KIT | KIT-Bibliothek | Impressum | Datenschutz

Overlapping Nanostacks Enable Direct Printing of Organic LEDs

Lux, Stefan ORCID iD icon 1; Schlindwein, Jannik 1; Plank, Martina 2; Reichert, Klaus-Martin 3; Koker, Liane ORCID iD icon 3; Rosa, Maria; Amir, Momina; Weber, Benjamin 1; Müller, Erich ORCID iD icon 4; Welle, Alexander ORCID iD icon 5,6; Kuznetsova, Nadezda; Kraft, Michael; Eggeler, Yolita M. ORCID iD icon 4; Weber, Laura K. 1; Mattes, Daniela 1; Gengenbach, Ulrich 3; Stahlberger, Mareen ORCID iD icon 7; Korvink, Jan G. 1; Breitling, Frank 8; ... mehr

Abstract (englisch):

A custom-built laser-induced forward transfer (LIFT) setup was developed to fabricate multimaterial organic light emitting diode (OLED) stacks under ambient laboratory conditions without the use of a cleanroom or encapsulation. The process enables precise control of layer thickness through parameter tuning as confirmed by vertical scanning interferometry (VSI), yielding smooth and homogeneous layers with surface roughness values down to 2.78 nm. The process achieves tunable thicknesses between 19 nm and 45 nm, while the lateral resolution is limited to about 100 μm. A three-layer OLED stack (total thickness ≈ 90 nm) was printed and structurally characterized using focused ion beam scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), revealing distinct, well-defined layer boundaries. First functional tests demonstrated electroluminescence at 580 nm with an operational lifetime of at least 20 min. Despite the lack of encapsulation, the OLEDs remained stable under ambient conditions with a shelf life of up to 9 days. These results confirm the potential of LIFT as a scalable and precise tool for the additive manufacturing of flexible thin-film devices such as OLEDs, solar cells and fuel cells.


Verlagsausgabe §
DOI: 10.5445/IR/1000188481
Veröffentlicht am 12.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Biologische Grenzflächen (IBG)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Mikrostrukturtechnik (IMT)
Institut für Organische Chemie (IOC)
Karlsruhe Nano Micro Facility (KNMF)
Laboratorium für Elektronenmikroskopie (LEM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 2196-7350
KITopen-ID: 1000188481
Erschienen in Advanced Materials Interfaces
Verlag John Wiley and Sons
Band 12
Heft 24
Vorab online veröffentlicht am 08.12.2025
Schlagwörter additive manufacturing, laser-induced forward transfer, nanolayer, OLED
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page