a feature’s
total effect index (STi ) and its first-order index (Si) is a clear indicator that the
feature’s influence is highly context-dependent and coupledwith other variables,
an insight that is critical for robust design. Furthermore, this detailed variance
decomposition serves as a powerful tool formodel validation and debugging. If a
feature known to be physically critical exhibits a lowSobol index, it may indicate
a flaw in the model’s learned relationships or highlight that the training data
did not cover the feature’s influential range. Conversely, if an ostensibly minor
feature displays high sensitivity, it prompts necessary scrutiny into whether
this represents a genuine physical effect or a spurious artifact learned by the
model. This allows Global Sensitivity Analysis to be used as a "sanity check" to
ensure the model’s behavior aligns with domain knowledge. Ultimately, Sobol
sensitivity analysis provides a rigorous, quantitative framework for decomposing
model uncertainty, moving beyond simple feature rankings to offer a detailed,
global perspective on what drives the variability of a model’s output [89, 269].

While global methods such as PDPs and sensitivity analysis explain a model’s
average behavior, a common need in engineering is to understand a specific
prediction: "Why was this outcome predicted for this particular input?" SHAP
is a widely recognized model-agnostic method that tackles the problem by
offering localized explanations rooted in cooperative game theory. In the context
of a specific prediction, SHAP allocates an importance score to each feature,
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reflecting the degree to which the feature’s value influenced the deviation of
the prediction from a baseline expectation [266]. The fundamental concept
involves considering a model’s features as participants in a game, with the aim
of equitably allocating the ’payout’. This payout represents the discrepancy
between a particular prediction f(x) and a baseline expectation, denoted as
ybase = E[f(X)], among these features. For each feature i, SHAP computes
a value, ϕi, which quantifies its role in the deviation of the prediction, ∆y =
f(x) − ybase. These contributions, called Shapley values, are determined by
taking the mean of the marginal contribution of a feature over all possible
combinations of the remaining features. The definition of the Shapley value for
feature i is [266]:

ϕi =
∑

S⊆{1,...,d}\{i}

|S|! (d− |S| − 1)!
d!

(
fS∪{i}(x)− fS(x)

)
, (3.67)

where the term fS∪{i}(x)−fS(x) represents the additional value caused by the
feature i when added to a coalition of features S. The formula computes ϕi as
the weighted average of this marginal contribution on every possible coalition
S that does not include i. This formulation is distinctive because it stands as
the sole attribution approach that concurrently meets a range of desirable the-
oretical characteristics. Most importantly, it guarantees efficiency, where the
individual feature attributions, ϕi, sum exactly to the total prediction deviation.
This allows any prediction to be expressed as a simple additive explanation
model: y = ybase +

∑
i ϕi.Furthermore, the formulation guarantees symmetry

by allocating equal significance to features that have an identical contribution
to the model’s output, while also applying the null effect by attributing zero
significance to features without any influence. Although the exact calculation of
Shapley values is NP-hard due to its exponential complexity, the SHAP frame-
work provides highly efficient approximation algorithms, such as TreeSHAP for
tree-based ensembles and KernelSHAP as a model-agnostic alternative [266].
The set of Shapley values, {ϕi}, for a single prediction can be visualized to
provide a clear and additive explanation. A common visualization is the SHAP
decision plot, shown in Figure 3.27. This graph illustrates the cumulative trajec-
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Figure 3.27: Example SHAP Decision Plot.

tory of the SHAP values. It begins with the baseline expectation of the model,
denoted ybase, and gradually incorporates the contribution of each individual
feature until it reaches the final prediction f(x). The plot makes it immediately
clear not only the magnitude and sign of each feature’s contribution but also
their hierarchical impact. In the example, the material type feature provides
a minor positive contribution, shifting the prediction slightly from the base-
line, which is largely offset by the subsequent negative impact of the pressure.
The final, largest positive influence of temperature brings the path to the final
output value. Aggregating SHAP values across the complete dataset advances
our understanding of the model’s global behavior beyond merely interpreting
individual predictions. The global significance of a feature can be quantified by
calculating the mean absolute value of its SHAP estimates across all instances.
In this context, the SHAP beeswarm plot, as illustrated in Figure 3.28, is used.
This figure illustrates the distribution of SHAP values across various features,

Figure 3.28: Example of a SHAP Beeswarm Plot.

120



3.3 Focused Review of state of the art Technologies, Methods and Future Directions

with each point symbolizing an individual instance. The horizontal location of
the dot signifies the influence of the respective feature on the prediction, and
its color reflects the original value of the feature. This visualization reveals
complex relationships: the example shows a clear monotonic trend for Temper-
ature, where low values have a negative impact and high values have a positive
impact. Pressure shows an inverse relationship, while the clustered nature of
Material Type’s SHAP values suggests a non-linear, categorical effect. This
dual local-global capability makes SHAP a highly versatile tool in engineering.
Analysts can use a decision plot to diagnose a single surprising prediction and
then use a summary plot to validate that the model’s overall logic aligns with
domain knowledge. However, it is critical to acknowledge a key methodolog-
ical caveat: Standard efficient implementations such as TreeSHAP are based
on the assumption that the features are independent. In the presence of highly
correlated features, this can lead the model to attribute importance to unrealistic
data combinations, potentially producing misleading explanations. Addressing
this requires more computationally intensive methods that account for feature
dependencies. Despite this limitation, the strong theoretical properties and the
intuitive and additive nature of the explanations have established SHAP as a
foundational method for the interpretability of the local model [266]. In scien-
tific and engineering applications, SHAP is a primary use for model validation
and knowledge discovery. For example, in materials engineering, a study that
predicted the fatigue strength of a steel alloy used SHAP to interpret the re-
sults [272]. The analysis confirmed that the model’s learned relationships were
consistent with established metallurgical principles, such as specific tempering
temperatures and alloying elements that improve durability, and provided quan-
titative insight into how much each factor contributed to individual predictions.
This demonstrates how SHAP can help verify that a black-box model is learning
physically plausible patterns. Beyond model validation, SHAP is a powerful
tool for process diagnostics and control. SHAP was employed in an injection
molding process to analyze the influence of transient process parameter vari-
ations on the ultimate quality of the component [273]. By visualizing SHAP
value distributions, engineers could identify which segments of the process,
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such as the injection speed profile or cooling time, were most critical in di-
recting the model to predict defects, thereby pinpointing areas for adjustment.
This diagnostic capability extends to broader analyses, such as interpreting the
importance of features in industry-wide productivity models [274].

Although the precedingmethods typically analyzemodel behavior one feature at
a time, a complementary approach seeks to understand the model by identifying
distinct behavioral patterns across the entire dataset. The foundational concept
stipulates that a globally intricate black-boxmodel can frequently be represented
as an ensemble of simpler, easier-to-understand local models, with each one
aligning with a particular operational condition or data subgroup. A straightfor-
ward application of clustering for model interpretation is to analyze the model’s
output space. For a model that produces complex, high-dimensional outputs,
this involves partitioning the set of output vectors into a predefined number of
clusters, K. Each resulting cluster can be interpreted as a different operational
mode or type of system failure [275]. By examining the input features that are
characteristic of each output cluster, engineers can infer the conditions that lead
to specific types of system behavior, which is invaluable for design optimization
and scenario analysis. Amore sophisticated strategy is to cluster the explanation
space, which groups the data instances according to how the model arrived at
its predictions [276]. After computing the local attributions for many instances,
each instance is represented by its SHAP vector, ϕ(n) [276]. Clustering these
vectors in the explanation space can uncover different decision-making regimes
within the model [277]. A focused variant of this approach is clustering of ICE
curves. By grouping curves with similar shapes using an appropriate distance
metric, this technique can automatically detect and visualize interaction effects
[265]. The result might reveal that a feature has a positive influence for one
subgroup of the data but a negative influence for another, providing insights
hidden by global analyses.

Figure 3.29 provides an illustration of this process. In the figure, individual
data instances are represented by their SHAP values and projected onto a
two-dimensional explanation space. The clustering algorithm automatically
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Figure 3.29: Example of clustering instances in explanation space, with each point projected onto
its two most important SHAP dimensions.

discovers two well-separated groups: Cluster A, where feature 1 has a high
positive contribution, and cluster B, where feature 2 is dominant.

Clustering algorithms vary widely, from straightforward partitioning techniques
to more adaptable probabilistic approaches. First, the k-means algorithm func-
tions by iteratively assigning each of the N data points to one of the predefined
clusters k [278]. The objective of the algorithm is to identify the set of clusters
C = {C1, . . . , Ck} that reduces the total sum within the cluster of the squared
euclidean distances to the centroids of the cluster µk [278]:

arg min
C

k∑
k=1

∑
xi∈Ck

∥xi − µk∥2. (3.68)

Due to its computational efficiency and the straightforward interpretability of
its results, k-means is one of the most widely used clustering approaches in the
manufacturing domain [279]. It is often used as a foundational step in larger
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data analysis pipelines. For example, a study used k-means to create an initial
structured datamodel from rawmachine sensor readings, whichwas then passed
to downstream data mining and scheduling algorithms [275]. However, despite
its widespread use, the reliance of k-means on the euclidean distance assumes
that clusters are spherical, and its performance can be sensitive to the initial
placement of centroids. As confirmed by recent reviews, these assumptions can
be a limitation when faced with more complex data distributions [279].

An alternative approach is hierarchical clustering, which builds a nested tree of
clusters without requiring the number of clusters to be specified in advance. The
widely used form, agglomerative clustering, initiates the process by considering
each data point as an individual cluster, progressivelymerging the nearest cluster
pairs [280]. The methodology for measuring inter-cluster distance is guided by
a linkage criterion. Among the prevalent criteria are single linkage, complete
linkage, and Ward’s method, which aims to minimize the overall growth in
within-cluster variance. In the case of single linkage, the distance between two
clusters A and B is defined as [280]:

dsingle(A, B) = min
x∈A, y∈B

d(x, y), (3.69)

where d(x, y) denotes the distance between two points x and y. For complete
linkage, the distance is defined as [280]:

dcomplete(A, B) = max
x∈A, y∈B

d(x, y). (3.70)

Ward’s method merges the two clusters that result in the minimum increase in
total variance within the cluster [281]:

∆(A, B) = |A||B|
|A|+ |B| ∥x̄A − x̄B∥2, (3.71)

where |A| and |B| are the number of points in clusters A and B, and x̄A and
x̄B are their respective centroids. This flexibility makes the method highly
suitable for manufacturing applications where natural groupings exist but are
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not known beforehand. For example, hierarchical clustering has been used to
group product CADgeometries to automate the selection of themost appropriate
manufacturing technology, showing a high degree of agreement up to 90% with
expert evaluations [282]. In production optimization, it has also been applied
to tool planning in flexible manufacturing systems, where jobs are grouped by
their tooling requirements to minimize costly machine changeovers [283].

A more powerful and flexible approach is offered by Gaussian Mixture Models
(GMMs), which models the data as a weighted sum of multivariate Gaussian
distributions [284]. Unlike k-means, which is based on euclidean proximity and
assumes spherical clusters, a GMM allows for elliptical cluster shapes, provides
soft probabilistic assignments, and explicitly models the covariance structure
of the data. GMM defines a density function over the input space as a linear
superposition of K Gaussian components [284]:

p(x) =
K∑

k=1
πkN (x | µk, Σk), (3.72)

where πk are the mixing coefficients that sum to one, and eachN (·) is a multi-
variate Gaussian with amean vectorµk and a covariancematrixΣk. Themodel
parameters {πk, µk, Σk}K

k=1 are estimated using the EM algorithm, which was
already described in Equation 3.15. A study in tool wear monitoring demon-
strates the practical power of this approach [285]. In this work, physically
motivated features were extracted from high-frequency machine force sensor
data. The GMM was then applied to cluster these features in an unsupervised
manner to identify different tool wear states. The GMM achieved a classifi-
cation accuracy of approximately 96% in predicting the current wear phase, a
result validated on both proprietary milling experiments and a public bench-
mark dataset. The automatically discovered clusters corresponded directly to
the physical life phases of the tool, such as initial use, uniform wear, and accel-
erated end-of-life wear. The quality of a clustering solution can be assessed by
measures that balance cohesion and separation or penalize model complexity,
among which the Silhouette coefficient and the Bayesian Information Criterion
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(BIC) are widely used. The Silhouette coefficient quantifies for each object i the
degree to which it lies closer to its own cluster than to the nearest neighboring
cluster [267]. The calculation involves determining a(i), the mean distance
between point i and all other points within its cluster, alongside b(i), which rep-
resents the smallest mean distance from i to any different cluster. The silhouette
value is subsequently defined by [267]:

s(i) = b(i)− a(i)
max{a(i), b(i)} , −1 ≤ s(i) ≤ 1. (3.73)

Values of s(i) near unity indicate that the point is well matched to its cluster
and poorly matched to neighboring clusters; values near zero signify ambigu-
ous assignments at cluster boundaries; and negative values suggest possible
misclassification. By averaging these individual scores over all n data points,
one obtains the mean Silhouette coefficient [267]:

s̄ = 1
n

n∑
i=1

s(i), (3.74)

where higher values reflect more coherent and well-separated clusters. In con-
trast, the BIC provides a likelihood-based approach to model selection that
incorporates a penalty for the number of free parameters [286]. Given a statisti-
cal model fitted to dataX with maximized likelihoodL(θ̂ | X), and p estimated
parameters, the BIC is defined as [286]:

BIC = −2 ln
(
L(θ̂ | X)

)
+ p ln(n), (3.75)

wheren denotes the number of observations. In the context of Gaussianmixture
models, p includes the weights, means, and covariances of the k components.
A lower BIC indicates a preferable trade-off between goodness of fit and model
complexity. To determine the optimal number of clusters k, one may therefore
compute s̄(k) and BIC(k) across a range of candidate values. The Silhouette
approach selects the value of k that maximizes s̄, highlighting the clustering
with the highest average cohesion and separation. The BIC approach selects the
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value of k associated with the minimum BIC, favoring parsimonious models
that explain the data well. When both criteria point to the same k, confidence
in the choice increases, as it reflects both a clear geometric separation in the
feature space and an optimal balance between statistical fit and complexity. In
Figure 3.30 the three clustering methods are applied to two synthetic 2D data
sets. In panel (a), where the clusters are roughly spherical and well separated,
the three methods recover the true groupings equally well. However, in panel
(b), the data exhibit noise, anisotropy, and uneven densities. Here, k-means
and hierarchical clustering produce fragmented or misaligned clusters, while
the GMM captures the underlying structure most accurately.

(a) Simple, well-separated data points

(b) Noisy, anisotropic data points

Figure 3.30: Comparison of cluster algorithms.
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3.3.6 Robustness Testing

The robustness of a machine learning model refers to its ability to maintain
consistent and reliable performance despiteminor changes in training conditions
or input data. Therefore, a robustness check is a fundamental component of
model evaluation to ensure the generalizability and trustworthiness of the results
[287].

A primary factor that impairs the reproducibility of model results is stochastic
variance, which arises from random processes during training. These processes
include random initialization of weights, random ordering of training data, and
random splitting into training and test sets. The significant impact of this ran-
domness on model performance has been demonstrated in multiple studies.
For example, [287] showed that simply changing the random seed can affect
the consistency of the models with respect to both precision and attribution of
features. As a countermeasure, an averaging of model weights from multiple
runs was proposed, which was found to reduce performance variance by up to
72% [287]. In this approach, the random seed was treated as a tunable hyper-
parameter and it was confirmed that averaging weights from multiple training
runs with different seeds significantly stabilizes the results. The selection of
the final model after an extensive hyperparameter search represents another
potential source of insufficient robustness. Selecting the single best-performing
run carries the risk that it is a statistical outlier whose high performance is
not reproducible. To improve reproducibility, approaches combine models that
exhibit diversity in both their weights and their hyperparameters. It is reported
by [288] that a so-called hyperdeep ensemble composed of models from a
random hyperparameter search achieves state of the art accuracy and good un-
certainty calibration. This approach outperforms the conventional optimization
of a single model. Similarly, [134] emphasizes that to trust performance gains,
training must be repeated in various sources of variation, as these factors can
significantly impact the results of comparisons.

To demonstrate these effects, Figure 3.31 presents the influence of stochastic
variance on a synthetic binary classification task. The data set comprises 1,500
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rows and 20 features, of which 15 are informative. Two features are linear
combinations of these informative features, making them redundant and corre-
lated, and the remaining three features introduce noise. The class distribution is
relatively balanced. An RF classifier was trained independently for each source
of variance. During training, one source of variance was altered while the other
two were kept constant. This experiment was carried out 100 times per source,
and the histograms depict the variability in accuracy.

(a) Data split-variance. (b) Hyperparameter optimization
variance.

(c)Model-seed variance.

Figure 3.31: Histogram comparison of stochastic variance.

The robustness of a model can also be compromised by the strategies chosen
to handle outliers or missing values. Especially with complex or incomplete
datasets, dedicated tests are essential to evaluate sensitivity to these preprocess-
ing steps. The use of multiple methods to address missing data is advised by
[289] in order to facilitate a comparison of the results. Moreover, it is empha-
sized that identifying and addressing outliers plays a vital role in the analysis of
gathered data. The impact of these decisions can be quantified. For example,
the effect of different imputation strategies on a medical prediction model was
compared by [290]. This comparison revealed small but non-negligible differ-
ences in the R2 metric. It was concluded that selecting the most appropriate
imputation method requires an understanding of the missing data mechanism
and the objectives at hand.

When model interpretations serve as the basis for decisions, it is important
to verify whether different explanation techniques provide a coherent picture.
Recent work by [291] has highlighted the disagreement problem in XAI. It
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describes how popular post-hoc explanation methods often produce different
rankings of feature importance. This can lead practitioners to unknowingly rely
on misleading or contradictory explanations. In a user study, it was reported
that 84% of data scientists have encountered such inconsistencies, often resort-
ing to ad hoc heuristics to resolve them [291]. To address this issue, [291]
proposed using agreement metrics to measure the consensus between expla-
nations. Should the agreement between two valid explanation methods drop
below a specified threshold, it may suggest problems such as collinearity or data
leakage.

To perform a final robustness assessment, examining the learning curves for both
training and validation is essential to detect overfitting. Overfitting is indicated
when the generalization gap, that is, the disparity between the training error
and the validation error, substantially exceeds the intrinsic variability of the
validation error at the end of the training process [292].

3.4 Research Gap

The preceding state of the art review reveals that while data-driven optimiza-
tion is a rapidly advancing field, its application to sustainable manufacturing is
marked by several critical and persistent gaps. The analysis of both academic
literature and industrial practice highlights a disconnect between the potential of
advanced algorithms and the practical constraints of real-world manufacturing
environments. This dissertation is motivated by three primary deficiencies iden-
tified in the current landscape. A significant portion of the academic literature,
particularly studies focused on deep learning or complex simulations, implicitly
assumes the availability of large, clean datasets. This often fails to account for
the common industrial setting in which optimization is constrained by small,
costly, and error-prone data sets. The high cost of physical experimentation or
the difficulty of instrumenting legacy equipment means that many real-world
manufacturing problems are data-scarce. Adding to this issue is the widespread
lack of methodological rigor in data preparation. As evidenced by the review,
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many studies either omit preprocessing steps entirely, especially those based on
simulations where data is clean by design, or fail to report them in sufficient
detail. Generic descriptions such as data cleaning without specifying the al-
gorithms, parameters, or thresholds used are common. This gap undermines
reproducibility and ignores the fact that neglecting these foundational steps can
severely degrade the accuracy of the model and compromise the reliability of
optimization results. The review demonstrates a clear and persistent divide
between achieving high predictive or optimization performance and ensuring
that the resulting models are transparent and trustworthy. Across both academia
and industry, explainability is treated as a secondary concern, rather than a core
design requirement of the optimization system. The analysis shows that a clear
majority of documented studies and applications do not incorporate any XAI
methods at all. Of those that do, most rely on feature importance analysis. Truly
interpretable-by-design systems or those that use more advanced explanation
techniques remain exceptional cases. This indicates a lag between the advo-
cacy for XAI and its actual adoption in optimization practice. Consequently,
many state of the art systems produce black-box recommendations, hindering
user trust and the willingness of engineers to implement AI-driven strategies in
critical systems.

Synthesizing the first two gaps reveals the primary motivation for this disserta-
tion. There is currently no established, holistic framework that systematically
addresses the dual challenge of data scarcity and the need for interpretabil-
ity in the context of sustainable manufacturing optimization. The literature is
fragmented. On the one hand, there are powerful data-efficient optimization
methods, such as BO. On the other hand, there is a growing toolkit of XAI
methods. However, these are rarely co-designed. Researchers have not yet
produced a unified methodology that is simultaneously:

• Data-Efficient: Explicitly designed to work with the small sample sizes
common in industrial experimentation.

• Interpretable: Built to provide transparent, actionable insights into its
decision-making process.
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• Integrated: Combines the predictive modeling, optimization, and expla-
nation components into a single, cohesive workflow.

Addressing this gap is the central objective of this thesis. The goal is to develop
and validate an integrated, interpretable and data-efficient optimization frame-
work capable of moving beyond a purely performance-centric paradigm to one
that delivers trustworthy and actionable solutions for sustainablemanufacturing.

3.5 Summary of State of the Art

The review of state of the art, which examines academic research and in-
dustrial practice, reveals a field characterized by rapid progress but also by a
critical gap between potential and application. Research on data-driven op-
timization in manufacturing has advanced in two directions. One direction
focuses on sequential, experiment-in-the-loop search, while the other relies on
offline surrogate modeling with batch data. Decision justification increasingly
uses XAI, both through post-hoc analysis of black-box models and through
interpretable-by-design formulations. The evidence indicates consistent gains
in energy efficiency and product quality, yet the methodological reporting re-
mains heterogeneous. Data foundations such as preprocessing, handling of
missing values, and outlier treatment are often under-specified, which limits
reproducibility and robustness. Leading industrial companies such as Siemens,
Bosch and BMW report impressive successes, including reductions in energy
and maintenance costs in the range of 10 to 40% and prognostic precision
greater than 90% in predictive maintenance, which reduces scrap rates. De-
spite these quantifiable performance gains, most commercial systems operate
as opaque black boxes. Process engineers receive optimized results, but are
rarely provided with insights into the causal rationales, which hinders trust and
broad acceptance. In summary, although there are data-efficient algorithms and
a broad spectrum of XAI methods, there is a shortage of established, integrated
frameworks that systematically combine both aspects. This discrepancy defines
the primary research gap that this dissertation addresses.
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The methodology developed in this work is designed as an integrated, multi-
stage process that ensures a systematic procedure from the problem statement
to the validated solution. Figure 4.1 provides a schematic visualization of this
entire process. These phases provide the structure for the procedures detailed
in this chapter.

Figure 4.1: Overview of the proposed methodology.

4.1 Design Principles and Scope of the
Methodology

The state-of-the-art review in the preceding chapter identified deficiencies in
current approaches, namely, the challenges of data scarcity, the gap between
model performance and explainability, and the lack of a holistic framework that
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integrates these concerns. The methodology detailed in this chapter is designed
to address these gaps. To realize this objective in a practical and extensible
way, the implementation is guided by two principles: functional modularity
and open-source adaptation. Functional modularity dictates that each com-
ponent of the workflow, from data pre-processing to surrogate modeling and
explanation generation, is structured as a distinct module with clearly defined
inputs and outputs. This supports advances in specific elements and reduces
obstacles for industrial implementation [293]. In parallel, the principle of open
source adaptation ensures that each module, where feasible, is built upon ma-
ture community-maintained libraries, which accelerates development, reduces
vendor lock-in, and enhances reproducibility. To maintain a clear analytical
focus, the scope of this methodology is deliberately bounded. Advanced oper-
ational concerns such as long-term model drift, cybersecurity, and cross-plant
governance are considered beyond the scope of this thesis. These challenges,
while important, involve orthogonal control loops and organizational structures
that are different from the short-cycle process optimization problem addressed
here. The framework’s modular architecture, however, provides clear inte-
gration points for these capabilities to be added as future extensions without
re-engineering the core optimization pipeline.

4.2 Definition of Objectives and Scope

The first phase of the methodological framework is the definition of objectives
and scope, a practice anchored in the classical theory of DoE [294]. This initial
step is important to ensure that the optimization is well posed, relevant, and
alignedwith the strategic goals. As illustrated in Figure 4.2, this process involves
three sequential stages. It begins with the identification of the relevant product
engineering phase to contextualize the problem, followed by the determination
of the optimization goals. Finally, these objectives are explicitly aligned with
broader environmental sustainability targets.
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Figure 4.2: The process for setting objectives and scope.

4.2.1 Identification of the Relevant Product
Engineering Phase

Any manufacturing optimization task must be situated within the broader prod-
uct engineering lifecycle. In this work, the lifecycle is treated as a sequence of
eight phases. It begins with strategic planning and concept development and
continues through system level design and detail design, as codified for exam-
ple in Verein Deutscher Ingenieure (VDI) 2221 [13, 295]. After the design
focused phases, the process moves to testing and refinement and then to pilot
production, where newmanufacturing routes are validated at low volume [296].
The lifecycle culminates in production ramp up, which is characterized by steep
learning curves, and in series production, where mature process controls are in
place [297]. These eight phases are represented as the ordered set P:

P = { strategic planning, concept development, system-level design,

detail design, testing & refinement, pilot production,

production ramp-up, series production }.
(4.1)

To operationalize the set in Eq. (4.1), Table 4.1 summarizes observable indica-
tors for the four design oriented phases.
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Table 4.1: Phase identification: design phases.

Indicator Strategic plan-
ning

Concept devel-
opment

System level
design

Detail design

Typical volume No builds or
few demonstra-
tors

Few proof of
concept proto-
types

Subsystem pro-
totypes and rigs

Tens of product
level prototypes

Historical data External bench-
marks only

Limited mea-
surements and
logs

Subsystem data
and early inte-
gration logs

Component
and assembly
records

Change freedom Very high High Moderate Moderate to
low

Primary objec-
tive

Portfolio and
targets

Feasibility and
concept screen-
ing

Architecture
and require-
ment flow down

Design for
manufacture
and tolerance
allocation

Quality regime Business gates Basic engineer-
ing tests

Verification
plans at subsys-
tem level

Verification
and validation
at product level

Decision cadence Stage gate re-
views

Sprint based
concept reviews

Integration re-
views

Design freeze
and release re-
views

Table 4.2 completes the overview by listing the corresponding indicators for the
industrialization and production oriented phases.
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Table 4.2: Phase identification: industrialization and production phases.

Indicator Testing and re-
finement

Pilot produc-
tion

Production
ramp up

Series produc-
tion

Typical volume Targeted test se-
ries

Short batches at
low volume

Rising vol-
umes with
changeovers

Stable high vol-
ume

Historical data Structured test
logs

Real time log-
ging with short
history

High frequency
data with grow-
ing history

Long history
with full trace-
ability

Change freedom High Moderate Low Very low with
formal control

Primary objec-
tive

Parameter
screening and
robustness

Process valida-
tion and initial
control limits

Achieve rate
and stabilize
yield

Maintain capa-
bility and re-
duce cost

Quality regime Engineering ac-
ceptance crite-
ria

Pre series con-
trol plan and ca-
pability indices

Statistical pro-
cess control
and corrective
actions

Mature quality
system with au-
dits and compli-
ance

Decision cadence Campaign re-
views

Batch reviews
and gate ap-
provals

Daily or shift
reviews

Routine man-
agement by
metrics and
periodic audits

Using the indicators in Tables 4.1 and 4.2, the phase assignment can be formal-
ized as a maximization over the set P .

P̂ = arg max
Pi∈P

s(x,Pi), (4.2)

where s(x,Pi) counts the number of indicators that match the signals for phase
Pi. The bonds are resolved in favor of an earlier phase when design freedom is
high and data are sparse, and in favor of a later phase when production volume
is high and quality processes are mature.
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The explicit assignment of the process under investigation to a specific phase,
Pi ∈ P , is a critical step in this methodology. This classification determines the
nature of the optimization problem, including the granularity of the decisions
to be made, the type and volume of available data, and the appropriate method-
ological levers. For instance, optimization in early phases, such as system-level
design, is typically characterized by assumption-driven, low-fidelity informa-
tion and focuses on broad design space exploration. In contrast, optimization
in late phases, such as series production, benefits from high-frequency sen-
sor streams and extensive historical records, enabling a focus on fine-grained
parameter tuning for yield improvement and process stability.

4.2.2 Determination of Optimization Goals

Converting a broad performance or sustainability ambition into a mathemat-
ically tractable objective is the next step that links the qualitative problem
statement to quantitative optimization. Two families of indicators dominate
industrial practice. The first encompasses resource efficiency metrics such as
specific energy demand, material yield, and CO2 equivalent emissions. These
variables may be measured directly on the machine or, when the system bound-
aries are wider, derived from an LCA following ISO 14040/44 [45]. The
second family comprises classical key performance indicators (KPIs), for ex-
ample, tensile strength, costs, scrap rate, geometric conformity or throughput,
which safeguard economic competitiveness and often act as hard constraints on
sustainability-driven interventions.

In this setting, x ∈ Ω ⊂ Rd can be denoted as the vector of input parameters
and f : Ω → R defined as the function that assigns each setting its associated
optimization indicator. The optimization problem is then formulated as:

min
x∈Ω

f(x), (4.3)

where the feasible region Ω is limited by, for example, machine capacity, phys-
ical constraints, safety limits, and specification tolerances. The optimization
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is stated using the usual minimization convention, a maximization is handled
equivalently. Using a single objective in Equation (4.3), the search space col-
lapses into one quantitative dimension, allowing efficient convergence. When
multiple, potentially conflicting objectives are present, they must first be refor-
mulated, through weighting, utility functions, Pareto-ranking proxies, or other
aggregation schemes, into a unified objective that fits this framework. Addi-
tional performance criteria can still enter the analysis as hard constraints or a
penalty term. However, optimization algorithms focus exclusively on the pri-
mary objective, ensuring that improvements in the declared key indicator remain
interpretable and verifiable on the shop floor.

4.2.3 Alignment of Objectives with Environmental
Sustainability

The optimization task is defined by a primary operational indicator f(x), which
may target throughput, cost, quality, or energy. Alignment with environmental
objectives is ensured by co-evaluating an LCIA-compatible impact Ic(x) for a
chosen impact category c in every candidate x. The category c determines the
characterization model and its unit uc. In general,

Ic(x) = Lc

(
g(x); θc

)
[uc], (4.4)

where g(x) collects measured activity indicators and θc comprises the models
and category-specific factors. If the primary indicator is already an LCIA
endpoint in category c, no transform is required:

Ic(x) = f(x). (4.5)

To maintain methodological consistency and enable transfer across sectors,
a generalizable framework for quantifying and reducing product-level CO2e is
adopted, building on the lever-based decomposition and sub-process accounting
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proposed in the related doctoral study [298]. Consistent with the system-
boundary logic of the GHG Protocol and ISO 14067 introduced in Section 2.2,
total emissions are expressed as the sum of contributions from fuel and energy
supply, the core transformation process, machine operation, auxiliary systems,
and logistics, with negative termswhere sinks or carbon capture apply. Formally,
let S denote the set of sub-processes; then

Ic(x) =
∑
s∈S

Ic,s(x) + Ic,neg(x), Ic,neg(x) ≤ 0. (4.6)

Mitigation opportunities are organized as levers grouped into Machine Effi-
ciency, Process Efficiency, Energy Source, Operation Efficiency, Material Ef-
ficiency, and CO2 Capture and Storage. The structure is domain-agnostic and
transferable. Dominant contributors vary by context: mobile machinery is typ-
ically governed by direct fuel use and utilization patterns, whereas additive and
other manufacturing settings are driven by electricity demand, material inten-
sity, and losses arising from idle time or scheduling. Transferability is achieved
by retaining the lever taxonomy while adapting the key performance indicators
to the relevant functional unit and data sources, for example specific electricity
consumption in kilowatt-hours per part or per machine hour, appropriate grid
emission factors, and a geometry-independent measure of material intensity
based on the proportion of infill mass.

If the indicator is an activity variable, it is translated intoLCIA through appropri-
ate emission factors consistent with the IPCC guidelines [49, 299]. For energy-
based indicators with energy per functional unit E(x) in kWh, the impact
follows from the electricity-mix emission factor EFE [kg CO2-eq (kWh)−1]:

I(x) = E(x) · EFE . (4.7)

For material-based impacts a category-specific factor EF
(c)
mat [uc kg−1] is used

for the chosen impact category c:

Ic(x) = EF
(c)
mat ·mmat(x). (4.8)
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In the multi-material case with materials i and masses mi(x), the impact is the
sum of component-wise contributions:

Ic(x) =
∑

i

EF
(c)
mat,i mi(x). (4.9)

If needed, the consumed mass links to batch size and per-unit mass:

mmat(x) = nbatch ·mFU(x). (4.10)

Where closed-loop recycling or remelting applies, a credit factor γrec ∈ [0, 1]
reflects avoided primary production:

I(x) = EFmat ·
(
1− γrec

)
·mscrap. (4.11)

Regardless of the primary target, I(x) is evaluated for each candidate x to
make trade-offs explicit. If a broader set of impacts is relevant, a full LCA in
accordance with ISO 14044 [45] is preferable to streamlined estimates, since it
captures interdependencies across the value chain [300, 301].

4.3 Experiment Planning and Optimization
Strategy Selection

The performance of any optimization strategy, whether statistical or model-
based, is bounded by the observations on which it rests. Establishing a high-
quality data foundation is therefore the essential prerequisite for any successful
learning and optimization cycle. Before an algorithm can reliably recommend
set-points, detect drifts, or quantify risk, the underlying measurements must
capture the true process variability with sufficient fidelity, granularity, and
traceability. Consequently, the initial and often most consequential design
decision is related to the strategy to acquire these data. This structured process
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is illustrated in Figure 4.3. After collection, this data set subsequently undergoes
a pre-processing pipeline which will be outlined in the next section.

Figure 4.3: The data acquisition and preparation pipeline.

4.3.1 Data Representation and Acquisition Strategies

Regardless of the specific data modalities involved, which can range from high-
frequency sensor streams to qualitative quality assessments, the standardized
input for any data-driven optimization is a data matrix

X ∈ RN×d (4.12)

,where N is the number of observations and d is the number of features. Each
row typically represents a distinct experimental run or production cycle, while
each column corresponds to a specific process parameter, material property, or
environmental variable. The process of populating this data matrix is governed
by two strategic decisions: the timing of data collection and the classification
of variable types.
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The first design choice concerns the data collection protocol, which can be
either a batch campaign or a sequential regime. In a batch campaign, the
entire set of experiments Ωbatch = {x1, . . . , xN} is instantiated in a dedicated
sampling window - often a pre-series trial or maintenance shutdown - so that
the confounding of day-to-day drift is minimized and the disruption of the shop
floor is contained. The resulting data set

Dbatch =
{(

xi, yi

) ∣∣ i = 1, . . . , N
}

. (4.13)

is then used to train a model in one step. In contrast, in a sequential or iterative
regime, the data set evolves as

Dt =
{(

x1, y1
)
,
(
x2, y2

)
, . . . ,

(
xt, yt

)}
, (4.14)

in which each new configuration xt+1 is selected by an acquisition rule that
trades off exploration against exploitation [302].

The second design decision is to distinguish between input variables that can be
activelymanipulated and those that can only be passively observed. Controllable
parameters x(ctrl) ∈ Rdc are the levers that the operators can manipulate. The
observed covariates x(obs) ∈ Rdo can record the external environment, ambient
humidity, feedstock moisture, or a voltage ripple in the grid, whose influence is
real but not directly actionable. This distinction influences both modeling and
governance: controllables must be varied to avoid aliasing, whereas observed
factors require dense enough sampling so that their effect can later be partially
accounted for by regression or weighting. When time-resolved sensor streams
are available, the observational block is further enhanced by lagged and derived
variables to capture dynamic transients [303].
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4.3.2 Selection of Optimization Approach and Data
Collection Strategy

The performance of any optimization routine is bounded by the information
content of the data upon which it is based. To select the most effective strategy
for a given problem, a structured top-down decision framework is therefore
required. This framework aligns the choice of optimization architecture with
the overarching strategic objectives and the practical constraints of the manufac-
turing environment. Although the ultimate strategic goal is always to improve
a specific KPI or environmental metric, the tactical priority for a given op-
timization campaign or phase can differ. This determines the allocation of
the experimental budget and the immediate trade-off between exploitation and
exploration, leading to two distinct approaches:

• Focused Exploitation: This is the priority when the mandate is rapid,
short-term improvement. The approach is purely objective-driven, con-
centrating the experimental budget on local refinement within high-
potential regions to achieve the steepest possible performance gains.
In this mode, building a comprehensive global model is a secondary
concern.

• Strategic Exploration: This priority is chosen when establishing a robust,
long-term optimization system, for instance, during the initial investiga-
tion of a new process or when an existing dataset is insufficient. This
information-driven phase is not an end in itself but is a foundational step.
The goal is to minimize global model uncertainty by using a space-filling
experimental design to build a globally accurate surrogate model, which
then enables more effective and reliable KPI optimization over the long
term.

Figure 4.4 illustrates the practical consequences of this choice by comparing
the two approaches on the same synthetic optimization problem.
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(a) Information-driven Sampling (b) Objective-driven Sampling

(c) Objective Trajectory (Information) (d) Objective Trajectory (Objective)

Figure 4.4: Comparison of information-driven and objective-driven sampling.

The top row contrasts the resulting sampling patterns: the information-driven
strategy (a) produces a space-filling design that covers the entire domain, while
the objective-driven strategy (b) rapidly concentrates its samples in a localized
region of high potential. The bottom row shows the corresponding optimiza-
tion trajectories. The exploratory, information-driven approach (c) results in a
high-variance objective trajectory as it continues to sample globally to reduce
uncertainty, finding a good solution but not necessarily the best one within
the limited budget. In contrast, the exploitative, objective-driven approach
(d) achieves a much faster convergence to a low objective value by focusing
its search, although at the cost of leaving large regions of the design space
unexplored.
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After establishing the strategic goal, the next factor is the operational tempo,
which is determined by the latency of the target metric. This practical constraint
dictates whether data can be acquired and processed quickly enough to support
an iterative optimization loop, or if a slower, batch-based approach is necessary.
To formalize this, a taxonomy of four latency classes can be defined, ranging
from near-instantaneous (L0) to long delay (L3), as detailed in Table 4.3. The
implications of this classification are profound: an in-line, real-timemetric (L0)
permits a fully adaptive optimization strategy, whereas a long-delaymetric (L3),
such as a multi-week corrosion test, mandates a batch-only design. This single
factor, therefore, constrains the set of applicable optimization algorithms and
shapes the entire experimental protocol. However, the feasibility is bounded
by the overall horizon of the campaign. For Table 4.3, the time budget of one
week is assumed. For different time budgets, the cadence should be scaled
accordingly.

Table 4.3: Impact of target-metric latency on feasible data-collection strategy in industrial manu-
facturing.

Latency class Typical
turnaround

Feasible sampling
mode(s)

Manufacturing exam-
ples / remarks

L0 – in-line ≤ seconds Full iterative optimiza-
tion possible or batch

inline vision control,
laser triangulation

L1 – shift-scale minutes to ≤ 8 h Iterative possible if the
line can idle; small daily
batches

hardness test after heat
treatment, colorimeter
reading after paint cure

L2 – overnight 8–24 h Hybrid: nightly batch,
next-day model update;
1 iteration / day

Tensile test of heat-
treated forgings, com-
posite laminate 3-point
bend after overnight
cure

L3 – long-delay days to weeks Batch only; iterative
loop impractical

Accelerated salt-spray
corrosion of plated
parts, thermal-cycling
plus pull test of solder
joints
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With the strategic goal and operational tempo defined, the next step is to assess
the project’s tactical starting point by evaluating the available resources. This
assessment is based on twoprimary constraints: the volumeof existing historical
data and the budget for new experimentation. The interplay between these two
factors defines four different start-up classes (C0–C3), as detailed in Table 4.4.
Each class points to a specific initial action plan, guiding the choice between
beginning with immediate optimization of existing data versus prioritizing a
dedicated phase of further data collection.

Table 4.4: Start-up classes based on data availability and resource limits.

Class Available data Budget for further
Data

Typical industrial context

C0 none <5 d runs First startup of an expensivema-
chine

C1 N < 5d 5–10 d runs Ramp-up, small R&D study
C2 N > 10d N ≤ 10d Sparse legacy historians, pilot

production line
C3 N > 20d any Continuous series production

If available historical data and experimentation budget fall into different classes,
the assignment follows a conservative dominance rule that preserves feasibility
of the initial plan:

c∗ = min{ cD(N), cB(B) }, (4.15)

with c ∈ {C0, C1, C2, C3} ordered by increasing resource sufficiency. As an
override policy aligned with the intended workflow, choose c∗ = cD(N) if no
additional experiments are planned, and choose c∗ = cB(B) if a sequential
design with new experiments is mandated. When the two classes differ by
exactly one level and the expected value of information for the next runs is high,
an escalation to the higher class can be justified; otherwise the conservative
default c∗ should be retained.

Each of the previously defined start-up classes implies a distinct initial action
plan, guiding the practitioner toward the most appropriate data collection and
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optimization strategy. Table 4.5 outlines these recommended routes, providing
a clear decision framework based on the project resource constraints.

Table 4.5: Recommended next data-collection step and optimization approach conditioned on the
start-up class.

Class Data-collection step Optimization Ap-
proach

Why

C0 No dedicated data ac-
quisition is feasible.

Sequential Optimiza-
tion

No budget for offline ex-
periments; must use live
process data.

C1 If budget allows, per-
form a minimal screen-
ing design.

Sequential Optimiza-
tion or initial Offline
Optimization.

Goal is to obtain at least
one data point per factor
to inform the search.

C2 Leverage existing data;
supplement with a tar-
geted DoE if needed.

Sequential Optimiza-
tion or initial Offline
Optimization.

Sufficient data exists for
an initial landscape di-
agnosis.

C3 Prioritize analysis of ex-
isting data; new exper-
iments only if analysis
reveals gaps.

Offline Optimization
via Static Surrogates.

Value ofmodeling exist-
ing data likely exceeds
the gain from new runs.

The logic of this framework is clearest at its extremes. A project in class
C0, with no data and no experimental budget, must proceed with sequential
optimization on the live process, as building a reliable static surrogate is infea-
sible. In contrast, a project in class C3, with abundant historical data, should
first focus on exploiting this existing information through offline optimization
via static surrogates before committing resources to potentially redundant new
experiments.

For projects in classes C1 or C2, the final strategy selection is refined through
a quantitative analysis of the data and the objective landscape. This decision is
guided by a set of key metrics that characterize data density, landscape smooth-
ness, and modality, providing an evidence-based choice between surrogate
modeling and direct search, as summarized in Table 4.6.
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Table 4.6:Metrics to guide the choice between offline optimization via static surrogates and se-
quential optimization.

Metric Offline optimiza-
tion via static sur-
rogates

Sequential Opti-
mization

Range &
Thresholds

SDR ρ ≳ 10 ρ ≲ 10 Range: [0, ∞);
high if ρ > 10,
low if ρ < 10

Missingness Low to moderate Potentially high Noise fraction;
low if < 10%,
high if > 30%

Autocorrelation
length

High Low Range: [0, ∞);
high if τ > 3,
low if τ < 1

PIC Low High Range: [0, 1];
low if M < 0.5,
high if M > 0.5

Dispersion Low High Range: [0, 1];
low if D < 0.5,
high if D > 0.5

The thresholds presented in the table are based on a consensus of empirical and
theoretical results that guide a sequential decision process. First, the sample-
to-dimension ratio ρ is assessed. Offline optimization via static surrogates
is considered statistically reliable once the sample-to-dimension ratio exceeds
roughly ten design points per variable. This 10d rule is supported by the
study of [304], in which model hyperparameters were shown to stabilize when
ρ = N/d ≳ 10, while lower densities led to an inflated coefficient variance
and overfitting. If this data sufficiency condition is met, the next step is to
characterize the objective landscape using ELAmetrics. A high autocorrelation
length τ > 3 indicates a smooth, correlated response surface that is well suited
for offline optimization via static surrogates, while τ < 1 suggests severe
ruggedness that favors sequential optimization [305]. The multimodality of the
landscape is evaluated through the partial information content M(ϕ) and the
dispersion of elite solutions D. Values of M(ϕ) > 0.5 and D > 0.5 have been
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reported to coincide with frequent directional changes and a wide spatial spread
of high-quality points, both hallmarks of a multimodal surface that benefits
from the adaptive exploration of sequential optimization [306, 307]. Robust
estimation of these landscape metrics requires a well-distributed sample. If
the existing data are heavily clustered or biased, a small, unbiased pilot probe
of approximately 5d randomized runs should first be conducted. Furthermore,
while moderate noise or missingness can often be mitigated by regularization
and imputation, higher levels of data corruption typically render the static
surrogates used in offline optimization unreliable, shifting the preference back
to more robust sequential optimization methods.

4.4 Data Preprocessing

Independent of how and when the data are recorded, careful preprocessing is
essential to guarantee integrity and comparability between experiments. The
state of the art review revealed a preprocessing gap in the literature, where the
foundational steps of data preparation are often overlooked or unsystematically
reported, undermining the reproducibility and reliability of optimization results.
To address this deficiency, this section presents a systematic and prescriptive
workflow for data pre-processing.

As illustrated in Figure 4.5, this workflow is organized into six sequential de-
cision stages, moving from initial data assessment to final feature construction.
Each stage has a clear objective, a set of recommended techniques drawn from
the prior review, and explicit exit criteria to ensure a rigorous and auditable
process.

Stage 1: Data Profiling. Before any modification is attempted, the raw
tables are profiled to establish a quantitative baseline. This involves computing
several key descriptive metrics to inform the subsequent preprocessing strategy.
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Figure 4.5: The data preprocessing workflow.

The marginal distribution of each feature is analyzed to understand its under-
lying shape, which is critical to selecting appropriate scaling or transformation
methods. To assess the scale, spread, and potential presence of outliers in the
data, key empirical quantiles are calculated for each feature. This typically
includes the minimum and maximum to establish the range, the median, the
interquartile range, i.e., the 25th and 75th percentiles, and the 5th and 95th per-
centiles to characterize the tails of the distribution. Finally, the rate of missing
cells is quantified for each column and for the dataset as a whole, as this metric
is the primary determinant for choosing a suitable imputation strategy. These
statistics are stored in a versioned report so that all subsequent cleaning and
transformation steps can be audited against a stable reference. The stage is con-
sidered complete once the summary statistics have been stored in a reproducible
format and verified for completeness.
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Stage 2: Outlier Treatment. Once a stable baseline has been established,
the workflow proceeds to the identification and removal of outliers. The pro-
cedure follows a strict outside-in hierarchy: clearly implausible univariate ex-
tremes are filtered first because their presence can mask subtler multivariate
anomalies. Although the literature shows various effective techniques, such as
model-based residual analysis used in some studies [187] or domain-specific
filtering [188], this methodology advocates for the non-parametric MAD rule
with κ = 3 as the robust default, given its resilience to the non-Gaussian dis-
tributions common in industrial data. For features known to be approximately
normal, the classical z-score can be used as a simpler alternative. Following this
initial cleaning, and in contrast to many studies that stop at univariate analysis,
an Isolation Forest is applied to detect more complex, multivariate anomalies
[308]. By measuring the average path length required to isolate a point in an
ensemble of random trees, the algorithm captures joint outlierness in moderate-
dimensional space without relying on parametric assumptions. This two-step
process is governed by a heuristic that is often implicit in the literature: if the
outlier fraction for any feature exceeds a high threshold, such as 20%, it is
flagged for engineering inspection of a potential systemic fault rather than being
statistically treated. The outlier treatment stage is complete when the residual
anomaly rate across falls below the predefined ceiling of 5%, at which point the
data set is considered sufficiently clean for scaling and encoding in Stage 3.

Stage 3: Missing-Value Imputation. This stage employs a tiered di-
agnostic workflow to classify the missing data mechanism for each variable
according to Rubin’s taxonomy. The analysis proceeds sequentially, stopping
for any given variable as soon as sufficient statistical evidence is found for a
mechanism. This efficient approach ensures that most variables are classified
after one or two tests, reserving the more complex diagnostics for truly ambigu-
ous cases. First, Little’s omnibus test χ2 is applied, in which a nonsignificant
result supports the assumption of MCAR. Second, If this assumption is not
supported, the analysis proceeds to test for a MAR pattern. This is done by
fitting a regular logistic regression of the missingness indicator to fully observed
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covariates in which substantial explanatory power, that is, pseudo-R2 or AUC
exceeding0.15 suggests an MAR mechanism. Third, for variables that remain
unclassified, a third test directly probes for an MNAR process by evaluating
the dependence on the unobserved value itself. In this test, the missingness
indicator is regressed on predictions of the latent value that were obtained from
complete cases. A significant slope in this regression indicates an MNAR pat-
tern. Finally, in specific situations where longitudinal dropout or selection bias
is suspected, a formal selection model is fitted, such as a Heckman two-step or
a Diggle-Kenward model. A nonzero inverse Mills ratio or a significant dropout
parameter provides conclusive evidence for an MNAR mechanism. The out-
come of this sequence is a definitive classification of the missing pattern of each
variable, which subsequently dictates the appropriate imputation strategy.

MCAR attributes are imputed with the samplemedian for static columns or with
linear interpolation for time-indexed series. MAR attributes are completed
with either MICE or the tree-based MissForest: MissForest is preferred for
mixed-type or high-dimensional feature spaces, whereas MICE is preferred
when domain-specific parametric forms or detailed convergence diagnostics
are required. Attributes identified as MNAR require a specialized handling
strategy. The primary approach is to develop a joint selection model that
explicitly accounts for the non-random missingness mechanism. If such a
model is not methodologically feasible, a decision is made in consultation with
process experts: the variable is either excluded from model-critical analyses
or imputed using a bespoke, domain-specific surrogate, such as a pre-defined
worst-case safety value. To maintain full transparency for subsequent analyses
and explainability, a binary flag is added to the dataset, marking every value
that has been imputed. The imputation stage concludes with a rigorous quality
control and versioning protocol. First, the distributional integrity of the data is
verified by comparing the post-imputation distribution of each variable with its
original profile using aKolmogorov–Smirnov test. The process is complete only
when two criteria are met: no significant distributional changes are detected
and the overall residual missingness of the data matrix falls below the target of
0.5%.
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Stage 4: Scaling and Transformation. The transformation and scaling
of numerical features are guided by the principle of minimal intervention,
designed to preserve the original physical units and enhance the interpretability
of the model. Modifications are only performed when justified by distributional
properties or the requirements of scale-sensitive algorithms. The methodology
follows a two-stage diagnostic process for each feature. First, distributional
symmetry is assessed. The tail symmetry ratio (TSR) is computed as follows:

TSR = Q95 −Q50

Q50 −Q5
(4.16)

where Qp denotes the empirical p-th percentile. Values outside the robust
interval of [0.5, 2] indicate a significant imbalance. Second, scale disparity
across features is evaluated. A feature is flagged for potential rescaling if
its interquartile range (IQR) exceeds that of any other feature by more than
three orders of magnitude (103). The corrective action is precisely tailored
to the diagnosis. For features with asymmetric or heavy tails, a variance-
stabilizing transformation is applied; strictly positive records undergo a Box-
Cox transform, while variables containing zeros or negative values are treated
with a Yeo-Johnson power transformation. For features flagged with scale
disparity that are inputs to scale-sensitive algorithms, a suitable scaling method
is chosen. Features that are now approximately symmetric are standardized
by using their mean and standard deviation. Those still prone to outliers are
robustly scaled using their median and IQR. As a special case, sensor readings
with known physical limits are linearly mapped to the interval [0, 1] to preserve
their inherent constraints. This approach ensures that transformations correct
distributional flaws, while scaling is reserved for instances critical to algorithmic
performance, yielding a dataset that is both robustly prepared and maximally
interpretable.

Stage 5: Feature Engineering and Reduction. The approach to fea-
ture engineering and reduction is guided by a principle of parsimony, ensuring
that all predictors are directly relevant to the modeling objective. Consequently,
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new composite metrics, such as ‘energy consumed per part’, are engineered
conservatively and only when they align with the primary optimization target.
The subsequent feature reduction follows a multi-step filtering process, begin-
ning with a test for relevance. Any feature exhibiting a negligible correlation,
that is, an absolute correlation below 0.02 with the target variable, is discarded
due to its lack of predictive signal. Subsequently, the redundancy from multi-
collinearity is addressed. When a pair or block of features exhibits very high
inter-correlation, i.e., an absolute value above 0.98, a strategic decision is made
based on the trade-off between interpretability and information retention.

To identify multicollinearity pairwise associations between continuous vari-
ables, Pearson’s correlation [309] is used when linearity and approximate nor-
mality are plausible.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

. (4.17)

Otherwise, monotonic relations are assessed with rank-based measures, and
Kendall’s τ [310, 311] is adopted as a robust tie-aware alternative. Let C and
D denote the numbers of concordant and discordant pairs among all

(
n
2
)
pairs,

and let Tx =
∑

ℓ

(
tℓ

2
)
and Ty =

∑
m

(
um

2
)
collect tie contributions for X and

Y (with tℓ/um the sizes of tie blocks). Then

τa = C −D(
n
2
) , τb = C −D√

(C + D + Tx) (C + D + Ty)
. (4.18)

For maximum interpretability, one of the features is removed on the basis of
domain knowledge, preserving the physical meaning of the variables. Alterna-
tively, to retain the maximum shared variance from the correlated set, PCA is
used, replacing the original features with the principal components required to
explain at least 95% of their combined variance. This stage is complete when
the final feature set has been refined for relevance and redundancy, resulting in
a lean and robust set of predictors for modeling.
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Stage 6: Data Fusion. The final preprocessing stage, data fusion, inte-
grates the various cleaned data sources into a single, analysis-ready dataset.
Heterogeneous sources, including high-frequency sensor streams, laboratory
inspections, and MES event logs, are first synchronized onto a common time
axis using linear or spline interpolation. Subsequently, these time-aligned
streams are merged into a unified feature matrix using a master production cy-
cle identifier as the primary key. The success of this stage is clearly defined:
There must be exactly one complete and fully populated feature vector for ev-
ery unique cycle identifier. Before proceeding, a final validation gate confirms
that the exit criteria for all previous stages have been successfully met. The
data set is only handed over, and the modeling phase is initiated when this
comprehensive quality check is passed. To ensure reproducibility, the entire
data preparation workflow, including every transformation, parameter, and de-
cision, is codified and version controlled, creating an auditable and executable
record. This pipeline incorporates a robust failure handling protocol. If any
exit condition cannot be met, for example, if missingness on a key variable
remains unacceptably high, the workflow automatically flags the issue and can
revert to an earlier stage, such as experimental planning, to trigger a targeted
remeasurement. This feedback loop creates a continuous cycle of improving
data quality and ensures process integrity.

4.5 Offline Optimization via Static Surrogates

Offline optimization with static surrogates rises and falls with the sampling de-
sign. All model inferences and subsequent virtual optimization steps are based
on a single data set. Poor designs induce aliasing, ill-conditioned regressors,
and blind spots in the domain Ω, whereas good designs control these risks and
make the surrogate attractive to optimization. A variety of DoE strategies was
already presented in Table 2.4.
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Two design domains serve distinct goals and should be selected accordingly.
Factorial/effect-oriented designs target identifiable main effects and interac-
tions. They are well suited when factors have discrete levels and when variance
components and interpretable response surfaces are required. In contrast, space-
filling designs aim for uniform coverage of Ω and are preferable for nonlinear,
higher-dimensional, and predominantly continuous parameter spaces in which
prediction accuracy and robust interpolation/extrapolation are central. Table 4.7
outlines the primary distinctions and appropriate contexts for each approach.

The selection of a DoE is driven by the use case and the optimization objective.
When prediction accuracy over a predominantly continuous, multi-parameter
space is the priority, space-filling plans are preferred. When an interpretable
response surface is the main target, orthogonal or carefully fractionated factori-
als are used to preserve identifiability and to control aliasing. While the choice
of regime exerts the dominant, first-order influence on generalizability and op-
timization quality, the within-regime variant mainly serves as a second-order
tuning lever which should be aligned with constraints, expected smoothness,
noise, and tolerated extrapolation.

The subsequent step involves the development of the static surrogate mod-
els. The development of the surrogates follows a four-stage protocol: Data
Partitioning, Algorithm Selection, Hyperparameter Optimization, and Model
Evaluation. This workflow is illustrated in Figure 4.6. To ensure an unbiased
estimate of generalization performance, the data is partitioned into independent
datasets for model training, hyperparameter tuning, and final evaluation, with
the specific partitioning strategy dictated by the data’s underlying structure. For
standard tasks, the default approach is a fixed 70/15/15 stratified hold-out split.
Stratification is crucial, as it preserves the original class proportions across all
subsets, ensuring that each is representative. In cases of small or imbalanced
datasets, where a single split could be misleading, a more robust nested k-fold
CV is implemented to provide a stable performance estimate while preventing
information leakage.
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Table 4.7: Comparison of factorial/effect-oriented vs. space-filling designs for offline surrogate
modeling.

Aspect Factorial / effect-oriented Space-filling

Goal Identify main effects and inter-
actions; interpretable response
surfaces and variance compo-
nents.

Uniform coverage of Ω for high
prediction accuracy and robust
interpolation/extrapolation.

N & scaling with
k

Structure-driven; grows combi-
natorially with levels and fac-
tors; See Table 2.4.

Flexible and budget-driven;
choose N to meet error targets.

Factors & con-
straints

Naturally suited for discrete
factors; mixing qualitative &
quantitative via RSM. Com-
plex feasibility/integrality con-
straints require pruning or can-
didate sets.

Best for continuous parame-
ters; categorical factors via
blocking/stratification. Con-
straints handled via constrained
LHS, rejection sampling, or D-
optimal selection from feasible
candidates.

Design proper-
ties

Explicit aliasing; corner and
center points support curvature
and pure-error estimation.

No formal aliasing grid; low
correlation, maximin spacing,
and low-discrepancy targets.
Boundary coverage must be en-
forced.

Examples Full/Fractional factorial,
Plackett–Burman, Central
Composite, Box–Behnken.

LHS, Sobol sequences, D-
optimal Design.

Prefer Prefer for discrete factors and ef-
fect attribution at low–moderate
k.

Prefer for continuous, nonlin-
ear, higher-k problems with
prediction-first goals.

Limitations Confounding in low-resolution
fractions; run inflation; missing
curvature.

Coverage holes/poor projections
if unoptimized; weak bound-
ary coverage; under-replication
in noisy systems.

The resulting data sets serve defined sequential purposes. The training set is
dedicated exclusively to learning the model’s internal parameters during the
optimization process. The validation set is utilized for the iterative process
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Figure 4.6: The machine learning-based predictive modeling workflow.

of hyperparameter tuning and selecting the final model architecture. Finally,
the test set is strictly reserved as a final, unseen hold-out data set as it is used
only once to obtain an unbiased estimate of the selected model’s generalization
performance.

The selection of an appropriate machine learning algorithm for industrial ap-
plications transcends the singular objective of predictive accuracy and must
incorporate considerations derived from the operational context of the manu-
facturing domain. Consequently, thismethodology commenceswith the explicit
definition of a set of criteria that any candidate model must fulfill.

• Scalability and Implementation Feasibility: Priority is given to algo-
rithms that exhibit low to moderate computational complexity and do not
depend on specialized hardware [312]. This ensures feasibility within
standard industrial computing environments and enables real-time pre-
diction capabilities where necessary, avoiding the high costs and setup
overhead associated with specialized infrastructures [313].

• Public Availability andMaintainability: Preference is given to algorithms
from well-supported open source ecosystems with permissive licenses.
This strategymitigates the risk of vendor lock-in, ensures long-termmain-
tainability through community support and public audits, and facilitates
collaboration, aligning with the industry-wide shift towards open-source
AI solutions [314, 315].

• Model Parsimony and Required Expertise: The complexity of a model
is carefully matched to both the available data volume and the level
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of tuning expertise required. In the data-limited contexts common to
manufacturing, simpler models with fewer parameters are preferred to
ensure robust generalization and mitigate the risk of overfitting [316].
This approach also reduces the tuning effort, making such models more
accessible and manageable for teams without specialized deep learning
expertise.

Applying the aforementioned scalability, maintainability, and parsimony crite-
ria to the candidate algorithms yields a clear profile of their respective strengths
and weaknesses in a manufacturing context. Table 4.8 summarizes this evalu-
ation, assessing each algorithm class against key operational indicators such as
the minimum sample-to-dimension ratio (ρ) required for robust performance,
the necessary computational budget, the level of tuning expertise and the degree
of native transparency.

Table 4.8: Practical requirements and characteristics of the algorithm classes.

Tree Ensem-
bles

Transformer Auto-ML Sys-
tems

Interpretable
GAM

Min. ρ ≳ 10 ≳ 50 adaptive ≳ 5
Compute
Budget

medium; CPU /
optional GPU

high; GPU
mandatory

medium–high low CPU

Expertise medium high medium low
Native Trans-
parency

medium low varies very high

Licence(s) Apache-2.0
(XGBoost/-
LightGBM/-
CatBoost),
BSD-3 (RF)

MIT (TabNet/-
SAINT/Tab-
Transformer),
Apache-2.0
(TabPFN)

Apache-2.0
(AutoGlu-
on/H2O),
BSD-3 (Au-
toSklearn),
GPL-3 (TPOT)

MIT (EBM)

Interpretable GAMs, such as the EBM, are established as the starting point and
interpretable baseline. Given their competitive precision in low to moderate
data volumes (ρ < 5 ), minimal computational cost, and high transparency,
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they are the ideal choice for initial analysis or when regulatory explanation
is required. For tasks where predictive performance is paramount, tree-based
ensembles occupy the sweet spot. They outperform simpler baselines once
a moderate sample-to-dimension ratio (ρ ≳ 10) is reached and represent the
optimal trade-off between accuracy, tuning effort, and computational cost on
standard hardware. The most complex models are reserved for specific scenar-
ios. Tabular transformers are considered only in data-rich regimes (ρ ≳ 50)
where their state of the art performance justifies the investment in GPU re-
sources and specialized expertise. Finally, AutoML frameworks serve as a
powerful tool to accelerate the model selection process, especially when in-
house tuning expertise is limited, with the understanding that their utility is
balanced against potentially high computational search costs.

The final hyperparameter optimization follows a protocol designed for robust-
ness, efficiency, and reproducibility. For the diverse and complex model selec-
tion scenarios encountered in this thesis, which are analogous to the CASH
problems, Optuna was selected as the HPO framework. Its demonstrated
strengths in these scenarios, flexible implementation, and robust trial prun-
ing mechanisms make it the most suitable tool for achieving high model quality
with a manageable computational budget. A 5x3 nested cross-validation design
is employed, where the 5-fold outer loop provides estimates of the generalization
error, while the 3-fold inner loop drives the hyperparameter search. Within this
inner loop, Optuna explores the search space for a fixed number of 100 trials.
To enhance efficiency, Optuna’s early-stopping mechanism is activated with a
patience of 15 trials, automatically pruning unpromising trials. Subsequently,
the top five candidate configurations identified by Optuna undergo stability val-
idation, where each model is re-trained and evaluated 30 times with different
random seeds. The configuration that exhibits the best trade-off between high
mean performance and low variance is selected as the final optimal setting and
is re-analyzed on the entire training dataset to produce the final surrogate model.

The performance of the final model is evaluated using a protocol to provide
a multifaceted view of its predictive capabilities. For regression tasks, a set
of complementary metrics is reported: the MAE, providing a robust measure
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of average error, the RMSE, which penalizes large prediction errors; the R2,
to quantify the proportion of variance in the target variable explained by the
model.

Once the predictive accuracy and robustness of the model have been confirmed,
it can be used for its primary function as a virtual process model. This surro-
gate enables highly efficient offline optimization to identify the optimal process
parameters without relying on expensive and time-consuming real-world ex-
periments. This optimization process is itself guided by BO. This algorithm
iteratively queries the surrogate model by proposing promising input settings
and analyzing the model’s predicted outputs. Because a single query of the
model takes only milliseconds, thousands of potential operating points can be
tested virtually in a short amount of time, a procedure that would be infeasible
in the physical world. The result of this virtual search is a set of optimal pro-
cess parameter settings, which can then be validated with a high probability of
success in a single, final confirmation run on the real system.

4.6 Sequential Optimization

For sequential optimization tasks where each experiment is costly, this method-
ology employs BO as the primary sequential search algorithm. A BO procedure
is defined by three design choices: the surrogate model that approximates the
objective function, the initial sampling strategy to seed the process, and the
acquisition function that guides the search. Figure 4.7 summarizes the iterative
loop in which these elements interact. The recommended combinations are
informed by the pre-study of Greif et al. [3], in which a comprehensive bench-
mark was conducted on both analytical test functions and industry-derived
optimization tasks. The study evaluated three factors: initial sample scheme
(no sampling, LHS, FFD), surrogate kernel family (isotropic and anisotropic
GP, RF, TPE) and acquisition function (EI, UCB, POI) with varying explo-
ration weights κ and measured performance at multiple iteration checkpoints.
The choice of surrogate model is the most critical factor and is dictated by the
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Figure 4.7: The BO Loop.

expected characteristics of the problem’s objective function. The findings from
the literature [260, 3] show that no single surrogate is universally dominant.
Therefore, a problem-specific selection is made based on the recommendations
in Table 4.9.

The effectiveness of an initial sampling strategy is dependent on the chosen
surrogate model. Based on the interaction effects demonstrated by Greif et al.
[3], the sampling strategy is directly coupled to the surrogate selection. When
using an anisotropic GP surrogate, no initial sampling is performed. The
analysis showed that allowing the acquisition function to guide the search from
the very first iteration yields the fastest convergence for this model class. When
using tree-based surrogates (RF or TPE), an initial LHS design is used to
generate a space-filling set of points. This provides these non-parametricmodels
with good initial coverage of the search space, which was shown to significantly
accelerate performance, particularly for complex objective functions. When
main effects are of primary interest in low-dimensional problems, an FFD can
be used to efficiently seed the model, especially if optima are expected near

163



4 Methodology

Table 4.9: Surrogate model recommendations for BO.

Surrogate
Model

Recommended Use Cases Notes / Limitations

GP isotropic
kernel

Low-dimensional, isotropic,
and smooth objective functions.
Serves as a simple baseline.

Fast to train but its core assump-
tion of uniform behavior across
all dimensions is often violated
in practice.

GP ARD kernel Smooth, medium-dimensional
objectives where input variables
have differing impacts or scales.

Automatically determines fea-
ture relevance; consistently out-
performs isotropic GPs in most
real-world problems. The de-
fault choice for continuous opti-
mization.

RF surrogate High-dimensional, non-smooth,
or discontinuous objective func-
tions.

Highly scalable and robust to ir-
relevant features. Does not pro-
vide principled uncertainty esti-
mates, relying on empirical vari-
ance, which can be less effective
for exploration.

TPE Problems with conditional, dis-
crete, or mixed-type parameter
spaces (e.g., hyperparameter op-
timization).

Models density estimators for
good/bad trials instead of a di-
rect surrogate. Highly efficient
for its target problems, but may
converge slower than GPs on
simple, smooth functions.

the boundaries. The iterative search is guided by an acquisition function that
balances exploration and exploitation.

The strategy for balancing exploration and exploitation in BO is chosen based
on a framework that adapts to the dimensionality of the problem (d) and the
total evaluation budget (nmax). The foundation of this framework is the 10d
rule, a principle established in the literature suggesting that a budget of at
least nbase = 10d is required to reliably estimate the hyperparameters of a GP
surrogate [225]. The relationship between the total budget (nmax) and this
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baseline sample requirement defines the selection of the optimization strategy
in three distinct regimes.

Strategy =


Exploitation-Focused if nmax < 2 nbase

Dynamic Annealing if 2 nbase ≤ nmax ≤ 10 nbase

Prolonged Exploration if nmax > 10 nbase

(4.19)

In extremely low-budget scenarios, where the surrogate’s uncertainty estimates
are unreliable, the strategy prioritizes rapid exploitation. This is achieved by
using the EI acquisition function, configured with a small trade-off parameter
(ξ = 0.01) to focus the search primarily on regions with a high probability
of immediate improvement over the current best solution. Once the budget is
sufficient to establish a reliable surrogate model (2nbase ≤ nmax ≤ 10nbase), a
dynamic annealing strategy is applied. This strategy enables a smooth transi-
tion from initial global exploration to later local exploitation by adjusting the
exploration parameter κ of the UCB acquisition function over time. The decay
of κ follows the schedule proposed by Zhang et al. [317]:

κ(n) = κinit · γmax(n−ndecay) (4.20)

where κinit,c is the initial exploration weight, γ is the decay rate with 0 <

γ < 1, and ndecay specifies the iteration at which the decay begins. This
dynamic approach, illustrated in Figure 4.8, ensures that the search is both
globally efficient and locally precise. This schedule is operationalized with
specific default parameters: the initial exploration weight κinit is set to 2.58,
corresponding to the 99% confidence bound; the decay begins at ndecay = 2nbase

and a decay rate γ of 0.95 ensures a steady transition. In high-budget campaigns
(nmax > 10nbase), the primary risk shifts to premature convergence. Therefore,
the strategy involves a prolonged initial exploration phase with a high constant κ
value before transitioning to a decay schedule. In high-budget campaigns, where
the primary risk is premature convergence, the strategy involves a prolonged
initial exploration phase. A high, constant κ value of 2.58 is maintained
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Figure 4.8: Illustration of κ decline, illustrating the shift from exploration to exploitation.

for a substantial portion of the run, until n reaches 30% of the total budget
(nmax). Only after this extended exploration phase is the sameκ-decay schedule
initiated, ensuring the search space has been thoroughly mapped before the
algorithm focuses on final convergence.

4.7 Explainable AI and Parameter Influence
Analysis

To ensure that the surrogate model recommendations are transparent and trust-
worthy, this methodology integrates the principles of XAI, as detailed in Section
2.3.4. Specifically, a multilayered explainability protocol is employed. This
protocol aims to provide a comprehensive understanding of themodel’s behavior
by progressing from a high-level, global analysis to fine-grained, local expla-
nations. The methods employed in this work are organized into four distinct
categories based on their explanatory goal, as summarized in Table 4.10.

The analysis commences with a global sensitivity analysis to identify the prin-
cipal drivers of the model’s output. A variance-based decomposition using
Sobol indices is the preferred model-agnostic method to quantify the influ-
ence of individual features and their interactions [269]. In computationally
constrained settings, the importance of rapid permutation features serves as a
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Table 4.10: Overview of interpretability method clusters, detailing their purpose, logic, and model
agnosticism.

Interpretability
Purpose

Methods Core Explanatory
Logic

Agnostic vs. Specific

Global Feature
Importance

Sobol’ Indices,
Permutation Im-
portance, Global
SHAP

Ranks features
by their overall
contribution to the
model’s output vari-
ance or prediction
magnitude.

Agnostic: Sobol’,
Permutation, Kernel
SHAP
Specific: Native im-
portances, TreeSHAP

Local Prediction
Explanation

SHAP (Tree/Ker-
nel), LIME

Decomposes a sin-
gle prediction into an
additive sum of con-
tributions from each
input feature.

Agnostic: LIME, Ker-
nel SHAP
Specific: TreeSHAP

Behavioral Pat-
tern Discovery

Feature cluster-
ing, SHAP vector
clustering, ICE
clustering

Identifies clusters of
instances that share
similar structures to
find hidden opera-
tional regimes.

Agnostic: Feature
clustering, ICE clus-
tering
Conditional: SHAP
clustering depends on
the explainer

Feature EffectVi-
sualization

PDP, ICE plots Visualizes the av-
erage functional re-
lationship between
a feature and the
model’s prediction.

Agnostic: PDP, ICE

viable alternative. To ensure that subsequent analyses are not only insightful
but also cognitively manageable for domain experts, the size of the High-Impact
Feature Set (HIF-Set) is constrained. This constraint is grounded in established
cognitive science and user experience research. Classic studies demonstrate
that human short-term memory can effectively process only about 7± 2 chunks
of information simultaneously [318]. More recent work on XAI confirms this,
showing that users find explanations more useful when they are based on a
very small number of features, with diminishing returns or even reduced clarity
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beyond that point [319]. Therefore, this methodology adopts a formal con-
straint based on these findings. After the initial global importance analysis, the
HIF-Set is truncated to include only the top 5 most influential features. This
step ensures that all subsequent deep-dive analyzes are focused on a core set of
drivers that are both significant and interpretable by human stakeholders. If the
total number of influential features is already within this range, no reduction is
made. The protocol then moves to the local attribution layer to explain individ-
ual predictions. The choice of algorithm here is matched to the surrogate model:
TreeSHAP is used for tree-based ensembles due to its computational efficiency
[266], while model-agnostic methods such as KernelSHAP [266] are used for
other black-box models. The objective of this stage is to derive an additive
attribution for each individual prediction, thereby quantifying the precise con-
tribution of each feature to that specific output. Recognizing that manufacturing
spaces are often heterogeneous, the analysis proceeds to subgroup discovery.
The choice of clustering algorithm is a methodological decision guided by any
a priori domain knowledge about the expected cluster geometry and data struc-
ture. For instance, if simple, spherical clusters are anticipated, k-Means is
selected for its efficiency. When a natural hierarchy or nested relationships are
expected, agglomerative hierarchical clustering is directly employed. For po-
tentially elliptical and overlapping clusters, a GMM is used to model covariance
and provide probabilistic assignments. Regardless of the chosen algorithm, the
optimal number of clusters is determined by applying the elbow criterion along-
side the average silhouette coefficient and the BIC to ensure both geometric
cohesion and statistical parsimony. In the absence of such prior knowledge,
a progressive validation workflow is applied to identify the best model. This
process begins with k-Means as a diagnostic baseline. If its resulting clusters
lack validity, the analysis proceeds to agglomerative hierarchical clustering, and
subsequently to a full-covariance GMM as the most flexible parametric model
if a valid structure is still not found.

The final analysis stage focuses on visual shape analysis to create intuitive
narratives for domain experts and to understand the functional form of the
model’s learned relationships. This analysis uses ICE plots [265] and is focused
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exclusively on the most important variables in the HIF set. For each feature in
this set, individual ICE curves are computed across all data instances to show
instance-level effects. These curves are then aggregated to produce a global
partial dependency profile, which visualizes the average marginal effect of the
feature on the model output.

4.8 Deployment Evaluation and Real-World
Integration

Following the modeling and optimization stages, a dedicated evaluation phase is
conducted to determine the practical viability of themethod under real industrial
constraints, as illustrated in Figure 4.9. This phase comprises four interrelated
objectives. First, the environmental and economic justification is established by
means of break-even analysis. Second, the robustness of the results is examined
with respect to the variability of the data, the uncertainty of the model, and
the operating conditions. Third, product-level quality checks are performed
to verify conformity with the applicable industrial specifications. Fourth, if
deficiencies are identified, the method is iteratively refined and re-evaluated
until the acceptance criteria are satisfied.

Figure 4.9: The integrated validation workflow.
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4.8.1 Break-Even Analysis

To determine the production scale at which the optimization becomes viable, a
break-even analysis is performed. This protocol assesses both the Environmen-
tal Break-Even Point (e-BEP) [320] and the traditional financial BEP to ensure
that environmental and economic objectives converge. To quantify the scale at
which any experimental or algorithmic optimization becomes environmentally
and economically advantageous, first the cumulative resource burden of the
optimization campaign is calculated, covering direct inputs such as energy and
materials, as well as indirect contributions from labor, machine depreciation,
and computational overhead - whose significance scales with the size of the
experimental campaign and can be neglected for small studies - summarized in
the resource-cost vector.

Copt =
(

C
=C
opt, CCO2

opt , CE
opt, . . .

)
. (4.21)

Next, a baseline is established using the standard or currently employed param-
eter set. This baseline typically represents a state already refined through prior
experience and manufacturer recommendations. Switching from the baseline
setting xbase to the optimized setting x⋆ produces for every unit the savings
vector:

∆cunit =
(
∆c

=C, ∆eCO2 , ∆E, . . .
)

, (4.22)

whose elements quantify how much money, greenhouse gas emissions, energy,
and other resources are avoided per cycle, print, batch, or service call. For any
individual resource k, the minimum production volume that exactly recoups the
optimization effort, is then calculated:

NBE
k = Copt,k

∆cunit,k
(k ∈ {=C, CO2, E, . . . }) . (4.23)
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Because both costs and savings are typically estimated with uncertainty, a
margin of safety is introduced by applying a prudence factor,α ≳ 1, to derive a
conservative threshold [321]:

NBE,safe
k = α NBE

k . (4.24)

The value of α is chosen based on the level of uncertainty: α ≈ 1.2 is adequate
for established processes with low volatility, whereas α ≥ 1.5 is warranted for
fluctuatingmarkets, high-risk settings, or technologies with inherent uncertainty
[322]. The optimization is considered viable only if the planned production vol-
ume, Nplan, exceeds all conservative break-even thresholds (Nplan > NBE,safe

k

for all k). This provides the decision-maker with a clear, domain-agnostic
criterion: beyond this threshold, every additional unit compounds the benefits;
beneath it, the optimization remains a net burden.

4.8.2 Parallel Quality Checks

After production, a vector of quality indicators is captured:

Q =
(
q1, q2, . . . , qM

)
, (4.25)

encompassing metrics such as dimensional accuracy and surface defects. De-
viations are detected at an early stage by a streaming evaluation. The depth
of inspection is governed by the functional, safety, and aesthetic requirements
of the component. As detailed in Table 4.11, a spectrum of quality checks is
available to address these varying levels of rigor. For instance, non-critical com-
ponents such as decorative covers may only require checks from the lower end
of the complexity scale, such as visual inspection and dimensional verification.
In contrast, structural parts are subjected to the most robust methods, including
statistical process control and destructive testing, to ensure the highest level of
integrity and performance. The simplest inspection level that satisfies all risk
and compliance requirements should be selected.
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Table 4.11: Levels of industrial quality checks, with implementation complexity and primary
outputs.

Check Type Implementation Complexity Primary Output / Metric

Visual Inspec-
tion

Low; manual check, minimal
equipment.

Conformance to aesthetic and
surface integrity specifications.

Dimensional
Verification

Moderate; requires metrology
tools.

Measurement of geometric de-
viation from a nominal design;
classification of tolerance con-
formance.

Functional
Testing

Variable; requires bespoke test
rigs and procedures.

Verification of operational per-
formance against predefined
functional requirements.

Statistical Pro-
cess Control

Moderate; requires integrated
sensors and statistical software.

Quantification of process stabil-
ity and capability; detection of
non-random variation.

Destructive
Testing

High; consumes samples, re-
quires specialized lab equip-
ment.

Characterization of material
properties and failure thresh-
olds.

Automated In-
Line Monitor-
ing

High; requires full system inte-
gration.

Continuous, real-time classifi-
cation of process state; auto-
mated alerts on specification vi-
olations.

Beyond descriptive summaries, statistical tests are used to quantify whether the
observed differences in Q between machines, batches, or parameter settings
are statistically significant [323]. Pairwise assessments are particularly useful
in quality assurance to prioritize targeted corrective actions when subtle but
practically relevant changes can be detected [324].

For comparisons involving three or more groups, or for factorial designs with
several factors, an omnibus analysis of variance (ANOVA) [325] is preferred
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because it first tests a global null before triggering post hoc pairwise investiga-
tions and, in factorial form, can assess interaction effects. In a one-way layout
with k groups and total N observations, the test statistic is

F = MSbetween

MSwithin
= SSB/(k − 1)

SSW/(N − k) , (4.26)

where SSB and SSW denote the sums of squares between and within the
groups, respectively. Under standard assumptions which include independence,
approximate normality within groups, and homoscedasticity, F follows an
Fk−1, N−k distribution.

TheKruskal–Wallis test [326] provides a nonparametric counterpart to ANOVA
and is preferred under non-normality or heteroscedasticity. With k groups, sizes
nj , total N =

∑k
j=1 nj , and Rj the sum of ranks in group j, the test statistic is

H = 12
N(N + 1)

k∑
j=1

R2
j

nj
− 3(N + 1), (4.27)

with standard tie correction

Hc = H

1−
∑

s
(t3

s−ts)
N3−N

, (4.28)

where ts are the sizes of tied rank blocks across all N observations. Under
H0 and for sufficiently large samples, Hc is approximately χ2-distributed with
k − 1 degrees of freedom.

4.8.3 Robustness Validation

With respect to the robustness of optimization, the methodology adopts a hier-
archical evaluation scheme, as visualized in Figure 4.10.
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Figure 4.10: Hierarchical protocol for the robustness validation.

In the first tier, the optimization outcome itself is examined in isolation. The
absolute change in the target metric, achieved by the tuned configuration, is
compared with both the performance of the baseline and the variance expected
from the data set noise. Only when this improvement exceeds a predefined
use-case-specific relevance threshold, thereby demonstrating that the optimizer
has produced a meaningful gain, the subsequent robustness layers are activated.

Level A is mandatory for every model used in offline optimization that is
intended for operational use, because random initialization, data partitioning,
and hyperparameter search can influence reported performance even when the
data set is perfectly curated. To obtain statistically defensible performance
estimates, every major source of algorithmic randomness is varied in isolation
while the remaining seeds are kept constant. For each factor, n = 20 repetitions
are performed. For each repetition, the three primary error metrics RMSE,
MAE, and R2 are recorded. The dispersion is then quantified as follows:

CoVRMSE = σRMSE

µRMSE
, CoVMAE = σMAE

µMAE
, σR2 = sd(R2).

(4.29)

The optimization process is classified as unstable whenever any one of the fol-
lowing conditions is met: the coefficient of variation (Cov) for RMSE or MAE
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exceeds 5%, or the standard deviation of R2 is greater than 0.05, corresponding
to five percentage points on its bounded 0–1 scale. The protocol is summarized
in Table 4.12.

Table 4.12: Stochastic stability protocol (Level A).

ID Randomness
source

Escalation trigger

A1 Global seed sen-
sitivity

– (always executed)

A1–m Model seed Triggered when CoVRMSE > 5 % or CoVMAE > 5 % or
σR2 > 0.05

A2–h HPO seed Same criterion as A1–m.
A3–d Data-split seed Same criterion as A1–m.

If the dispersion analysis reveals that random weight initialization or other non-
deterministic operations within the learning algorithm contribute more than 5%
to the total variance, three complementary lines of action are possible.

First, deterministic back-end settings should be enforced wherever the software
stack allows, thereby eliminating pseudo-random effects arising from low-level
parallelization or GPU kernel choices. Secondly, variance can be reduced ex
post by snapshot or stochastic weight-averaging ensembles: a small set of inde-
pendently initialized models is trained under identical data and hyperparameter
conditions, and their predictions are aggregated by arithmetic averaging. This
procedure typically yields both a lower expected error and a narrower confidence
band without altering the inference logic of any single model. Third, instability
attributable to the interaction between random initialization and model capac-
ity can be counteracted in situ by tightening regularization, for example, by
reducing dropout rates, increasing weight decay, or employing early stopping
criteria that monitor validation error plateaus. Repeated evaluation after each
intervention confirms whether the coefficient-of-variation thresholds are met.
If instability persists, weight-space exploration around the converged solutions
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can be expanded by a Bayesian model averaging scheme to capture the residual
uncertainty.

For randomness attributed to the HPO, several measures are available. First,
the trial budget can be amplified, typically doubled, to diminish the stochastic
uncertainty inherent in the search process. Secondly, instead of selecting the
best single configuration, it is advisable to adopt a median-of-elite strategy in
which the component-wise median of the k highest scoring configurations is
deployed. This approach reduces the influence of outlier trials and improves re-
producibility without incurring additional optimization cost. A complementary
cluster analysis of these elite configurations then clarifies whether performance
plateaus exist in multiple, qualitatively different regions of the hyper-parameter
space. Each regime can subsequently be subjected to a local, low-variance
re-optimization to locate the most stable setting within that region. If compu-
tational resources permit, the variance can be further reduced by retaining and
aggregating an ensemble of the top-k models, thereby smoothing errors while
preserving the predictive mean.

Instability attributable to the train–test partition can be analyzed through
LOOCV, where observations whose studentized residuals exceed the 90th per-
centile are flagged for manual inspection. Measurement artifacts identified in
this step are either corrected or removed, whereas edge-case observations that
represent legitimate but rare operating conditions are retained and their lever-
age attenuated by reestimating the model with a robust loss function. Should
these influential points cluster in specific, underrepresented regions of the fea-
ture space, targeted data augmentation - either through additional empirical
sampling or simulation - can be used to strengthen the model’s generalization
capacity in those areas.

Level B is used only when the training data require substantial manual clean-
ing or when multiple, equally plausible preprocessing options exist. Typical
situations include the handling of outliers in small samples, the imputation of
non-ignorable missing values, or the reconciliation of divergent data sources.
If the data originate from a well-defined measurement protocol and contain
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neither extreme values nor systematic gaps, Level B can be skipped. Level
B examines whether specific choices in the data preprocessing pipeline alter
predictive performance to an extent that may compromise downstream decision
making. Two critical decision nodes are evaluated: the treatment of outlying
observations and the strategy for imputing missing values. Each investigation
keeps the training–test partition and the hyperparameter configuration constant,
thereby isolating the effect to the preprocessing steps.

Table 4.13: Decision-sensitivity protocol (Level B).

ID Decision node Escalation trigger

B1 Outlier → Impute - (always executed)
B1-i Imputation strategy |∆errormetric|>5 % or paired test p < 0.05when

current pipeline is replaced by alternative pipeline.
B1-o Outlier detection Same criterion as B1–i.

First, the reference data cleaning pipeline is contrasted with an alternative vari-
ant that replaces the existing outlier imputation module by a different detection
rule and a correspondingly aligned imputation step. All other preprocessing
and modeling components remain identical. If the absolute change in any per-
formance metric exceeds five percent or a paired significance test is performed,
the node is classified as decision critical and a second stage investigation is
initiated.

Regarding outlier detection, every observation that the alternative variant labels
as atypical is examined individually. Influence diagnostics quantify the lever-
age each point exerts on the fitted model, while contextual meta-data help to
distinguish measurement errors from legitimate but rare operating conditions.
Observations confirmed as erroneous are removed or corrected. Rare yet valid
cases are retained and either down-weighted by a robust estimation scheme or
preserved through an explicit indicator so that their information content remains
available without dominating the training process.
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The impact of alternative imputation schemes is assessed by fitting otherwise
identical models and subjecting the error differences to a paired significance
test. Evidence of a systematic performance shift implies that the pattern of
missingness carries substantive information about the target or the feature dis-
tribution. In such cases the imputation method that exhibits the lowest variance
and the best average error is selected, and missing values are documented as a
key uncertainty driver within the risk register.

Level C becomes relevant once the model predictions are exposed to risk-
sensitive decision makers or inform scientific conclusions. In exploratory set-
tings where the model serves only as a screening tool, Level C can be deferred.
In regulated domains or whenever feature attributions influence downstream
actions, it is executed without exception.

Table 4.14: Model and explainability consistency protocol (Level C).

ID Consistency criterion Escalation trigger

C1 Agreement among inde-
pendent XAI methods

Kendall rank correlation between feature rankings
falls below 0.6

C2 Learning-curve overfit-
ting check

Generalization gapEtrain−Eval at the largest train-
ing size exceeds one standard deviation of Eval

The agreement among independent XAI methods evaluates whether several or-
thogonal explanation techniques converge on the same set of driving variables,
thus establishing the credibility of feature-level interpretations. SHAP val-
ues computed using the TreeSHAP algorithm, Sobol Index importance scores
and model-agnostic or ICE profiles are generated for the final estimator. Each
method produces a list of influential features in a ranked order. The consistency
among the lists is quantified using the Kendall rank-order correlation coeffi-
cient. A coefficient below 0.6 signals a lack of consensus that may be due to
multicollinearity, target leakage, or an inappropriate representation of domain
knowledge. In such cases, the feature set is reassessed, redundant variables
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are merged or removed, and the model is retrained until the rankings exhibit
satisfactory alignment.

Learning curves visualize the progression of the training and validation errors
as a function of the effective training set size. The difference between the two
curves, known as the generalization gap, reveals the capacity of the model to
extrapolate beyond the samples it was fitted to. When the gap at the maximum
available sample size exceeds one standard deviation of the validation error, the
model is deemed to be overfit. Mitigation measures include increasing regular-
ization strength, pruning network depth, or tree complexity, and, where feasible,
augmenting the data set with new observations from underrepresented regions
of the input space. The learning curve is regenerated after each adjustment to
verify that the gap narrows to an acceptable bandwidth.

This cascade ensures that robustness analyses are commensurate with project
stakes: a quick Level O filter prevents unnecessary effort on poorly tuned
models, Level A is applied universally, while Levels B and C are reserved
for cases in which data cleaning or explanatory accountability dictates deeper
scrutiny.

4.8.4 Methodological Reassessment and Refinement

Whenever the gap between predicted and observed outcomes exceeds the pre-
defined acceptance limits, the workflow enters a targeted reassessment phase.
Three levers are available:

• Surrogate Model Refinement: This involves a reassessment of the sur-
rogate model itself. Potential actions include modifying the feature set,
adjusting preprocessing steps, re-optimizing hyperparameters, or select-
ing an alternative algorithm from the model pool, with the objective of
improving predictive accuracy and the reliability of uncertainty estimates.
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• Search Policy Modification: For sequential optimization campaigns, this
involves adjusting the search policy to improve learning efficiency. Mod-
ifications may include altering the acquisition function to change the
exploration-exploitation balance, refining parameter bounds, or changing
the batch size for subsequent experiments.

• Experimental Investigation: This involves conducting further physical
experiments to diagnose the source of the discrepancy. Controlled repli-
cations of previous trials are performed to differentiate between model
bias and stochastic effects, such as measurement noise or unaccounted
process variations.

This iterative refinement process is applied until the discrepancy between pre-
dicted and validated outcomes falls within the pre-defined tolerance, ensuring
that the overall methodology remains aligned with production constraints and
process variability. Combined with robustness diagnostics, this feedback loop
aims to ensure that the model performance claims are valid and hold in real-
world manufacturing environments.

4.9 Summary of the Methodology

This methodology presents a framework for process optimization in data-
constrained manufacturing environments. To address gaps identified in the
literature regarding data scarcity, model explainability, and lack of integrated
workflows, the framework is built on principles of modularity and open source
adaptation. It begins with a problem definition phase, where the optimization
task is situated within the product engineering lifecycle, technical objectives are
formalized, and these goals are alignedwith environmental sustainability targets
using LCA principles. A core contribution of this work is a structured decision
framework for selecting between two primary optimization paradigms: Offline
optimization via static surrogates and sequential optimization. This choice is
guided by an analysis of strategic goals, operational constraints, and available
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resources. Both pathways are contingent upon a high-quality data founda-
tion, which is established through a comprehensive six-stage data preprocessing
protocol that addresses profiling, outlier treatment, missing value imputation,
scaling, feature engineering, and data fusion. For the offline path, the methodol-
ogy specifies a protocol for developing and validating a high-fidelity surrogate
model. This includes an algorithm selection process grounded in practical
manufacturing requirements, and a nested cross-validation scheme for robust
hyperparameter optimization. For the sequential path, it provides a guide for
designing an efficient BO campaign by conditionally selecting the surrogate
model, initial sampling strategy, and an adaptive exploration-exploitation pol-
icy that is dynamically tailored to the problem’s dimensionality and the available
evaluation budget. To ensure transparency and generate actionable insights, a
multi-layered XAI protocol is applied post-hoc to any finalizedmodel, progress-
ing from global feature importance down to local, instance-level explanations
and the discovery of behavioral archetypes. Finally, the framework bridges
the gap to industrial practice with a deployment evaluation protocol. This fi-
nal validation stage assesses the real-world viability of any proposed solution
through break-even analysis, quality assurance plan, and a refinement loop, en-
suring that the resulting optimizations are practically reliable in manufacturing
environments.
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The validation is organized into two distinct stages. The initial validation step
focuses exclusively on the methodology’s optimization strategy selection com-
ponent. The objective is to empirically test the core hypothesis that an adaptive
search strategy is more sample-efficient for finding an unknown optimum than
a static, one-shot modeling approach. To achieve this, five publicly available
material science datasets are used as a testbed. As these data sets are drawn
from completed studies, crucial steps such as data acquisition, pre-processing,
and initial robustness checks were part of the original work. This allows for a
focused and controlled comparison of the optimization strategies themselves,
avoiding the redundancy of reapplying the full methodological chain. This
stage is crucial to confirm the foundational logic that guides the choice between
iterative optimization and static surrogate modeling followed by virtual opti-
mization. Building on the findings of Stage 1, the second stage demonstrates
the end-to-end applicability and effectiveness of the entire methodology using
two use cases. Both cases are situated in the field of FDM 3D printing, but
are designed to test the framework under opposing data-regime conditions: one
data-rich scenario and one data-limited scenario. Each of these case studies
follows the complete methodological cycle of Section 4. A summary of the
three validation use cases and their specific focus is provided in Table 5.1.
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Table 5.1: Descriptive overview of the validation use cases.

Stage Use Case Key Methodological Focus

Stage 1 Empirical
Validation
of the op-
timization
strategy
selection

This analysis focuses on validating the optimization strategy
selection logic by empirically comparing the sample efficiency
of adaptive and static strategies. The trade-off between global
model accuracy and optimization performance is compared.

Stage 2
CO2 Re-
duction of
3D Printing
with PLA

This use case demonstrates the full methodology under data-
rich conditions. A surrogate model is trained on a factorial
experimental design to map the process landscape of FDM
printing with PLA. A suite of XAI methods is applied to
quantify the influence of process parameters on the PCF and
reveal trade-offs between CO2 reduction and part quality.

Energy Re-
duction of
3D Printing
with PLA

This use case demonstrates the full methodology under severe
data constraints. BO is employed for direct, data-efficient pa-
rameter search. Post-hoc XAI analyses are performed to inter-
pret the identified optimum, understand the dominant energy
drivers, and validate the solution for pilot-scale implementa-
tion.

5.1 Empirical Validation: Adaptive Search vs.
Static Modeling

This use case empirically validates the core principles of the optimization
framework by comparing the performance of an adaptive search strategy against
a static, one-shot modeling approach. The objective is to evaluate whichmethod
is more effective in various application scenarios to determine a minimum. To
isolate the effect of the sampling strategy, the same surrogate model, a RF,
was used for both methods. This approach minimizes the surrogate model gap
and ensures that the comparison primarily highlights the difference between
an adaptive and a static search. In summary, two different strategies were
compared:
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• Adaptive Search: Sequential optimization was performed using BO with
an RF surrogate and EI as an acquisition function. The search started
directly with this setting, foregoing any prior DoE sampling.

• Static Modeling: First, a single, space-filling sample of a predefined size
N was generated using LHS. LHS was chosen to maximize the accuracy
of the regression (see Table 4.7). Second, an RF model was trained on
this static data set. The location of the optimum was then predicted on
the basis of this one-shot model.

The central hypothesis is that, for the task of finding a minimum, the adaptive
search strategy will be more sample-efficient than the static modeling approach,
especially when the total number of evaluations is small.

Five publicly available data sets were selected as a diverse test bed, representing
a range of experimental domains, processes, and optimization objectives. The
key properties of these data sets are summarized in Table 5.2.

The distributions of the objective values for each data set are shown in Figure 5.1,
revealing varied probability densities that underscore the diverse complexity and
variability in the target metrics. An upfront analysis of the landscapes, based
on the metrics calculated for the complete datasets, reveals the nature of the
optimization landscape.

As shown in Table 5.3, the landscapes possess features that are simultaneously
favorable and challenging for the static approach. High autocorrelation indi-
cates global smoothness, yet high values for Dispersion and PIC signal local
ruggedness and multimodality.

The comparative performance was tracked at various evaluation checkpoints
(N ), as detailed in Table 5.4. The underlying optimization problem was de-
fined as a minimization task, with the goal of finding the lowest attainable
target value. For BO, each checkpoint reports the lowest value observed after
N sequential evaluations. For LHS+RF, each checkpoint corresponds to an
independent one-shot experiment with a budget of N , after which the trained
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model was used to predict the minimum of the response surface. To account
for stochastic variability in both the sampling strategies and model training, 20
independent optimization runs were performed for each method. The values re-
ported in Table 5.4 represent the mean and standard deviation of these repeated
experiments.

Table 5.2:Material Science Datasets and their properties.

Dataset d Domain Fabrication &
Characterization

Objective Size

AgNP [327] 5 Nanoparticle syn-
thesis

Droplet-based mi-
crofluidic synthesis;
in-line hyperspectral
absorption measure-
ment

Match
nanoprisms
absorption
spectrum

120

AutoAM [328] 4 Autonomous AM Direct-write 3D
printing; image cap-
ture and geometry
analysis

Minimize ge-
ometry error

100

Crossed Barrel
[329]

4 Additive metama-
terial structures

FDM fabrication of
lattice specimens;
uniaxial compression
testing

Maximize
toughness

1800

P3HT [330] 5 Organic semicon-
ductors

Spin-coated thin
films; Organic Field-
Effect Transistor
characterization to
extract field-effect
mobility

Maximize
field-effect
mobility

233

Perovskite
[331]

3 Hybrid halide per-
ovskites

Spin-coating of thin
films; optical moni-
toring under acceler-
ated aging for stabil-
ity assessment

Maximize
compositional
stability
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(a) AgNP (b) AutoAM

(c) Crossed Barrel (d) P3HT

(e) Perovskite

Figure 5.1: Distributions of target property across different material science data sets.

The results provide a confirmation of the hypothesis. The adaptive strategy
establishes a performance advantage very early in the search process, often
within the first 10-15 evaluations when the SDR is low. This efficiency gap is
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5 Validation of the Methodology

maintained or widens as the budget for evaluations increases, highlighting the
superiority of an adaptive approach to this task.

Table 5.3: Calculated selection metrics for the five datasets.

Metric AgNP AutoAM Crossed barrel P3HT Perovskite

SDR 24.0 25.0 450.0 46.6 46.3
FDC 0.58 −0.51 0.42 0.22 0.65
τ 16.24 6.33 6.93 5.85 13.97
Dispersion10% 0.78 2.01 1.36 1.19 0.14
PIC 0.66 0.65 0.65 0.73 0.69

Table 5.4: Checkpoint-wise performance comparison for BO and LHS+RF.

N Method AgNP AutoAM Crossed barrel P3HT Perovskite (×105)

5 BO 0.45 ± 0.19 0.00 ± 0.00 3.05 ± 3.74 12.72 ± 2.55 2.43 ± 0.92
LHS+RF 0.46 ± 0.18 0.15 ± 0.20 4.83 ± 8.62 59.64 ± 69.09 2.97 ± 1.41

10 BO 0.32 ± 0.15 0.00 ± 0.00 1.60 ± 0.81 9.63 ± 2.26 1.75 ± 0.86
LHS+RF 0.46 ± 0.16 0.04 ± 0.09 5.97 ± 10.14 32.43 ± 38.78 3.04 ± 2.12

15 BO 0.27 ± 0.13 0.00 ± 0.00 1.44 ± 0.85 7.31 ± 3.10 1.47 ± 0.82
LHS+RF 0.46 ± 0.16 0.05 ± 0.10 4.29 ± 5.98 36.69 ± 13.88 2.63 ± 1.40

20 BO 0.25 ± 0.10 0.00 ± 0.00 1.25 ± 0.52 7.24 ± 3.09 1.40 ± 0.73
LHS+RF 0.45 ± 0.16 0.08 ± 0.19 5.43 ± 9.03 13.98 ± 11.98 2.16 ± 1.83

25 BO 0.24 ± 0.09 0.00 ± 0.00 1.13 ± 0.53 7.24 ± 3.09 1.18 ± 0.73
LHS+RF 0.40 ± 0.21 0.00 ± 0.00 1.81 ± 1.07 13.98 ± 11.98 2.51 ± 1.79

30 BO 0.24 ± 0.09 0.00 ± 0.00 1.06 ± 0.43 6.41 ± 3.08 1.16 ± 0.75
LHS+RF 0.33 ± 0.16 0.00 ± 0.00 2.05 ± 4.12 79.16 ± 81.89 1.22 ± 0.76

35 BO 0.22 ± 0.07 0.00 ± 0.00 0.99 ± 0.36 6.41 ± 3.08 1.08 ± 0.66
LHS+RF 0.29 ± 0.13 0.00 ± 0.00 1.45 ± 1.22 42.37 ± 32.14 1.45 ± 1.12

40 BO 0.21 ± 0.03 0.00 ± 0.00 0.91 ± 0.30 6.34 ± 3.04 1.03 ± 0.65
LHS+RF 0.37 ± 0.17 0.02 ± 0.06 1.61 ± 1.00 25.14 ± 46.11 2.17 ± 1.70

45 BO 0.20 ± 0.03 0.00 ± 0.00 0.90 ± 0.31 6.34 ± 3.04 0.80 ± 0.42
LHS+RF 0.35 ± 0.16 0.03 ± 0.09 3.80 ± 10.17 18.48 ± 19.39 1.91 ± 1.36

50 BO 0.20 ± 0.03 0.00 ± 0.00 0.90 ± 0.31 6.34 ± 3.04 0.73 ± 0.46
LHS+RF 0.35 ± 0.15 0.01 ± 0.03 3.37 ± 6.70 24.59 ± 46.66 1.68 ± 1.22

100 BO 0.19 ± 0.02 0.00 ± 0.00 0.87 ± 0.29 5.32 ± 3.25 0.60 ± 0.48
LHS+RF 0.34 ± 0.17 0.04 ± 0.10 1.44 ± 0.34 24.00 ± 45.51 1.61 ± 1.41
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An analysis was conducted to illuminate the mechanisms underlying the ob-
served advantage of the adaptive strategy. This investigation focuses on the
fundamental trade-off between global model fidelity and local search efficiency
within the domain of black-box optimization. The question under considera-
tion is whether achieving superior optimization performance requires a globally
accurate model, or whether it can result from targeted sampling in promising
areas, thus offsetting a reduction in global predictive precision. Two contending
hypotheses emerge from this premise:

• A model trained on a broad, space-filling sample achieves higher global
predictive accuracy across the entire design space.

• An adaptive search strategy that concentrates evaluations in promising
regions identifies a better optimum value, even when its global model is
less accurate.

To directly assess this, both methodologies were re-trained on 80% subsets of
randomly chosen data samples and then independently evaluated. For each
subset, surrogate models were constructed, and both their overall predictive
accuracy and optimization results were analyzed. The procedure was executed
a total of 10 times, and the computed mean along with the standard deviation
of the outcomes are shown in Table 5.5.

Table 5.5: Validation of the trade-off between global accuracy and optimization performance.

Metric Model Perovskite AgNP AutoAM P3HT Crossed barrel

RMSE
BO (2.05 ± 0.73) × 105 0.16 ± 0.00 0.22 ± 0.05 173.93 ± 43.18 8.58 ± 1.12
RF (1.22 ± 0.24) × 105 0.047 ± 0.00 0.10 ± 0.02 122.98 ± 29.31 6.41 ± 0.38

MAE
BO (1.53 ± 0.53) × 105 0.11 ± 0.00 0.17 ± 0.03 156.65 ± 26.43 7.84 ± 1.20
RF (0.99 ± 0.22) × 105 0.03 ± 0.00 0.07 ± 0.01 78.63 ± 14.68 4.46 ± 0.26

R2 BO 0.39 ± 0.02 0.26 ± 0.06 0.38 ± 0.13 0.47 ± 0.22 0.47 ± 0.01
RF 0.88 ± 0.02 0.94 ± 0.01 0.89 ± 0.05 0.77 ± 0.05 0.70 ± 0.04

Best Found y
BO (2.37 ± 0.00) × 104 0.18 ± 0.07 0.00 ± 0.00 4.74 ± 2.82 0.38 ± 0.00
RF (1.15 ± 0.38) × 105 0.22 ± 0.01 0.00 ± 0.00 7.08 ± 0.84 1.23 ± 0.00
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5 Validation of the Methodology

The results confirm both hypotheses and reveal the trade-off. First, the static
RF models demonstrate superior global accuracy. Across the five datasets, their
RMSE and MAE values are consistently lower and their R2 scores are sub-
stantially higher. This confirms that a space-filling static approach is effective
in building a globally representative model. In contrast, the data support the
second hypothesis. The adaptive BO process consistently discovers a lower
minimum value. For instance, on the perovskite data set, BO finds a minimum
that is almost five times lower than the best value identified from the globally
superior RF model.

The previous analysis showed that an adaptive strategy is superior in finding
the minimum. To investigate this, the next analysis examines whether certain
landscape features further enhance that advantage. Therefore, a correlation
analysis was performed linking the initial landscape metrics, from Table 5.3, to
the performance gap measured between the adaptive and static methods.

Table 5.6: Correlation coefficients between problem metrics and average performance difference
over all checkpoints for the minimization task. Negative values indicate an advantage
of BO.

Metric Correlation

Problem dimension, d −0.51
FDC +0.03
Autocorrelation length, τ +0.48
10% Dispersion −0.07
PIC −0.88

The analysis reveals that there is a strong negative correlation of -0.88 with
PIC. This indicates that local ruggedness is the most important feature that
determines the advantage of an adaptive search. The more complex the local
landscape, the more an unintelligent, static sampling plan is punished and an
intelligent, adaptive search is rewarded. The moderate negative correlation with
dimension aligns with the known strengths of BO in lower-dimensional spaces.
The autocorrelation length τ shows a positive correlation of +0.48, suggesting
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5.2 CO2 Optimization of 3D Printing with PLA

that long-range dependency slightly reduces the relative performance of BO. The
FDCand 10%dispersionmetrics showcorrelations near zero, which implies that
these metrics have minimal predictive value for the comparative performance
of the two methods of these datasets.

The results presented in this chapter confirm a critical trade-off between op-
timization efficiency and global process understanding. For the specific task
of expensive black-box optimization, an adaptive sampling strategy is superior
to a static DoE approach. In complex landscapes, especially those identified
as globally smooth but locally rugged, an uninformed space-filling sample is
inefficient because it wastes evaluations in uninteresting regions. An adaptive
method such as BO, on the contrary, learns from every data point to progres-
sively focus its search, demonstrating superior sample efficiency. However, this
targeted efficiency reveals the drawback of the adaptive search approach. Fo-
cusing samples in areas with high potential to rapidly locate the optimum can
result in the method overlooking the development of a comprehensive global
understanding of the entire search space. The resulting surrogate model can
be highly accurate near the discovered optimum but is unreliable in unexplored
regions, making it less suitable for generating global process insights.

5.2 CO2 Optimization of 3D Printing with PLA

The first use case was initially introduced by Hauck et al. [4], and is explored
in depth in this section in relation to the proposed methodology. The use case
was developed within the scope of the AI-assisted Technology Transfer (AITT)
research project, funded by the German Federal Ministry for Economic Affairs
and Climate Action (BMWK) under the Leichtbau technology transfer program
(TTP). The project’s core objective is to leverage AI techniques within the
product development process to systematically reduce CO2 equivalents. The
research project focuses on two distinct technological processes: 3D printing
and injection molding. In this context, the application explored is 3D printing,
using PLA, which was selected for its origin from renewable resources, its
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biodegradability, and its low toxicity during printing, as described in Table
2.1. For transferability, the use case investigates the production of standardized
tensile test specimens according to ASTM D638 Type I, which also conforms
to the ISO 527 and GB/T 1040 standards [21].

5.2.1 Definition of Objectives and Scope

The PLA use case is assigned to the testing and refinement phase in the lifecycle
of Eq. (4.1). This assignment follows directly from the observable indicators
summarized in Tables 4.1 and 4.2. The geometry and the material are fixed,
which places the task after detail design. The primary objective is the screen-
ing and refinement of process parameters to reduce CO2-equivalents subject to
basic mechanical acceptance, which matches the purpose of testing and refine-
ment. The data situation consists of structured experimental logs and short run
histories rather than long operational records, which is characteristic of testing
and refinement rather than pilot production or later phases. Parameter changes
are still freely admissible between runs, indicating a high degree of freedom
of change. The quality regime uses standardized tensile tests on ASTM D638
Type I (ISO 527, GB/T 1040) specimens [21] to verifymechanical performance,
which is consistent with engineering acceptance criteria in testing and refine-
ment. The decision cadence is organized in campaigns with periodic technical
reviews rather than daily or shift-based production reviews, which again aligns
with testing and refinement. The use case does not qualify as pilot production
because there is no pre-series control plan, no initial capability indices, and
no batch gate approvals. It is also not part of the design phases because the
manufacturing method and the material are no longer open design variables.
By these cues, the most plausible phase is testing and refinement, which we
formalize as P̂ = testing and refinement.

The single quantitative objective is to minimize the product carbon footprint
(PCF), expressed directly in grams of CO2-equivalent. The PCF is calculated
following the IPCC Guidelines for National GHG Inventory [49], with further
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5.2 CO2 Optimization of 3D Printing with PLA

methodological refinements at the process level as described in [332]. The
total equivalents (Etotal,i) associated with each printed part i are segmented into
Scope 2 and Scope 3:

Etotal,i = E1,i + E2,i (5.1)

Scope 2 emissions (E2,i) derive from the electrical energy consumption (Pi)
associated with the printing process and are calculated using the grid-specific
emission factor (EF2):

E2,i = Pi · EF2 (5.2)

According to the German Environment Agency [333], the emission factor for
the German electricity grid is EFs = 388 g CO2-eq/kWh. Scope 3 emissions
(E1,i) are determined based on the mass of the printed part (mi) multiplied by
the PLA-specific emission factor (EF1):

E1,i = mi · EF1 (5.3)

The emission factor for PLA (EF1 = 3.22 kg CO2-eq/kg) is sourced from
the EcoInvent database, referencing data from one of the world’s largest PLA
production plants in Nebraska [334]. In addition, visual inspection and sampled
tensile strength tests will be used to assess the quality of the parts.

5.2.2 Experiment Planning and Optimization Strategy

Four parameters of the FDM process were chosen based on recommendations
from the literature on key factors that influence the PCF of FDM printing:
layer height [335], infill density [335], number of perimeters [336], and nozzle
temperature [337].

This use case pursues two objectives: first, to obtain a global, interaction-
sensitive understanding of the process landscape, and second, to identify a
parameter setting that minimizes the PCF. Because both energy consumption
and part mass are available immediately after each print, the target metric falls
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into latency class L0 according to Table 4.3. For the part, no historical data ex-
ist, and the available budget allows for roughly 100 experiments. Therefore, the
scenario is classified as the start class C2 in Table 4.4. Within the framework,
an L0–C2 problem can be addressed either by an iterative sequential optimizer
or by a single-batch DoE. Both paths satisfy the latency and budget constraints.
In this study a full factorial DoE was chosen because the sub-goal of obtain-
ing a comprehensive understanding of parameter dependencies outweighs the
efficiency benefits of a purely sequential search. Moreover, a comprehensive
factorial plan tests every combination of factor levels, permitting orthogonal and
unbiased estimation of both main effects and interactions, something a space-
filling design would capture only indirectly and with reduced statistical power.
In the complete factorial design, each parameter was systematically varied at
three distinct levels, resulting in a comprehensive set of:

N = 34 = 81 (5.4)

experiments which fits the budget of 100 trials. The three levels represent the
lowest, median, and highest parameter settings. The levels of the process pa-
rameters were selected by first considering the maximum ranges recommended
by the material supplier, then cross-referencing the operating limits of the 3D
printer (Prusa MK4) and finally confirming the allowed min-max values in the
slicing software. The final parameter ranges are shown in Table 5.7.

Table 5.7: Selected Parameter and parameter levels for the second use case.

Level Layer Height Infill Density Perimeters Nozzle Temp.

01 0.16mm 15% 2 190 °C
02 0.22mm 57.5% 4 205 °C
03 0.28mm 100% 6 220 °C
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After performing the complete factorial design, to confirm that the search for
the optimum is possible with a static surrogate model the landscape metrics of
Table 4.6, are calculated.

Table 5.8: Computed Landscape metrics.

Metric Value Interpretation

SDR ρ 20.25 medium-high observations per factor
Autocorrelation length τ 5.11 smooth global landscape
PIC M(ϕ) 0.52 low-moderate number of local optima
Dispersion D 0.35 clustered optima

The landscape metrics presented in Table 5.8 imply an environment that is
reasonably data-rich. The autocorrelation length signifies a smooth global
landscape. The moderate values of the partial information content and the
low values of the dispersion indicate a landscape with a moderate level of
ruggedness, featuring clustered optima. These attributes collectively support
the use of a surrogate modeling approach.

5.2.3 Data Preprocessing

The initial phase of the analysis involved a comprehensive data preprocessing
workflow designed to ensure the quality and integrity of the data set. This
process began with data profiling, where the range and empirical quartiles of all
variables were summarized in Table A.1 of the appendix, to establish a base-
line understanding of their distributions. The subsequent preprocessing steps,
outlier detection and data imputation, were exclusively focused on constructing
the cumulative energy consumption. All recorded process settings serve as
input features and are complete, so no feature-aggregation of the PCF relied
on the raw power trace from the printer, which required outlier treatment and
data imputation. The initial phase in processing the power trace data involved
identifying and managing outliers. For this task, the MAD rule was used with
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a threshold parameter of κ = 3, followed by the application of an isolation
forest algorithm. This procedure identified approximately 3.4% of the samples
as outliers. The workflow proceeded to address the gaps within the power trace,
where the existing gaps of 1.9% combined with 3.4% of outliers resulted in
an overall of 5.3%. According to the workflow in Section 4.4, a prerequisite
for selecting an appropriate imputation method is to determine the nature of
the missingness. Therefore, a binary missing indicator vector was created to
map the location of the gaps. Visual inspection of this map revealed a pattern
of only isolated, single-sample gaps scattered uniformly throughout the build
time. This observation provided preliminary qualitative evidence suggesting an
MCAR environment. To substantiate this hypothesis, Little’s MCAR test was
performed. The test yielded a p-value of p = 0.89. This result provides statisti-
cal confirmation that the data satisfy the MCAR assumption. The confirmation
of the MCAR mechanism, combined with the small overall fraction of missing
data, informed the choice of the imputation strategy. According to Section 4.4,
the missing power readings were filled by linear interpolation, limited to runs
of at most five consecutive missing samples. Subsequently, no absent entries
were identified within the dataset.

Because the experiment employs a full factorial design that provides an almost
uniformly sampled design space, no feature scaling or standardization is re-
quired, and the original units of the input parameters are retained to preserve
their physical meaning.

The original units of the input parameters are preserved to retain physical
meaning. The total energy per build was obtained by trapezoidal integration of
the discrete measurements.

E =
n∑

i=1

(ti − ti−1)
2

(
Pi + Pi−1

)
, (5.5)

where Pi and Pi−1 are successive power readings at times ti and ti−1, respec-
tively. Based on this aggregation, the weight of the parts and the emission
factors, the CO2-equivalent emissions of the parts can be calculated. As shown
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Figure 5.2: Correlation matrix of the process parameter.

in Figure 5.2, the input parameters exhibit negligible interdependencies: only
their individual relationships with the target stand out, so no additional feature
engineering, dimensionality reduction, or redundancy removal is required.

In the last step, data fusion, the CO2-equivalents are merged with the corre-
sponding input parameters to obtain the final data set for analysis.

5.2.4 Offline Optimization via Static Surrogates

A series of machine learning models was trained to predict CO2-equivalent
emissions based on the process parameters. To begin with, the full dataset
was shuffled using a fixed random seed. The data were then partitioned into
training (70 %), validation (15 %) and test (15 %) set. The hyperparameters
for each model were optimized using Optuna with an identical budget of 100
trials. During each trial, a three-fold CV was performed on the training and
validation splits, with the RMSE on the held-out validation fold serving as
the objective. Early stopping mechanisms were applied wherever available to
prevent overfitting given the limited sample size. The final performance of the
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model was evaluated in an outer loop using a five-fold repeated CV alternately
holding out each fold as a test set. To quantify the variability introduced
by random initialization and data splits, the entire nested CV procedure was
repeated using ten distinct random seeds. All sources of randomness, including
data set shuffling, fold assignments, and the Optuna sampler, were controlled by
these seeds. For each model, Table 5.9 reports the mean and standard deviation
of the outer loop metrics R2, MAE, and RMSE. In line with the criteria
summarized in Table 4.8, tree-based models, AutoML systems, and GAMs
were considered well suited to the dataset, and transformer-based architectures
were additionally evaluated to validate this selection empirically.

Table 5.9: Predictive Performance Metrics of the Regression Algorithms.

Model RMSE MAE R2

XGBoost 0.83 ± 0.64 0.59 ± 0.30 0.96 ± 0.06
CatBoost 0.84 ± 0.60 0.61 ± 0.33 0.96 ± 0.05
LightGBM 0.87 ± 0.57 0.59 ± 0.25 0.96 ± 0.05
RandomForest 1.03 ± 0.63 0.74 ± 0.33 0.94 ± 0.07
AutoSklearn 1.21 ± 0.77 0.74 ± 0.35 0.90 ± 0.16
AutoGluon 1.39 ± 0.86 0.99 ± 0.56 0.92 ± 0.07
TabPFN 2.81 ± 0.44 2.51 ± 0.41 0.66 ± 0.25
EBM 2.94 ± 0.52 2.44 ± 0.54 0.69 ± 0.04
SAINT 5.82 ± 1.11 4.98 ± 1.06 −0.53 ± 1.03
TabNet 31.68 ± 3.62 30.76 ± 4.60 −39.13±18.78

The results show that tree-based techniques are predominant, with XGBoost
and CatBoost exhibiting the lowest RMSE and MAE, coupled with the highest
R2. The errors achieved are minimal compared to the absolute CO2-equivalent
emissions, which span approximately 30.4 to 44.2 g per part, corresponding
to relative errors of under 2 %. AutoML frameworks deliver robust results.
However, they still fall slightly short of the best tree-based algorithms. GAMs,
represented by EBM, yield performance on par with TabPFN. They outper-
form other deep learning methods, such as SAINT and TabNet, which exhibit
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markedly poor metrics. Nevertheless, they remain less accurate than the leading
models. The moderate to high standard deviations observed suggest that factors
such as random initialization and data splitting introduce substantial variability,
which will be further evaluated in the following robustness analysis.

5.2.5 Explainable AI and Parameter Influence Analysis

Following themethodology’s recommendation, themulti-method explainability
strategy was used. First, a global sensitivity analysis was performed using Sobol
first- and total-order indices.

Table 5.10: Sobol first-order (S1) and total-order (ST ) indices.

Feature S1 ST

Infill Density 0.86 0.92
Nozzle Temperature 0.01 0.01
Layer Height 0.11 0.05
Number of Perimeters 0.00 0.07

The Sobol first-order indices reveal that infill density alone explains themajority
of variance in predicted CO2-equivalents. The layer height has a modest direct
effect, whereas the number of perimeters contributes only minimally. Finally,
the nozzle temperature has essentially no direct influence on the model output.

The total order indices confirm that the total contribution of the infill density
remains the largest (ST ≈ 0.92), indicating that interactions involving the infill
density account for only a small additional fraction of the variance. Layer
height and number of perimeters exhibit small increases from S1 to ST (ST ≈
0.05 and 0.07), while the nozzle temperature remains negligible (ST ≈ 0.01).
Furthermore, since only four input parameters were analyzed, the construction
of a set of high-impact factors was unnecessary.
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Next, the global SHAP summary in Figure 5.3 further revealed both the disper-
sion and the directional impact of each factor.

Figure 5.3: SHAP summary plot showing the distribution and sign of feature contributions for all
parts.

High infill densities consistently shift predictions upward, indicating increased
CO2-equivalents, whereas low infill densities suppress them. Likewise, the
number of perimeters exhibits a comparable effect, where a reduction in the
number of perimeters corresponds to a decrease in CO2-equivalents, while
an increase in the number of perimeters results in elevated levels of CO2-
equivalents. In contrast, layer height demonstrates an inverse relationship,
whereby reducing layer height results in elevated CO2-equivalents, whereas
increasing layer heights leads to diminished CO2-equivalents. The clustering
of nozzle temperature values tightly around zero reaffirms its insubstantial role
within the explored parameter window.

Furthermore, the SHAP decision plot in Figure 5.4 traced the cumulative con-
tributions of the global mean prediction to each specific estimate for each part.
Reduced infill densities have the potential to decrease CO2-equivalents by as
much as six units, whereas elevated infill densities can increase them by up to
ten units beyond the average. Modifications in the perimeter count and layer
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Figure 5.4: SHAP decision plot illustrating how individual feature contributions accumulate from
the global mean to each part prediction.

height take place solely subsequent to the primary infill effects, with the near-
flat trajectories of nozzle temperature highlighting its minimal impact on the
output.

Subsequently, to explore latent groupings within the multidimensional process
parameter space, unsupervised clustering techniques were used. As no inherent
hierarchical structure was anticipated in the process parameter space, k-means
clustering was first tested. However, the algorithm did not produce clearly
separated groups. To allow for ellipsoidal cluster shapes and probabilistic
membership, a GMM was used. With the GMM, the data points could be
satisfactorily grouped. To identify the optimal number of clusters, the BIC
and the silhouette coefficient were plotted as functions of the cluster number,
as depicted in Figure A.2 of the appendix. Despite a conflicting peak in the
silhouette score at k = 2, the selection of five clusters was guided by the
clear elbow in the BIC curve at k = 5 and its associated acceptable silhouette
value. To visualize the high-dimensional cluster structure, a PCAwas employed.
Figure 5.5 displays the resulting clusters in a three-dimensional projection on
the first three PCs, which collectively account for approximately 80% of the
total variance.

The interpretation of these axes, based on the feature contributions in Table 5.11.

201



5 Validation of the Methodology

Figure 5.5: Three-dimensional PCA projection colored by the five-component GMM.

Table 5.11: PCA feature contributions to the first three components.

Feature PC 1 PC 2 PC 3

Layer height 0.12 0.00 -0.99
Infill percentage -0.68 0.09 -0.16
Perimeters -0.16 -0.27 -0.04
Nozzle temperature -0.02 -0.96 -0.00
CO2 equivalents -0.71 0.00 0.00
Explained variance 0.40 0.20 0.20

PC 1 alone accounts for 40 % of the total variance and is highly correlated with
both the infill density and the CO2-equivalents. Therefore, the horizontal spread
along the PC 1 axis in the scatter plot visualizes the carbon efficiency gradient,
where movement along the positive axis leads to prints with a higher PCF.
The vertical variation along PC 3 reflects differences in layer height, whereas
movement along PC 2 indicates shifts in nozzle temperature and, to a lesser
extent, perimeters.
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Table 5.12: Cluster sizes, mean carbon footprint and process parameters.

Cluster n CO2e [g] Layer
height
[mm]

Infill [%] Perimeter
[No.]

Nozzle
temp. [◦C]

0 18 31.60 0.22 15.00 4.00 197.50
1 11 39.60 0.17 57.50 3.80 207.70
2 15 38.10 0.25 57.50 4.30 202.00
3 10 31.70 0.23 19.30 3.80 220.00
4 27 44.10 0.22 100.00 4.00 205.00

The analysis of the characteristics of the cluster summarized in Table 5.12
revealed several different process regimes that align with the previous analysis.
Particularly noteworthy is Cluster 4, which represents the highest-emission
regime with a mean PCF of 44.10 g. All prints were made with 100% infill
using otherwise varying process parameters. In contrast, clusters 0 and 3 are
both characterized by a low infill percentage and, consequently, a low PCF.
Their primary differentiation lies in the nozzle temperature, in which Cluster
0 uses a cool nozzle, Cluster 3 operates with a hot nozzle. The remaining
Clusters 1 and 2 comprise prints with a medium infill percentage and fall into
the mid-range for CO2-equivalents. They differ primarily in their combination
of layer height and nozzle temperature. Cluster 1 combines very fine layers with
a warm nozzle, while Cluster 2 utilizes coarse layers at a moderate temperature.

Lastly, to analyze the shape and direction of the influence of the process param-
eters, Figure 5.6 shows the ICE curves for the CO2-equivalents as each process
parameter is varied, while all others remain constant. The vertical grid lines
mark the discrete settings used in the factorial design, and the y axis shows the
CO2-equivalents.

From these ICE plots, it is confirmed that infill density exerts by far the strongest
influence on CO2-equivalents. Increasing density from 15% to 25% and again
from 25% to 35% produces mean emission increases on the order of 4–5 g,
and the mean ICE curve rises almost linearly across the full 15–100% range.
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(a) Infill Percentage (b) Layer Height

(c) Nozzle Temperature (d) Number of Perimeters

Figure 5.6: ICE and mean PDP of CO2 equivalents of the input parameters.

In contrast, the nozzle temperature does not have an effect, as its ICE curves
are nearly flat, and the mean line stays at approximately 37.8 g throughout the
190–230,°C interval. The layer height shows a small negative relationship, with
predicted equivalents falling by approximately 2 g as the layer height increases
from0.16mm to 0.28mm, indicating that the coarser layers slightly reduceCO2-
equivalents. Finally, the number of perimeters produces a moderate increase in
CO2-equivalents emissions. The tight clustering of individual gray ICE curves
for infill density further confirms the Sobol sensitivity analysis, as nearly all
observations respond to changes in infill density, producing a consistent upward
shift in predicted CO2-equivalents.
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5.2.6 Validation and Real-World Integration

The process of validation and real-world integration commences with conduct-
ing the BEP analysis, which is then pursued by an assessment of the part’s
quality and subsequently, the robustness analysis of the employed machine
learning models.

To assess whether the optimization campaign compensates for its resource
demands, the initial expenditures with the cost savings per part achieved will
be compared. The optimization campaign comprises 81 prints and consumed
EOpt = 2.20 kWh of electricity together with mOpt = 0.694 kg of PLA.
Using 2024 German industrial tariffs, cE = 0.1899EUR (kWh)−1 [338] for
electricity and cmat = 20 EUR kg−1 [339], the direct monetary outlay of the
campaign is

COpt = EOpt cE + mOpt cmat = 14.30 EUR. (5.6)

The associated CO2 equivalents based on the German grid factor EFE =
0.388 kg CO2 (kWh)−1 [333] and the PLA factorEFmat = 3.22 kg CO2 kg−1

[334], is

IGWP100
Opt = EOptEFE + mOpt EFmat = 3.09 kg CO2e. (5.7)

The baseline mirrors slicer defaults (layer height 0.22 mm, 57.5 % infill, four
perimeters, nozzle temperature 205 ◦C), while the optimum is the run that
minimizes CO2-equivalents while remaining inside the experimental design
space (layer height 0.28 mm, 15 % infill, two perimeters, 190 ◦C). Switching
from baseline to optimal settings reduces per part the electricity demand by
∆E = 8.6 × 10−3 kWh and the usage of PLA by ∆m = 2.06 g = 2.06 ×
10−3 kg, giving a monetary savings of

∆cpart = ∆E cE + ∆m cmat = 0.042 EUR part−1. (5.8)
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The corresponding PCF reduction is

∆IGWP100
part = ∆E EFE + ∆m EFmat = 9.96× 10−3 kg CO2e. (5.9)

Therefore, the optimization campaign amortizes after

N cost
BE = COpt

∆cpart
≈ 3.35× 102 parts, (5.10)

NCO2e
BE =

IGWP100
Opt

∆IGWP100
part

≈ 3.10× 102 parts. (5.11)

Applying the prudence factor α = 1.2 to the previously calculated break-even
points gives conservative thresholds:

N cost
BE,safe = α N cost

BE = 1.2× 3.35× 102 ≈ 4.02× 102 parts (5.12)

NCO2e
BE,safe = α NCO2e

BE = 1.2× 3.10× 102 ≈ 3.72× 102 parts (5.13)

These thresholds are consistent with typical batch sizes in prototyping for small
and medium sized enterprises. They should be read as cautious targets rather
than exact cutoffs. Electricity tariffs in Germany vary over time, and a higher
tariff would shift the economic threshold upward, while a lower tariff would
move it downward. The cost model focuses on consumables, and adding capital
costs, operator time, and post-processing would raise the financial threshold to
some extent, which is common in AM studies. The computation for surrogate
modeling also consumes energy and money, so including that effort would
moderately increase the payback horizons for costs and for carbon. In practice,
not every pre-optimization print is scrap. If some early parts are used, the
incremental benefits per part are smaller, but the method can still deliver value
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across the series. Overall, safe counts remain attainable for the PLA use case
and provide a robust planning figure for both cost and PCF savings.

In conjunction with reducing the CO2 footprint, a comprehensive quality assess-
ment was performed. This evaluation included visual inspection and evaluation
of mechanical properties by tensile testing. The visual inspection revealed
that parameters involving the lowest nozzle temperature setting exhibited small
extrusion issues, such as non-rectangular outer contour or irregularities in the
print image itself, as shown in Figure 5.7.

Figure 5.7: Side view of all samples, highlighting extrusion defects on specimens using N01 (non-
rectangular outer contour/curvature (blue) and irregularities in the print image (red)),
taken from Hauck et al. [4] .

To assess mechanical performance, tensile tests were performed on a random
subsample of the printed specimens. The tensile strengths of the nine samples
analyzed ranged from 13.18MPa to 25.57MPa, indicating a variation of ap-
proximately 94%. Table 5.13 lists the tensile strengths and the corresponding
process parameters for each specimen.
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Table 5.13: Tensile strength values of the analyzed specimens, adapted from Hauck et al. [4].

Experiment
No.

Layer
Height
[mm]

Infill Den-
sity [%]

No. of
Perimeters

Nozzle
Tempera-
ture [°C]

Tensile
Strength
[MPa]

1 0.16 15.0 2 190 16.67
14 0.16 57.5 4 205 19.03
27 0.16 100.0 6 220 25.57
33 0.22 15.0 4 220 15.18
43 0.22 57.5 6 190 18.89
47 0.22 100.0 2 205 24.25
62 0.28 15.0 6 205 13.18
66 0.28 57.5 2 220 17.88
76 0.28 100.0 4 205 21.87

Since there are only minimal dependencies between the input parameters, an
analysis of the main effects can be performed. The mean tensile strength was
calculated at different levels for each factor. The findings are presented in Table
5.14.

Table 5.14: Main effects: mean tensile strength [MPa] by factor level.

Level Layer Height Infill Density No. of Perime-
ters

Nozzle Tem-
perature

Minimum 20.42 15.01 19.60 17.78
Median 19.44 18.60 18.69 19.58
Maximum 17.64 23.90 19.21 19.54

When the layer height was increased from 0.16 to 0.28 mm, the mean tensile
strength decreased from 20.42 to 17.64 MPa, indicating that finer layers im-
prove interlayer adhesion and reduce stress concentrators. The density of the
infill proved to be the most influential factor, with the average strength rapidly
increasing from 15.01 MPa at 15 % infill to 23.90 MPa at 100 % infill. This
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reflects the increased cross-sectional load and the reduced internal porosity as-
sociated with denser fills. In contrast, the number of perimeters had only a
marginal effect: strength values clustered tightly around 19 MPa across two to
six perimeters, suggesting that once a minimal enclosing shell is established,
additional walls contribute little to global stiffness. Nozzle temperature like-
wise showed no influence, as the mean strength remained effectively constant
throughout the 190 - 220 °C range, implying that within these limits the vis-
cosity of the melt and the adhesion changes do not affect the failure stress. In
addition, a Kruskal–Wallis test was performed to assess whether the tensile
strength distributions differ between the three levels of each factor.

Table 5.15: Kruskal–Wallis test results for process factors on tensile strength.

Factor H (statistic) p-value

Layer Height 0.80 0.67
Infill Density 7.20 0.027
No. of Perimeters 0.00 1.00
Nozzle Temperature 0.40 0.82

This analysis confirms that infill density is the only factor with a robust effect on
tensile strength in this data set, while other factors did not produce statistically
significant differences at the 5 % level, likely due to small group sizes and
limited power.

Following quality analysis, a robustness study was performed to quantify the
degree to which the best performing model, XGBoost, is sensitive to the various
sources of randomness in the workflow.

First, the overall reduction in CO2-equivalents is evaluated. Compared to the
baseline of the slicer default with a footprint of 31.14 g CO2e per printed part,
the optimized setting lowers the footprint by 9.95 g CO2e, corresponding to
a relative reduction of 31.9%. In line with the lever-based and sub-process
accounting framework [298], the avoided burden is decomposed as
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∆Itotal ≈ ∆Imat + ∆Iel,

∆Imat = EFPLA ∆m,

∆Iel = EFE ∆E.

(5.14)

The analysis attributes 6.63 g CO2e, equal to 66.6% of the avoided burden, to a
reduction of 2.06 g in PLA consumption in the material provision subprocess.
The remaining 3.34 g CO2e, about 33.4%, is the result of 8.6 Wh less elec-
tricity during the machine operation. Under contemporary German emission
factors, material savings are the dominant contributor to GHG mitigation, and
energy efficiency provides a substantial but secondary contribution. The prac-
tical relevance of the 31.9 % reduction becomes evident when viewed against
the predictive uncertainty of the surrogate model. As reported in Table 5.9,
the XGBoost model yielded an MAE of 0.59± 0.30 g CO2, which is 1.9 % of
the baseline footprint. Therefore, the optimization signal exceeds the model-
ing noise by a factor of approximately 17, which confirms that the observed
improvement is much greater than the random variation.

Second, robustness to the data-split seed, the model initialization seed, and
the Optuna HPO seed was evaluated. For each source, a five-fold CV was
performed, repeated on 20 independent seeds. Table 5.16 shows the means and
standard deviations for the RMSE, MAE, and R2.

Table 5.16: Robustness study across different random-seed sources.

Source RMSE MAE R2

Data-Split-Seed 0.87 ± 0.34 0.52 ± 0.17 0.96 ± 0.05
Model-Seed 0.88 ± 0.01 0.57 ± 0.02 0.97 ± 0.00
Optuna-Seed 0.86 ± 0.01 0.55 ± 0.03 0.97 ± 0.00

The error metrics’ dispersion was determined based on these results, as depicted
in Table 5.17.
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Table 5.17: Dispersion of the error metrics across 20 repetitions for each seed type.

Source CoVRMSE CoVMAE σR2

Data-split seed 38.59 % 33.40 % 0.05
Model-initialization seed 0.91 % 4.04 % 0.00
Optuna seed 1.04 % 4.73 % 0.00

Only the data-split seed violates the stability criteria, with a CoV above 30 %
for both RMSE and MAE. The standard deviation of R2 remains just below
the 0.05 cutoff point, but the two error metrics already classify this source as
decision critical.

Therefore, following the methodology, LOOCV was applied to the XGBoost
model, to obtain an unbiased estimate of point-wise prediction error. Figure 5.8
shows the absolute LOOCV errors for all samples, and the dashed red line
marks the 90th-percentile threshold.

Figure 5.8: Absolute LOOCV errors for each test sample.

Using this procedure, a 90th-percentile absolute error of 0.86 gCO2e was
achieved by the model. The eight samples whose errors exceed this limit
are listed in Table 5.18.
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Table 5.18: LOOCV samples whose absolute error exceeds the 90th-percentile threshold.

Experiment
No.

Layer
Height
[mm]

Infill
Density
[%]

Number
of
Perime-
ters

Nozzle
Temper-
ature
[°C]

CO2e [g
CO2]

Predicted
CO2e [g
CO2]

12 0.16 57.50 2 220 39.12 38.06
44 0.22 100.00 2 190 40.86 42.90
55 0.28 15.00 2 220 29.16 27.63
63 0.28 57.50 2 205 36.99 35.74
64 0.28 57.50 2 220 30.45 37.18
71 0.28 100.00 2 190 43.14 42.13
73 0.28 100.00 2 220 43.86 42.24
81 0.22 57.50 2 220 36.61 35.50

The eight high-error samples share the same shell configuration of only two
perimeters, although the full factorial design also included four and six perime-
ters. This consistent pattern suggests that themodel strugglemost when the wall
thickness is at its minimum. In addition, the layer height of 0.28mm appears
to be problematic, as five of the eight outliers occur in this coarsest setting.
The nozzle temperature of 220 °C also coincides with five of the high-error
cases. Infill density does not show a single dominant value, since midlevel
density and fully solid prints appear among the outliers, but the combination
of coarse layers with minimal perimeters and elevated melt temperature clearly
drives the largest discrepancies. The four runs with the absolute largest errors
all involve two perimeters, a 0.28mm layer height, and a 220 °C nozzle setting,
with infill densities ranging from sparse to completely solid. In particular, ex-
periment 64 under these conditions produced an observed emission of 30.45 g
CO2 versus a prediction of 37.18 g CO2, a difference of 6.7 g CO2. In summary,
LOOCV reveals higher prediction errors in edge-and-corner combinations be-
cause those cells probably lack replicates. Upcoming research should prioritize
a few specific targeted repeats within these areas, or a more detailed resolution
of continuous factors might lessen regional uncertainty. Globally, the model
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remains robust. The RMSE and the 90th percentile error show that the model
generalizes well for typical process points.

Moreover, to assess the applicability of the methodology’s recommendation
rules and verify the sufficiency of data for surrogate modeling, learning curves
derived from 50 different seeds were examined. This involved analyzing both
the training and validation RMSE regarding the number of training instances.

Figure 5.9 shows that the RMSE rapidly decreases to approximately 30–40
samples and then becomes asymptotically flat, indicating that adding more data
beyond this elbow yields diminishing returns for model accuracy.

Figure 5.9: Learning-curve for XGBoost across 50 random seeds.

The ensemble of curves also reveals the variability induced by different splits,
underscoring the need for around 40 well-distributed samples to achieve stable
performance. Furthermore, the tight clustering of validation curves beyond the
elbow demonstrates the robustness of the model to different train and test splits.
To complement the analysis of the learning curve, the generalization gap was
quantified. In the very early regime (N ≤ 10) a pronounced gap of 2.2 ± 0.4
RMSE units was observed, because the model almost perfectly interpolated the
sparsely sampled training points, whereas the validation sets still probed unseen
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regions of the input space. As the training pool increased, the validation errors
decreased. At the knee point (n ≈ 39) it had already fallen below 1.00, and
beyond N = 39 it stabilized around that. This behavior implies that the total
error budget at larger N is dominated by irreducible process noise rather than
model variance, as collecting more than 40 builds yields only marginal accuracy
gains while hardly improving generalization.

To synthesize the insights from the previous two analyses, the following ex-
periment quantifies how strongly out-of-sample performance depends on the
location of training samples within the design space. The experimental space
of a 34 full factorial design can be partitioned into five radial layers defined by
the squared distance from the center, namely r2 ∈ {0, 1, 2, 3, 4}. These layers,
together with their radii, sample counts, and geometric interpretation, are listed
in Table 5.19.

Table 5.19: Layers of the 4-dimensional cube.

No. of ±1 Radius r Samples Region

0 0 1 4D-Centre
1 1 8 centers of the 3-D cubic facet
2

√
2 ≈ 1.41 24 midpoints of 2-D square face

3
√

3 ≈ 1.73 32 midpoints of 1-D edges
4 2 16 0-D corners

Two sampling protocols are considered to isolate the effect of sample location.
For edge prioritization, subsets are formed by selecting points from layer 4
first and then moving inward until the target size of 40 is reached. For center
prioritization, the same procedure is applied in reverse order starting with layer
0.

Figure 5.10 reports the distribution of RMSE values obtained from 200 random
trainings of the XGBoost model on subsets of 40 prints, each evaluated on the
complementary holdout set. All models use identical hyperparameters.
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Figure 5.10: Histogram of RMSE for 200 random trainings of the XGBoost model on subsets of
40 samples. The green and red reference lines indicate models trained with center
prioritization and edge prioritization.

Training on center layers yields a test error that is comparable to the middle of
the random baseline. Training on edge layers reduces the error by roughly a
factor of two because the remaining test points are then easier to predict. The
broad spread of the histogram indicates that the RMSE can vary by about a factor
of two solely due to sample choice. This finding highlights the importance of
including edge and corner conditions when the data budget is limited. However,
even the worst RMSE observed among the 200 runs remains acceptable, which
supports the robustness of the model for practical deployment.

Next, to quantify the robustness of the energy preprocessing pipeline, the raw
power traces of all builds were re-analyzed under a series of varied outlier
detection schemes. Three alternative families of filters were examined. First,
only using the MAD rule with varying thresholds. Second, z-score filtering was
applied. Third, only using the isolation forest detector. For every variant, the
complete energy reintegrationwas repeated for all builds, and the resulting totals
were expressed as percentage deviations from the reference energies obtained.
Table 5.20 displays the outcomes obtained.
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Table 5.20: Combined summary of the mean deviation in integrated energy for different outlier-
detection settings, relative to the approach used. Positive values indicate higher, nega-
tive values lower energy estimates.

Outlier method Parameter Mean ∆ [%]

MAD κ = 2.0 +1.07
MAD κ = 2.5 +0.48
MAD κ = 3.0 +0.03
MAD κ = 3.5 -0.43
MAD κ = 4.0 -0.70
z-score z = 2.0 -2.02
z-score z = 2.5 -1.87
z-score z = 3.0 -1.81
IsoForest contamination = 2 % -1.63
IsoForest contamination = 3 % -1.62
IsoForest contamination = 5 % -1.57

Throughout the design space, the mean deviation never exceeded 3 %. Lower
κ values admitted more local peaks and therefore produced slightly higher
energies, whereas stricter filters, whether z-based or Isolation-Forest, removed
additional peaks and reduced total energy consumption. Furthermore, almost
all points that IsoForest would discard are already removed by the MAD rule,
so the combined scheme is practically equivalent to κ = 3 alone. Importantly,
the inter-build dispersion of these differences remained small, indicating that no
subset of experiments was disproportionately affected by any particular filter.
Consequently, the modeling results can be regarded as insensitive to reasonable
changes in outlier handling, supporting the methodological soundness of the
preprocessing workflow.

Lastly, to verify consistency across the explainability methods, the feature rank-
ings from Sobol first order and total order indices, the global SHAP summary,
and the qualitative slope magnitudes from the ICE curves were compared. As
indicated in Table 5.21, all methods agree on two boundary findings. Infill
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density is the dominant driver of CO2 equivalents. Nozzle temperature con-
tributes negligibly within the explored range. The ordering of the remaining
two parameters shows a minor divergence. The Sobol first order index places
layer height slightly ahead of the number of perimeters, whereas the Sobol total
order index, the SHAP summary, and the ICE slopes indicate a slightly stronger
contribution of the number of perimeters than layer height. This pattern is
consistent with small interaction effects that are captured by the total order in-
dex and reflected in the model-based attributions. The conclusions for practice
remain unchanged. Control of infill density should be prioritized, followed by
moderate adjustments to perimeters and layer height, while nozzle temperature
can be treated as a low impact factor in this window.

Table 5.21: Comparison of feature rankings across methods. Higher rank means stronger influence
on CO2-equivalents.

Method Rank 1 Rank 2 Rank 3 Rank 4

Sobol first order
S1

Infill density Layer height No. of perime-
ters

Nozzle temper-
ature

Sobol total or-
der ST

Infill density No. of perime-
ters

Layer height Nozzle temper-
ature

SHAP global
summary

Infill density No. of perime-
ters

Layer height Nozzle temper-
ature

ICE slope mag-
nitude

Infill density No. of perime-
ters

Layer height Nozzle temper-
ature

A complementary view of the PCA in Table 5.11 supports these findings. The
first principal component aligns with infill density and CO2-equivalents and
explains the largest share of variance, while the third and second components are
driven by layer height and nozzle temperature. PCA is not a feature importance
method for the predictive model, but the alignment of CO2-equivalents with the
infill axis is consistent with the explainability results above.

The robustness investigation yields several practical insights. First, data splitting
primarily accounts for the significant standard deviation observed in themodels.
Although hyperparameter optimization seed and model seed also play a role in
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the observed randomness, their impact is considerably less substantial. Second,
the learning curve shows that the validation RMSE drops rapidly within the first
40 samples. This means that about 40 well-selected experiments are enough to
build a surrogate model that supports optimization and scenario analysis. Third,
repeated random subsampling demonstrates that the accuracy of the prediction
is strongly dependent on the placement of those 40 experiments. Sets that cover
the edge and corner regions of the design space achieve roughly half the RMSE
of sets that concentrate on the center. Intentional sampling across all shells of
the factorial cube therefore offers the highest return on investment when data are
scarce. Fourth, LOOCV reveals eight cases of high errors that share minimal
wall thickness, a coarse layer height of 0.28mm, and a nozzle temperature of
at least 220 ◦C. However, in conclusion, surrogate modeling is robust enough
for deployment, and no further methodological refinement is required.

Overall, this underscores that the use case outlined by Hauck et al. [4] can be
executed following the methodology detailed in this work. While the example
presented by Hauck et al. [4] serves as a proof-of-concept, its incorporation into
this methodology offers deeper understanding of sustainable 3D printing.

5.3 Energy Consumption Reduction of 3D
Printing with PLA

The second use case builds on the study introduced by Greif et al. [3] and
is revisited here through the lens of the proposed methodology. The use case
originates from the AI-assisted 3D printing for building materials (AIBetOn3D)
research consortium funded by the BMWKwithin the Leichtbau-TTP program.
The overarching project seeks data-efficient AI strategies that reduce CO2-
equivalents and increase material and energy efficiency in 3D printing intended
for structural components. Clay and concrete extrusion offer promising low
carbon manufacturing routes, yet they are experimentally demanding because
costs are high and accurate simulation tools are not available. To address these
constraints, the present use case employs PLA extrusion as a tractable proxy
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that reproduces the essential challenges of clay and concrete printing without
the associated costs and safety concerns. Furthermore, this use case mirrors the
scenario faced by newer processes in which historical data are unavailable. The
designed component, shown in Figure 5.11, is directly derived from a drainage
system from AIBetOn3D.

Figure 5.11: The part designed for the case study, taken from Greif et al. [3].

5.3.1 Definition of Objectives and Scope

Given the stated objective and operating conditions, the energy use case is also
assigned to the testing and refinement phase in the life cycle of Eq. (4.1). This
assignment is based on the indicators summarized in Tables 4.1 and 4.2. The
geometry and material are fixed, and the process parameters are freely adjusted
between runs. The work is organized in short experimental campaigns with
real-time measurement, and there is no pre-series control plan, no batch gate
approvals, and no long-term operational history. The primary objective is the
screening and refinement of parameter settings to reduce energy consumption
according to basic acceptance criteria. These cues match testing and refinement
rather than pilot production or later phases. The phase assignment is therefore
to P̂ = testing and refinement.

Compared to the first use case, the present use case adopts a single-objective for-
mulation in which the energy consumption per part is minimized. This change
has two rationales. First, a preliminary study showed that adjusting the printing
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parameters for the part altered its weight by less than 2 % and, therefore, it
would only act as a constant term for the optimization objective. Furthermore,
the goal is to illustrate the feasibility of the methodology to allow individual
operations to be optimized. However, every part will be weighed and the final
CO2-equivalents will be reported. The PCF calculation follows the calcula-
tion reported in the first use case. The quality requirements imposed on the
drainage channel demonstrator were intentionally minimal because the printed
PLA component serves as a correspondence sample for the forthcoming pilot
trials that will employ cementitious and ceramic feedstocks. As PLA manufac-
tured from fused filaments can never reach the compressive strength thresholds
mandated for structural concrete in EN206, destructive strength testing would
have not yielded actionable insight. Instead, the decisive functional attribute is
the morphology of the internal surface, which must remain sufficiently smooth
to ensure unhindered water runoff throughout service. To assess this, a visual
inspection will be performed.

5.3.2 Experiment Planning and Optimization Strategy

Drawing on the first use case, the parameters listed in Table 5.22 were selected
for three reasons.

Table 5.22: Selected Parameter and parameter bounds for the second use case, adapted from Greif
et al. [3].

Parameter Bounds

Infill Mass Proportion 0–30%
Nozzle Temperature 190–230℃
Build Plate Temperature 30–60℃
Layer Height 0.1–0.3mm
Print Speed 40–150mm/s

First, the layer height and nozzle temperature were selected to evaluate whether
the insights can be transferred to other parts. However, their ranges were
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broadened. The maximum nozzle temperature was raised by 10 ◦C. The
minimum layer height was reduced by 0.6 mm, and the maximum layer height
was increased by 0.2 mm.

Second, rather than prescribing the slicer’s infill percentage, the present use
case controls the infill–mass proportion:

rinfill-to-mass = minfill

mtot
= minfill

mshell + minfill
, (5.15)

that is, the ratio of lattice mass to the total filament mass required for the
part. Because the shell mass mshell scales with the outer surface area and the
fixed shell thickness, whereas the infill mass minfill scales with the interior
volume, the ratio rinfill-to-mass normalizes both dependencies. An increase in
the surface-to-volume ratio increases mshell and thus the denominator mtot,
while a bulky geometry with little surface area increases minfill and likewise
mtot. Consequently, two parts with markedly different shapes can share the
same rinfill-to-mass even though their slicer infill percentages would need to be
set to different values to realize this equality. Therefore, rinfill-to-mass serves as a
geometry-agnostic control variable, allowing a fair comparison of mechanical
or environmental results between disparate designs.

Third, according to the recommendations of the recent literature, the printing
speed [335] and the built plate temperature [340] were added, resulting in 5
input parameters in total.

In this use case, to mirror highly expensive concrete or clay printing, rapid con-
vergence to optimal print settings is more important than process understanding.
Similarly to the previous use case, the target metric of energy consumption be-
comes immediately accessible after each print, aligning with the latency class
L0 as depicted in Table 4.3. Regarding the resource limits, this use case is clas-
sified as class C0 as detailed in Table 4.4, due to the absence of historical data
and a budget constraint of 20 experiments, equivalent to a sample-to-dimension
ratio of ρ = 4.0. In addition, other metrics essential for guiding the selection
process remain uncomputable due to the absence of screening or historical data.
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These attributes collectively support the use of an adaptive search approach in
the form of a black-box optimization.

5.3.3 Data Preprocessing

In this use case, data preprocessing was performed directly following the col-
lection of each individual design point. The high-frequency power traces were
consolidated per part to calculate the total energy consumption for each part,
which is the focus of the optimization. The rationale behind cleaning and outlier
detection mirrored that of the initial use case, but these processes were executed
sample by sample.

Pre-existing gaps affected 0.83 ± 0.18 % of each part’s power trace (range
0.55–1.15 %). Point outliers accounted for 1.65±0.41 % (range 0.98–2.32 %).
In total, 2.48 ± 0.46 % of power trace observations per run were flagged as
potentially unusable.

The subsequent step involved assessing the MCAR assumption. Visual in-
spection of the binary missing value did not reveal any run-wise or time-wise
patterns. Little’s MCAR test confirmed the MCAR assumption (pmin = 0.74,
pmax = 0.97), indicating that the data loss was random rather than systematic.
Across the power traces each run exhibited 2.3± 0.9 missing segments (min =
1, max = 4) with an average segment length of 2.1± 0.6 samples (range = 1–4).
No gap exceeded the predefined safety limit of five consecutive samples.

Therefore, all missing segments were imputed by linear interpolation. After
this step, the data set contained 0 % NaNs.

For each run, the energy consumption was then aggregated by trapezoidal
integration of the cleaned power trace (Eq. 5.5). Because all points were
generated sequentially during optimization, no prior correlation analysis or
feature scaling or standardization was performed, thus preserving the original
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physical units was consideredmore informative than z scoring such a small, low-
dimensional data set. In this scenario, it was not feasible to perform a correlation
analysis as the data will be directly collected during the optimization process.

5.3.4 Sequential Optimization

In the BO routine, an anisotropic kernel was selected so that the surrogate
model could be adapted to different length-scale sensitivities across the input
dimensions. The acquisition function was chosen to be the EI, with a small
trade-off parameter ξ = 0.01. This was adopted to favor rapid exploitation,
given the limited budget of onlyN = 20 trials. To quantify sampling efficiency,
four design–optimization hybrids were compared, each limited to a total of
N = 20 function evaluations:

1. Pure BO—all 20 evaluations are adaptively chosen by the BO algorithm.

2. LHS→ BO — the search is seeded with eight LHS points, after which
BO allocates the remaining twelve evaluations.

3. FFD → BO — an eight-run quarter FFD serves as an initial screening
stage, followed by twelve BO-selected points.

4. FFD→ LHS→ BO— eight FFD runs are executed first, then eight ad-
ditional points are generated via LHS, and finally four further evaluations
are selected by BO.

Figure 5.12 illustrates the energy consumptions of the four optimization strate-
gies side by side.

223



5 Validation of the Methodology

(a) BO (b) FFD Prior BO

(c) LHS Prior BO (d) FFD and LHS Prior BO

Figure 5.12: Energy-consumption trajectories for the four sampling protocols, adapted from Greif
et al. [3].

In Figure 5.12a, the energy consumption first fluctuates between approximately
12 and 25 Wh, then gradually decreases to its minimum of 8.63 Wh at iteration
20. In Figure 5.12b, an eight-run quarter FFD immediately finds the global
minimum of 5.82 Wh in its first trial. The subsequent BO iterations oscillate
above this baseline and never improve on it. In Figure 5.12c started with an
eight-point LHS, followed by 12 BO iterations. The best value observed is
8.88 Wh at iteration 10. In Figure 5.12d the search was started with eight FFD
runs, then eight LHS points, and finally four BO updates. The same 5.82 Wh
minimum appears during the FFD block, and later phases explore higher-energy
regions without further gains.
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5.3 Energy Consumption Reduction of 3D Printing with PLA

Across the entire set of n = 80 experiments, the response and all five process
factors span their respective ranges, providing the factual boundaries for subse-
quent analyses. A detailed summary of the results of data profiling can be found
in TableA.2 of the appendix. Specific energy consumption varies from 5.82 Wh
in the most economical build to 37.81 Wh in the most demanding. Half of all
runs fall between 13.81 Wh and 20.52 Wh, with a median of 16.99 Wh. The
layer height ranges from 0.10 mm to 0.30 mm. The interquartile interval lies
between 0.161 mm and 0.263 mm, and the median is 0.204 mm. Print speed
was tested between 40 mms−1 and 150 mms−1. One quarter of the trials
ran below 60.63 mms−1, one quarter above 135.55 mms−1, with a median of
101.47 mms−1. The bed temperature covers 30 ◦C–60 ◦C, the middle 50 % of
observations occupying the band from 37.23 ◦C to 57.30 ◦C (median 47.85 ◦C).
The nozzle temperature likewise spans its full range, 190 ◦C–230 ◦C. Half of
the builds are located between 193.44 ◦C and 220.77 ◦C, centered at 202.59 ◦C.
Finally, the infill mass proportion extends from 0% to the upper limit of 30%.
The first quartile is 2.97%, the third quartile 26.65%, and the median build
contains 16.88%.

5.3.5 Explainable AI and Parameter Influence Analysis

Following the guidelines of the methodology, the global sensitivity analysis was
initially performed using both the first-order and total-order Sobol indices.

Table 5.23:Monte Carlo Sobol indices for the GP surrogate’s prediction of energy consumption.

Feature S1 ST

Layer height 0.72 0.74
Build plate temperature 0.22 0.23
Infill mass proportion 0.04 0.05
Print speed 0.01 0.01
Nozzle temperature 0.01 0.00
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Table 5.23 shows that layer height contributes the largest share of the variance
of the output, both in its first-order effect and in its total effect, followed by the
temperature of the building plate. In contrast, the print speed and the nozzle
temperature have negligible influences. The proximity of ST to S1 indicates
limited interaction effects in the examined window.

A GP regression model with an ARD kernel was trained on the complete BO
data set. The hyperparameters were tuned with Optuna. After training, feature
attributions were computed with a kernel based SHAP explainer. Figure 5.13
shows the SHAP beeswarm plot for this model.

Figure 5.13: Beeswarm representation of SHAP values for theARDGP regressor predicting energy
consumption.

The plot reveals that, within the investigated processwindow, an increase in layer
height consistently lowers the expected energy demand, whereas elevated build-
plate temperature and a higher infill-mass proportion drive it upward. Within the
examined process window, raising the print speed produces a modest reduction
in the predicted energy demand, whereas changes in the nozzle temperature
have the weakest effect of all parameters and shift the energy estimate only
marginally.
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5.3 Energy Consumption Reduction of 3D Printing with PLA

In addition, a clustering analysis was performed. In this scenario, successful
segregation was accomplished exclusively through GMM clustering, as hier-
archical and k-means clustering failed to produce satisfactory outcomes. To
identify the optimal number of clusters, the BIC and the silhouette coefficient
were plotted as functions of the cluster number, as depicted in Figure A.3 of
the appendix. An elbow was detected at k = 7, indicating that 7 clusters were
optimal. In Figure 5.14 the clusters are visualized by the first three princi-
pal components, which together account for 69 % of the total variance in the
six-dimensional data set.

Figure 5.14: Cluster visualization.

Table 5.24 indicates that the first principal component is characterized by a
strong positive loading of specific energy consumption and, with opposite sign,
by a negative loading of layer height. Accordingly, PC 1 can be interpreted
as an energy intensity dimension. Positive scores correspond to settings with
thin layers and elevated energy demand, whereas negative scores correspond
to coarser layers with lower energy demand. The second principal component
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Table 5.24: PCA feature contributions to the first three components.

Feature PC 1 PC 2 PC 3

Layer height -0.61 0.09 -0.27
Infill mass proportion -0.08 0.47 0.66
Print speed -0.06 0.69 -0.22
Bed temperature 0.37 0.20 -0.64
Nozzle temperature 0.03 -0.49 0.05
Energy consumption 0.69 0.10 0.16
Explained variance 0.31 0.20 0.18

is governed by print speed and infill mass proportion, with signs opposite to
nozzle temperature. This component separates regimes with high throughput
and dense infill from regimes with lower speeds, cooler process conditions, and
more material sparing settings. The third principal component contrasts a high
infill fraction with a low build plate temperature and therefore captures a trade
off between thermal input through the build plate and consolidation inside the
part.

Table 5.25: Cluster sizes and mean process parameters.

Cluster n Layer
height
[mm]

Build
plate
temp.
[◦C]

Infill
mass
propor-
tion [%]

Print
speed
[mm/s]

Nozzle
temp.
[◦C]

Energy
cons.
[Wh]

0 8 0.14 57.13 1.90 68.84 223.92 27.09
1 16 0.26 33.75 19.05 100.06 207.14 10.41
2 27 0.20 50.57 8.50 80.36 200.27 15.85
3 12 0.28 54.98 24.26 126.28 216.29 16.14
4 6 0.13 33.37 13.50 132.51 216.90 19.76
5 6 0.14 58.86 28.18 147.37 191.23 30.69
6 5 0.13 34.67 28.38 42.94 203.12 24.70
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5.3 Energy Consumption Reduction of 3D Printing with PLA

The numerical cluster profiles in Table 5.25 can be interpreted within the PCA
framework. Cluster 1 occupies the region of PC 1 that is associated with low
energy demand and coarse layers. It combines this with moderate infill and
a moderate nozzle temperature. This combination makes Cluster 1 the most
resource efficient group. Clusters 0 and 5 lie at the opposite end. Both use
very fine layers. Cluster 5 also applies the highest print speed and a high nozzle
temperature. As a result, these two clusters exhibit the largest mean energy
demand. Cluster 3 reflects the fast and dense regime highlighted by PC 2.
It contains the coarsest layers in the study together with a high infill fraction
and the second highest print speed. The resulting energy footprint remains
moderate. Clusters 2 and 4 occupy intermediate regions of the PCA space.
They differ mainly in build plate temperature and infill fraction. This difference
explains their separation along PC 3.

Finally, as shown in Figure 5.15, the energy consumption of the PLA prints
exhibits markedly different sensitivities. The proportion of infill mass shows an
overall rising trend. Energy consumption increases moderately from 0 % to 10
%, afterwards it stays nearly constant with a small downward trend up to 18 %,
from there it climbs more steeply beyond 20 %, increasing from approximately
0.015 kWh in 0 % to roughly 0.021 kWh in 30 %. The nozzle temperature
has the least impact, with the mean ICE curve almost flat between 190 °C
and 230 °C, rising by only 0.001 kWh over that full range. The build plate
temperature shows a modest upward effect on energy use. Energy consumption
is nearly flat from 30 °C to about 35 °C (0.0135 kWh), then increases steadily
to approximately 0.021 kWh at 60 °C. The layer height plot shows the strongest
negative dependency, with the mean energy falling steeply from about 0.028
kWh at 0.10 mm to roughly 0.014 kWh at 0.30 mm.
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(a) Build Plate Temperature (b) Infill Mass Proportion

(c) Layer Height (d) Print Speed

(e) Printing Temperature

Figure 5.15: ICE plots showing the partial dependency of energy consumption on each process
parameter.

Finally, the print speed shows a minimal downward trend, from about 0.0185
kWh at 40 mm/s to about 0.017 kWh at 150 mm/s. In general, the tight
grouping of individual curves around the mean in each graph underscores the
low predictive variability of the model throughout the design space.
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5.3.6 Validation and Real-World Integration

To determine whether the 20-print optimization campaign pays back its initial
investment, the total cost and CO2 equivalents were compared against the
savings per part achieved by switching from baseline settings (Ebase = 20Wh,
mbase = 4g) to the optimized settings were compared.

In the best-case DoE–BO sequence, the campaign consumes

EOpt,1 =
20∑

i=1
EDoE-BO

i ≈ 4.15× 10−1 kWh. (5.16)

With a total PLA mass of

mOpt = 20× 4 g = 8.00× 10−2 kg, (5.17)

its total cost is

COpt,1 = EOpt,1 cE + mOpt cmat ≈ 1.68× 100 EUR, (5.18)

and its total CO2e is

IGWP100
Opt,1 = EOpt,1 EFE + mOpt EFmat ≈ 4.18× 10−1 kg CO2e. (5.19)

Switching from baseline to this best-case optimum (Eopt,1 = 5.82 Wh) yields
a per-part energy reduction

∆E1 = Ebase − Eopt,1 ≈ 1.42× 10−2 kWh, (5.20)

with no change in mass, so the per-part savings are

∆cpart,1 = ∆E1 cE ≈ 2.69× 10−3 EUR part−1, (5.21)

∆IGWP100
part,1 = ∆E1 EFE ≈ 5.50× 10−3 kg CO2e part−1. (5.22)
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Hence the break-even points for the best-case campaign are

N cost,1
BE = COpt,1

∆cpart,1
≈ 6.24× 102 parts, (5.23)

NCO2e,1
BE =

IGWP100
Opt,1

∆IGWP100
part,1

≈ 7.60× 101 parts. (5.24)

Under the worst-case LHS–BO sequence, the campaign consumes

EOpt,2 =
20∑

i=1
ELHS-BO

i ≈ 3.10× 10−1 kWh. (5.25)

With the same total material usage, the corresponding cost and CO2e are

COpt,2 = EOpt,2 cE + mOpt cmat ≈ 1.66× 100 EUR, (5.26)

IGWP100
Opt,2 = EOpt,2 EFE + mOpt EFmat ≈ 3.77× 10−1 kg CO2e. (5.27)

Applying a prudence factor α = 1.2 yields conservative thresholds:

N cost,1
BE,safe = 1.2×N cost,1

BE ≈ 7.49× 102 parts, (5.28)

NCO2e,1
BE,safe = 1.2×NCO2e,1

BE ≈ 9.12× 101 parts. (5.29)

Overall, the BE thresholds indicate a favorable and manageable payback. Com-
pared with the previous use case, the cost BEP of ≈ 7.49× 102 parts is about
1.90× higher, whereas the CO2e BEP of ≈ 9.12× 101 parts is approximately
one-quarter of the earlier value. This divergence can be explained with the
strong reduction in energy demand achieved at the optimum, while the part
mass remains constant in this setting.

Furthermore, in terms of quality requirements, all manufactured parts were
visually examined. No evidence of bead detachment, warpage, surface pitting,
or incomplete interlayer bondingwas observedwhen the sampleswere analyzed.
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5.3 Energy Consumption Reduction of 3D Printing with PLA

In addition, no surface smoothness deficiencies that could impede water flow
were identified, confirming their suitability for the intended application of the
drainage system.

With the BEP results and the quality evaluation contextualized, the analysis
proceeds to the robustness testing of the optimization result. Following the
methodology, the PCF is decomposed into sub-process contributions as in
Eq. (5.6). The baseline has a PCF of 20.60 g CO2 per part, comprising 7.76 g
emitted by electricity consumption during machine operation and 12.90 g origi-
nating from the constant mass of 4.00 g PLA.Adoption of the best settings found
reduces the PCF to 15.10 g CO2, which corresponds to an absolute reduction
of 5.50 g CO2 and a relative decrease of 26.70 %. Five replicate prints per-
formed at the optimum consumed on average 6.02± 0.27 Wh. The ±0.27 Wh
variability represents only 1.40 % of the baseline demand of 20.00 Wh. The
optimization therefore reduces the mean energy consumption by 13.98 Wh,
corresponding to a reduction of 70.00 % relative to the baseline. The improve-
ment signal thus exceeds the experimental noise by a factor of approximately
52, confirming the robustness of the observed gain.

In the context of sequential optimization, the robustness evaluation of levels
A and B is not accounted for, since it would necessitate conducting additional
real-world experiments, which the available budget constraints did not allow.
The evaluation of XAI alignment is conducted concerning Level C.

To verify consistency across the XAI methods, the feature rankings from the
Sobol first order and total order indices, the global SHAP summary, and the
slope magnitudes from the ICE curves were compared. As indicated in Table
5.26, all methods agree on a common ordering. The layer height is identified as
the primary driver of energy consumption. The build plate temperature ranks
second. The infill mass proportion ranks third. The print speed ranks fourth.
The nozzle temperature has the weakest influence within the investigated win-
dow. These results suggest that the layer height and the build plate temperature
should be prioritized in process control when energy reduction is the objective,
while the nozzle temperature can be treated as a low impact factor in this setting.
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5 Validation of the Methodology

Table 5.26: Comparison of feature rankings across methods for the energy consumption use case.
Higher rank means stronger influence.

Method Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Sobol first
order S1

Layer height Build plate
temperature

Infill mass
proportion

Print speed Nozzle tem-
perature

Sobol total
order ST

Layer height Build plate
temperature

Infill mass
proportion

Print speed Nozzle tem-
perature

SHAP
global sum-
mary

Layer height Build plate
temperature

Infill mass
proportion

Print speed Nozzle tem-
perature

ICE slope
magnitude

Layer height Build plate
temperature

Infill mass
proportion

Print speed Nozzle tem-
perature

A complementary perspective from the PCA loadings in Table 5.24 supports
this interpretation. The first principal component aligns positively with energy
consumption and negatively with the layer height, which is consistent with the
strong influence of the layer height observed in the Sobol, SHAP and ICE
analyzes.

In addition, to assess whether the Gaussian-process regressor with an ARD
kernel constituted the suitable surrogate, the response surface was re-estimated
using two alternatives: a Gaussian-process regressor with an isotropic RBF
kernel and an RF, and their predictive accuracy was compared with that of the
ARD variant.

Table 5.27: Test-set performance of the three regressors evaluated over ten random splits of the BO
Experiments data.

Model R2 MAE RMSE

GPR-ARD 0.76 ± 0.12 1.63 ± 0.68 2.41 ± 1.19
GPR-isotropic 0.17 ± 0.67 2.88 ± 0.74 3.97 ± 0.91
RF 0.54 ± 0.45 1.98 ± 0.61 2.80 ± 1.12
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The comparative evaluation in Table 5.27 indicates that the GP model with an
ARD kernel attains the highest average R2 and the lowest MAE and RMSE
across the ten random splits, whereas the isotropic kernel and the RF surrogate
perform noticeably worse. These results suggest that allowing feature specific
length scales increases the fidelity with which the response surface is learned.
However, the findings should be interpreted with care. The analysis isolates
the regression step and does not capture the interaction between the surrogate
model, the sampling design, and the acquisition function that would operate in
an iterative BO loop. Because this interaction governs how informative new
experiments are selected, the relative ranking of surrogates observed here does
not necessarily translate to sequential optimization performance. The present
comparison therefore serves to assess how accurately each model can fit the
underlying response surface given the available data.

Furthermore, spearman rank correlation analysis was performed to uncover
monotonic dependencies among process variables and response. Figure 5.16
displays the resulting correlation matrix.

Figure 5.16: Spearman rank-correlation matrix of all process parameters and the response variable.
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The matrix confirms that the input parameters are independent of each other, in-
dicating that the experimental design did not introduce appreciable col-linearity.
The absence of pronounced interparameter correlations fulfills the conditional
independence assumption required for post hoc explainability tools such as ICE
curves, ensuring that the effect of each variable can be interpreted in isolation.

Overall, the satisfaction of quality and the energy savings achieved, when
comparing the baseline configurations to the optimized parameter settings, do
not necessitate a methodological reassessment or refinement for the goal of the
use case.

5.4 Discussion

Manufacturing occupies a central position in global sustainable development
and is critical to achieving the SDGs of the United Nations. In particular,
SDG 9, SDG 12, and SDG 13 require a substantive transformation of industrial
processes to achieve greater resource and energy efficiency. Digital technologies
and data-drivenmethods, such as themethodology proposed in thiswork, enable
these goals to be operationalized at the plant level by integrating measurement,
modeling, and optimization into routine decision making.

One of the most fundamental findings is that a systematic, data-driven adjust-
ment of process parameters leads to substantial environmental and economic
benefits, regardless of the chosen optimization strategy. The demonstrated sav-
ings in CO2-equivalents, energy, and material consumption represent a direct
and measurable contribution to the aforementioned sustainability goals.

To systematically analyze this central finding and illuminate its full implica-
tions, the following discussion is structured as follows. First, the overarching
findings from the industrial use cases are synthesized to identify the key levers
for sustainable manufacturing. Building on this, the section discusses the
methodological trade-offs that emerge from the empirical validation. From
these insights, the concrete implications for industrial practice are then derived,
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before the chapter concludes with a critical examination of the methodology’s
limitation.

The two industrial use cases on the reduction of CO2-equivalents and energy
consumption in PLA FDM printing reveal convergent insights into the determi-
nation of process dynamics. Regardless of the chosen optimization objective,
be it the PCF or pure energy consumption, two parameter groups proved to be
dominant:

1. Material Deposition: The amount of polymer deposited, mainly con-
trolled by the infill density and secondarily by the number of perimeters,
is the largest driver of the environmental footprint.

2. Process Time and Thermal Energy: The layer height has a negative
influence on energy consumption. Larger layer heights reduce the number
of toolpaths and the total printing time, leading to a lower energy demand.
Similarly, the heated bed temperature was shown to be a relevant energy
driver, while the nozzle temperature had a negligible influence within the
investigated process window.

These results point to a generalizable principle for sustainability oriented op-
timization in FDM. Reducing material consumption and shortening active ma-
chine time are the most effective levers to improve resource efficiency. At the
same time, the validation exposes a performance trade off. In the energy re-
duction use case, quality requirements were intentionally low, which permitted
optimization without mechanical constraints. In the PCF-oriented use case, a
clear tension emerged between environmental objectives and mechanical per-
formance. Tensile strength analysis showed that infill density, the strongest
driver of CO2 reduction, is also the primary determinant of mechanical sta-
bility. Within the investigated parameter window, lowering the infill density
reduces the tensile strength in a nearly monotonic manner. Consequently,
the CO2 savings achieved through a lower infill must be balanced against the
application-specific strength targets.
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This type of conflict is typical in numerous manufacturing systems and high-
lights the necessity to evaluate quality limitations alongside environmental met-
rics, and conversely, environmental considerations alongside quality measures.
Traditionally, process optimization in industry has focused primarily on quality
or performance characteristics, such as maximizing strength or minimizing cy-
cle time. However, this represents merely the inverse trade-off. The one-sided
pursuit of quality goals often implicitly leads to higher resource consumption
and thus to a larger environmental footprint. This work shows that a holis-
tic view is essential to find a conscious and quantified compromise instead of
neglecting one of the two aspects.

The empirical validation then revealed a second, equally important trade-off
that lies at the core of the developed methodology. The choice between a
static approach and an adaptive search is not only technical but strategic. The
approach of creating a global surrogate model using a space-filling experimental
design aims to achieve a comprehensive understanding of the process landscape.
The result is a highly predictive model that maps the entire design space. This
offers maximum flexibility as the data can be used to optimize the system
for different target variables, for example, first CO2, then tensile strength,
analyze interactions and generate deep process knowledge. The price for this
is a higher initial experimental effort. This drawback is exacerbated by two
factors. First, the nature of factorial designs, where the number of experiments
grows exponentially with the number of factors and levels. Adding just one
more parameter or an additional level can overwhelm the budget. Second,
as the number of parameters increases, this approach quickly runs into the
limits imposed by the Curse of Dimensionality [97]. With each additional
dimension, the volume of the search space grows exponentially, causing the data
points to become sparse even with large sample sizes. Reliably covering the
entire space becomes practically impossible, and interpolation between distant
measurement points becomes unreliable. In contrast, the adaptive search is
designed to find an optimum for a predefined target variable with a minimum
sample size. The validation confirmed the superior sample efficiency of this
approach. BO consistently found better optima than the static model with the
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same or a smaller experimental budget. However, this advantage comes at the
cost of a loss of global knowledge. The generated data are strongly biased
towards the optimum, which makes the resulting surrogate model unsuitable
for a general process analysis or optimization for alternative target variables.
An optimization of tensile strength with the data from the energy reduction use
case would therefore have been hardly possible. The methodology developed
thus offers a clear decision-making framework. If the focus is on the fast and
resource efficient optimization of a stable target criterion, direct optimization is
the preferred path. If, however, the goal is to build a deep understanding of the
process, explore trade-offs, or flexibly adapt to changing requirements, global
surrogate modeling is indispensable.

Furthermore, the validation results have far-reaching implications for the in-
dustrial use of AI-supported optimization methods. Break-even analyzes show
that the initial effort for a data-driven optimization campaign is amortized with
small to medium production volumes. This makes the methodology attractive
not only for large-scale production but also for SMEs and prototyping. The
ability to achieve cost and resource savings without compromising part quality,
as long as the boundary conditions are observed, represents a clear competi-
tive advantage. The methodology should not be understood as an isolated tool
but as a strategic component in the product development process. Utilizing
different strategies for identical processes at various stages is also feasible. In
early phases, a global surrogate model can provide valuable knowledge about
the limits and sensitivities of the process. In late phases, direct optimization
can be used to quickly and efficiently find the optimal process parameters for a
specific application. The application of XAI methods is crucial to acceptance
and success in practice. They translate the complex, non-linear relationships of
a machine learning model into understandable and actionable insights for the
process engineer. This builds trust in the black box, validates the model re-
sults against existing domain knowledge, and enables informed human-centered
decision making.

239



5 Validation of the Methodology

As with any framework, the one presented here has its limitations, which also
provide opportunities for future development. The methodology relies on land-
scape metrics to guide the choice of strategy. In situations with extremely
scarce data or entirely new processes, it is difficult to calculate these metrics.
Although the framework provides a default recommendation for such cases, the
initial decision is based more on an educated guess than on hard data. A future
enhancement could include mechanisms to dynamically adapt the strategy as
more is learned about the process landscape during the initial experiments. Fur-
thermore, the effectiveness of the methodology relies on a partnership between
the data-driven framework and human expertise. The selection of suitable ini-
tial parameters and constraints, and particularly the interpretation of the results
to generate actionable insights, often require expert knowledge. Without this
expert-in-the-loop, there is a risk of making suboptimal decisions that could re-
duce the efficiency of the optimization or lead to impractical solutions. Another
aspect is the handling of competing goals. The methodology is very effective at
revealing trade-offs, as demonstrated by the example of CO2 reduction versus
mechanical strength. However, currently it does not offer an integrated mecha-
nism to resolve these conflicts directly. The next logical step would therefore be
to extend the framework to include multi-objective optimization methods. This
would allow users to generate a range of optimal compromise solutions, the
so-called Pareto front, and to make a conscious, data-driven decision that con-
siders both quality and sustainability aspects. Finally, while this work presents
best practices for the various steps of the methodology drawn from research
and application cases, it cannot cover every individual contingency of a specific
industrial setting. Every real-world scenario comes with its own unique set
of constraints, be it specific machine behaviors, material inconsistencies, or
unique quality standards. Therefore, the framework should be seen as a robust
and adaptable guide, not a rigid prescription, which practitioners must tailor to
their specific context.
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5.5 Summary of the Validation

The validation of the proposed methodology is systematically organized into
two distinct stages. The initial stage focuses on an empirical validation of
the methodology’s core principle, specifically testing the hypothesis that an
adaptive search strategy, such as BO, exhibits greater sample efficiency in lo-
cating an unknown optimum compared to a static, one-shot modeling approach
combining a DoE with model training. This was tested using five publicly
available material science datasets. The results confirmed that the adaptive
BO strategy consistently established a performance advantage, often within
the first 10-15 evaluations, and was more effective in finding the true optimal
value. This analysis revealed a trade-off. While the static approach produced
models with superior global predictive accuracy across the entire process space,
the adaptive search was demonstrably more efficient for the specific task of
optimization. The advantage of the adaptive strategy was found to be more
pronounced in landscapes with high local ruggedness, as indicated by a strong
negative correlationwith the PIC. Building upon these findings, the second stage
demonstrates the end-to-end applicability of the entire methodology through
two industrial use cases in FDM 3D printing, designed to test the framework
under both data-rich and data-limited conditions. The first use case, a data-
rich scenario, aimed to minimize the PCF of a printed PLA part. Following
the methodology, a surrogate modeling approach was selected, and machine
learning models were trained on data from a full factorial experiment. XAI
analysis identified infill density and layer height as the dominant drivers of CO2

equivalents. A critical conflict between environmental goals and mechanical
quality was uncovered as the infill density, the strongest lever for reducing the
PCF, was also the most decisive factor for the part’s tensile strength. The second
use case, representing a data-limited scenario, focused on minimizing energy
consumption with a constrained budget of only 20 experiments. Here, a direct
black-box optimization strategy using BO was employed. The results showed
that initializing the search with a structured FFD was the most efficient strategy,
locating the minimum global energy within the initial screening phase. Across
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both industrial applications, a consistent principle emerged: reducing material
deposition and minimizing active machine time are the most effective levers for
enhancing resource efficiency. The validation confirms that the methodology
provides a robust framework for navigating the strategic choice between achiev-
ing a comprehensive global process understanding and performing rapid and
resource-efficient optimization, while also quantifying the inherent trade-offs
between sustainability objectives and traditional quality metrics.
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The conclusion of this work consolidates the essential findings and contribu-
tions. It begins by revisiting the central research questions and presenting a
consolidated summary of the results from each chapter, highlighting their re-
spective roles in achieving the overall research objectives. Building upon these
findings, the chapter then provides a forward-looking perspective, outlining sev-
eral promising avenues for future research that extend and build upon the work
presented here.

6.1 Conclusion

Chapter 1 delineates the problem landscape at the intersection of ecological
transformation and data-driven manufacturing. In response to global sustain-
ability goals and regulatory pressure, this thesis proposes a data-efficient, AI-
driven framework for process optimization under the constraints of data scarcity.
The scope is focused on the ramp-up and serial production phases, with AM as
a primary application context. This chapter culminates in the central research
question: How can data-efficient, explainable optimization be operationalized
in industrial environments to advance sustainable manufacturing?

Chapter 2 establishes the theoretical foundations required for this work. It
provides a technical overview of the relevantmanufacturing processes, including
thermoplastic and paste extrusion. Then it details established environmental
assessment tools, namely LCA, with an emphasis on system boundaries and
impact categories. The chapter proceeds to outline the necessary components
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to achieve a complete data-driven optimization pipeline, outlining the choice
between sequential optimization and offline optimization with static surrogates.
The chapter concludes with the establishment of XAI as a component to bridge
the gap between model performance and user trust.

Chapter 3 presents a systematic review of the state of the art. A literature review,
conducted according to the PRISMA methodology, reveals that while powerful
data-efficient optimization algorithms and a growing repertoire of XAI tech-
niques exist, they are rarely integrated into a single, coherent framework. The
analysis identifies a critical research gap: the absence of a holistic methodology
that unifies data-efficient, explainable, and practically deployable optimization
for sustainable manufacturing.

Chapter 4 details the novel methodology developed to address this identified
gap. The proposed framework is modular and sequential, guiding from the
definition of the goal to industrial validation. It specifies a systematic process
for defining sustainability metrics, a structured framework for choosing between
offline and sequential optimization strategies, and a six-stage pipeline for data
preprocessing. The methodology integrates multi-layered XAI protocols for
global, local, and subgroup analysis, while formal protocols for break-even
analysis, quality assurance, and iterative refinement ensure the practical viability
of the results.

Chapter 5 provides an empirical validation of the proposed methodology. A
quantitative study on open-source material science datasets first demonstrates
the superior sample efficiency of the sequential optimization strategy compared
to a static surrogate approach. Subsequently, two industrial case studies apply
the complete framework to FDM of PLA. The first case minimizes CO2 emis-
sions and uses XAI to reveal a critical trade-off between the ecological objective
and mechanical properties. The second case demonstrates a reduction in energy
consumption within a severely limited experimental budget. In both studies, the
efficacy and adaptability of the framework in different data availability regimes
are confirmed.
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Viewed through the wider lens of global sustainability agendas, the dissertation
advances three overarching frameworks at once. First, it operationalizes key as-
pirations of the United Nations 2030 Agenda. By embedding carbon footprint
and energy intensity metrics directly in the optimization objective, the work
creates an actionable pathway toward SDG 12 on responsible consumption and
production and SDG 13 on climate action, while its emphasis on data-efficient
AI solutions that can be retrofitted to existing equipment speaks to the call for
inclusive and resilient industrial innovation of SDG 9. Quantitative case studies
translate these high-level goals into factory floor practice, showing that high
reductions in energy demand and material use are possible without incurring
prohibitive experimentation costs. Second, the thesis aligns with the European
Commission’s vision of a CE by transitioning the focus of process optimiza-
tion from solely maximizing yield to also reducing embodied emissions and
minimizing wasted feedstock. The ability of the methodology to illuminate
trade-offs, such as the tension between tensile strength and CO2 production,
gives engineers a transparent decision calculus to balance productivity with
resource loops, which supports design-for-recyclability and life-cycle thinking
at the level of process parameters. Third, and most directly, the framework
exemplifies the principles of Industry 5.0, which extend the automation-centric
narrative of Industry 4.0 to emphasize human-centricity, sustainability, and
resilience. The sample efficient BO reduces the physical and computational
burden of experimentation, themultilayer XAI component restores human inter-
pretability to machine recommendations, and the modular architecture ensures
that the knowledge gained in one setting can be transferred to the next, building
organizational resilience. In short, the dissertation translates the abstract pillars
of Industry 5.0 into a concrete, data-driven toolkit that empowers engineers
to co-create climate-aligned production systems rather than merely automate
existing ones.
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6.2 Future Work

The research presented in this thesis establishes a methodological framework
and also opens several promising avenues for future investigation. One primary
direction is to broaden the framework’s application in order to test its general-
izability. A second path involves deepening the methodology itself to further
enhance its sample efficiency. Finally, a third area of focus is to advance the
practical application of XAI through dedicated user-centric studies.

The first step is to validate the generalizability of the proposed framework
beyond the initial use case of 3D printing with PLA. The future objective is
to demonstrate the domain-agnostic capabilities of the methodology by trans-
ferring it to a diverse set of manufacturing technologies. Initial studies have
commenced in this field, demonstrating potential in reducing energy consump-
tion and enhancing buildability within injection molding and clay 3D printing
processes, respectively. Key research questions will include: How does the
optimal surrogate model class change with the higher dimensionality and dif-
ferent noise characteristics of injection molding? Can the dimension-aware BO
strategy effectively navigate the complex, non-linear trade-offs in multi-material
optimization for metal AM? The assessment of success will encompass not just
the final performance attained, but also the efficiency of transfer, defined as
the measurable decrease in the experimental budget necessary, compared to
initiating optimization from scratch in every new domain.

A key challenge in industrial optimization remains the scarcity of data for new
products or processes. Future research will focus on improving the sample effi-
ciency of themethodology bymoving from single-task optimization tomultitask
learning. One promising avenue is the use of transfer learning to warm-start
optimization algorithms. Methodologically, this could be implemented by using
a surrogate model trained on a data-rich source task, from a well-established
product line as a prior for a BO on a new, data-scarce target task. A more am-
bitious long-term direction is the development of domain-specific foundation
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models for manufacturing. This research would involve aggregating large, het-
erogeneous datasets frommultiple production lines, designing a self-supervised
pre-training objective that forces the model to learn the underlying physics of
the process, and developing efficient fine-tuning strategies for new tasks.

This work demonstrated that detailed post hoc XAI analyses were highly valued
by industrial stakeholders. However, this raises the question: What level and
type of interpretability is truly necessary and effective in practice for different
user roles? To address this, a formal human-computer interaction (HCI) study
is needed. This study would involve presenting process engineers and quality
managers with standardized optimization diagnostic tasks under different ex-
planation conditions. Key dependent variables would include task accuracy,
decision-making time, and subjective ratings of trust and usability. Think-aloud
protocols would be used to capture qualitative insights into the users’ reason-
ing processes, providing an evidence-based guide for designing effective XAI
interfaces for manufacturing.

Finally, as the industry progresses towards the long-term vision of fully au-
tonomous production, a fundamental question arises: if a manufacturing plant
operates without human intervention, does the need for human-centric explain-
ability diminish? This thesis posits that, counterintuitively, the need for robust
XAI may become even more critical, opening a vital avenue for future research
that goes beyond explaining static models to a user. This future work would
explore the role of XAI in the certification and accountability of autonomous
systems, where explainabilitymay become a prerequisite for regulatory approval
as humans remain legally and ethically responsible. Furthermore, research into
XAI is needed as a tool to ensure resilience and enable debugging. When novel
failures inevitably occur, explainability methods will be essential for engineers
to conduct root cause analysis in these complex, emergent systems. A third
compelling research direction is the use of XAI for automated scientific dis-
covery, creating methods to extract novel physical insights from an autonomous
agent’s behavior, thereby turning the smart factory into an engine for continuous
innovation. Ultimately, this research would investigate the evolution of XAI
from a tool for human-computer interaction to a fundamental component for
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the governance, safety, and innovative capacity of next-generation autonomous
systems.

A further potential research direction is the integration of the methodology
into an autonomous, agent-based system. The long-term vision would be a
self-optimizing production line where a software agent could independently
execute the full cycle of data analysis, optimization, and validation. In such a
paradigm, the systematic protocols developed in this thesis could serve as the
agent’s cognitive modules: the data preprocessing pipeline could function as
its perception system, the framework for strategy selection as its core decision-
making engine, and the optimization and XAI protocols as its mechanisms for
action and self-reflection. Realizing this vision would open up new research
questions, such as how to formalize the methodology’s qualitative decision
points into machine-executable rules and how to design effective human-on-
the-loop interfaces for supervising such an autonomous agent.
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A Appendix

Table A.1: Use Case 2 (PLA dataset): Descriptive statistics for process variables.

Variable Quantiles
0% 5% 25% 50% 75% 95% 100%

Power (W) 59.7 67.5 87.6 101.1 111.0 124.1 139.5
Imputed Power (W) 59.7 68.1 89.7 98.9 109.8 123.2 139.5
Layer Height (mm) 0.16 0.16 0.16 0.22 0.28 0.28 0.28
Infill Density (%) 15.0 15.0 15.0 57.5 100.0 100.0 100.0
Number of Perimeters 2 2 2 4 6 6 6
Nozzle Temperature (°C) 190 190 190 205 220 220 220
Energy Consumption (Wh) 19.54 21.71 25.02 27.35 29.24 32.68 34.17
Material Consumption (g) 6.18 6.39 7.55 8.64 10.01 10.32 10.43
CO2 Emissions (g) 27.96 28.77 33.40 38.81 43.25 45.39 46.40

Table A.2: Use Case 3 (BO dataset): Descriptive statistics for process variables.

Variable Quantiles
0% 5% 25% 50% 75% 95% 100%

Infill Mass Proportion (%) 0 0 2.97 16.88 26.65 30 30
Nozzle Temperature (◦C) 190 190 193.44 202.59 220.77 230 230
Bed Temperature (◦C) 30 30 37.23 47.85 57.30 60 60
Layer Height (mm) 0.100 0.100 0.161 0.204 0.263 0.300 0.300
Print Speed (mm/s) 40 40 60.62 101.47 135.55 150 150
Energy Consumption (Wh) 5.82 8.86 13.81 16.99 20.52 35.58 37.81
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(a) BIC values for different numbers of clusters
(b) Silhouette coefficient for different numbers of

clusters

Figure A.2: Use Case 2 (PLA dataset): BIC and Silhouette analysis to identify the optimal number
of clusters.

(a) BIC scores for different numbers of clusters.
(b) Silhouette scores for different numbers of clus-

ters.

Figure A.3: Use Case 3 (BO dataset): BIC and Silhouette analysis to identify the optimal number
of clusters.
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